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The fast calculation of long-range interactions is a demanding problem in particle simulation.
In this tutorial we present fast Fourier-based methods for the Coulomb problem with mixed
periodicity. The main focus of our approach is the decomposition of the problem into building
blocks that can be efficiently realized. For that reason we recapitulate the fast Fourier trans-
form at nonequispaced nodes (NFFT) and the fast summation method. Application of these two
methods to the Ewald splitting formulas yields efficient methods for calculating the Coulomb
energies in 3d-periodic, 2d-periodic, 1d-periodic, and also in 0d-periodic (open) boundary con-
ditions.

1 Introduction

We start with a formal definition of the Coulomb problem with mixed periodic boundary
conditions. Assume that N charges qj ∈ R at positions xj ∈ R3, j = 1, . . . , N , fulfill the
charge neutrality condition

N∑

j=1

qj = 0. (1.1)

The total Coulomb energy of the particle system can be formally written as

US :=
1

2

N∑

j=1

qjφS(xj),

where for each particle j the potential φS(xj) is given by

φS(xj) :=
∑

n∈S

N∑

i=1

′ qi
‖xij + Ln‖ . (1.2)

Thereby, we denote by ‖ · ‖ the Euclidean norm and define the difference vectors xij :=
xi − xj . The edge length of the simulation box in each dimension subject to periodic
boundary conditions is given by L > 0. Furthermore, the set of translation vectors S ⊆ Z3

will be defined later on according to the given boundary conditions. Note that the prime
on the double sum indicates that for n = 0 all terms with i = j are omitted. We are also
interested in the forces acting on the particles, which are given by

F S(xj) := qjES(xj), with the fields ES(xj) := −∇φS(xj).
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For the sake of brevity, we will derive fast algorithms for computing the potentials φS(xj)
and skip the analog derivation of algorithms for computing the forces F S(xj) within this
tutorial.

The different cases of mixed periodic boundary conditions are described as follows.
Assume periodic boundary conditions in the first p ∈ {0, 1, 2, 3} dimensions and non-
periodic (open) boundary conditions in the remaining 3 − p dimensions. Then, we set
S := Zp × {0}3−p with xj ∈ [−L/2, L/2)p × R3−p, i.e., the sum over S in (1.2) can
be interpreted as a replication of the primary box along all dimensions subject to periodic
boundary conditions. For a graphical illustration see Figures 1.1 and 1.2.

1

L
L

L

1

Figure 1.1. In the 0d-periodic case the particles are distributed within a finite box in R3 (left). In the 3d-periodic
case the simulation box with edge length L is duplicated along all three dimensions (right).
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Figure 1.2. The simulation box is duplicated along two of three dimensions in the 2d-periodic case (left) and
along one dimension in the 1d-periodic setting (right).

It is important to note that except for open boundary conditions the sum (1.2) is only
conditionally convergent, i.e., the values of the potentials φS(xj) depend on the order of
summation. A common definition is to sum up the interactions box wise in a spherically
increasing order, i.e.,

φS(xj) :=

∞∑

t=0

∑

n∈S
‖n‖2=t

N∑

i=1

′ qi
‖xij + Ln‖ . (1.3)

The well known Ewald summation technique16 is the main basis for a variety of fast al-
gorithms for the evaluation of (1.2) under 3d-periodic boundary conditions, see26, 15, 11, 13, 33.
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It is based on the trivial identity

1

r
=

erfc(αr)

r
+

erf(αr)

r
. (1.4)

Hereby, α > 0 is generally known as the splitting parameter, erf(x) := 2√
π

∫ x
0

e−t
2

dt is
the error function and erfc(x) := 1− erf(x) is the complementary error function.

If (1.4) is applied to (1.2), the potential φS(xj) is split into two parts. Thereby, the
sum containing the erfc-terms includes a singularity at r = 0 but converges that fast that a
good approximation is obtained by only considering few summands. The second part, con-
taining the error function, is still conditionally convergent but exclusively involves smooth
and L-periodic functions. The well known Ewald approach transforms this part into a fast
convergent Fourier space sum under the implicit assumption of the spherical summation
order (1.3). For a derivation in the 3d-periodic case we refer to the paper12, where con-
vergence factors are applied in order to calculate conditional convergent sum. A similar
derivation of the Ewald formulas for the 2d- and 1d-periodic settings can be found in the
Appendix of40.

In the case of 3d-periodic boundary conditions the nonequispaced fast Fourier trans-
form (NFFT)30 can be directly applied to the Fourier space sum in order to achieve a fast
algorithm. For all other kinds of mixed boundary conditions it is also possible to derive
fast algorithms based on the NFFT. However, dimensions subject to non-periodic boundary
conditions require special treatment in order to get fast convergent Fourier approximations.
More precisely, we must embed non-periodic functions into smooth periodic functions,
such that their Fourier sum converges rapidly, see Section 2.1 for details.

The outline of this tutorial is as follows. We start with some preliminary remarks about
Fourier approximations and give a short introduction to the nonequispaced fast Fourier
transform (NFFT) in Section 2. In Section 3 we present the main ideas of the fast Ewald
summation for 3d-periodic boundary conditions. In Section 4 we consider the case of
periodic boundary conditions in two of three dimensions. Thereby, we follow mainly the
presentation from Section 4 in40. We continue in Section 5 with the 1d-periodic case in
an analog manner as in Section 5 of40. Finally we extend the results to 0d-periodic (open)
boundary conditions in Section 6. Finally, in Section 7 we conclude the tutorial and give
references to numerical results.

2 Prerequisite

In this section we introduce three different concepts from Fouier analysis, which we apply
in order to derive the presented algorithms, see Sections 3–6.

2.1 Fourier approximations

In the following, we discuss three different approaches to compute a Fourier approximation
of a non-periodic function f within an interval [−L,L].

