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Explainable Approximation in High Dimensions:
Fourier-Based Algorithms Meet Kernel Methods

Decomposition in Fourier Domain

ANOVA Decomposition

Let f € L,(T?). Based on the ANOVA (analysis of
variance) decomposition

flx) =

uC{l,....d}
the importance of single dimensions as well as of
groups of dimensions can be studied.
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Basics

where u = {1,...

For a subset u C {1,...
have [Potts, Schmischke 2021]

,d} =: D of dimensions we

keZ®: supp(k)=u
Decomposition of the index set, 3D-visualization:
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Variances and GSI

Consider a trigonometric polynomial
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We easily see that o°(f) = > o*(fu).

D#ulD
Study the importance of subsets u in terms of the

global sensitivity indices (GSI)
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ONB Approach

Given: N data points «; € T? or [0,1]? and Ansatz: y; ~ f(x;) :
corresponding values y; € R, find a model or
rather function f with

yj ~ f(z;).
We can work efficiently with trigonometric
models (nonuniform FFT, short: NFFT), but

only in low dimensions (due to the curse of
dimensionality).
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where ¢ = |
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low superposition dimension: k € K <= |supp(k)| < ds.
1. Solve min [ly — O f||2+ \f W f iterative (LSQR),
e’k /], ; (fast mult. via NFFTs).
W = diag(wg) (decay of fi ~ smoothness of f)
2. Compute GSI to determine active subsets u.

Re-compute the approximation by only keeping the
active subsets. [Potts, Schmischke 2020, 2021]

Kernel-Based Approach

= span{k(x, ), x € R} (RKHS).
By the representer theorem we may solve

%{}Z )+ A

< min |ly — Kal|; + \a*Ka,
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where K € RY*" is the kernel matrix with entries x(x;, ;).
Kernel ridge regression (KRR), y; ~ >3 | a; 5(x;, ;).

Connection: Reqgularized Least Squares

Methods

Consider the case \ # 0 with kernels of the form x(z;, x;)
kel

Then, both approaches are mathematically equivalent [Shawe-Taylor, Cristianini 2004]
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with
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a=\(y—0f) <= la=y—- W d'a «— (CIDWK "+ Ay = y.

Z w—l omik ' (a;— a:j).

Comments and Questions

» Other orthonormal systems analogously, e.g. half-period cosine basis in
non-periodic case, z; € [0, 1]

» The restriction to small superposition dimensions d, is motivated by the
sparsity of effects: In practice most phenomena can be described by a few

ow-dim. interactions. The same applies to sufficiently smooth functions.

» Inthe case of A\ = 0 we need to work over-/under- determined.
» In the dual setting we compute the «; in addition. Benefit?

Results - Least Squares Approach

& Tested on real and synthetic data sets (regression and classification).
——
: data set d N error (type) ref. method ANOVA-LSQR
U) Forest Fires 12 517  12.71 (MAD) SVM 12.65
Energy Eff. Housing 8 768  1.79 (RMSE) Grad. Boost. Mach. 1.49
Q) Energy Eff. Cooling 8 768  0.48 (RMSE) Random Forest 0.44
m Airfoil Self-Noise 5 1503 0.028 (rel. /;) Sparse Rand. Features 0.016
California Housing 8 20640 0.115(RMSE) Local Learning Reg. NN 0.109
Ailerons 40 13750 0.0460 (RMSE) Local Learning Reg. NN 0.0457

[Schmischke 2022, PhD thesis], publicly available julia software.

We consider real data sets for binary classification and apply Gaussian ANOVA-
like kernels (which we approximate by trig. polynomials)
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We compared our NFFT-based KRR
with standard sklearn algorithms
(KRR and SVM) in python.

Example: Results for SUSY data set
with d = 18 features.

[Nestler, Stoll, Wagner 2022}
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Support Vector Regression Conditionally p.d. Kernels
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Gaussian Process Regression

Use ANOVA-type kernels x(x;, ;) as covariance func-
tions in Gaussian processes.
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Ongoing
& Future

» Julia Package ANOVAapprox by M. Schmischke:

» https://github.com/NFFT/ANOVAapprox.jl

» Bases: "per” (Fourier system), "cos” (half-per. cosine), "cheb”
(Chebyshev polynomials), "wav1”... "wav4” (Wavelets).

» Solvers: "1sqr”, "fista” (different regularization, group lasso),
"krr” (solves the dual problem with CG, K = ®W ~1d*).

» Interpretability: GSI and attribute ranking.

» Python code NFFT4ANOVA by T. Wagner:

» https://github.com/wagnertheresa/NFFT4ANOVA
» KRR, where the kernel is a sum of equally weighted low-dimensional
Gaussian kernels.
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