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We use hyperbolic wavelet regression for the fast reconstruction of high-
dimensional functions having only low dimensional variable interactions. Com-
pactly supported periodic Chui-Wang wavelets are used for the tensorized
hyperbolic wavelet basis. In a first step we give a self-contained characteri-
zation of tensor product Sobolev-Besov spaces on the d-torus with arbitrary
smoothness in terms of the decay of such wavelet coefficients. In the second
part we perform and analyze scattered-data approximation using a hyperbolic
cross type truncation of the basis expansion for the associated least squares
method. The corresponding system matrix is sparse due to the compact sup-
port of the wavelets, which leads to a significant acceleration of the matrix
vector multiplication. In case of i.i.d. samples we can even bound the ap-
proximation error with high probability by loosing only log-terms that do not
depend on d compared to the best approximation. In addition, if the function
has low effective dimension (i.e. only interactions of few variables), we quali-
tatively determine the variable interactions and omit ANOVA terms with low
variance in a second step in order to increase the accuracy. This allows us to
suggest an adapted model for the approximation. Numerical results show the
efficiency of the proposed method.
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1. Introduction

We consider the problem of reconstructing a multivariate periodic function f on the d-
torus Td from discrete function samples on the set of nodes X = {x1, . . . ,xM} ⊂ Td. As a
function model we use periodic Sobolev-Besov spaces with dominating mixed smoothness
as they have proven useful in several multivariate approximation problems, see [41], [17,
Chapt. 9] and [39, Chapter III,IV]. We provide fast algorithms which recover an individual
function f : Td → C from unstructured samples (scattered data), where the error is
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measured in L2(Td) and L∞(Td). In the sense of [31, Chapt. 22,23] our recovery operator
is a Monte-Carlo method referring to the randomized setting, since the nodes in X are
drawn individually for each function f and are not supposed to work simultaneously for
the whole class of functions like in [25, Sect. 9]. We will extend the idea in [2, 4, 3] to
higher order smoothness and give statements that work with overwhelming probability.
In fact, the core of the recovery is a wavelet based least squares algorithm. Throughout
the paper we work in a rather general context with a minimal set of assumptions, namely
in the context of (semi-)orthogonal compactly supported wavelets being a Riesz basis on
a fixed level and having m vanishing moments, see (P1), (P2) and (P3). This allows
for considering two main examples, periodic orthogonal Daubechies wavelets as well as
semi-orthogonal Chui-Wang wavelets.

In this paper we give a self-contained and rather elementary proof for the character-
ization of Sobolev and Besov-Nikolskij spaces Hs

mix(Td) and Bs
2,∞(Td) in terms of such

wavelet coefficients. There is an interesting qualitative phenomenon happening if s equals
m, the order of vanishing moments, see Theorem 3.9. In case of Chui-Wang wavelets this
is reflected by the order of the underlying B-spline.

For a finite dimensional hyperbolic cross type index set I, given as in (3.20) and cardi-
nality |I|, we study the projection operator

PIf =
∑
j∈I

〈f, ψ∗j 〉ψj.

As a first result wee state in Corollary 3.12 that for s < m the L2(Td)-error is bounded
by

‖f − PIf‖L2(Td) .
(log |I|)(s+1/2)(d−1)

|I|s
‖f‖Bs

2,∞(Td) .

From this bound we infer that the operator PI yields the asymptotic optimal error among
all operators with rank |I|, see [17, Thm. 4.3.10]. In case s = m, the above bound remains
true if we replace the space Bm

2,∞(Td) by the smaller space Hm
mix(Td), see Corollary 3.13.

One would actually expect a better rate. However, numerical experiments based on the
tools developed in this paper indicate, that there must be an additional log-term, see
Figure 5.4. Additionally, we give in Theorem 3.15 a bound for the L∞(Td)-error of the
projection operator in both cases. Note, that these problems have some history. They be-
long to the field “hyperbolic wavelet approximation” and have already been investigated
by several authors in the literature, e.g. [13, 22, 20, 36, 3], see Section 3.3.

In order to investigate the scattered data problem, where we are engaged with the
sample set X and the corresponding function values, we construct a recovery operator
SXI . This operator computes a best least squares fit

SXI f =
∑
j∈I

ajψj,

to the given data (f(x))x∈X from the finite dimensional subspace spanned by the wavelets
with indices in the hyperbolic cross type set I. We derive the coefficients aj by minimizing
the error

∑
x∈X |f(x) − SXI f(x)|2 by using an LSQR algorithm, see (3.26). This results

in the hyperbolic wavelet regression in Algorithm 1. Assuming that the sample points in
X are drawn i.i.d. and equally distributed at random with |X | & |I| log |I|, we show in
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Corollary 3.22 for 1/2 < s < m and r > 1 that there is a constant C(r, d, s) > 0 such that
for fixed ‖f‖Bs

2,∞ ≤ 1

P
(
‖f − SXI f‖L2(Td) ≤ C(r, d, s)

(log |X |)(d−1)(s+1/2)+s

|X |s
)
≥ 1− 2|X |−r .

For details to the constant C(r, d, s) see Corollary 3.22. The proof is based on the well-
known elementary Bernstein inequality for the deviation of a sum of random variables
[38, Theorem 6.12]. It turns out that the error of the least squares approximation asymp-
totically coincides with the behavior of the projection operator PI on the wavelet space
with index set I. Even in the case s = m we show in Corollary 3.22 that the error of
the least squares approximation inherits the error bound of the projection operator. Such
operators as well as the approximation error are also considered in [7, 9, 11, 25]. Note
that, in contrast to the expected error, which has been considered in those references,
we show a new concentration inequality for the approximation error ‖f − SXI f‖L2(Td).