Variant I (Periodization): The continuous Fourier transform of the function f ∈
L1(R) is given by

f̂(ξ) =

∫

R
f(x)e−2πixξdx.
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If f is sufficiently small outside the interval [−L,L], we may approximate f by its h-
periodic version

∑
n∈Z f(· + hn), where h ≥ 2L, apply the Poisson summation formula

and truncate the resulting infinite sum in order to obtain an approximation of the form

f(x) ≈
∞∑

n=−∞
f(x+ hn) =

1

h

∞∑

l=−∞
f̂(l/h)e2πilr/h

≈ 1

h

M/2−1∑

l=−M/2
f̂(l/h)e2πilr/h, (2.1)

where M ∈ 2N has to be chosen sufficiently large. Alternatively, we could argue as
follows. First, we truncate the Fourier integral and, second, we approximate the resulting
finite integral via the trapezoidal quadrature rule

f(x) =

∫

R
f̂(ξ)e2πixξdξ ≈

∫ K/2

−K/2
f̂(ξ)e2πirξdξ

≈ K

M

M/2−1∑

l=−M/2
f̂( lKM )e2πirlK/M . (2.2)

Comparison of (2.1) and (2.2) shows that this approach is equivalent to considering a h =
M/K periodization of f , as described above.

This approach is limited to functions that decay sufficiently fast in the interval
[−h/2, h/2). In other words, whenever f is not sufficiently small we need to choose a
relatively large period h� 2L, which may also result in the choice of a large cutoff M .

Variant II (Truncation): We take a sufficiently large cutoff h ≥ 2L and approximate
the function f on the interval [−h/2, h/2] by a Fourier series

f(x) ≈
M/2−1∑

l=M/2

cle
2πilx/h,

where we compute the coefficients cl by

cl :=
1

h

∫ h/2

−h/2
f(x)e−2πilx/hdx.

Note that the approximated h-periodic function is only smooth of order zero in r = h/2,
which results in a rather slow second order convergence in Fourier space. Thus, one may
have to choose M very large in order to achieve a good approximation. In contrast to
Variant I, this approximation approach can be used for non decaying functions f as well.

Variant III (Regularization): Another approach to obtain a Fourier space represen-
tation of f is as follows. The key idea is to cutoff f outside the interval [−L,L] but use
a Fourier approximation on the slightly larger interval [−h/2, h/2]. In the resulting gap
[L, h− L] we construct a regularization function that interpolates the derivatives of f at L
up to order p − 1 ∈ N. Therefore, we get a Fourier approximation of a (p − 1)-times dif-
ferentiable function which means (p + 1)-th order convergence in Fourier space. In order
to construct the smooth ((p− 1)-times differentiable) transitions we have to regularize the
function f . Thereby, we assume that we know the function values and the derivatives in
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the boundary points (in the following denoted by aj and bj) and compute a regularization
(in the following denoted by P ). The following theorem gives the precise definition of
the regularizing function. We remark that in our application we always know the function
values and the derivatives in the boundary points. Methods without this knowledge are
known as Fourier extensions28 or Fourier continuations35.
Theorem 2.1. Let an interval [m − r,m + r], r > 0, and the interpolation values aj =
f (j)(m− r), bj = f (j)(m+ r), j = 0, . . . , p− 1, be given. For y = x−m

r the polynomial

P (x) =

p−1∑

j=0

B(p, j, y)rjaj +

p−1∑

j=0

B(p, j,−y)(−r)jbj ,

of degree 2p− 1, which is defined using the basis polynomials

B(p, j, y) :=

p−1−j∑

k=0

(
p− 1 + k

k

)
1

j!2p2k
(1− y)p(1 + y)k+j ,

satisfies the interpolation conditions P (j)(m−r) = aj , P
(j)(m+r) = bj , j = 0, . . . , p−1.

Proof. See Corollary 2.2.6 in2 or Proposition 3.2 in17.

In summary, we see some graphical illustrations of the above-mentioned three Fourier
approximation variants in Figures 2.1 and 2.2.
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Figure 2.1. Variant I (periodization) on the left and Variant II (truncation) on the right side.
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Figure 2.2. Variant III (regularization).

The main advantage of Variant III is that we are able to construct a function of arbitrary
smoothness p while the period h can be chosen relatively small compared to the interval
length 2L. On the other hand, the fact that the approximated functions in Variant I are C∞

makes this approach spectrally accurate. Using Variant II allows us to choose h relatively
small. But, the functions are only continuous and of no higher smoothness. Thus, the
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Fourier coefficients only decrease rather slow, which also results in the choice of a large
cutoff M .

2.2 Nonequispaced discrete Fourier transform (NDFT)

Let the dimension d ∈ N, the torus Td := Rd/Zd ' [−1/2, 1/2)d and the sampling set
X := {xj ∈ Td : j = 1, . . . , N} with N ∈ N be given. Furthermore, let the multi degree
M = (M1, M2, . . . ,Md)

> ∈ 2Nd and the index set of possible frequencies

IM :=
{
−M1

2 , . . . ,
M1

2 − 1
}
× . . .×

{
−Md

2 , . . . , Md

2 − 1
}

be given. We define the space of d-variate trigonometric polynomials TM of multi degree
M by

TM := span
{

e−2πik·(·) : k ∈ IM
}
.

The dimension of this space and, hence, the total number of Fourier coefficients is |IM | =
M1 · . . . ·Md. Note that we abbreviate the inner product between the frequency k and the
time/spatial node x by k · x = k1x1 + k2x2 + . . .+ kdxd. For clarity of presentation the
multi index k addresses elements of vectors and matrices as well.

For a finite number |IM | of given Fourier coefficients f̂k ∈ C, k ∈ IM , one wants to
evaluate the trigonometric polynomial

f(x) :=
∑

k∈IM
f̂ke−2πik·x ∈ TM (2.3)

at given nonequispaced nodes xj ∈ Td, j = 1, . . . , N . Thus, our concern is the computa-
tion of the matrix vector product

f = Af̂ , (2.4)

where

f := (f (xj))j=1,...,N , A :=
(
e−2πik·xj)

j=1,...,N ; k∈IM , f̂ :=
(
f̂k

)
k∈IM

.

