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In this paper we study the error behavior of the well known fast Fourier trans-
form for nonequispaced data (NFFT) with respect to the Lo-norm. We compare
the arising errors for different window functions and show that the accuracy of
the algorithm can be significantly improved by modifying the shape of the window
function. Based on the considered error estimates for different window functions
we are able to state an easy and efficient method to tune the involved parameters
automatically. The numerical examples show that the optimal parameters depend
on the given Fourier coefficients, which are assumed not to be of a random struc-
ture or roughly of the same magnitude but rather subject to a certain decrease.
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1 Introduction

A broad variety of mathematical algorithms and applications depend on the calculation
of the nonequispaced discrete Fourier transform, which is a generalization of the discrete
Fourier transform to nonequispaced nodes. Especially, its fast approximate realization called
nonequispaced fast Fourier transform (NFFT) or rather nonuniform fast Fourier transform
(NUFFT) [5, 1, 25, 27, 23, 9, 16] led to the development of a large number of fast numerical
algorithms.

Basically, the NFFT, which is an approximate algorithm, consists of three steps. Using a
so called window function, the given coefficients are at first deconvolved in Fourier domain.
The result is transformed into spatial domain by an FFT and a discrete convolution with the
window function is the final step. Thereby, the window function is chosen such that it is well
localized in spatial as well as in Fourier domain. Given this property, the deconvolution step
can be realized very efficiently and the resulting aliasing errors can be kept small.

In this paper we investigate the occurrent errors measured in the Lo-norm. In some nu-
merical examples, we evaluate these errors for different window functions. We show that the
accuracy of the algorithm can be improved by modifying the shape parameter of the window
function and that the optimal value of this shape parameter very much depends on the given
set of Fourier coefficients. If the input signals are assumed to be random and uncorrelated,



a prediction of the optimal shape parameter is possible for certain window functions. As an
example, for the Gaussian window function a convenient choice of the shape parameter has
already been derived in [25] as well as in [4]. Further windows for which the question concern-
ing the optimal choice of the shape parameter is also interesting, as for example Kaiser-Bessel
functions [8, 12], have been suggested in the literature.

However, there are many applications, where the given Fourier coefficients are not of a
random structure. As an example, the NFFT can be used in order to evaluate sums of the

form
N

flyg) == ZajK(yk -zj), k=1,...,M,
j=1

where the nodes yg, x;, the coefficients o; and a certain smooth kernel function K is given, see
[22] for instance. The method, which is widely known as NFFT based fast summation, is based
on approximating the kernel function by a trigonometric polynomial, where the corresponding
Fourier coefficients are naturally subject to a certain decay. For the fast NFFT based Gauss
transform [18] we have an exponential decrease of the Fourier coefficients, for instance. The
NFFT based fast summation is also applied for the computation of the Coulomb potentials
and forces in particle systems, where the kernel function is given by K (r) = r~!. This problem
can also be considered subject to periodic boundary conditions, where the analytical Fourier
coefficients are known and also underlie an exponential decrease, see [6, 11, 3, 20].

Thus, in our numerical examples we consider certain sets of decreasing Fourier coefficients
and show that an appropriate modification of the window’s shape parameter leads to sub-
stantially better results. In other words, we optimize the shape of the window function based
on the given Fourier coeflicients, instead of analyzing a worst case error which is independent
from the given coefficients, see [13] for instance. For the Kaiser-Bessel window function the
variability of the shape parameter was also considered in [7], but an adaption was not done
depending on the given Fourier coefficients.

In our tests we additionally compare the errors between two different deconvolution ap-
proaches. We also consider the Lo-optimized deconvolution, which has already been consid-
ered in [4, Appendix A] or [13], and also give numerical evidence that only small improvements
are possible by applying this optimized deconvolution scheme. Based on the error estimates,
we are able to state an easy and efficient method to tune all parameters involved in the uni-
variate NFFT algorithm. Note that it has already been observed that in some applications
the NFFT with very small oversampling factors [28] or even without oversampling [3] leads to
very precise approximations. The results presented in this paper confirm that in some cases
an oversampling is in fact not needed.

We remark that an overall tuning, which in addition optimizes the set of parameters with
respect to runtime, should depend on the used hardware. In addition, the runtime behavior
regarding the window evaluation is different for the individual window functions, unless the
evaluation is based on interpolation tables. The overall performance may also depend on the
used hardware as well as on the applied variant of the NFFT (multithreaded NFFT [26],
NFFT on GPUs [17], parallel NFFT [20]). Anyway, in order to develop optimal runtime
models, a precise prediction of the arising errors as well as automated parameter tuning
methods, as discussed in this paper, are essential.

The outline of this paper is as follows. In Section 2 we give a short introduction to the
NFFT. We start by introducing the necessary notations and then give a formula for the
computation of the approximation error in the Lo-norm. In Section 3 we introduce different



window functions and show how the corresponding aliasing errors can be estimated. We
compare two different deconvolution approaches and point out how the choice of the window’s
shape parameter can influence the goodness of the approximation. Therefore we consider some
univariate examples. A comparison to measured approximation errors is done in Section 4.
Based on these error estimates we describe an automatic parameter tuning for the univariate
case in Section 5. We continue with some remarks concerning the multivariate case and
conclude with a short summary.

2 NFFT

In the following we give a short introduction to the NFFT in d dimensions. At first, we will
introduce the necessary notations.
For some M = (M, ..., M) € 2N? we define the index set Zps by

Im = —%,...,%—1} X oo X {—%,...,%— }
For two vectors & = (z1,...,24) € R* and y = (y1,...,74) € R? we define the component
wise product by x © y := (2191, ...,7qys) € R? as well as the inner product via = - y :=
T1y1 + - + xqyq € R. For a vector € R? with non vanishing components we set ! :=

(x7h, ..., x;l) € R

Let some arbitrary nodes x; € T9, where T := R/Z =~ [~1/2,1/2) and j = 1,..., N, be
given. We are now interested in a fast evaluation of a given trigonometric polynomial in the
unequally spaced points x;, i.e., we want to compute the sums

flag) =Y fue™™*%, j=1,...,N, (2.1)

k€T

where the Fourier coefficients fi € C, k € Zpy, are also given.

The well known NFFT algorithm can be used to evaluate sums of the form (2.1) very
efficiently with O(|Zars|log |Zas| + N) arithmetic operations. In the following, we will give an
overview of the main steps.