The often considered case where f ∈ H2
mix(Td), [18, 2], can be covered in our results

with wavelets with vanishing moments of order m ≥ 2, where we benefit from piecewise
quadratic wavelets what concerns the convergence rate, see Figure 5.4.

We use the parameter n to determine the index-set I, for details see Section 3.3. In
Lemma 3.11 we state the well-known asymptotic bound |I| = O(2nnd−1) for hyperbolic
cross type wavelet index sets I. This cardinality of the index set |I| in the hyperbolic
wavelet regression drastically reduces the complexity compared to a full grid approxi-
mation, which requires an index set of order 2dn. However, since the dimension d still
appears in the exponent of a logarithmic term, we aim to further reduce the index set
I, while keeping the same approximation rate. To this end we introduce the analysis of
variance (ANOVA) decomposition, see [6, 28, 23], [29, Section 3.1.6], which decomposes
the d-variate function into 2d ANOVA terms, i.e.

f(x) =
∑

u⊂{1,...,d}

fu(xu).

Each term corresponding to u depends only on variables xi, where i ∈ u. The number
of these variables is called order of the ANOVA term. However, in practical applications
with high-dimensional functions, often only the ANOVA terms of low order play a role in
order to describe the function well, see [6, 27, 14, 42, 35]. For a rigorous mathematical
treatment of this observation we introduce ANOVA inspired Sobolev spaces of dominating
mixed derivatives with superposition dimension ν

Hs,ν
mix(T

d) = {f ∈ Hs
mix(Td) | fu = 0 for all u /∈ Uν},

see also [15] and (4.5) for a natural generalization. These function spaces describe func-
tions, which only consist of ANOVA terms of order less than the superposition dimension
ν. Note that, in contrast to [19] we do not restrict our model to ANOVA terms of order
ν = 1. We propose the new Algorithm 2, which approximates functions in the space
Hs,ν

mix(Td) very well, by using the connection between the ANOVA terms and the corre-
sponding wavelet functions. This allows us to reduce the cardinality of the needed index
set I significantly to |I| = O(

(
d
ν

)
2nnν−1). Furthermore, we gain on the approximation
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error for r > 1 to

P
(
‖f − SXI f‖L2(Td) ≤ C(r, ν, s)

(log |X |)sν

|X |s
‖f‖Hs

mix(Td)

)
≥ 1− 2|X |−r,

with a constant C(r, ν, s) > 0, for details see Section 4.1.
Our further strategy, finding the unimportant dimension interactions and then building

an adapted model, allows an interpretation of the data. This strategy is based on sensi-
tivity analysis in combination with computing sensitivity indices, see (2.4), analytically
for the related wavelets. A similar algorithm for the approximation with Fourier methods
is described in [34]. Note that in this case one has to use a full index set in frequency
domain, which gives the larger cardinality of the index set |I| = O(

(
d
ν

)
2nν) for the same

approximation error, for details see Remark 4.3.

This paper is organized as follows. In Section 2 we recall the well-known ANOVA
decomposition of a function on the d-dimensional torus. Section 3 is dedicated to the
approximation using wavelets. In Section 3.1 we introduce periodic wavelet spaces, es-
pecially Chui-Wang wavelets which are semi-orthogonal, piecewise polynomial and com-
pactly supported wavelets. We formulate three fundamental properties of wavelets which
represent the only requirements for our theory. In Section 3.2 we give a rather simple and
elementary proof of the one-sided sharp wavelet characterization in our periodic setting.
In Section 3.3 we introduce the operator which truncates the wavelet decomposition by
orthogonal projection on the wavelet spaces and we determine the number of necessary
parameters. Two results from probability theory are summarized in Section 3.4. We use
these results in Section 3.5 to bound the approximation error from scattered data approx-
imation. This results in the concentration inequalities in Corollary 3.22. Algorithm 1
summarizes the hyperbolic wavelet regression, which gives us the approximant SXI f . In
Section 4 we show the connection between the ANOVA decomposition and the hyperbolic
wavelet regression. Therefore, we determine in Theorem 4.1 the ANOVA decomposition
of our approximant SXI f , which we use to improve our algorithm to Algorithm 2. Finally,
Section 5 is dedicated to some numerical examples, where we apply our algorithms to
confirm our theory. The relevant facts about Sobolev-Besov spaces of mixed smoothness
have been collected in the appendix.

1.1. Notation

In this paper we consider multivariate periodic functions f : Td → C, d ∈ N, where we
identify the torus T with [−1

2
, 1
2
). As usually, we define the function spaces

Lp(Td) :=
{
f : Td → C

∣∣∣‖f‖Lp(Td) <∞} ,
normed by

‖f‖Lp(Td) =

{
(
∫
Td |f(x)|p dx)1/p if p <∞,

supx∈Td |f(x)| if p =∞.

The overall aim is to approximate a square integrable function f ∈ L2(Td) by a function
from a finite dimensional subspace of L2(Td). We study the scattered-data problem, i.e.
we have given some sample points x ∈ Td, where we denote the set of all sample points by
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X , and we have given the function values y = (f(x))x∈X ∈ CM . We denote the number
of sample points by M = |X |.