The straightforward algorithm for this matrix vector product, which is called NDFT,
takes O(N |IM |) arithmetical operations. A related matrix vector product is the adjoint
NDFT

f̂ = Aàf , f̂k =

N∑

j=1

fje
2πik·xj ,

where Aà = A
>

. Furthermore, note that the inversion formula F−1 = F à for the
(equispaced and normalized) Fourier matrix F does not hold in the general situation of
arbitrary sampling nodes for the matrixA.
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2.3 Nonequispaced fast Fourier transform (NFFT)

Several algorithms have been proposed for the fast computation of (2.4), cf.14, 8, 49, 48, 18, 21.
In this section we summarize the main ideas of the most successful approach based
on48, 32, 30. It makes use an oversampled FFT and a window function ϕ that is simultane-
ously well localized in time/space and frequency domain. Given that the window function
is well localized in spatial domain, its periodic version

ϕ̃(x) :=
∑

k∈Zd
ϕ(x+ k)

is well defined.
Throughout the rest of the tutorial we denote by σ ≥ 1 the oversampling factor and by

m := σM ∈ N the (oversampled) FFT size (in the case d = 1). Furthermore, for d > 1
let the vector valued oversampling factor be defined by σ = (σ1, . . . , σd)

> ∈ Rd (where
σ1, . . . , σd ≥ 1) and the FFT size be denoted bym := σ�M . For notational convenience
we use the pointwise product

σ �M := (σ1M1, σ2M2, . . . , σdMd, )
>

and the point wise inverse

M−1 :=
(
M−11 ,M−12 , . . . ,M−1d

)>
.

The main idea is now to approximate the function f by a sum of translates of the one-
periodic function ϕ̃, i.e.,

f(x) ≈
∑

l∈Im
glϕ̃(x− l�m−1),

where we usem ≥M sampling points/translates.
A transformation into Fourier space gives

f(x) ≈
∑

k∈Im

∑

r∈Zd
ĝkck(ϕ̃)e−2πi(k+r�m)·x (2.5)

with the help of the well known convolution theorem. A comparison of (2.3) and (2.5)
shows that it is reasonable to set

ĝk :=

{
f̂k

ck(ϕ̃)
: k ∈ IM ,

0 : else.
(2.6)

The final algorithm can basically be divided into three steps (building blocks) and can
be summarized as follows.

1. Deconvolve the trigonometric polynomial f ∈ TM in (2.3) with a window function
in frequency domain, see (2.6).

2. Compute an FFT on the result of step 1.:

gl :=
1

|Im|
∑

k∈Im
ĝke−2πik·(l�m−1), l ∈ Im.
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3. Convolve the result of step 2. with the window function in time/spatial domain, i.e.,
evaluate this convolution at the nodes xj , j = 1, . . . , N :

f(xj) ≈
∑

l∈Im
glϕ̃(xj − l�m−1).

Obviously, we end up with a complexity of O(|IM | log |IM | + N) arithmetic oper-
ations. Thereby, the prefactors depend on the required accuracy as well as the properties
of the window function. For a description of the NFFT in its matrix-vector notation we
refer to48. Note that the adjoint NDFT can be approximated in a very similar way by an
adjoint NFFT and yields the same enhanced arithmetic complexity. Error bounds in the
∞–norm have already been derived for a variety of possible window functions, see49, 47

for instance. For error estimates in the L2-norm as well as an automated tuned NFFT
see39. A widely used implementation is available as part of the NFFT package29 and is
based on the FFTW20. This package also offers support of shared memory parallelism50.
A parallel implementation for graphic processing units was proposed in31. Furthermore, an
MPI-based parallel NFFT (PNFFT) implementation with support for distributed memory
parallelism was proposed in45 and is publicly available42. It is based on a highly scalable
MPI extension of FFTW called PFFT43, 41.

3 Fast Ewald summation for 3d–periodic boundary conditions

For an electrical neutral system (1.1) of N charges qj distributed in a cubic box of edge
length L we define the electrostatic potential subject to 3d–periodic boundary conditions
by

φp3(xj) := φZ3(xj) =

∞∑

s=0

∑

n∈Z3
‖n‖2=s

N∑

i=1

′ qi
‖xij + Ln‖ ,

i.e., we set S := Z3 within the definition (1.3). Remember that the order of summation
has to be specified because of the conditional convergence of the infinite sum, as already
pointed out in the introduction.

The following formula was at first presented in16 by using the Ewald splitting. For a
derivation based on convergence factors, see12. We have

φp3(xj) = φp3,S(xj) + φp3,L(xj) + φp3,self(xj), (3.1)

where for the splitting parameter α > 0 we define the short range part

φp3,S(xj) :=
∑

n∈Z3

N∑

i=1

′qi
erfc(α‖xij + Ln‖)
‖xij + Ln‖ ,

the long range part

φp3,L(xj) :=
1

πL

∑

k∈Z3\{0}

e−π
2‖k‖2/(α2L2)

‖k‖2

(
N∑

i=1

qie
2πik·xi/L

)
e−2πik·xj/L,
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and the self potential

φp3,self(xj) := − 2α√
π
qj .

Often a fourth term, the so called dipole correction, appears in the decomposition (3.1),
cf.13. The dipole correction term is the only part depending on the order of summation.
However, if a spherical summation order is applied, the dipole correction term depends
only on the norm of the dipole moment

∑N
j=1 qjxj and, additionally, on the dielectric

constant of the surrounding medium. Therefore, it can be computed efficiently in O(N)
arithmetic operations. If the medium is assumed to be metallic, the dipole term vanishes
and (3.1) applies. It should be mentioned that the formulas above can be generalized to
non-cubic boxes and also non-orthogonal (triclinic) boxes, cf.16, 11, 27.

Since the complementary error function erfc rapidly tends to zero, the short range
part of each potential φp3,S(xj) can be obtained by direct evaluation, i.e., all distances
‖xij + Ln‖ larger than an appropriate cutoff radius rcut > 0 are ignored. If we assume a
sufficiently homogenous particle distribution, each particle only interacts with a fixed num-
ber of neighbors. Thus, the real space sum can be computed with a linked cell algorithm19

in O(N) arithmetic operations for this case.
In order to compute the long range parts φp3,L(xj) we truncate the infinite sum and

compute approximations of the sums

Ŝ(k) :=

N∑

i=1

qie
2πik·xi/L, k ∈ IM ,

with an adjoint NFFT and evaluate

φp3,L(xj) ≈
∑

k∈IM\{0}
b̂kŜ(k)e−2πik·xj/L, j = 1, . . . , N,

via the NFFT. Thereby, we define the Fourier coefficients

b̂k :=
1

πL

e−π
2‖k‖2/(α2L2)

‖k‖2 .