The basic idea is to approximate the function f by a sum of translates of a one-periodic
function ¢, i.e.,

f@)~f@):= > agpz-locoM)"), (2.2)

leloom

where we denote by o > 1 (component wise) the oversampling factor and the coefficients
g1 € C are by now unknown. In other words, the approximate function values are obtained
by computing a discrete convolution of a given window function with some coefficients gy,
which have to be determined. In the following we denote the oversampled grid size shortly
by M, := o ® M. The function ¢ is the periodization of a window function ¢, which is
constructed based on a univariate function @14 via a tensor product scheme, i.e.,

d
o(x) = Z o(x + 1), where p(y) = H e1a(y;) for y = (y1,...,yq) € RL (2.3)
rezd Jj=1

A transformation of f into Fourier space gives

fl@)= > grer(@)e ™+ > 3" frckiron, (@e TEITOM)T (9 .4)
ke€ns, reZd\{0} k€Zpm,



where we denote by

@)= [ @ = [ o) e = o)

the Fourier coefficients of ¢ and the discrete Fourier coefficients g are given by

P omik-(IOM o1
Ik = E gre?mik:( ),
1€Znr,

For the following considerations we assume that we have cx(@) € R. The idea is now to
choose the coefficients gy appropriately. Then, the coefficients g; in (2.2) can be computed
by a d-variate (inverse) FFT

1 . _orik. -1
o= Z e 2mik(lOMo™) (2.5)
Inol S
Mo

and the evaluation of (2.2) gives the approximate function values f(x;) ~ f(z;).

However, the evaluation of the sums (2.2) might be computationally demanding unless ¢
is compactly supported on a comparably small domain or at least sufficiently small outside
of it. In the latter case we replace the window function ¢ by a truncated version

d d m m

o(x) I$€®j:1[_U~M~’o"M']’
T) = plx)- __m__m 1(T5) = B
pi(x) = p(x) jl;[lx[ oijﬁaij]( i) {() : else,

and approximate f by
fl@)~ f(@):= > a@(z—1loM,™"),

lEIMO

where now only (2m +1)? < |Zas,| summands are not equal to zero. In the following we will
refer to m as the support parameter.

It is an interesting question how to choose the unknown coefficients gx. A comparison
of (2.1) and (2.4), where we have to replace ¢ by @; in the case that ¢ is not compactly

supported, gives f(x) — f(x) =

Z e—27rik~mfk N Z e—27rik-m §ka(¢t) + Z gkck—f—r@Mo (@t)e—%ri(r@Mo)-m (2.6)

keIng keln, rez\{0}
and
f(=) = (=) < > ‘fk - ﬁk%(@t)’ + 0 lake(@)l+ Y D dkCkiron, (8]
ke k€ZIn,\Im keInt, rezi\{0}

Thus, at first glance it seems advantageous to set

defr kel
P (2.7)
0 : else
where we define .
djp = ———, 2.8
ki ) (2.8)

cf. [23] for instance.



Remark 2.1. For some & € T¢ let the operator T : CPMI — C be defined by
|7 r 2mik-x
Tz [fk}keIM = ) fre = f(=).
kelns

As described above, T, is approximated by T, ~ B, FD, where
D:Cvl s el [fi], = (0] ey,  Via (27)
F . Clamel C|IM0|’ [gk]keIM — [gl]lEIM via (2.5)

By : CPamol 5 C, [gl]leIMo = Z a@y(x —1o M1,
lEIMO

In other words, the NFFT computes
f(x;) = By, FDf =: f(z;)

for all j = 1,...,N. The three steps can be explained as follows. The step from Fourier
space to spatial domain is done via the ordinary inverse FFT denoted by F, see (2.5). Since

the function values are finally approximated by computing a discrete convolution (Bg;), the

given Fourier coefficients have to be scaled appropriately (D : fk — Gk ), which we refer to as
a deconvolution, see also [4].
The efficient computation of

N
h(k) _ ije%nkw]-
j=1

for all k € Zps corresponds to applying the adjoint operator, which reads as

N N
(h(k)) ez, = D Ta fi = ) D'F'B} f.
j=1

j=1
0

We want to determine for which coefficients dj, the Lo-norm or root mean square (RMS)
error

7=l = [ 1#@) - F@Pde = [ 17.f - B.FDfPa.

is minimized. In the following Lemma we present the optimal deconvolution coefficients, see
also [4, Appendix A] or [13], for instance. The coefficients are also optimal for the adjoint
problem.

Lemma 2.1. For f e Cuml and y € C we have

argmin/ T f — BoFDf|?da = arg min/ | Ty — F*D*Biy||*de,
Td Td

CszR CzkE]R
where we denote by |- || the Euclidean norm in C™|. The optimal deconvolution coefficients
are given by
5 c(Pt)
dp = . (2.9)
éd Ci-s-r@Mo (@)
T



For the NFFT approximation error measured in the L2-norm we obtain

E: Ci+r@A40(¢t)

2112 s |2 rezd\{o} A ek (Pt)
f=1rfly= Tr = for dj, := —, (2.10)
H H2 kezzzM 2 CiJrT@Mo(%) 2 Ciw@Mo(‘Pt)
TEZd 'I"GZd
112 ;|2 Cotrron, (Pr) 5 1
=1l = Tk e for dj := ——. (2.11)
H £ kEzI:M ) reZg\:{O} ciy(¢e) ck(Pt)

Proof. The term f(x) — f(x) = Tof — BeFDFf is given in (2.6). We obtain

Hf—fH;z > ‘fk_gkck(Sbt)z"‘ S lme(@)P+ D D Gihiron, (B0).

kGIMO kEIMO\IM kEIMO ’I‘GZd\{O}

In order to minimize this error we have to set gx = 0 for k € Zps, \ Zas, i.e., the choice of gg
via (2.7) is reasonable. We get

1 =ili= 3 A (- da@)) + XA X Bdeem 0 @12)

kelng keln reZ4\{0}

Now, it is easy to determine the optimal coefficients dp, by differentiating with respect to dp,
and setting the result equal to zero for each k. We obtain

0= —2ck(@0)(1 — dper(P) +2dk D Rironr, (@)

reZ\{0}
= —2cg(@t) + 2dy, Z Chsrom, (Pr)-
rezd
5 ck(Pr)
— di = 3 =
2: Ck+r®ﬂlo(¢t)

rcZd

Inserting the obtained coefficients dj, into (2.12) we obtain (2.10). Following the standard
approach (2.8) we end up with (2.11).
For the adjoint problem we easily compute

~ 2
Ty =D F Bz = [y Y (1-deer(@)) + 2 Y] Y o, (B0):
T ke€Zn keIns rezd\{0}

Obviously, we obtain the same optimal deconvolution coefficients dk ]

Remark 2.2. The resulting error measured in the Lo-norm, see (2.10) or (2.11), strongly
depends on the given Fourier coefficients fk. The window specific error terms are supposed
to show significantly different dependencies on the indices k for differing window functions.
Thus, the optimal window function may also strongly depend on the properties of the given
Fourier coefficients.

As an example, an optimization of the window function in terms of a worst case analysis,
see [13] for instance, seems ideally suited in the case that the Fourier coefficients are all of a



comparable size or of a random structure. In contrast, if the Fourier coefficients have a very
special structure, e.g. they are known to be subject to a very rapid decrease, we suppose that
a more adapted optimization of the window function can lead to substantially better results.

O

In the typical case that |cgiron, (Pt)] < |ck(Pt)| for » # 0 the two deconvolution ap-
proaches (2.8) and (2.9) are more or less equivalent since

cr(Pt) _cek(p) 1

> Gvor, (@) (@) c(Pr)
rezd

The NFFT algorithm as described above requires O(|Zaz,|log |Zar,| + m®N) arithmetic
operations and can be summarized as follows.