Let us first introduce some notation. In this paper we denote by [d] the set {1, . . . , d}
and its power set by P([d]). The d-dimensional input variable of the function f is x,
where we denote the subset-vector by xu = (xi)i∈u for a subset u ⊆ [d]. The complement
of those subsets is always with respect to [d], i.e., uc = [d]\u. For an index set u ⊆ [d]
we define |u| as the number of elements in u. Since we will often use vector-notation, the
relations < and > for vectors are always meant pointwise. As usual, we use the Kronecker
delta

δj,` =

{
1 if j = `,

0 otherwise.

The vector-valued version is also a pointwise generalization δj,` =
∏d

i=1 δji,`i . Additionally,
if we write a + b, where a is a scalar and b is a vector, we mean that we add a to every
component of the vector b. Furthermore, the notation X . Y means that X ≤ CY for
some constant C which does not depend on the relevant parameters. The inner product
for functions and vectors is defined by

〈f, g〉 =

∫
Td
f(x)g(x) dx, 〈x,y〉 = y∗ · x.

For p ∈ {1, 2} we introduce the norm ‖x‖p =
(∑d

i=1 |xi|p
)1/p

. Moreover, we introduce

the multi-dimensional Fourier coefficients on the torus by

ck(f) =

∫
Td
f(x) e−2πi〈k,x〉 dx. (1.1)

2. The ANOVA decomposition

The aim of sensitivity analysis is to describe the structure of multivariate periodic func-
tions f and analyze the influence of each variable. A traditional approach is to study the
variance, defined in (2.3), of f(xu) for u ⊆ [d], to find out which terms contribute how
much to the total variance of f . A concept used frequently, see for instance [6, 23, 28], is
the following.

Definition 2.1. The ANOVA decomposition (Analysis of variance) of a function f : Td → C
is given by

f(x) = f∅ +
d∑
i=1

f{i}(xi) +
d∑

i 6=j=1

f{i,j}(xi, xj) + · · ·+ f[d](x)

=
∑

u∈P([d])

fu(xu). (2.1)

For u = ∅ the function f∅ is a constant that is equal to the grand mean

f∅ =

∫
Td
f(x) dx.
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The one-dimensional terms for j = 1, . . . , d, the so-called main effects, can be estimated
by the integral

f{j}(xj) =

∫
Td−1

(f(x)− f∅) dxjc ,

which only depends on x through xj, all other components xjc have been integrated out.
The corresponding two-factor interactions are

f{i,j}(xj, xi) =

∫
Td−2

f(x) dx{j,i}c − f{j}(xj)− f{i}(xi)− f∅.

In general, we define the following.

Definition 2.2. Let f be in L2(Td). For a subset u ⊆ [d] we define the ANOVA terms
by

fu(xu) =

∫
Td−|u|

f(x) dxuc −
∑
v⊂u

fv(xv). (2.2)

We do not want to attribute anything to xu that can be explained by xv for strict
subsets v ⊂ u, so we subtract the corresponding fv(xv). By averaging over all other
variables not in u, we receive functions that depend only on xu. The definition of f[d](x)
ensures that the functions defined in Definition 2.2 satisfy (2.1). There are many ways to
make a decomposition of the form (2.1). Indeed, an arbitrary choice of fu for all |u| < d
can be accommodated by taking f[d] to be f minus all the other terms. The terms in
Definition 2.2 are the unique decomposition (2.1), such that they have additionally mean
zero.

Lemma 2.3. For all u 6= ∅ the decomposition in Definition 2.2 fulfills∫
T|u|

fu(xu) dxu = 0.

Proof. The result follows by induction over |u| by∫
T|u|

fu(xu) dxu =

∫
T|u|

∫
Td−|u|

f(x) dxuc dxu −
∫
T|u|

∑
v⊆u

fv(xv) dxu

=

∫
Td
f(x) dx−

∑
v⊆u

∫
T|v|

fv(xv) dxv

= f∅ − f∅ = 0.

In order to show orthogonality of the ANOVA terms, we use the following lemma.

Lemma 2.4. Let f ∈ L2(Td) and u 6= ∅. Then for the ANOVA terms from Definition 2.2
we have ∫

T
fu(xu) dxj = 0

for j ∈ u.
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Proof. The proof is by induction on |u|. For u = {j} this follows from Lemma 2.3. Now
suppose that

∫
T fv(xv) dxj = 0 for j ∈ v whenever 1 ≤ |v| ≤ r < d. Choose u with

|u| = r + 1 and pick j ∈ u. To complete the induction, we calculate∫
T
fu(xu) dxj =

∫
T

∫
Td−|u|

f(x) dxuc −
∑
v⊆u

fv(xv) dxj

=

∫
T

∫
Td−|u|

f(x) dxuc dxj −
∑
v⊆u

∫
T
fv(xv) dxj

= fu\j(xu\j) +
∑
v⊂u

j /∈v

fv(xv)−
∑
v⊆u

j /∈v

fv(xv) = 0.

This lemma establishes L2(Td)-orthogonality of the ANOVA-terms:

Lemma 2.5. Let f ∈ L2(Td). Then the ANOVA-terms from Definition 2.2 are orthogo-
nal, i.e. for u 6= v ⊆ [d]

〈fu, fv〉 =

∫
Td
fu(xu)fv(xv) dx = 0.

Proof. Since u 6= v, there either exists j ∈ u with j /∈ v, or j ∈ v with j /∈ u. Without
loss of generality suppose that j ∈ u and j /∈ v. We integrate xj out of fufv as follows:∫

Td
fu(xu)fv(xv) dx =

∫
Td−1

∫
T
fu(xu)fv(xv) dxj dxjc

=

∫
Td−1

∫
T
fu(xu) dxjfv(xv) dxjc = 0,

using Lemma 2.4 for the inner integral.

