

TECHNISCHE UNIVERSITÄT CHEMNITZ

Faculty of Mathematics **Applied Functional Analysis** Franziska Nestler and Michael Pippig

The P²NFFT method for mixed charge-dipole systems

Software: www.github.com/mpip www.github.com/scafacos/scafacos **Email:** franziska.nestler@math.tu-chemnitz.de michael.pippig.tuc@gmail.com **Research group website:** www.tu-chemnitz.de/~potts

N-body problem

Given:

- ▶ N_c charges $q_j \in \mathbb{R}$ at positions $\boldsymbol{r}_j = (x_j, y_j, z_j)^\top \in \mathbb{R}^3$, $j \in \mathcal{C}$,
- ▶ N_d dipoles with moments $\mu_j \in \mathbb{R}^3$ at positions $r_j = (x_j, y_j, z_j)^\top \in \mathbb{R}^3$, $j \in \mathcal{D}$.
- The particles may be located in a box spanned by three linearly independent vectors $\ell_1, \ell_2, \ell_3 \in \mathbb{R}^3$.

Periodic boundary conditions

We consider the following cases.

2d-periodic, $S = \mathbb{Z}^2 \times \{0\}$ **1d-periodic,** $S = \mathbb{Z} \times \{0\}^2$ 3d-periodic, $S = \mathbb{Z}^3$

Task: Compute the potentials

$$\phi(j) := \sum_{\boldsymbol{n} \in \mathcal{S}} * \sum_{i=1}^{N_{\rm c}+N_{\rm d}} \frac{\xi_i}{\|\boldsymbol{r}_{ij} + \boldsymbol{L}\boldsymbol{n}\|} \quad \text{with} \quad \xi_i := \begin{cases} q_i & :i \in \mathcal{C}, \\ \boldsymbol{\mu}_i^\top \nabla_{\boldsymbol{r}_i} & :i \in \mathcal{D}, \end{cases}$$

 $r_{ij} := r_i - r_j$, $L := [\ell_1, \ell_2, \ell_3] \in \mathbb{R}^{3 \times 3}$ and $S \subseteq \mathbb{Z}^3$ (periodic boundary conditions, $n = 0 \Rightarrow i \neq j$). **Further quantities of interest:**

- fields $E(j) := -\nabla_{r_i} \phi(j)$,
- field gradients $G(j) := -\nabla_{r_j} \nabla_{r_j}^\top \phi(j)$.

Od-periodic, $S = \{0\}^3$

Periodization approaches (nonperiodic dimensions)

One-dimensional setting: Approximate a given nonperiodic function over [-L, L] by a trig. polynomial. Different techniques may be applied for functions of type A and B, respectively.

Type A: The function is sufficiently small outside a comparatively small interval $\left[-\frac{h}{2}, \frac{h}{2}\right]$. Use analytical Fourier transform:

 $f(x) \approx \sum f(x+hn) \approx \frac{1}{h} \sum \hat{f}\left(\frac{k}{h}\right) e^{2\pi i k x/h}$

Higher dimensions: The generalization in case of Type A functions is straight forward. The periodization approach **Type B** is possible in a similar fashion for radial kernels $f = f(||\boldsymbol{x}||)$.

Type B: Construct an interpolating polynomial within [L, h - L] that fits the derivatives of f up to a certain degree.

Approximate via FFT:
$$\tilde{f}(x) \approx \sum_{|k| \le M} \hat{b}_k e^{2\pi i k x/h}$$

Final Fourier approximations

Periodic dimensions: Exponential decrease for $||\mathbf{k}|| \to \infty$ or $|k| \to \infty \Rightarrow$ truncate Fourier series. **Nonperiodic dimensions:** Apply appropriate periodization approaches to the involved functions.