The proposed evaluation of φp3,L(xj) at the points xj , j = 1, . . . , N , requires O(N +
|IM | log |IM |) arithmetic operations.

In matrix vector notation we may write
(
φp3,L(xj)

)N
j=1
≈ ÃDÃàq, (3.2)

where Ã ≈ A denotes the matrix representation of the NFFT (≈NDFT) in three dimen-
sions,D is a diagonal matrix with entries b̂k, k ∈ IM , and q = (q1, . . . , qN )> ∈ RN .

Relations to existing work

A straightforward method, that accelerates the traditional Ewald summation technique by
NFFT was already presented in44. This combination was first presented in25 is very similar
to the FFT-accelerated Ewald sum methods, namely, the so-called particle-particle particle-
mesh (P3M), particle-mesh Ewald (PME) and smooth particle-mesh Ewald (SPME), see13

and also51.
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4 Fast Ewald summation for 2d-periodic boundary conditions

In this section we denote for y = (y1, y2, y3) ∈ R3 the vector of its first two components
by ỹ := (y1, y2) ∈ R2, j = 1, . . . , N . We consider an electrical neutral system (1.1) of
N charges qj ∈ R at positions xj = (x̃j , xj,3) ∈ LT2 × R. Under periodic boundary
conditions in the first two dimensions we define the potential of each single particle by

φp2(xj) := φZ2×{0}(xj) =

∞∑

s=0

∑

n∈Z2×{0}
‖n‖2=s

N∑

i=1

′ qi
‖xij + Ln‖ ,

i.e., we set S := Z2 × {0} within the definition (1.3). This can be rewritten in the form

φp2(xj) = φp2,S(xj) + φp2,L(xj) + φp2,0(xj) + φp2,self(xj), (4.1)

where for some α > 0 we define the short range part

φp2,S(xj) :=
∑

n∈Z2×{0}

N∑

i=1

′qi
erfc(α‖xij + Ln‖)
‖xij + Ln‖ ,

the long range parts

φp2,L(xj) :=
1

2L

∑

k∈Z2\{0}

N∑

i=1

qi e2πik·x̃ij/L ·Θp2(‖k‖, xij,3),

φp2,0(xj) := −2
√
π

L2

N∑

i=1

qiΘ
p2
0 (xij,3), (4.2)

the self potential

φp2,self(xj) := − 2α√
π
qj ,

and the functions Θp2(k, r), Θp2
0 (r) for k, r ∈ R are defined by

Θp2(k, r) :=
1

k

[
e2πkr/L erfc

(
πk

αL
+ αr

)
+ e−2πkr/L erfc

(
πk

αL
− αr

)]
,

Θp2
0 (r) :=

e−α
2r2

α
+
√
πr erf(αr).

These expressions were already given in23. In the Appendix of40 we give a proof using
convergence factors, similar to the proof of the 3d-periodic case in12. Thereby, we always
start with the splitting (1.4) and then use the technique of convergence factors to derive
the Fourier space representation of the long range part by applying the Poisson summation
formula.

The evaluation of the short range part φp2,S(xj) is again done by a direct evaluation.
For the computation of the long range part we truncate the infinite sum in φp2,L(xj), i.e.,
for some appropriate M̃ = (M1,M2) ∈ 2N2 we set

φp2,L(xj) ≈
1

2L

∑

k∈IM̃\{0}

N∑

i=1

qie
2πik·x̃ij/LΘp2(‖k‖, xij,3).
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and apply the regularization Variant III from Section 2.1 to the functions Θp2(‖k‖, ·).
To this end we assume without loss of generality L3 > 0 large enough such that
xj,3 ∈ [−L3/2, L3/2], i.e., the particle coordinates are bounded also in the non-periodic
dimension. Thus, all the functions Θp2(‖k‖, ·) have to be evaluated only within the finite
interval [−L3, L3]. Note that we have to double the interval length since we do not have
periodicity in the last dimension. The same approximation idea is applied to the kernel
function Θp2

0 (r) in (4.2). Note that limx→±∞[e−x
2

+
√
πx erf(x)] = limx→±∞ |x| =∞,

i.e., the approximation Variant I given in Section 2.1 is not applicable.
At first, we choose h > 2L3 and accordingly some ε ∈ (0, 1/2) such that |xij,3| ≤

L3 =: h(1/2 − ε) < h/2 for all i, j = 1, . . . , N . This corresponds to a surrounding box
that is large enough to hold all differences of particle coordinates in the last dimension.
In addition, since the strong inequality h > 2L3 holds we have some extra space for
constructing a regularization. In order to approximate the long range parts φp2,L(xj) +
φp2,0(xj) efficiently we consider for k ∈ {‖k‖ : k ∈ IM̃} the regularizations

KR(k, r) :=





1

2L
Θp2(k, r) : k 6= 0, |h−1r| ≤ 1/2− ε,

−2
√
π

L2
Θp2

0 (r) : k = 0, |h−1r| ≤ 1/2− ε,
KB(k, r) : |h−1r| ∈ (1/2− ε, 1/2],

(4.3)

where we claim that each function KB(k, ·) : [−h/2,−h/2 + hε] ∪ [h/2 − hε, h/2] → R
fulfills the Hermite interpolation conditions

∂j

∂rj
KB(k, h/2− hε) =

{
1
2L

∂j

∂rj Θp2(k, h/2− hε) : k 6= 0,

− 2
√
π

L2
dj

drj Θp2
0 (h/2− hε) : k = 0,

(4.4)

∂j

∂rj
KB(k,−h/2 + hε) =

{
1
2L

∂j

∂rj Θp2(k,−h/2 + hε) : k 6= 0,

− 2
√
π

L2
dj

drj Θp2
0 (−h/2 + hε) : k = 0,

(4.5)

for all j = 0, . . . , p−1. Hereby, we refer to p ∈ N as the degree of smoothness. In order to
end up with h-periodic, smooth functions KR(k, ·), the functions KB(k, ·) are constructed
such that

∂j

∂rj
KR(k, h/2) =

∂j

∂rj
KR(k,−h/2) for j = 0, . . . , p− 1

is also fulfilled. In Theorem 2.1 we show that the functions KB(k, .) can be constructed
as polynomials of degree 2p − 1 by two point Taylor interpolation. Figure 4.1 shows an
example of such a regularization KR(k, ·).