In order to get a notion of the importance of single terms compared to the entire
function, we define the variance of a function by

σ2(f) :=

∫
Td

∣∣∣∣f(x)−
∫
Td
f(x) dx

∣∣∣∣2 dx =

∫
Td
|f(x)|2 dx− f 2

∅. (2.3)

The idea of the ANOVA decomposition is to analyze which combinations of the input
variables xj play a role for the approximation of f , i.e. which ANOVA terms are necessary
to approximate the function f and which terms can be omitted. The variances of the
ANOVA terms indicate their importance, i.e. if an ANOVA-term has high variance, this
term contributes much to the variance of f . For that reason we do the following. For
subsets u ⊆ [d] with u 6= ∅ the global sensitivity indices (gsi) [37] are then defined as

ρ(u, f) :=
σ2(fu)

σ2(f)
∈ [0, 1], (2.4)

where the variance of the ANOVA term fu is

σ2(fu) =

∫
T|u|
|fu(xu)|2 dxu,
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since the mean of the ANOVA terms is zero. The L2(Td)-orthogonality of the ANOVA
terms implies that the variance of f(x) for L2(Td)-functions f can be decomposed as

σ2(f) =
∑
u⊆[d]

u6=∅

σ2(fu).

This implies ∑
u⊆[d]

u6=∅

ρ(u, f) = 1.

The global sensitivity index ρ(u, f) represents the proportion of variance of f(x) explained
by the interaction between the variables indexed by u. The knowledge of the indices is
very helpful for understanding the influence of the inputs, but the computation of these
relies on the computation of the integrals of equation (2.2). Following [16] we want to
perform the sensitivity analysis on a function g, which approximates f .

Remark 2.6. Instead of using the conventional Lebesgue measure dx, we can instead
use another measure, which leads to a possible different ANVOVA-decomposition. But
L2(Td)-orthogonality of the ANOVA terms still holds. Using for instance the Dirac mea-
sure located at a point a, which is a simple evaluation of f at a, yields to the anchored
ANOVA decomposition, see [27].

3. Approximation with wavelets

In this section we will use periodized, translated and dilated wavelets to approximate
periodic functions. We will give some theoretical results, which apply on general wavelets
that fulfill the properties in Definition 3.3. The main result of this section is Theorem 3.9,
which generalizes Theorem 3.7 to the multivariate and dual case. In contrast to Theo-
rem 3.5 this is a sharp characterization of the decay of wavelet coefficients for functions
in Hs

mix(Td) or Bs
2,∞(Td).

3.1. Wavelet spaces

In order to get basis functions on T, we use 1-periodized functions. We first introduce
the B-splines.

Definition 3.1. For m ∈ N we define the cardinal B-spline Bm : R→ R of order m as a
piecewise polynomial function recursively by

B1(x) =

{
1, −1

2
< x < 1

2

0, otherwise,
and Bm(x) =

∫ x+
1
2

x−1
2

Bm−1(y) dy. (3.1)

The function Bm(x) is a piecewise polynomial function of order m − 1. Furthermore,

the support of Bm(x) is (−m
2
, m

2
) and they are normalized by

∫ m
2

−m
2

Bm(x)dx = 1. We

introduce the function spaces Vj by Vj = span{ϕ(2j · −k) | k ∈ Z}, where the function ϕ
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Figure 3.1.: Cardinal B-splines of order m = 1, 2, 3, 4

is some scaling function, for example one can use here the m-th order cardinal B-spline
Bm(x) as scaling function ϕ. Consequently, we have

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · .

From the nested sequence of spline subspaces Vj, we build the the orthogonal complemen-
tary subspaces Wj, namely

Vj+1 = Vj ⊕Wj, j ∈ N0.

These subspaces are mutually orthogonal. Hence, we write

L2(R) = V0 ⊕W0 ⊕W1 ⊕ · · · (3.2)

We are interested in a wavelet function ψ ∈ W0 that generates the subspaces Wj in the
sense that

Wj = span{ψj,k | k ∈ Z},
where

ψj,k(x) = 2j/2ψ(2jx− k), j ∈ N0, k ∈ Z.
Thus, we use a normalization such that ‖ψj,k‖L2(T) = 1.

Example 3.2. An example for the scaling function is the cardinal B-spline, ϕ = Bm of
order m. The corresponding wavelet functions are the Chui-Wang wavelets [8], which are
given by

ψ(x) =
∑
n

qnBm(2x− n− m
2

),

where

qn =
(−1)n

2m−1

m∑
k=0

(
m

k

)
B2m(n+ 1− k −m).

In order to approximate periodic functions, we use 1-periodized versions of these wavelets,

ψper
j,k (x) =

∑
`∈Z

ψj,k(x+ `),

where we first have to dilate and then periodize. To get a periodic decomposition of the
form (3.2), we have to periodize the scaling function ϕ ∈ V0 by

ϕper(x) =
∑
`∈Z

ϕ(x+ `) = 1,
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Figure 3.2.: Chui-Wang-wavelets of order m = 2 (left), m = 3 (middle) and m = 4 (right).

see [12, Section 9.3], which is the constant function, denoted by 1T. To simplify notation,
we denote the scaling function ϕ(· − k) by ψ−1,k and ψper

−1,0 = ϕper = 1T.
We want to approximate a function f ∈ L2(T) by some function in Vj. If the wavelets do

not induce an orthonormal basis, but a Riesz-basis for every index j, we have to consider
the dual basis ψ∗j,k, which has the property

〈ψj,k, ψ∗i,`〉 = δi,jδk,`.