Algorithm 1 (NFFT).
Input: nodes x; € T (j = 1,...,N), coefficients fr € C (k € Zpr, M € 2N%), oversampling
factor o € R, o > 1.

i) (De-)convolution in Fourier domain:
Define the factors dy, € C for all k € Tz, e.g., as given in (2.8) or (2.9).
Set gy := dp.fr for all k € Tps and gy, := 0 for k € Zas, \ Ias-
Complexity: O(|Zasl).

ii) Use the (inverse) FFT for the computation of the coefficients

1 . _

a== > gre 2R UOMT e T
Zat, |

GIMO

Complexity: O(|Znr,|log | Zar,])-

iii) Convolution in spatial domain: Compute

Pl ~ fa) = S a (m— 1o M)
1€Tpr,
forall j=1,...,N. Complexity: O(miN).
Output: f(x;) ~ f(zx;) for j=1,...,N. O
Using a matrix-vector notation, i.e., considering the matrix representations of the operators
introduced in Remark 2.1, we write
f=Af~BFDf=f,

where we define the vectors f := [f(wj)]évzl eCN, f:= [f(azj)]évzl e CN and f = [fulrery, €
Cml. The matrix D is a diagonal matrix with entries Jk and 0, F' is the matrix representing
the d-dimensional inverse FFT of size |Zps,| and B is a block band matrix, assumed that the
nodes x; are correspondingly ordered, with entries ¢y (ar:j -1l Mofl).

The matrix-vector form of the adjoint NFFT is simply obtained by adjoining the matrix
representing the NFFT algorithm, i.e., we have

h=A*f~ D'F*B*f,

where h := [h(k)|kez,,. Thus, the derivation of the algorithm is straightforward, see [23, 16].



3 Window functions and error estimates

There are many possible choices for an NFFT window function. In this section we aim to
derive accurate bounds for the above derived error in the Lo-norm, which can be evaluated
in a fast way. For simplicity we restrict our considerations to the univariate case.

In order to predict the resulting NFFT approximation error measured in the Lo-norm, see
(2.10) and (2.11), we have to evaluate the sums

Z C%erM(‘ﬁt)

2 ~
rez\{0} (#1)

for all k = =M/ ..., M/a — 1. In most cases these sums are not known analytically. Thus,
it seems reasonable to derive upper bounds by estimating the infinite remainders. Based on
this, an upper bound for the overall error is obtained.

In order to get very precise error bounds we only consider window functions for which the
Fourier coefficients of the truncated window are known analytically. We will see that the
derived error bounds enable a very precise prediction of the occurrent errors. This can be
applied in order to develop an automatic parameter tuning, as we describe later on in more
detail. The numerical experiments presented in this section have been done with MATLAB.

3.1 Cardinal B-Splines
We define the centered cardinal B-splines by

By (@) {1 Lz € [~/ 1)),

0 :else,
Bpt1(z) == (Bn * B1)(2),

where we denote by * the convolution operator on R. The cardinal B-spline of order n is
compactly supported with suppB,, = [—7/2,7/2] and the Fourier transform is given by

Bn(g) = sinc"(7§),
where we define the sinc function

. { Lo 0,
sinc(z) == *
1 cx=0.

If we define the window function ¢ via

mm

o(z) := Boy(cMz) with  supp(p) = [_Wv W] ’
cf. [1, 22], the corresponding Fourier coefficients read as

~ L m (
ck(9) = msmc2 (ZE).

In the following we denote by

Op(x) =Y Bu(r)a” = Bn(0)+ Y _ Bn(r)(@" +z")
r=1

reZ



the well know Euler-Frobenius functions [24]. The Fourier coefficients of the cardinal B-spline
B, (k) fulfill the relation, see [2, page 135] and [21],

> 1Bu(k + )P = on(e”>™*) = By (0) + 2 Bon(r) cos(2mkr). (3.1)
reZ r=1

Applying (3.1) we end up with
1 - 1 :
2 =\ 2 k _ —2rik/o M
> hiron(®) = Zam 2 B (G +7) = Saga®an (777
r€Z re€Z
Especially for the introduced B-spline window it is easy to derive an upper bound for the
sums 9 -
Z Clc+mM(90)
—
rez\{0} ¢;.(?)

Utilizing sin?(z + r7) = sin? x and estimating the infinite sum by an integral we obtain [25]

2 ~ K Am " k[ 4m
- ) et e

_k_ |k
rezvfoy  k rez{o} \on T 7 oM

which can be evaluated in a numerically stable way. In contrast, the evaluation via

5 o) Bun (7T — sinet™ ()

ooy HP) sinc'™ (77)

seems numerically unstable. The error terms obtained by using the Ls-optimized coefficients
di, can be estimated by

Z C%}+TJM(¢)

reZ\{0} B 1 Z Cerro'M(gb)
2 o - CZ ) 2(%
RGP L

__sinet™ (357) > Charonr(P)
Dy, (e727rik/ch)

2 ~
rez\{0} ci(?)
sinc4m(;—]\’}) 8m ( % >4m (3.3)
; ) )

Dy, (e 2mik/oM) 4 — 1 J% _

In general the single error terms for the optimized deconvolution approach are smaller than
those obtained by the standard approach by the factors

1 1
C2 =\ CQ ~ Sl
SRS 1+ T hme?
rez. k¥ rezv {0} *¥

For the B-spline window we have equality for & = 0, see (3.2). A lower bound of the prefactors
is given by

=

1 ! =3 1 dm—-1 1
htront () z 8m 1+l for 01 W 2 | s = o1 ~ 5
! * TEZZ\{O} W 1 + 4m—1 (m) 4m—1




i.e., we can at best reduce the overall error by a factor of 3.

Especially if oversampling is applied, i.e., o > 1, or if the coefficients fk are comparatively
small for Ikl/om =~ 1/2; we expect only insignificant improvements by using the optimized
coefficients (2.9). We illustrate this by the following example.

Example 3.1. We compare the results of the above described error estimates for two different
choices of fi. We set M := 64 and choose

A

fr = for k € Zgy (34)

1+ k2
as a first example and

Froi= e R for k€ Ty (3.5)

in a second test. Note the difference between the two examples. The coefficients fk as given
in (3.5) tend to zero exponentially fast, i.e., for large values of k the factors fk only have an
insignificant influence on the overall error. In contrast, the coefficients given in (3.4) tend to
zero very slowly.