esult:
$$\phi^{\mathrm{L}}(j) \approx \sum_{\kappa \in \mathcal{M}} \hat{b}_{\kappa} \left(\sum_{i \in \mathcal{C}} q_i \mathrm{e}^{2\pi \mathrm{i}\kappa^\top \check{r}_i} + \sum_{i \in \mathcal{D}} \boldsymbol{\mu}_i^\top \nabla_{\boldsymbol{r}_i} \mathrm{e}^{2\pi \mathrm{i}\kappa^\top \check{r}_i} \right) \mathrm{e}^{-2\pi \mathrm{i}\kappa^\top \check{r}_j} \qquad \mathcal{M} \subset \mathbb{Z}^3 \text{ finite}$$

Indices Fourier coefficients Approach Scaled positions $\check{\boldsymbol{r}}_i$

3dp:	$oldsymbol{\kappa}=oldsymbol{k}$	$\hat{b}_{\boldsymbol{k}} = \Theta_{\boldsymbol{k},\alpha}^{\mathrm{p}3} = \delta_{\boldsymbol{k},\boldsymbol{0}} \frac{\mathrm{e}^{-\pi^2 \ \boldsymbol{L}^{-\top}\boldsymbol{k}\ ^2/\alpha^2}}{\pi V \ \boldsymbol{L}^{-\top}\boldsymbol{k}\ ^2}$	analytic FT	$oldsymbol{L}^{-1}oldsymbol{r}_i$
2dp:	$oldsymbol{\kappa} = (oldsymbol{k}, l)$	Compute $\hat{b}_{k,l}$ via periodization of each function $\Theta_{k,\alpha}^{p2}(\cdot)$	$\ m{k}\ $ small: Type B (1d-FFT) $\ m{k}\ $ large: Type A (analytic)	$\operatorname{diag}(\boldsymbol{L}_{xy},h)^{-1}\boldsymbol{r}_i$
1dp:	$\boldsymbol{\kappa} = (k, \boldsymbol{l})$	Compute $\hat{b}_{k,l}$ via periodization of each function $\Theta_{k,\alpha}^{p1}(\ \cdot\)$	k small: Type B (2d -FFT) k large: Type A (analytic)	$\operatorname{diag}(\boldsymbol{L}_x,h,h)^{-1}\boldsymbol{r}_i$
0dp:	$oldsymbol{\kappa} = oldsymbol{l}$	Approximate $\Theta^{\mathrm{p0}}_{\alpha}(\ \cdot\) = \frac{\mathrm{erf}(\alpha\ \cdot\)}{\ \cdot\ }$	Type B (3d-FFT)	$\operatorname{diag}(h,h,h)^{-1}\boldsymbol{r}_i$

NFFT	Gradient NFFT	Hessian NFFT	Adjoint NFFT	Adjoint gradient NFFT
Approximate the function values	Approximate the gradients	Approximate the Hessians	Approximate the sums	Approximate the sums
$f(\boldsymbol{r}_j) := \sum \hat{f}_{\boldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k}^{ op} \boldsymbol{r}_j}$	$ abla f(oldsymbol{r}_j) := 2\pi\mathrm{i} \sum oldsymbol{k} \hat{f}_{oldsymbol{k}} \mathrm{e}^{2\pi\mathrm{i}oldsymbol{k}^ opoldsymbol{r}_j}$	$\nabla \nabla^{\top} f(\boldsymbol{r}_j) := -4\pi^2 \sum \boldsymbol{k} \boldsymbol{k}^{\top} \hat{f}_{\boldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k}^{\top} \boldsymbol{r}_j}$	$h(\boldsymbol{k}) := \sum_{j=1}^{N} f_j e^{-2\pi \mathrm{i} \boldsymbol{k}^{ op} \boldsymbol{r}_j}, \boldsymbol{k} \in \mathcal{M},$	$h(\boldsymbol{k}) := \sum_{j=1}^{N} \boldsymbol{f}_{j}^{\top} \nabla_{\boldsymbol{r}_{j}} e^{-2\pi \mathrm{i} \boldsymbol{k}^{\top} \boldsymbol{r}_{j}}, \boldsymbol{k} \in \mathcal{M},$