The usage of wavelets allow us a decomposition of a non-periodic f ∈ L2(R) in terms of
ψj,k, using (3.2) by

f =
∑
k∈Z

〈f, ψ∗−1,k〉ψ−1,k +
∑
j≥0

∑
k∈Z

〈f, ψ∗j,k〉ψj,k.

If {ψj,k(x)}k is an orthonormal basis for Wj, the dual wavelet and the wavelet coincide,
i.e. ψj,k = ψ∗j,k. The periodized version of (3.2) is

L2(T) = V per
0 ⊕W per

0 ⊕W per
1 ⊕ · · · . (3.3)

Hence, we can decompose every function f ∈ L2(T) as

f = 〈f, ψper
−1,0〉ψ

per
−1,0 +

∑
j≥0

2j−1∑
k=0

〈f, ψper∗
j,k 〉ψ

per
j,k , (3.4)

since the periodization of ψj,k reduces the parameter k to the range {0, . . . 2j−1} and the
periodization of ψ−1 makes the parameter k in the first term obsolete. The periodization
inherits indeed the orthogonality in (3.3), which can be seen by setting y = x + `′ and
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˜̀= `− `′ in

〈ψper
j,k , ψ

per
j′,k′〉 = 2

j+j′

2

∫
T

∑
`∈Z

∑
`′∈Z

ψ(2jx+ 2j`− k)ψ(2j
′
x+ 2j`′ − k′) dx

= 2
j+j′

2

∑
˜̀∈Z

∑
`′∈Z

∫ 1
2
+`′

−1
2
+`′

ψ2jy+2j`′′−kψ2j′y−k′ dy

=
∑
˜̀∈Z

2
j+j′

2

∫ ∞
−∞

ψ(2jy + 2j ˜̀− k)ψ(2j
′
y − k′) dy

=
∑
˜̀∈Z

〈ψj,−2j ˜̀+k, ψj′,k′〉 =


0 if j 6= j′

〈ψj,k, ψj,k′〉 if j = j′ and 2j > suppψ,∑
`∈Z〈ψj,k−2j`, ψj,k′〉 if j = j′ and 2j ≤ suppψ.

(3.5)

In order to give theoretical error estimates, we require some properties of the wavelets.

Definition 3.3. We define the following properties of a wavelet ψ : R→ R.

� The wavelet ψ(x) has compact support, i.e.,

suppψ = [0, S]. (P1)

� The wavelet has vanishing moments of order m, i.e.∫ ∞
−∞

ψ(x)xβ dx = 0, β = 0, . . . ,m− 1. (P2)

� The periodized wavelets form a Riesz-Basis for every index j with

γm

2j−1∑
k=0

|dj,k|2 ≤

∥∥∥∥∥∥
2j−1∑
k=0

dj,kψ
per
j,k (x)

∥∥∥∥∥∥
2

L2(T)

≤ δm

2j−1∑
k=0

|dj,k|2. (P3)

For example, the Chui-Wang wavelets of order m in Example 3.2 fulfill all three proper-
ties. These wavelets have compact support with suppψ = [0, 2m−1], they have vanishing
moments of order m and the periodic Chui-Wang wavelets represent a Riesz-basis for every
index j, [33, Theorem 3.5.] with the constants from there, see Table 3.1.

m 1 2 3 4 5
γm 1 0.14814815 0.03792593 0.01005993 0.00267766
δm 1 0.33333333 0.13386795 0.05938886 0.02785522

Table 3.1.: Riesz constants for the Chui-Wang wavelets from [33].

To generalize the one-dimensional wavelets to higher dimensions, we use the following
tensor-product approach. To this end we define the multi-dimensional wavelets

ψj,k(x) =
d∏
i=1

ψji,ki(xi), x = (x1, . . . , xd),

11



where j ∈ Zd and k = (ki)
d
i=1 ∈ Zd are multi-indices. Analogously, we define the 1-

periodized versions

ψper
j,k(x) =

d∏
i=1

ψper
ji,ki

(xi), (3.6)

where j = (ji)
d
i=1, ji ∈ {−1, 0, 2, . . .} and k = (ki)

d
i=1 are multi-indices k ∈ Ij . Hence, we

define the sets

Ij = ×di=1

{
{0, 1, . . . 2ji − 1} if ji ≥ 0,

{0} if ji = −1.

In an analogous way we define the multi-variate dual wavelets and their periodization.

3.2. Boundedness of wavelet coefficients for mixed regularity

The following results are essentially known and appear in several papers [13, 22, 36] in
various different settings. We decided to give a rather simple and elementary proof of
the one-sided sharp wavelet characterization in our periodic setting. We would like to
point out that the vanishing moments of order m of these wavelets play a crucial role for
the partial characterization which we have in mind. Our proof can be easily extended
to 1 < p < ∞. Note, that the analysis in [22] relies on proper Jackson and Bernstein
inequalities.

The relevant function spaces are defined in the appendix. In order to analyze a best-
approximation error of the function space Vj, we characterize theHs(T)-norm of a function
by a sequence-norm of the wavelet-coefficients.

Lemma 3.4. Let f ∈ Hm(T) and ψ a wavelet, which is compactly supported, see (P1),
and has vanishing moments of order m, see (P2). Then there exists a constant C, which
depends on m, such that

sup
j≥−1

2jm

∑
k∈Ij

|〈f, ψper
j,k 〉|

2

1/2

≤ C ‖f‖Hm(T) .