In Figure 3.1 we plot the estimate of ||f — f||3 with respect to m for the two different

settings. We have
M 4m
( ‘ka 1> s dy, via (2.8),

am

(sinc 3 mk ) L]C\l[ o

—27r1k/UM) (J 1 s dy, via (2.9).
oM

IF = flI3 < = (3.6)

kEI

For the coefficients (3.4) we observe that the error can be somewhat reduced by using the
optimized coefficients (2.9) in the case 0 = 1. Already for a small oversampling factor o = 5/4
the errors are almost the same. In the case that the very fast decreasing coefficients (3.5) are
given, already for ¢ = 1 no difference between the two approaches can be seen. O

1078 L

10—9 L

10-10 L
10'25 L

10'11 L

o=1.25 o=1.25

12

107 1030
2

Figure 3.1: Estimated errors (3.6) for different values of m and . We set fj, := (1 + k2)~*
k € Zgq, (left) and fri= e~ R/5? | e T4, (right). We plot the error terms for the
two different approaches to set the deconvolution coefficients cik (variant 1 (o):
define dj, by (2.8), variant 2 (*): set dj, as given in (2.9)).
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3.2 Modified B-spline window
We introduce a shape parameter b € 12N = {1/2,1,3/2,2, ...} and define the modified B-spline

window function ¢ by
oMb
¢(x) := By ( fE) -
m

As for the standard B-spline window we have supp(¢) = [—™/oM, ™/sM], but we also allow a
different order of the B-spline, which is 2b. The Fourier coefficients of the periodic version &

Mmooy mwk
ck(go)figMbsmc <0Mb)'

For b = m we are in the case of the standard B-spline window and can apply the error
estimation described in the previous section.
In the following we restrict our considerations to the case b > m/2; since

are given by

o for b < m/2 some Fourier coefficients may be equal to zero. As an example, if we set
b:=mf2, 0 =1then cyr/o4r0n(P) = 0 for all 7 € Z, i.e., the deconvolution coefficients
(2.8) and (2.9) are not defined.

o In addition it is easy to see that for b = ™m/> we obtain a larger error than for the
standard case, where b = m. For each r € Z\ {0} we have

9 -\ m k 4b m k 2m k am
Ghrrom(P) FEN [ Fh7 b=% [ _om o [ _am .
(%) hr T artr)  \Gmtr

If b > m/2 and b # m we cannot exploit the periodicity of sin?(-). We proceed as follows. For
some R € N we obtain

~ m . mm
> Rron(®) = PSVETe) > sine® (57 [ +7])

reZ\{0} re€Z\{0}
S B S C I !
— O-2M2b2 b oM (M)4b (L +7«)4b )
0<|r|<Rg [r|>Rr \ b oM
where

1 R dr > dr
Z . b </ i I +/ . )4b

r>re (Gar +7) By (557 +7) Ry (557 —

! ( 1 1 )
T 4bh — 4b—-1 4b—1 | *
=1\ Gy + Re) (737 — B
In summary we have

Z C%—&-TJM(@) <s (ﬁ) )
reZ\{0}

where we set

m .
s (Gh1) = o2 M2D2 Z sinc” (5" (557 +7]) +
0<‘T|§Rk

11



for some R € N. In order to get a precise estimate we start with Ry := 1 and increase Ry
step by step until the remainder

1—-4b 1-4b
) )

we (R (R
0—2M2b2 (%)46 (4b— 1)

is comparatively small.
In order to estimate the sums ) ~
> Ck+mM(90)
reZ\{0}

> Csron(P)
rez

we use (3.3) in the case b = m. Otherwise we exploit that a function of the form f(y) = ﬁ
is monotonically increasing and obtain

> C%erM(@ k
reZ\{0} s (57)

2 Giron (@) h(0) +5 (7).

(3.7)

Example 3.2. We consider the case m = 4. For different shape parameters b € 12N, we
plot the above derived estimates of the terms

> Grron(P) S sine® (22 A 4 p))
reZ\{0} _ rez\{0}

Z cl%:—&—roM(@) B Z sinc? (% [ﬁ + 7’])
=z reZ

(3.8)

in Figure 3.2. Since we only expect small differences between the two deconvolution ap-
proaches as well as for overview purposes we only plot the error terms for the £9 optimized
deconvolution variant.

It seems not reasonable to use a shape parameter b > m since the error terms are larger
than in the case b = m for all k. Depending on the given coefficients fk and the chosen
oversampling factor, a shape parameter b € {5/2,3,7/2,4} is supposed to be optimal. O

Example 3.3. We consider again the two sets of Fourier coefficients as given in (3.4) as
well as (3.5). We estimate the quadratic error ||f — f||3 as described above for m € {4, 8},
where we choose different shape parameters b € 12N and oversampling factors 0. We plot
the results in Figure 3.3. For the slowly decreasing factors (3.4) a shape parameter b < m is
optimal in most cases, i.e., we obtain smaller errors than for the standard B-spline window,
where b = m. In contrast, for the very fast decreasing coefficients (3.5) the minimal error is
in most cases obtained by setting b = m. As expected, we only see small differences between
the two deconvolution schemes. d

In summary, we conjecture that in general a shape parameter b € 12N : m/2 < b < m is
optimal, i.e., we can reduce the error in certain cases by using a B-spline of a lower order
while keeping the support constant. The optimal value for the shape parameter strongly
depends on the given Fourier coefficients. The numerical examples show that especially for
slowly decreasing or also randomly structured coefficients the error is reduced significantly by
adjusting the order of the B-spline appropriately.

12



Figure 3.2: Estimated error terms (3.8) for m
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the results with respect to % € [0,1/2].
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Figure 3.3: Estimate of || f — f||3 for the modified B-spline window, where we consider the sets
of Fourier coefficients fj, given in (3.4) as well as (3.5) (top down). We plot the
error with respect to the shape parameter b, where we set m = 4 (left) and m = 8
(right), for different oversampling factors o. We compare the error terms for the
two different approaches to set d, (variant 1 (o): define dj, by (2.8), variant 2 (*):

set dj, as given in (2.9)).
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3.3 Bessel window

In the following we consider a window function which is constructed based on the Kaiser-
Bessel NFFT window as introduced in [22, Appendix]. In order to get a window function ¢
with compact support we interchange the roles of time and frequency domain. We refer to
the resulting function as the Bessel (Ip) window function, cf. [19], which is also found under
the name Kaiser-Bessel function in the literature [15, 8, 12].

For some shape parameter b > 0 we define the Bessel window function by

1| Io (bvm? —o2M?a?) x| < J,
p(x) == 9 ( ) 2l
0 : else,

where Iy denotes the modified zero-order Bessel function. The corresponding Fourier coeffi-
cients are of the form

sinh (m\/b2 47 /(U2M2)) .
- Dk < 22
cr(P) = —r V02 = 4m2k2 /(o2 M?) Ik < or
m sinc (m\/47r2k:2/ o2 M?) — 62) : else,

and tend to zero only with order 1, since ¢ is not continuous in z = +m/sM.

