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Explainable Approximation in High Dimensions:
Fourier-Based Algorithms Meet Kernel Methods

ANOVA Decomposition
Let f ∈ L2(Td). Based on the ANOVA (analysis of
variance) decomposition

f (x) =
∑

u⊆{1,...,d}
fu(xu)

the importance of single dimensions as well as of
groups of dimensions can be studied.

f∅ =
∫
Td
f (x) dx,

fu(xu) =
∫
Td−|u|

f (x) dxū −
∑
v⊊u

fv(xv),

where ū = {1, . . . , d} \ u.

Decomposition in Fourier Domain

For a subset u ⊂ {1, . . . , d} =: D of dimensions we
have [Potts, Schmischke 2021]

fu(x) = fu(xu) =
∑

k∈Zd: supp(k)=u

ck(f ) e
2πik⊤xu

Decomposition of the index set, 3D-visualization:

Variances and GSI

Consider a trigonometric polynomial

f (x) =
∑
k∈K

f̂k e
2πik⊤xj.

We easily see that σ2(f ) =
∑

∅̸=u⊆D
σ2(fu).

Study the importance of subsets u in terms of the
global sensitivity indices (GSI)

ρu(f ) :=
σ2(fu)

σ2(f )
=

∑
supp(k)=u |f̂k|2∑
k∈K\{0} |f̂k|2

∈ [0, 1].

Goal
Given: N data points xj ∈ Td or [0, 1]d and
corresponding values yj ∈ R, find a model or
rather function f with

yj ≈ f (xj).

We can work efficiently with trigonometric
models (nonuniform FFT, short: NFFT), but
only in low dimensions (due to the curse of
dimensionality).

ONB Approach
Ansatz: yj ≈ f (xj) :=

∑
k∈K

f̂k e2πik
⊤xj , where we assume a

low superposition dimension: k ∈ K ⇐⇒ |supp(k)| ≤ ds.
1. Solve minf̂ ∥y − Φf̂∥22 + λf̂

∗
W f̂ iterative (LSQR),

where Φ = [ e2πik
⊤xj]k,j (fast mult. via NFFTs).

W = diag(ω̂k) (decay of f̂k ∼ smoothness of f )
2. Compute GSI to determine active subsets u.

Re-compute the approximation by only keeping the
active subsets. [Potts, Schmischke 2020, 2021]

Kernel-Based Approach

Search f ∈ H = span{κ(x, ·),x ∈ Rd} (RKHS).
By the representer theorem, we may solve

min
f∈H

N∑
j=1

(yj − f (xj))
2 + λ∥f∥2H

⇐⇒ min
α∈CN

∥y −Kα∥22 + λα∗Kα,

whereK ∈ RN×N is the kernel matrix with entries κ(xi,xj).
Kernel ridge regression (KRR), yj ≈

∑N
i=1αi κ(xi,xj).

Connection: Regularized Least Squares
Consider the case λ ̸= 0 with kernels of the form κ(xi,xj) =

∑
k∈K

ω̂−1
k e2πik

⊤(xi−xj).

Then, both approaches are mathematically equivalent [Shawe-Taylor, Cristianini 2004]

Φ∗Φf̂ + λW f̂ = Φ∗y ⇐⇒ f̂ = λ−1W−1Φ∗(y − Φf̂ ) = W−1Φ∗α

with
α = λ−1(y − Φf̂ ) ⇐⇒ λα = y − ΦW−1Φ∗α ⇐⇒ (ΦW−1Φ∗︸ ︷︷ ︸

K

+λIN)α = y.

Comments and Questions
▶ Other orthonormal systems analogously, e.g. half-period cosine basis in

non-periodic case, xj ∈ [0, 1]d.
▶ The restriction to small superposition dimensions ds is motivated by the

sparsity of effects: In practice most phenomena can be described by a few
low-dim. interactions. The same applies to sufficiently smooth functions.

▶ In the case of λ = 0 we need to work over-/under- determined.
▶ In the dual setting we compute the αj in addition. Benefit?

Results - Least Squares Approach
Tested on real and synthetic data sets (regression and classification).

data set d N error (type) ref. method ANOVA-LSQR
Forest Fires 12 517 12.71 (MAD) SVM 12.65

Energy Eff. Housing 8 768 1.79 (RMSE) Grad. Boost. Mach. 1.49
Energy Eff. Cooling 8 768 0.48 (RMSE) Random Forest 0.44
Airfoil Self-Noise 5 1503 0.028 (rel. ℓ2) Sparse Rand. Features 0.016
California Housing 8 20640 0.115 (RMSE) Local Learning Reg. NN 0.109

Ailerons 40 13750 0.0460 (RMSE) Local Learning Reg. NN 0.0457

[Schmischke 2022, PhD thesis], publicly available julia software.

Results - Kernel Approach
We consider real data sets for binary classification and apply Gaussian ANOVA-
like kernels (which we approximate by trig. polynomials)

κ(xi,xj) =
1

nkernels

∑
|u|≤ds

e−∥xi,u−xj,u∥2/σ2

.

We compared our NFFT-based KRR
with standard sklearn algorithms
(KRR and SVM) in python.
Example: Results for SUSY data set
with d = 18 features.
[Nestler, Stoll, Wagner 2022]

Support Vector Regression

min
f̂

1
2∥f̂∥

2
2 + C

N∑
j=1

|ξj|2 s.t. |yj − (Φf̂ )j| ≤ ϵ + |ξj|

Conditionally p.d. Kernels

f (x) =

N∑
j=1

αjκ(xj,x) +
∑
l

βl pl(x),

(
K P

P⊤ 0

)
·
(
α

β

)
!
=

(
y

0

)
Gaussian Process Regression

Use ANOVA-type kernels κ(xi,xj) as covariance func-
tions in Gaussian processes.

Software
▶ Julia Package ANOVAapprox by M. Schmischke:

▶ https://github.com/NFFT/ANOVAapprox.jl
▶ Bases: ”per” (Fourier system), ”cos” (half-per. cosine), ”cheb”

(Chebyshev polynomials), ”wav1”. . .”wav4” (Wavelets).
▶ Solvers: ”lsqr”, ”fista” (different regularization, group lasso),
”krr” (solves the dual problem with CG, K = ΦW−1Φ∗).

▶ Interpretability: GSI and attribute ranking.
▶ Python code NFFT4ANOVA by T. Wagner:

▶ https://github.com/wagnertheresa/NFFT4ANOVA
▶ KRR, where the kernel is a sum of equally weighted low-dimensional

Gaussian kernels.
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