Proof. We define the function

Ψm(x) =

∫ x

−∞

ψ(t)(x− t)m−1

(m− 1)!
dt.

Note that this function is defined using the non-periodic wavelet function ψ, which has
compact support on [0, S]. Because of the moment condition (P2) and the fact that
(x − t)m−1 is a polynomial of degree at most m − 1, we have Ψm(x) → 0 for x → ±∞.
Hence, Ψm(x) has also support [0, S]. Furthermore, m-times differentiation yields

DmΨm(x) = ψ(x).

The periodization of Ψm is

Ψper
m (x) =

∑
`∈Z

Ψm(x+ `) =
∑
`∈Z

∫ x+`

−∞

ψ(t)(x+ `− t)m−1

(m− 1)!
dt.

12



Since Ψm has compact support, the summation over ` is finite and we can interchange dif-
ferentiation and summation, which yields dm

dxm
Ψper
m (x) = ψper(x). Analogously, we confirm

that
dm

dxm

(∑
`∈Z

∫ x+`

−∞

ψj,k(t)(x+ `− t)m−1

(m− 1)!
dt

)
= ψper

j,k (x). (3.7)

Now we calculate the inner products by using variable substitutions

|〈f, ψper
j,k 〉| =

∣∣∣∣∫
T
f(x)ψper

j,k (x) dx

∣∣∣∣ =

∣∣∣∣∣
∫
T
f(x)

dm

dxm

∑
`∈Z

∫ x+`

−∞

ψj,k(t)(x+ `− t)m−1

(m− 1)!
dt dx

∣∣∣∣∣
= 2j/2 2−j

∣∣∣∣∣
∫
T
f (m)(x)

∑
`∈Z

∫ 2jx+2j`−k

−∞

ψ(t′)(x+ `− t′+k
2j

)m−1

(m− 1)!
dt′ dx

∣∣∣∣∣
= 2j/2 2−j 2−j(m−1)

∣∣∣∣∣
∫
T
f (m)(x)

∑
`∈Z

∫ 2jx+2j`−k

−∞

ψ(t′)(2jx+ 2j`− k − t)m−1

(m− 1)!
dt′ dx

∣∣∣∣∣
= 2j/2 2−jm

∣∣∣∣∣
∫
T
f (m)(x)

∑
`∈Z

Ψm(2jx+ 2j`− k) dx

∣∣∣∣∣
≤ 2j/2 2−jm

∑
`∈Z

∫
I`,j,k

∣∣∣f (m)(x)Ψm(2jx+ 2j`− k)
∣∣∣ dx, (3.8)

where I`,j,k = suppV (2j ·+2j`− k). Since Ψm is supported on [0, S], the interval I`,j,k is
[2−jk − `, 2−j(S + k) − `] ∩ [−1

2
, 1
2
). We denote the union ∪`∈ZI`,j,k by Ij,k. Note that in

this proof we put points that are in multiple I`,j,k, multiple times in Ij,k. This is the case
if S > 2j, hence |Ij,k| = S 2−j, which can be greater than 1.

|〈f, ψper
j,k 〉| ≤ 2j/2 2−jm

∫
Ij,k

∣∣∣f (m)(x)Ψm(2jx− k)
∣∣∣ dx

≤ 2j/2 2−jm

(∫
Ij,k

∣∣f (m)(x)
∣∣2 dx

)1/2(∫
Ij,k

|Ψm(x)|2 dx

)1/2

≤ 2j/2 2−jm

(∫
Ij,k

∣∣f (m)(x)
∣∣2 dx

)1/2

max
x∈R

Ψm(x) |Ij,k|
1
2 ,

≤ 2−jm S1/2 max
x∈R

Ψm(x)
∥∥f (m)

∥∥
L2(Ij,k)

. (3.9)

Summation over k means to unite Ij,k for all k ∈ Ij. The intervals Ij,k for fixed j overlap
for different k, but at most dSe-times. Hence for Ij = ∪2j−1k=0 Ij,k, we have

∫
Ij
|g(x)|2 dx ≤

S
∫
T |g(x)|2 dx. All together, this yields

2jm

2j−1∑
k=0

|〈f, ψper
j,k 〉|

2

1/2

≤ C ‖f (m)‖L2(T) . (3.10)

For the scaling function we have

|〈f, 1T〉| =
∣∣∣∣∫

T
f(x) dx

∣∣∣∣ ≤ ‖f‖L1(T) ≤ ‖f‖L2(T) . (3.11)

Now the assertion follows from (3.10) and (3.11).
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We use this one-dimensional Lemma to give a characterization for multi-dimensional
functions. Instead of the function space Hm(T) we have to use functions from Hm

mix(Td).
Theorem 3.5. Let f ∈ Hm

mix(Td) and ψper
j,k be the periodized, dilated and translated ver-

sions of a wavelet ψ, which is compactly supported, see (P1), and has vanishing moments
of order m, see (P2). Then there exists a constant C, which depends on m and d, such
that

sup
j≥−1

2|j|1m

∑
k∈Ij

|〈f, ψper
j,k〉|

2


1
2

≤ C ‖f‖Hm
mix(Td)

,

where we define the index norm |j|1 =
∑

i,ji≥0 ji.