The error sums -, .7\ (0} c,2€+mM(gZ)) can be estimated as follows. For Ry > \kl + 27r we
have

2 oo
. - m _
Z Cz+mM(‘P) = Z Ci+mM(‘P) + 202 Z sinc? <m\/47T2(|k|/0M +£7)? - 52)
reZ\{0} 1<|r|<Ry r=Rp+1
S S S :
- htroM o2 M? A2 (1M forr + 1)2 — b2
1<‘7"|§Rk r=Rp+1

1 &0 dr
2 ~
< Z Clﬁ-mM(@) + a2 M2 /R 47T2(|k\/aM + 7")2 _ b2’
1<|r|<Rs k

where the integrals can be computed by

/-oo dr B 1 /oo +/27T(k/UAIRk) dr
Ry, 47T2(|k|/oM + T)2 — b2 N 27 27 (1Kl fo M+ Ry, — 0 r2 — b2

2m (Il oM —Ry)—b 2m (1%l oM+ R )+b
B In 27r(\k|/aM—R:)+b‘ +1n 27r(\kl/aM+R:)—b‘

47h
In order to get a precise estimate we suggest to proceed as follows, cf. Section 3.2. We start

(3.9)

with Ry := [ L . 3= —‘ and increase Ry, step by step until the remainder (3.9) is comparatively

small.
If we define the coefficients dj via (2.8) then
In |2 2r Ikl fo M — Ry ) — b‘ T 1n
- 1 27 (TF1Jori— Ry )+b
— 2
S(k/UM) T Z Ck—l—roM((’D) + o2 M2 Amh
1<‘T‘|§Rk

2w (k| o+ R )+b
27 (Ikl fo M+ Ry, )—b

gives an upper bound for the corresponding error terms. In the case that we use the optimized
coefficients (2.9) we apply (3.7).
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Example 3.4. We investigate the behavior of the error in the Lo-norm with respect to b. By
default, the shape parameter b is set to [22, Appendix]

b :=27m(1 — 1/20).

If we choose o € {1,5/4}, for instance, we obtain the following standard values for b.

|

T~ 3.14
271'%3.77 co =5/,

ro=1,

In this example we consider again the two different sets of Fourier coefficients given in (3.4)

and (3.5), respectively.

For the slowly decreasing coefficients (3.4) the estimated errors are plotted in Figure 3.4,
first row. For 0 = 1 we can see a small difference in the errors obtained for the two different
approaches to set di. The optimal values for b nearly coincide with the suggested default
values bg. The results for the coefficients (3.5) are depicted below. The predicted errors for
the two variants to set dj, are nearly the same. On the other hand, we obtain considerably

different optimal shape parameters.
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Figure 3.4: Estimate of ||f — f||3 for the Bessel window, where we consider the sets of Fourier
coefficients fj, as given in (3.4) as well as (3.5) (top down). We plot the error with
respect to the shape parameter b, where we set m = 3 (left) and m = 6 (right),
for o € {1,5/1}. We compare the obtained errors for the two variants to set the
coefficients dj, (variant 1 (o): define dj by (2.8), variant 2 (*): set dj as given in

(2.9)).
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3.4 Gaussian window function

For some shape parameter b > 0 we define the Gaussian window function by [5, 22, 9]

1 2,20
eUMx/b.

ﬂ@ZJ%

The Fourier coefficients of the periodic version ¢ are given by

. L pr2k2/(0202)
= ——¢
cr(@) = —r
and tend to zero exponentially fast in k. The Fourier coefficients of the truncated version
Pt = P+ X[=m/oar,m/sr] CaN be expressed by

m/oM

cr(Pr) = @i(k \ﬁ/ 2M2x2/b2e2mmdx

m/a]\/[
o= bm?k? /(02 M?)  pmjom

N
—br2k2 /(02 M2
=y Lot (2 ) et (3 )
- el (3 )

where we denote by erf the well known error function. In contrast to cx(@) the Fourier
coeflicients of the truncated Gaussian tend to zero only with order 1, since the corresponding
window function ¢y is not continuous in x = £m/oM.

e [UM$/\/B—17T]€\/E(O’M)] ? dax

Example 3.5. We consider the following three possibilities to set dj, and give some compar-
isons for the Gaussian window function.

( i ro (N) 7 .
reZ\{0} ktﬁi(igt;pt g via (2.8),
15 =7l = > e Sp R dy via (29).,
M r
_ Ck@t) 2 Cz«kro'lbl(@t) . 7 _ 1
\O %@>+m%m @ %= e

Commonly, the NFFT deconvolution step is done by using the Fourier coefficients ¢ (@) of
the non truncated Gaussian. Since the convolution in spatial domain is actually done with
a truncated Gaussian, it seems reasonable to use the Fourier coefficients of the truncated
function, see Section 2. In order to compare the two approaches we also take into consideration
the variant to set dj, := clzl(cﬁ).

Estimating the remainder of the series

Z C%JrraM(@t) = Z Ck+ra’M Sot Z Ck+rUM SOt

reZ\{0} 0<|r|<Ry |r|> R

after truncation proves to be rather difficult, which is due to the presence of the complex
valued error function. Thus, we approximate the series by the first part, where we increase
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Ry step by step as long as the sum grows significantly. In order to evaluate the complex
valued error function in MATLAB we use the Faddeeva package by Steven G. Johnson, see
[14] for the implementation in C.

In the following we evaluate the above error terms for the Fourier coefficients given in (3.4)
as well as in (3.5) for different shape parameters b. Again, we see that the optimal value
for the shape parameter depends on both, the given coefficients fk and the parameters used
within the NFFT (m, o, definition of dy).

In many applications the shape parameter b is chosen as follows

20 m
20 —1n’

bo :=

see [25, 4, 9]. For example, if we choose m € {3,6} combined with o € {1,5/4} we obtain the
values listed in Table 3.1.

‘ o=1 ‘ o=25/4
m=3 bo ~ 1.91 bo ~ 1.59
m=06 | bp ~3.82 | bg = 3.18

Table 3.1: Value of by for different combinations of m and o.

We evaluate the quadratic error ||f — f||3 for the given Fourier coefficients as described
above for different parameter sets. For fixed m and o the results are plotted in Figure 3.5. In
most cases the optimal shape parameter differs from the standard values, which are given in
Table 3.1. Which value for b is optimal, obviously depends on the given Fourier coefficients
fk as well as on the chosen oversampling factor o.

In general, better results are obtained by using the Fourier coefficients of the truncated
Gauss window. For the coefficients (3.4) we obtain slightly better results by using the op-
timized factors (2.9) in the case ¢ = 1. If the very rapidly decreasing coefficients (3.5) are
given, the two variants (2.8) and (2.9) again produce almost the same errors, already for
o=1. U

3.5 Comparison

In the previous section we investigated the error of the NFFT in the L£o-norm. Some concrete
examples showed that, especially in the case that the given Fourier coefficients do not decrease
rapidly and o = 1, the accuracy can be somewhat improved by using the optimized coefficients
(2.9) within the NFFT (Algorithm 1).

The Bessel and also the Gaussian window function depend on a shape parameter b, which
we aim to choose optimal for given Fourier coefficients. We also introduced the modified
B-spline window involving a shape parameter, which allows us to choose the order of the B-
spline independently from the support parameter m. The presented numerical examples show
that in many cases the optimal values for the shape parameter differ from the corresponding
default values, which are widely used. Thus, depending on the given Fourier coefficients the
resulting errors can be significantly reduced by adjusting the shape parameter appropriately.