In summary, the functions KR(k, ·) are h-periodic and smooth, i.e., KR(k, ·) ∈
Cp−1(hT). Therefore, they can be approximated by a truncated Fourier series up to a
prescribed error. To this end, we approximate for each k ∈ {‖k‖ 6= 0 : k ∈ IM̃} the
function

1

2L
Θp2(k, r) ≈

∑

l∈IM3

b̂k,le
2πilr/h (4.6)

for |r| ≤ h/2 − hε = L3 by the truncated Fourier series of its regularization KR(k, ·).

11



0

−h/2 + hε h/2 − hε

−h/2 h/2

∂j

∂rj
KB(k, h/2 − hε) =

1
2L

∂j

∂rj
Θp2(k, h/2 − hε)

1
2L

Θp2(k, ·)

KB(k, ·) KB(k, ·)

1

Figure 4.1. Example for KR(k, ·) for k ≥ 1. At the boundaries (gray area) the regularization adopts the values
of the boundary function KB(k, ·). We also marked the points, where the conditions (4.4) and (4.5) are fulfilled.
In our implementation, the function in the gray area is a polynomial of degree 2p − 1 constructed by two-point
Taylor interpolation.

Analogously, for k = 0 we have

− 2
√
π

L2
Θp2

0 (r) ≈
∑

l∈IM3

b̂0,le
2πilr/h. (4.7)

Thereby, we choose the frequency cutoff M3 ∈ 2N large enough and compute the Fourier
coefficients b̂k,l in (4.6) as well as b̂0,l in (4.7) by the discrete Fourier transform

b̂k,l :=
1

M3

∑

j∈IM3

KR

(
k, jhM3

)
e−2πijl/M3 , l = −M3/2, . . . ,M3/2− 1.

This ansatz is closely related to the fast summation method described in47. Due to the fact
that we have Θp2

0 (·),Θp2(k, ·) ∈ C∞(R) (k ≥ 1) we are not restricted in the choice of
the parameter p. By choosing M3 large enough we can construct approximations (4.6) and
(4.7) of a required accuracy.

If k ∈ {‖k‖ 6= 0 : k ∈ IM̃} is large enough, then the function value Θp2(k, h/2)
might be sufficiently small so that

Θp2(k, r) ≈
∑

n∈Z
Θp2(k, r + hn),

yields a good approximation, see Figure 4.2.
In this case we could also apply Variant I, as described in Section 2. The analytical

Fourier transform of Θp2(k, ·) is given by

Θ̂p2(k, ξ) =

∫ ∞

−∞
Θp2(k, r)e−2πirξdr =

2L

π(k2 + L2ξ2)
e−π

2k2/(α2L2)−π2ξ2/α2

,

see34, for instance. Applying the Poisson summation formula leads to
1

2L
Θp2(k, r) ≈ 1

2L

∑

n∈Z
Θp2(k, r + hn) ≈ 1

2Lh

∑

l∈IM3

Θ̂p2(k, l/h)e2πilr/h,

12



−h/2 h/2

Θp2(k, r) ≈
∞∑

n=−∞
Θp2(k, r + nh)

Θp2(k, ·)h-periodization

1Figure 4.2. If k is sufficiently large, the h-periodic version of Θp2(k, ·) might be a good approximation of
Θp2(k, ·).

i.e., we can simply set b̂k,l := (2Lh)−1Θ̂p2(k, l/h) instead of regularizing the function.
In summary, we obtain the following approximation for the long range parts,

φp2,L(xj) + φp2,0(xj) ≈
∑

k∈IM̃

∑

l∈IM3

b̂‖k‖,l

N∑

i=1

qie
2πik·x̃ij/Le2πilxij,3/h

=
∑

(k,l)∈IM
b̂‖k‖,l

(
N∑

i=1

qie
2πiv(k,l)·xi

)
e−2πiv(k,l)·xj ,

where we substitute the truncated Fourier series (4.6), (4.7) into (4.1), (4.2) and define
M := (M̃ ,M3) ∈ 2N3 as well as the vectors v(k, l) := (k/L, l/h) ∈ L−1Z2 × h−1Z.
The expressions in the inner brackets

Ŝ(k, l) :=

N∑

i=1

qie
2πiv(k,l)·xi , (k, l) ∈ IM ,

can be computed by an adjoint NFFT. This will be followed by |IM | multiplications
with b̂‖k‖,l and completed by an NFFT to compute the outer summation over the indexes
(k, l) ∈ IM . Therefore, the proposed evaluation of φp2,L(xj) + φp2,0(xj) at the points
xj , j = 1, . . . , N , requires O(N + |IM | log |IM |) arithmetic operations.

We obtain a similar matrix-vector notation as in the 3d-periodic case, namely,
(
φp2,L(xj) + φp2,0(xj)

)N
j=1
≈ ÃDÃàq, (4.8)

where Ã denotes the matrix representation of the NFFT in three dimensions for the nodes
(x̃j/L, xj,3/h) ∈ T3, D is a diagonal matrix with entries b̂‖k‖,l, (k, l) ∈ IM , and q =

(q1, . . . , qN )> ∈ RN .

Relations to existing work

The Ewald formulas (4.1) for 2d-periodic geometries were already proposed in23. We re-
mark that a method based on the splitting (4.1) is used in34 in combination with Variant I of
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Section 2. As pointed out on page 12 in34 this approach is limited to functions that decay
sufficiently fast in the interval [−h/2, h/2). In other words, whenever Θp2(k,max |xij,3|)
is not sufficiently small we need to choose a relatively large period h � 2L, which may
also result in the choice of a large cutoff M3. Some other Fourier based algorithms, like
MMM2D6 or ELC3 already exist. A method based on approximation Variant II from Sec-
tion 2.1 is proposed in38. However, as mentioned in Section 2.1 this method suffers from
the rather slow convergence rate in Fourier space. See also52, 9 for algorithms with higher
complexity.