Proof. We use a multi-variate version of the function Ψm of the proof of Lemma 3.4,
which we get by tensorizing the one-dimensional functions, Ψm(x) =

∏d
i=1 Ψm(xi). This

function is supported on [0, S]d. Furthermore, we have

D(m·1)Ψm(x) = ψ(x),

where 1 is the d-dimensional vector of ones. We also derive multi-dimensional identities
like in (3.7), where we tensorize the functions and differentiate in every dimension m
times. Let the multi-index j be fixed, with u = {i ∈ [d] | ji ≥ 0}. We apply the
partial integration in the dimensions i, where ji ≥ 0, i.e. in the dimensions u. In these
dimensions we use (3.7) with j = ji and x = xi. Therefore we get

|〈f, ψper
j,k〉| =

∫
Td
f(x)ψper

j,k(x) dx =

∫
T|uc|

∫
T|u|

f(x)ψper
j,k(x) dxu dxuc

=

∫
T|uc|

∫
T|u|

f(x)

|u|∏
i=1

ψper
jui ,kui

(xui) dxu dxuc

≤2|ju|1/22−|j|1m
∫
T|uc|

∑
`u∈Z|u|

∫
I`,j,k

|(D(1(u)m)f(x)) Ψm(2juxu + 2julu − ku)| dxu dxuc ,

where the vector 1(u) is the vector which is 1 at the indices u and all other entries are
zero. The intervals for integration are given by the support of Ψm, i.e.

I`,j,k = supp Ψm(2juxu + 2julu − ku) = [2juku − lu, 2−ju(S + ku)− `u] ⊂ T|u|,
where expressions over multi-indices are always meant component-wise. That means
(2−jk)i = 2−jiki. We denote the union ∪`∈ZdI`,j,k by Ij,k. Note that in this proof we
put points that are in multiple I`,j,k, multiple times in Ij,k. This is the case if S > 2ji

for some i, hence |Ij,k| = S 2−|ju|1 , which can be greater than 1. Like in (3.9) we use
Cauchy-Schwarz-inequality and get

|〈f, ψper
j,k〉| ≤ C2−|ju|1m ‖D(1(u)m)f‖L2(Iju,ku⊗Td−|u|)

,

where the constant depends on m and |u|. Summation over k ∈ Ij means to unite Ij,k for
all k ∈ Ij . The intervals Ij,k have length 2−|ju|1S|u| and they are centered at the points

2juku for ku ∈ Iju . Hence, the intervals overlap at most dSe|u|-times, i.e. we have

22|ju|1m

∑
k∈Ij

|〈f, ψper
j,k〉|

2

 ≤ C ‖D(1(u)m)f‖2L2(Td) ≤ C ‖f‖2Hm
mix(Td)

,

where the constant depends on m and d. This finishes the proof.
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In the previous proof the function f had to have the same smoothness as the order m
of the vanishing moments property (P2). If we require only slightly less smoothness, we
get a much better characterization of functions in Vj, which uses the sum instead of the
supremum of the wavelet coefficients if the fractional smoothness parameter s satisfies
s < m. Again, we prepare the multi-dimensional result by proving the following one-
dimensional result first.

Lemma 3.6. Let f ∈ Hs(T), 0 < s < m and ψper
j,k an 1-periodized wavelet, which is

compactly supported, see (P1), has vanishing moments of order m, see (P2), and forms
a Riesz-basis, see (P3). Then there exists a fixed constant C, which depends on m, such
that  ∞∑

j=−1

22|j|1s
∑
k∈Ij

|〈f, ψper
j,k 〉|

2

1/2

≤
(
δm

2s

2s − 1
+ C

1

2(m−s) − 1

)
‖f‖Hs(T) ,

where δm is the Riesz constant from (P3) and where we use |j|1 = j if j ≥ 0 and 0
otherwise.

Proof. The first summand for j = −1 is |〈f, 1T〉|2 = ‖f‖2L1(T) ≤ C ‖f‖2Hs(T). Now we
consider a fixed index j ≥ 0. We will use the equivalent norm given in (A.3) in the
appendix (univariate version). This yields in particular for the block fq

‖fq‖Hs(T) ≤ 2qs ‖fq‖L2(T) . (3.12)

The decomposition of f in dyadic blocks and triangle inequality yields∑
k∈Ij

|〈f, ψper
j,k 〉|

2

1/2

≤
∑
`∈Z

∑
k∈Ij

|〈fj+`, ψper
j,k 〉|

2

1/2

.

Let now ` ∈ Z be fixed. We distinguish two cases and we begin with ` > 0. Here we have∑
k∈Ij

|〈fj+`, ψper
j,k 〉|

2 ≤ δm ‖fj+`‖2L2(T) . (3.13)

Note that at this point we need the property that ψj,k form a Riesz basis for fixed j, i.e
(P3), and every Riesz basis is a frame with the same constants. Using the Riesz-basis
property (P3), summation over the weighted wavelet coefficients yields

∑
`>0

 ∞∑
j=0

22js
∑
k∈Ij

|〈fj+`, ψper
j,k 〉|

2

1/2

≤ δm
∑
`>0

(
∞∑
j=0

22(j+`)s 2−2`s ‖fj+`‖2L2(T)

)1/2

≤ δm
∑
`>0

2−`s ‖f‖Hs(T) = δm
2s

2s − 1
‖f‖Hs(T) . (3.14)

For the remaining case ` ≤ 0 we use Lemma 3.4 and (3.12), i.e we have∑
k∈Ij

|〈fj+`, ψper
j,k 〉|

2 ≤ C2−2jm ‖fj+`‖2Hm(T) ≤ C2−2jm22(j+`)m ‖fj+`‖2L2(T) = C22`m ‖fj+`‖2L2(T) ,

(3.15)
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where the constant is from Lemma 3.4 and depends on m. This yields

∑
`≤0

 ∞∑
j=0

22js
∑
k∈Ij

|〈fj+`, ψper
j,k 〉|

2

1/2

.
∑
`≤0

(
∞∑
j=0

22(j+`)s 2−2`s22`m ‖fj+`‖2L2(T)

)1/2

=
∑
`≤0

2`(m−s)

(
∞∑
j=0

2(j+`)s ‖fj+`‖2L2(T)

)1/2

=
∑
`≤0

2`(m−s) ‖f‖Hs(T) =
1

2(m−s) − 1
‖f‖Hs(T) .