For a comparison of all introduced window functions, we consider again the two sets of
Fourier coefficients (3.4) and (3.5). As described in the previous paragraphs, we estimate
the quadratic error (2.10) for m € {2,...,8} and o € {1,5/1}. We plot the results in Fig-
ure 3.6, where for each m we choose the shape parameter b for which the predicted error is

17
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Figure 3.5: Estimate of ||f — f||3 for the Gaussian window, where we consider the sets of
Fourier coefficients f}, as given is (3.4) as well as (3.5) (top down). We plot the
error with respect to the shape parameter b, where we set m = 3 (left) and m = 6
(right), for o € {1,5/4}. We compare the obtained errors for the three variants
to set the coefficients dj (variant 1 (o): dj, via (2.8), variant 2 (*): dj via (2.9),
variant 3 (x): d, := . (@)

minimal, see Figure 3.7 for the optimal shape parameters bop;. We can see that the optimal
shape parameters adopt significantly different values for the two considered sets of Fourier
coefficients.

The Bessel window function yields the smallest error in most cases. For the fast decreasing
coefficients (3.5) the B-spline window performs better in the case that the support parameter
m is very small.

4 Verification of the theoretical estimates

We use a simple implementation of the univariate NFFT with the introduced window functions
in MATLAB in order to verify the theoretical estimates.

We revisit the examples presented in Section 3 and compare the theoretical error estimates
with experimental measurements. We compute the sums

Flag) = flag) = D fee™®™ 5, j=1,...,N,

k€L

where we consider the two sets of Fourier coefficients (3.4) and (3.5), for N = 500 randomly
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Figure 3.6: Estimated quadratic errors (2.10) for the sets of Fourier coefficients (3.4) and (3.5)
(from left to right) with respect to m. We used different window functions and
oversampling factors (see legend).
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Figure 3.7: Corresponding optimal values for the shape parameter b, see Figure 3.6

chosen nodes z; € T,j =1,..., N. Instead of the quadratic error I/ - flI3 we compute
1Y 2
Af? =2 > [flag) = Flap]” (4.1)
j=1

Since we have seen in the last section that the optimized deconvolution scheme (2.9) does
not serve clear benefits compared to the standard approach (2.8), we only run our algorithm
applying the standard deconvolution (o). We plot the predicted as well as the measured errors
in the following figures. The predicted errors are represented by the line plots, whereas the
circles (o) mark the measured errors. For the Gaussian window function we also plot the
results obtained by using the Fourier coefficients of the non truncated function, i.e., we set
cfk = c,;l(cﬁ). In this case the predicted errors are represented by blue lines and the measured
errors are marked by the crosses (x).

We can see that the theoretical estimates match quite well with the measured errors (4.1).
Of course, the measured errors are in some cases somewhat smaller than the predicted errors,
which is due to the fact that the computation of the predicted errors is based on computing
upper bounds of the involved error terms, see Section 3.
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Figure 4.1: Predicted errors in the Lo-norm (lines) as well as the measured errors (4.1)
(marked by o) for the Standard B-spline window. We consider the Fourier co-
efficients as given in (3.4) as well as (3.5) (from left to right).
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Figure 4.2: Modified B-spline window, Fourier coefficients (3.4) on the left and (3.5) on the
right, m = 4.
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Figure 4.3: Bessel window, Fourier coefficients (3.4), m := 3 (left) and m := 6 (right).
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Figure 4.4: Bessel window, Fourier coefficients (3.5), m := 3 (left) and m := 6 (right).
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Figure 4.6: Gaussian window, Fourier coefficients (3.5), m

5 Parameter tuning

:= 3 (left) and m = 6 (right).

Based on the very accurate error estimates we are able to construct a tuning algorithm for
the shape parameter b. In the following we denote by

%

| — fl3 as described in Section 3 : b > 0,

Af? (window, b, m, o)
400 1 b <0,
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the predicted quadratic error, which can be computed for the different window functions as
described in Section 3.

For the (modified) B-spline window it seems that a shape parameter b € 12NN (m/2,m] is
always optimal. Thus, we suggest to tune the shape parameter as follows.

Algorithm 2 (Shape parameter tuning for B-splines).
We start with b = m and compute the predicted NFFT approximation error in the L£o-norm.
Then, we reduce the value of b by 1/2 as long as the predicted error decreases and b > m/a.

Input: Fourier coefficients fk, k € Tyr, support parameter m, oversampling factor o.
i) Set bopt := m and Aféopt := A f2(B-spline, bopt, m, 7).
ii) Set bpext :==m — 1/2 and Afi,next := Af2(B-spline, byext, m, o).

iii) While Af2 oop < Af2 opt and byexy > ™/
a) Set bopt := buext and Af2 o= Af2
b) Set bpext := bopt — /2 and Af;next := A f2(B-spline, byext, m, o).

Output: Optimal shape parameter byp; and predicted quadratic error A 2 O

7Opt .

For the Bessel and the Gaussian window function we proceed as follows. We suppose that in
most cases the error depends on the shape parameter b as depicted in Figure 3.4, for instance.
That is, that the error increases with growing distance |b — bopt| from the unique optimal
shape paramter bypt. Based on this assumption we suggest a simple search algorithm in order
to tune the shape parameter b, see Algorithm 3.

Algorithm 3 (Shape parameter tuning for Bessel and Gauss window).

We start with b = by, i.e., we choose the default shape parameter, and compute the NFFT
approximation error in the L£o-norm. Additionally we compute the errors for bieg := by — bo/2
as well as byight 1= b + b0/2, i.e., we choose the step size d := b/2 in both directions. From
these three shape parameters we choose the one yielding the smallest approximation error for
the next iteration step. If the old and new b-value coincide, we choose a smaller step size
d +— /2. We repeat this until approximately the same errors are obtained for bieg, b and byigns.

Input: Fourier coeflicients fk, k € Iy, support parameter m, oversampling factor o, de-
sired window function (Bessel or Gauss).

i) Set bopt := bo, d :=bo/2 and Afippt = A f2(window, bopt, M, 0).

ii) Set biefr := bopt — d and AfiJeft = A f2(window, biegi, m, 7).

iii) Set byight := bopt + d and Afi,right = Af2(window, bright, M, 0).
) Until maX{Afi,left’ Afi,opt? Afi,right} ~ min{Afi,left’ Afi,opt? Afi,right}
a) bOPt = arg min {Afi,left’ Afi,opt? Afi,right}'

bieft 7b0pt 7bright

2 e mi 2 2 2
b) Afz,opt i mln{Afz,left? Afz,opm Afz,right}'

c) If the old and the new bop¢ coincide, choose a smaller step size (set d := 4/2).

v
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d) Set biefr := bopt — d and Afi,left = A f2(window, biegi, m, 7).

e) Set byight 1= bopt +d and Af2 := A f2 (window, byight, m, 7).