 $m{k}{\in}\mathcal{M}$ for arbitrary $\boldsymbol{r}_{j} \in \mathbb{T}^{3}$, $j = 1, \ldots, N$. for arbitrary $\boldsymbol{r}_j \in \mathbb{T}^3$, $j = 1, \ldots, N$. Complexity: $\mathcal{O}(|\mathcal{M}| \log |\mathcal{M}| + N)$ Complexity: $\mathcal{O}(|\mathcal{M}| \log |\mathcal{M}| + N)$

$m{k}{\in}\mathcal{M}$
for arbitrary $\boldsymbol{r}_j \in \mathbb{T}^3$, $j = 1, \dots, N$.
Complexity: $\mathcal{O}(\mathcal{M} \log \mathcal{M} + N)$

j=1for arbitrary $\boldsymbol{r}_{j} \in \mathbb{T}^{3}$, $j = 1, \ldots, N$. Complexity: $\mathcal{O}(|\mathcal{M}| \log |\mathcal{M}| + N)$

j=1for arbitrary $\boldsymbol{r}_{j} \in \mathbb{T}^{3}$, $j = 1, \ldots, N$. Complexity: $\mathcal{O}(|\mathcal{M}| \log |\mathcal{M}| + N)$

	P^2NFFT algorithm	Features	Numerical results
ethod	 Precomputations: Compute the Fourier coefficients b̂_κ, κ ∈ M. Direct computations: O(N) Short range interactions (via truncation) and self interactions. Approximate long range interactions: O(N log N) φ^L(j) ≈ ∑_{κ∈M} b̂_κ (∑_{i∈C} q_i e^{2πiκ^Tř_i} + ∑_{i∈D} μ^T_i∇_{r_i} e^{2πiκ^Tř_i}) e^{-2πiκ^Tř_j} 	 ✓ Complexity O(N log N) ✓ Full periodicity ✓ Mixed periodicity (1d and 2d) ✓ Open boundary conditions ✓ Pure charge systems ✓ Pure dipole systems ✓ Mixed charge-dipole systems 	Example: Particle system with 100 charges and 100 dipoles in a box of size $8 \times 10 \times 12$. \rightarrow fully periodic, 1d-periodic and open b.c. \rightarrow different near field cutoff radii r_{cut} \rightarrow different grids \mathcal{M} of size $8\beta \times 10\beta \times 12\beta$, $8\beta \times h\beta \times h\beta$ and $h\beta \times h\beta \times h\beta$
	adj. NFFT adj. grad. NFFT NFFT Analogously: $E^{L}(j) = -\nabla_{r_j} \phi^{L}(j)$ via gradient NFFT and $C^{L}(j) = -\nabla_{r_j} \phi^{L}(j)$ via gradient NFFT and	 Mixed charge-dipole systems Frror estimates (3d-periodic) High accuracy Massively parallel Dublishe susideble 	References Nestler, Pippig, Potts: Fast Ewald summation based on NFFT with mixed Pippig: Massively Parallel, Fast Fourier Transforms and Particle-Mesh M Hofmann, Nestler, Pippig: NFFT based Ewald summation for electrostat
	$G^{\mu}(j) = -\nabla_{r_j} \nabla_{r_j} \phi^{\mu}(j)$ via Hessian NFF I	 Publicly available 	Nestler: Fast Ewald summation for electrostatic systems with charges

 $m{k}{\in}\mathcal{M}$

periodicity. J. Comput. Phys., 285, 280-315, 2015. lethods. Dissertation, TU Chemnitz, 2015. ic systems with charges and dipoles. Appl. Numer. Math., 122, 39-65, 2017. and dipoles for various types of periodic b.c. Proceedings SampTA, 2017. Nestler: Computation of Electrostatic Interactions in Particle Systems Based on NFFTs. Dissertation, TU Chemnitz, 2018.