5 Fast Ewald summation for 1d-periodic boundary conditions

In this section we denote for some y = (y1, y2, y3) ∈ R3 the vector of its last two com-
ponents by ỹ := (y2, y3) ∈ R2. We consider a system of N charges qj ∈ R at positions
xj = (xj,1, x̃j) ∈ LT × R2, j = 1, . . . , N . If periodic boundary conditions are assumed
only in the first coordinate we define the potential of each single particle j by

φp1(xj) := φZ×{0}2(xj) =

∞∑

s=0

∑

n∈Z×{0}2
|n1|=s

N∑

i=1

′ qi
‖xij + Ln‖ (5.1)

i.e., we set S := Z× {0}2 within definition (1.3). In the following we denote by

Γ(s, x) :=

∫ ∞

x

ts−1e−tdt

the upper incomplete gamma function. For the case s = 0 the well known identity

Γ(0, x) = −γ − lnx−
∞∑

k=1

(−1)k
xk

k!k

holds for all positive x, see [number 5.1.11] in1. Thereby, γ is the Euler-Mascheroni
constant. The function Γ(0, ·) is also known as the exponential integral function. We
easily see

lim
x→0

Γ(0, x) + lnx+ γ = 0.

The potential (5.1) can be written as

φp1(xj) = φp1,S(xj) + φp1,L(xj) + φp1,0(xj) + φp1,self(xj),

where for the splitting parameter α > 0 we define the short range part

φp1,S(xj) :=
∑

n∈Z×{0}2

N∑

i=1

′qi
erfc(α‖xij + Ln‖)
‖xij + Ln‖ ,
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the long range parts

φp1,L(xj) :=
2

L

∑

k∈Z\{0}

N∑

i=1

qi e2πik(xi,1−xj,1)/L ·Θp1(k, ‖x̃ij‖) , (5.2)

φp1,0(xj) := − 1

L

N∑

i=1
‖x̃ij‖6=0

qiΘ
p1
0 (‖x̃ij‖), (5.3)

the self potential

φp1,self(xj) := − 2α√
π
qj ,

and the functions Θp1(k, r),Θp1
0 (r) for k, r ∈ R are defined by

Θp1(k, r) :=

∫ α

0

1

z
e
−π2k2

L2z2 e−r
2z2dz,

Θp1
0 (k, r) := γ + Γ(0, α2r2) + ln(α2r2) .

The function Θp1(k, r) can be expressed by the incomplete modified Bessel function
of the second kind24, see Section 5.2.2 in40. This function is known to be indefinitely
often differentiable and, thus, we can construct regularizations of similar structure as (4.3)
in order to construct a fast algorithm. In this case the final algorithm requires a smooth
bivariate regularization, which can be obtained easily from a one dimensional construction
as the Fourier coefficients are radial in x̃ij .

By the Lemma 5.2 in40 we show that the function Θp1(k, r) for fixed r tends to zero ex-
ponentially fast for growing k, which allows the truncation of the infinite sum in φp1,L(xj).
Furthermore, Lemma 5.3 in40 shows that also the kernel in φp1,0(xj) is a smooth func-
tion, which allows the application of the fast summation method. Note that we have
limx→±∞ γ + Γ(0, x2) + ln(x2) = ∞. Thus, the approximation Variant I given in Sec-
tion 2.1 is not applicable, just as in the case of the k = 0 term of the 2d-periodic Ewald
sum. However, using the fast summation approach, the function is truncated and embed-
ded in a smooth and periodic function, which does not require localization of the kernel
function.

Similar as in the previous section we derive the fast algorithm based on (5.2) and (5.3).
The evaluation of the short range part φp1,S(xj) is done by a direct evaluation again. Due
to Lemma 5.2 in40 we truncate the infinite sum in φp1,L(xj), i.e., for some appropriate
M1 ∈ 2N we set

φp1,L(xj) ≈
2

L

∑

k∈IM1
\{0}

N∑

i=1

qie
2πikxij,1/LΘp1(k, ‖x̃ij‖).

In the following we assume that x̃j ∈ [−L2/2, L2/2]× [−L3/2, L3/2], i.e., x̃ij ∈ [−L2, L2]×
[−L3, L3]. Thus, the particle distances regarding the non-periodic dimensions ‖x̃ij‖ are
bounded above by

√
L2
2 + L2

3. Furthermore, we choose some h > 2
√
L2
2 + L2

3 and ac-
cordingly some ε ∈ (0, 1/2) such that ‖x̃ij‖ ≤

√
L2
2 + L2

3 =: h(1/2 − ε) < h/2 for all
i, j = 1, . . . , N .
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In order to approximate the long range part φp1,L(xj) + φp1,0(xj) efficiently we con-
sider for k ∈ {0, . . . ,M1/2} the regularizations

KR(k, r) :=





2

L
Θp1(k, r) : k 6= 0, |h−1r| ≤ 1/2− ε,

− 1

L
Θp1

0 (r) : k = 0, |h−1r| ≤ 1/2− ε,
KB(k, r) : |h−1r| ∈ (1/2− ε, 1/2],
KB(k, h/2) : |h−1r| > 1/2,

,

where each function KB(k, ·) : [h/2− hε, h/2]→ R is constructed such that KR(k, ‖ · ‖) :
hT2 → R is in the Sobolev space Cp−1(hT2), i.e., KB(k, ·) fulfills the interpolation
conditions

∂j

∂rj
KB(k, h/2− hε) =

{
2
L
∂j

∂rj Θp1(k, h/2− hε) : k 6= 0,

− 1
L

dj

drj Θp1
0 (h/2− hε) : k = 0

(5.4)

for j = 0, . . . , p− 1 as well as

∂j

∂rj
KB(k, h/2) = 0 for j = 1, . . . , p− 1. (5.5)

Note that KR(k, ‖ · ‖) is constant for all the points {y ∈ hT2 : ‖y‖ ≥ h/2}. Therefore, the
conditions (5.5) ensure smoothness of KR(k, ‖ · ‖) in the points {y ∈ hT2 : ‖y‖ = h/2}.
Furthermore, (5.5) does not include any restriction on the function value of KR(k, h/2),
since it does not influence the smoothness of KR(k, ‖ · ‖). In Appendix C of40 we show
that an adopted version of Theorem 2.1 can be used to construct the regularizing functions
KB(k, ‖.‖) as interpolation polynomials of degree 2p−2. By our construction the functions
KR(k, ‖ · ‖) are h-periodic in each direction and smooth, i.e., KR(k, ‖ · ‖) ∈ Cp−1(hT2).
For a graphical illustration of a regularization KR(k, ·) see Figure 5.1.