,right

Output: Optimal shape parameter bypt and predicted quadratic error A fi,opt. O

Example 5.1. We use Algorithm 3 in order to tune the optimal shape parameters for differ-
ent parameter settings. The results, see Tables 5.1 and 5.2, coincide with the experimentally
determined optimal shape parameters, which we plot in Figure 3.7. For the predicted ap-
proximation errors see Figure 3.6. O

o=1|o=5 o=1|o0=5/
4.0743 | 5.0364 5.5101 | 5.5776
3.1416 | 4.0350 5.3751 | 5.6015
3.1539 | 3.8067 5.2094 | 5.4597
3.1907 | 3.7294 5.0437 | 5.3622
3.2398 | 3.7340 4.8781 | 5.2462
3.2398 | 3.6705 4.7063 | 5.1358
3.3379 | 3.6862 4.5406 | 5.0216

3333333
I
0~ U W N
3333333
I
00~ O T W N

Table 5.1: Tuned optimal shape parameters bop for the Fourier coefficients (3.4) on the left
hand side and for the Fourier coefficients (3.5) on the right hand side.
Window function: Bessel. See Figure 3.6 for the obtained errors.

o=1|0=51 o=1|0=5
0.7759 | 0.7626 0.7709 | 0.7647
1.6114 | 1.2434 1.1116 | 1.1004
2.4669 | 1.8900 1.4672 | 1.4382
3.3323 | 2.5697 1.8278 | 1.7822
3.7600 | 3.2453 2.1934 | 2.1324
4.5956 | 3.8297 2.5763 | 2.4878
4.9338 | 4.4762 2.9692 | 2.8474

3333333
I
0~ O U W

3333333
Il
0~ D U W N

Table 5.2: Tuned optimal shape parameters by for the Fourier coefficients (3.4) on the left
hand side and for the Fourier coefficients (3.5) on the right hand side.
Window function: (truncated) Gaussian. See Figure 3.6 for the obtained errors.

Another task concerning the parameter tuning is to find a parameter set for which the
computational time is as minimal as possible, assuming that a certain accuracy has to be
achieved. Of course, the optimal set of parameters regarding computation time may very
much depend on the processor which is used for the calculations.

In order to reach a required accuracy we could apply a tuning algorithm of the form 2
or 3 in order to determine sufficiently large oversampling factors ¢ and appropriate shape
parameters b for different values of the support parameter m. The optimal parameter set
can then be determined by a comparison between measured computation times on the used
computer. A corresponding tuning could be roughly of the following form.
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Algorithm 4 (Accuracy tuning).
Input: Fourier coefficients fi, set of window functions, list of support parameters m; < --- <
My, set of oversampling factors 1 = o1 < -+ < opax, required accuracy € > 0.

i) Compute the required oversampling factors:
For each window function and for each support parameter m;, j =1,...,n, set

Omin(m;) :=min{o € {o1,...,0max} : Afx(window, bopt, mj,0) < €},

if this minimum exists. Thereby, use Algorithm 2 or rather Algorithm 3 in order to
tune the shape parameter b in each case.

ii) For all obtained possible sets of parameters find the optimal one regarding runtime by
running a simple test scenario.

O

Example 5.2. We consider the two sets of Fourier coefficients as given in (3.4) and (3.5). For
a given required accuracy € we compare the tuned parameters for the Bessel and the B-spline
window, see Tables 5.3 and 5.4. Thereby, we computed for each m the required oversampling
factor by

Omin(m) := min {J € {1 +1gs=1,..., 16} : A fx(window, bopt, m, o) < e} ,

i.e., we set opmax 1= 2.

The results show that for the Bessel window a smaller oversampling factor is needed com-
pared to the B-spline window in order to obtain the given accuracy. Different combinations
of the parameters m and o are possible. Which one is the optimal with respect to runtime
will depend on the used hardware.

Note that if the window function is evaluated based on interpolation tables, see [16] for
instance, the runtime needed for the evaluation is independent from the window function .
In our example we would achieve better runtimes by using the Bessel window. O

Bessel B-spline
Omin bopt Af% Omin bopt Af%
1.5000 | 4.24 | 9.62e-08 - - -
1.1875 | 3.59 | 4.82e-08 | 1.6250 | 4.5 | 7.88e-08
1.1250 | 3.45 | 1.51e-08 | 1.4375 | 5.0 | 3.77e-08
1.0625 | 3.30 | 2.63e-08 | 1.3125 | 5.5 | 3.39e-08
1.0625 | 3.23 | 1.92e-08 | 1.1875 | 5.5 | 9.21e-08

33333
I
[ EENIoNIIG R

Table 5.3: Computed parameter sets and predicted errors for the Fourier coefficients (3.4).
We set the required accuracy to e := 1077,

The multivariate case

In the multivariate case the prediction of the error is somewhat more complicated. The
computation of the error sums

2 - Z Ci+r®Mo(¢t)
Z ChrroM, (Pt) and TEXNMO}

2 (.5 2
’I‘EZd\{O} Ck (SOt) réd Ck—‘rT‘@Mo (SOt)
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Bessel B-spline
Omin bopt Afz Omin bopt Af%

1.0625 | 5.14 | 8.35e-11 | 1.4375 | 5.0 | 7.99e-11
1.0000 | 4.88 | 2.21e-12 | 1.1250 | 6.0 | 6.90e-11
1.0000 | 4.71 | 5.28e-14 | 1.0000 | 6.5 | 2.05e-11
1.0000 | 4.54 | 1.87e-15 | 1.0000 | 7.5 | 5.19e-13

33333
I
[ EEN IoNIIG R

Table 5.4: Computed parameter sets and predicted errors for the Fourier coefficients (3.5).
We set the required accuracy to e := 10719,

is more or less straight forward since the window function is constructed based on a ten-
sor product approach (2.3) and thus the terms can be separated with respect to the single
dimensions.

Obviously, the evaluation of the estimates (2.11) and (2.10) are easy and especially possible
in an efficient way, if the coefficients fk are also of a tensor product structure, i.e., we have

d
Fe =11 ;-
j=1

In this case all necessary computations can be separated with respect to the d dimensions and
an efficient tuning of the involved parameters can be realized quite similar to the univariate
case. As an example, coefficients of the form e—allkl? = H;lzl ek satisfy this condition.
However, in many cases the given Fourier coefficients are not of a tensor product structure
or rather not even given analytically. In this case an approximation or estimation of the form

d d
fem Lok, or fe<]]ow
=1 i=1

might be necessary in order to enable an efficient prediction of the occurrent errors.
As an example, if the Fourier coefficients are given by fi := (14|/k||?)~!, an approximation
of the form

1 n
- ~ ere_wfx (5.1)
=1

over a sufficiently large interval [1,¢) gives

n

1 n

W —wWas 2 ~  —aa 2
72 ~ T'je w]e wJ”kH = Tje w]”k” ,
1+ (k| Zl Zl

J= J=

where the single summands are now of a tensor product structure. One possible tool for
computing an approximation of the form (5.1) is the Remez algorithm, see [10] for instance.

There are some multivariate applications where the underlying Fourier coefficients are
known analytically. As one example we refer to the three dimensional periodic coulomb
problem, where the electrostatic potentials and forces of a set of charges in the three dimen-
sional space are of interest, see [6]. The well known P2NFFT algorithm [20] combines the
adjoint NFFT and the NFFT to evaluate the Coulomb potentials and forces very efficiently.
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The underlying Fourier coefficients are of the form ~ ||k 2e~I*I*. In order to develop

an efficient parameter tuning, the Fourier coefficients have to be approximated by a tensor
product expression, e.g. via applying an approximation of the form (5.1).