To this end, we approximate for each k ∈ IM1
\ {0} the function

2

L
Θp1(k, ‖y‖) ≈

∑

l∈IM̃

b̂k,le
2πil·y/h (5.6)

for ‖y‖ ≤ h/2− hε by a trigonometric polynomial. In the case k = 0 we use the approxi-
mation

− 1

L
Θp1

0 (α2‖y‖2) ≈
∑

l∈IM̃

b̂0,le
2πil·y/h. (5.7)

Thereby, we choose M̃ = (M2,M3) ∈ 2N2 large enough and compute the Fourier coeffi-
cients b̂k,l by

b̂k,l :=
1

|IM̃ |
∑

j∈IM̃

KR

(
k, ‖j � M̃−1‖h

)
e−2πij·(l�M̃−1

)

for all k ∈ IM1 .
For relatively large values of k we may again obtain a good approximation by setting

Θp1(k, ‖y‖) ≈
∑

n∈Z2

Θp1(k, ‖y + hn‖),
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∂j

∂rj
KB(k, h/2) = 0

∂j

∂rj
KB(k, h/2 − hε) =

2
L

∂j

∂rj
Θp1(k, h/2 − hε)

h/2 − hε

−h/2 + hε h/2

−h/2

2
L

Θp1(k, ·)

1

Figure 5.1. Example for KR(k, ·) for k ≥ 1. Over the gray area the regularization adopts the values of the
boundary function KB(k, ·), which we compute via a modified two point Taylor interpolation. In the corners
(striped area) KR(k, ·) has the constant value KB(k, h/2). We also marked the points, where the conditions (5.4)
and (5.5) are fulfilled.

compare to the 2d-periodic case and Figure 4.2. With the help of the analytical Fourier
transform

Θ̂p1(k, ‖ξ‖) =
L2

2π(k2 + L2‖ξ‖2)
e−π

2k2/(α2L2)−π2‖ξ‖2/α2

and the Poisson summation formula we get

2

L
Θ̂p1(k, ‖y‖) ≈ 2

L

∑

n∈Z2

Θp1(k, ‖y + hn‖) ≈ 2

Lh2

∑

l∈IM̃

Θ̂p1(k, h−1‖l‖)e2πil·y/h,

i.e., we can simply set b̂k,l := 2(Lh2)−1Θ̂p1(k, h−1‖l‖) instead of regularizing the func-
tion.

In summary we obtain the following approximation for the long range parts

φp1,L(xj) + φp1,0(xj) ≈
∑

k∈IM1

∑

l∈IM̃

b̂|k|,l

N∑

i=1

qie
2πikxij,1/Le2πil·x̃ij/h

=
∑

(k,l)∈IM
b̂|k|,l

(
N∑

i=1

qie
2πiv(k,l)·xi

)
e−2πiv(k,l)·xj ,

where we use the truncated Fourier series (5.6) and (5.7) and define M := (M1,M̃) ∈
2N3 as well as the vectors v(k, l) := (k/L, l/h) ∈ L−1Z× h−1Z2.

The expressions in the inner brackets

Ŝ(k, l) :=

N∑

i=1

qie
2πiv(k,l)·xi , (k, l) ∈ IM ,
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can be computed by an adjoint NFFT. This will be followed by |IM | multiplications with
b̂|k|,l and completed by an NFFT to compute the outer summation over the indexes (k, l) ∈
IM . The proposed evaluation of φp1,L(xj) + φp1,0(xj) at the points xj , j = 1, . . . , N ,
requires O(N + |IM | log |IM |) arithmetic operations.

Again, using a matrix-vector notation we can write
(
φp1,L(xj) + φp1,0(xj)

)N
j=1
≈ ÃDÃàq, (5.8)

where Ã denotes the matrix representation of the NFFT in three dimensions for the nodes
(xj,1/L, x̃j/h) ∈ T3, D is a diagonal matrix with entries b̂|k|,l, (k, l) ∈ IM , and q =

(q1, . . . , qN )> ∈ RN .

Relations to existing work

The Ewald formulas for 1d-periodic geometries were already proposed in46. Some Fourier
based algorithms, like MMM1D7, where already proposed. A method based on approxi-
mation Variant II from Section 2.1 is proposed in36. However, as mentioned in Section 2.1
this method suffers from the rather slow convergence rate in Fourier space. See also53, 10

for algorithms with higher complexity.

6 Fast Ewald summation for 0d-periodic (open) boundary conditions

We consider a (not necessarily electrical neutral) system of N charges qj ∈ R at positions
xj ∈ R3, j = 1, . . . , N . Under open boundary conditions the potential of each single
particle j is defined by

φp0(xj) := φ{0}3(xj) =

N∑

i=1

′ qi
‖xij‖

,

i.e., we set S := {0}3 within the definition (1.3). This can be rewritten as

φp0(xj) = φp0,S(xj) + φp0,L(xj) + φp0,self(xj),

where for the splitting parameter α > 0 we define the short range part

φp0,S(xj) :=

N∑

i=1

′qi
erfc(α‖xij‖)
‖xij‖

,

the long range part

φp0,L(xj) :=

N∑

i=1

qiΘ
p0(‖xij‖), (6.1)

the self potential

φp0,self(xj) := − 2α√
π
qj ,
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and the function Θp0(r) is defined by

Θp0(r) =

{
2α√
π

: r = 0,
erf(αr)

r : else.

Using Variant III of Section 2, i.e., the fast summation approach, the function is approxi-
mated by a Fourier series. Similar as in the previous section we derive the fast algorithm
now based on (6.1). The evaluation of the short range part φp0,S(xj) is done by a direct
evaluation again.

In the following we assume that we have ‖xij‖ ≤ L =: h(1/2− ε). As an example, if
xj ∈ L1T × L2T× L3T, we can set L :=

√
L2
1 + L2

2 + L2
3. In order to approximate the

long range part φp0,L(xj) efficiently we consider the regularizations

KR(r) :=





Θp0(r) : |h−1r| ≤ 1/2− ε,
KB(r) : |h−1r| ∈ (1/2− ε, 1/2],
KB(h/2) : |h−1r| > 1/2,

,

where the functionKB(·) : [h/2−hε, h/2]→ R is constructed such thatKR(‖·‖) : hT3 →
R is in the Sobolev space Cp−1(hT3), i.e., KB(k, ·) fulfills the interpolation conditions

dj

drj
KB(h/2− hε) =

dj

drj
Θp0(h/2− hε) for j = 0, . . . , p− 1

as well as
dj

drj
KB(h/2) = 0 for j = 1, . . . , p− 1. (6.2)

Note that KR(‖ · ‖) is constant for all the points {y ∈ hT3 : ‖y‖ ≥ h/2}. Therefore, the
conditions (6.2) ensure smoothness of KR(‖ · ‖) in the points {y ∈ hT3 : ‖y‖ = h/2}.
Furthermore, (6.2) does not include any restriction on the function value of KR(h/2), since
it does not influence the smoothness of KR(‖ · ‖). In Appendix C of40 we show that
an adopted version of Theorem 2.1 can be used to construct the regularizing functions
KB(k, ‖.‖) as interpolation polynomials of degree 2p−2. By our construction the function
KR(‖ · ‖) is h-periodic in each direction and smooth, i.e., KR(‖ · ‖) ∈ Cp−1(hT3).

To this end, we approximate the function

Θp0(‖y‖) ≈
∑

l∈IM
b̂le

2πil·y/h

for ‖y‖ ≤ h/2 − hε by a trigonometric polynomial. Thereby, we choose M =

(M1,M2,M3) ∈ 2N2 large enough and compute the Fourier coefficients b̂l by

b̂l :=
1

|IM |
∑

j∈IM
KR

(
‖j �M−1‖h

)
e−2πij·(l�M−1) .

In summary we obtain the following approximation for the long range parts

φp0,L(xj) ≈
∑

l∈IM
b̂l

N∑

i=1

qie
2πil·xij/h

=
∑

l∈IM
b̂l

(
N∑

i=1

qie
2πil·xi/h

)
e−2πil·xj/h,
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where we use the truncated Fourier series. The expressions in the inner brackets

Ŝ(l) :=

N∑

i=1

qie
2πil·xi/h, l ∈ IM ,

can be computed by an adjoint NFFT. This will be followed by |IM | multiplications
with b̂l and completed by an NFFT to compute the outer summation with the complex
exponentials. The proposed evaluation of φp1,L(xj) + φp1,0(xj) at the points xj , j =
1, . . . , N , requires O(N + |IM | log |IM |) arithmetic operations.

As for the different types of periodic boundary conditions, we also obtain a matrix-
vector notation for the 0d-periodic case, which reads as

(
φp0,L(xj)

)N
j=1
≈ ÃDÃàq, (6.3)

where Ã denotes the matrix representation of the NFFT in three dimensions for the nodes
xj/h ∈ T3,D is a diagonal matrix with entries b̂l, l ∈ IM , and q = (q1, . . . , qN )> ∈ RN .

Relations to existing work

This method can be interpreted as nonequispaced convolution. For equispaced nodes the
discrete convolution and its fast computation is typically realized by FFT exploiting the ba-
sic property e2πi(y−x) = e2πiye−2πix. Following these lines, the method can be interpreted
as “convolution at nonequispaced nodes” by Fourier methods as well, more precisely by
the NFFT. This new method includes convolutions, e.g., with kernels of the form 1/‖x‖.
We remark that some FFT-accelerated Ewald26, 22 methods contain similar steps as the fast
summation based on NFFT. A method based on approximation Variant II from Section 2.1
is proposed in37. However, as mentioned in Section 2.1 this method suffers from the rather
slow convergence rate in Fourier space.

7 Conclusion

With this tutorial we provide an overview of the NFFT based fast Ewald summation for
all kinds of mixed periodic boundary conditions. The main advantage of our approach is
that all presented algorithms have a common structure. More precisely, the short range
parts of the potentials are always computed directly and the long range parts are computed
by an adjoint NFFT, a point-wise multiplication in Fourier space and, again, an NFFT in
three dimensions, see the matrix vector notation for the 3d-periodic case in (3.2), for the 2d-
periodic case in (4.8), for the 1d-periodic case in (5.8), and for the 0d-periodic case in (6.3).
Non-periodic boundary conditions are handled via a combination of the corresponding
mixed-periodic Ewald formulas and the concept of NFFT based fast summation. Thereby,
we embed the non-periodic functions of the mixed-periodic Ewald formulas into smooth
periodic functions and obtain rapidly convergent Fourier approximations. Note that this
approach also includes the 0d-periodic (open) case.

Since all algorithms depend on common building blocks, code and algorithm improve-
ments can be realized individually on the more elementary submodules. For example, a
MPI-based parallel NFFT algorithm was proposed in45 and is publicly available42. The
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parallelization of the NFFT module led to a parallel version of all the above mentioned
Ewald summation methods at once.

Following the naming scheme of the particle-particle particle-mesh (P3M) method,
our proposed framework is called particle-particle NFFT (P2NFFT), since the short range
particle-particle interactions are computed in the same way as in P3M algorithms, while
the long range particle-mesh part is computed by NFFTs.

In order to rate the very good performance of the proposed algorithms, we compared
the method to the P2NFFT method for 3d-periodic systems45 as well as to the method
proposed in34 by considering similar numerical examples, see40. Note that the P2NFFT al-
gorithm is highly optimized, publicly available5, and recently compared to other methods,
such as the P3M method, the fast multipole method and multigrid based methods, see4 and
the references therein.
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