6 Summary

In this paper we revisited the error formulas for the well established NFFT algorithm. We
showed how we can achieve a very precise prediction of the approximation errors measured
in the Lo-norm for different window functions. Thereby, we concentrated on the univariate
case, where a straight and efficient evaluation of the correspondent error sums is possible.

In our numerical examples we compared two different deconvolution approaches and mod-
ified the shape of the considered window functions. The results show that only minimal
improvements can be obtained by applying the Lo-optimized deconvolution scheme. Addi-
tionally, the examples show that, especially in the case that the Fourier coefficients are subject
to a certain decrease, an appropriate modification of the window’s shape parameter can lead to
significantly smaller approximation errors. For the well established B-spline window function
we introduced a modified version, which also contains a shape parameter. In our examples
we could achieve considerable improvements compared to the classical B-spline window in
a setting where the Fourier coefficients decreased only moderately. However, a comparison
between the different window functions showed that the Bessel window is in most cases the
best choice and that an appropriate tuning of the shape parameter is essential.

For the univariate case we suggest an easy parameter tuning. Given a required accuracy,
different combinations of the involved parameters are possible. Which set of parameters
is optimal with respect to the computation time may depend on the used hardware. A
corresponding tuning method could be based on the derived error estimates as well as on the
mentioned shape parameter tuning.

The prediction of the approximation errors in the multivariate case holds some more difficul-
ties. Only if the Fourier coefficients are of a tensor product structure, an efficient computation
of the error terms is more or less straight forward. However, in most applications we have a
multivariate setting. One example is the NFFT based fast Ewald summation, which is used
in the area of particle simulation for the computation of the Coulomb potentials and forces in
charged particle systems. In a subsequent paper we aim to apply the derived error estimates
in order to serve a comparison between different window functions as well as to develop a
more precise tuning of the involved parameters for this particular application.

Acknowledgments

The author gratefully acknowledges support by the German Research Foundation (DFG),
project PO 711/12-1.

References

[1] G. Beylkin: On the fast Fourier transform of functions with singularities. Appl. Comput.
Harmon. Anal., 2:363 — 381, 1995.

[2] C.K. Chui: An Introduction to Wavelets. Academic Press, Boston, 1992.

26



3]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Deserno and C. Holm: How to mesh up Fwald sums. 1. A theoretical and numerical
comparison of various particle mesh routines. J. Chem. Phys., 109:7678 — 7693, 1998.

A.J.W. Duijndam and M.A. Schonewille: Nonuniform fast Fourier transform. Geo-
physics, 64:539 — 551, 1999.

A. Dutt and V. Rokhlin: Fast Fourier transforms for nonequispaced data. STAM J. Sci.
Stat. Comput., 14:1368 — 1393, 1993.

P.P. Ewald: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys.,
369:253-287, 1921.

J.A. Fessler and B.P. Sutton: Nonuniform fast Fourier transforms using min-max inter-
polation. IEEE Trans. Signal Process., 51:560 — 574, 2003.

K. Fourmont: Non equispaced fast Fourier transforms with applications to tomography.
J. Fourier Anal. Appl., 9:431 — 450, 2003.

L. Greengard and J.Y. Lee: Accelerating the nonuniform fast Fourier transform. SIAM
Rev., 46:443 — 454, 2004.

W. Hackbusch: Entwicklungen nach Ezxponentialsummen. Techn. rep., Max Planck
Institute for Mathematics in the Sciences, 2005. http://www.mis.mpg.de/de/
publications/andere-reihen/tr/report-0405.html.

R.W. Hockney and J.W. Eastwood: Computer simulation using particles. Taylor &
Francis, Inc., Bristol, PA, USA, 1988.

J.I. Jackson, C.H. Meyer, D.G. Nishimura, and A. Macovski: Selection of a convolution
function for Fourier inversion using gridding. IEEE Trans. Med. Imag., 10:473 — 478,
1991.

M. Jacob: Optimized least-square nonuniform Fast Fourier Transform. IEEE Trans.
Signal Process., 57:2165 — 2177, 2009.

S. Johnson, A. Carvellino, and J. Wuttke: libcerf, numeric library for complex error
functions. http://apps. jcns.fz-juelich.de/libcerf.

J.F. Kaiser: Digital filters. In F.F. Kuo and J.F. Kaiser (eds.): System analysis by digital
computer. Wiley, New York, 1966.

J. Keiner, S. Kunis, and D. Potts: Using NFFTS3 - a software library for various noneg-
uispaced fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19, 1 — 30,
2009.

S. Kunis and S. Kunis: The nonequispaced FFT on graphics processing units. PAMM,
Proc. Appl. Math. Mech., 12, 2012.

S. Kunis, D. Potts, and G. Steidl: Fast Gauss transform with complex parameters using
NFFTs. J. Numer. Math., 14:295 — 303, 2006.

M. Pippig: Massively Parallel, Fast Fourier Transforms and Particle-Mesh Methods. Dis-
sertation. Technische Universitdt Chemnitz, Faculty of Mathematics, 2015.

27


http://www.mis.mpg.de/de/publications/andere-reihen/tr/report-0405.html
http://www.mis.mpg.de/de/publications/andere-reihen/tr/report-0405.html
http://apps.jcns.fz-juelich.de/libcerf

[20]

[21]

[22]

23]

[24]

[25]

[26]

28

M. Pippig and D. Potts: Parallel three-dimensional nonequispaced fast Fourier transforms
and their application to particle simulation. STAM J. Sci. Comput., 35:C411 — C437, 2013.

G. Plonka and M. Tasche: On the computation of periodic spline wavelets. Appl. Comput.
Harmon. Anal., 2:1 — 14, 1995.

D. Potts and G. Steidl: Fast summation at nonequispaced knots by NFFTs. STAM J. Sci.
Comput., 24:2013 — 2037, 2003.

D. Potts, G. Steidl, and M. Tasche: Fast Fourier transforms for nonequispaced data:
A tutorial. In J.J. Benedetto and P.J.S.G. Ferreira (eds.): Modern Sampling Theory:
Mathematics and Applications, pp. 247 — 270, Boston, MA, USA, 2001. Birkh&user.

I.J. Schoenberg: Cardinal interpolation and spline functions. J. Approx. Theory, 2(2):167
— 206, 1969.

G. Steidl: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput.
Math., 9:337 — 353, 1998.

T. Volkmer: OpenMP parallelization in the NFFT software library. Preprint 2012-07,
Faculty of Mathematics, Technische Universitdt Chemnitz, 2012.

A.F. Ware: Fast approzimate Fourier transforms for irregularly spaced data. SIAM Rev.,
40:838 — 856, 1998.

Z. Yang and M. Jacob: Mean square optimal NUFFT approzimation for efficient non-
Cartesian MRI reconstruction. J. Mag. Reson., (242):126-135, 2014.



	Introduction
	NFFT
	Window functions and error estimates
	Cardinal B-Splines
	Modified B-spline window
	Bessel window
	Gaussian window function
	Comparison

	Verification of the theoretical estimates
	Parameter tuning
	Summary