(3.16)

The assertion follows from (3.14) and (3.16).

By a similar and straight-forward direction-wise analysis as in Theorem 3.5 we get the
following multivariate version from (3.13) and (3.15),∑

k∈Ij

|〈fj+`, ψ
per
j,k〉|

2 . 2−2m|`−|1‖fj+`‖2L2(Td) , (3.17)

where we define `− := ((`1)−, ..., (`d)−) with x− = min{0, x}.
The following result represents a multivariate version of Lemma 3.6.

Theorem 3.7. Let f ∈ L2(Td), 0 < s < m and ψ a wavelet, which is compactly supported,
see (P1), has vanishing moments of order m, see (P2), and forms a Riesz-basis, see (P3).
Then there exists a constant C, which depends on m, s and d, such that∑

j≥−1

22|j|1s
∑
k∈Ij

|〈f, ψper
j,k〉|

2

1/2

≤ C ‖f‖Hs
mix(Td)

, (3.18)

and

sup
j≥−1

2|j|1s

∑
k∈Ij

|〈f, ψper
j,k〉|

2

1/2

≤ C ‖f‖Bs
2,∞(Td) , (3.19)

where we use |j|1 =
∑

i,ji≥0 ji.

Proof. The relation in (3.18) can be shown along the lines of Lemma 3.6 using (3.17)
instead of (3.13) and (3.15) at the respective place. However, let us additionally give a
different proof argument based on an abstract tensor product result. For this end we need
the sequence space

bs2 :=

(aj,k) ⊂ C

∣∣∣∣∣∣∣
 ∞∑
j=−1

∑
k∈Ij

22js|aj,k|2
1/2

<∞

 .

Corollary 3.6.(i) for the case p = 2 from [36] gives us a result of the multivariate versions
of these one-dimensional sequence spaces. It was shown that the multivariate sequence
spaces are the tensor products of the one-dimensional sequence spaces. In our case we
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have to consider the sequence spaces of the wavelet coefficients, where aj,k = 〈f, ψ∗,perj,k 〉.
Theorem 2.1 also from [36] shows that the spaces Hs

mix(Td) coincide with the tensor
products ⊗di=1H

s(T). Our one-dimensional Lemma 3.6 bounds the operator which maps
a function from Hs(T) to bs2. Hence, the tensor product operator is also bounded between
the tensor-product spaces.

As for (3.19) we again need a direct argument since a counterpart of the mentioned
tensor product result is not available. The modification is straightforward and again based
on (3.17).

Remark 3.8. Note that the constant in the previous theorem is the d-th power of the
constant in Theorem 3.6. We receive the same constant in an elementary proof which
uses multi-dimensional ideas of the proof of Lemma 3.6.

The version in Theorem 3.7 is not suitable for our purpose. We want to approximate
a function f ∈ L2(Td) in terms of multi-dimensional tensor products of dilated and
translated versions of the wavelet ψ, given in (3.6), i.e.

f =
∑
j≥−1

∑
k∈Ij

〈f, ψper∗
j,k 〉ψ

per
j,k ,

which is the multi-dimensional version of (3.4). For that reason we need a characterization
with the scalar products 〈f, ψper∗

j,k 〉 instead of 〈f, ψper
j,k〉.

Theorem 3.9. With the assumptions like in the previous theorem and letting ψper∗
j,k denote

the dual wavelets corresponding to the wavelets ψper
j,k. There exists a constant C, which

depends on m, s and d, such that∑
j≥−1

22|j|1s
∑
k∈Ij

|〈f, ψper,∗
j,k 〉|

2

1/2

≤ C ‖f‖Hs
mix(Td)

,

and

sup
j≥−1

2|j|1s

∑
k∈Ij

|〈f, ψper,∗
j,k 〉|

2

1/2

≤ C ‖f‖Bs
2,∞(Td) ,

where we define the index norm |j|1 =
∑

i,ji≥0 ji.

Proof. In this proof we use the property (P3), i.e. that {ψper
j,k}k∈Ij as well as their duals

{ψper,∗
j,k }k∈Ij are a Riesz-basis for every fixed j. That means

∑
k∈Ij

|〈f, ψper∗
j,k 〉|

2 .

∥∥∥∥∥∥
∑
k∈Ij

〈f, ψper∗
j,k 〉ψ

per
j,k

∥∥∥∥∥∥
2

L2(Td)

=

∥∥∥∥∥∥
∑
k∈Ij

〈f, ψper
j,k〉ψ

per∗
j,k

∥∥∥∥∥∥
2

L2(Td)

.
∑
k∈Ij

|〈f, ψper
j,k〉|

2.

Hence, this theorem follows immediately from Theorem 3.7.

Note that the converse inequality for orthogonal wavelets in case 0 < s < m − 1
2

was
shown in [36, Prop. 2.8 ii)].
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3.3. Hyperbolic wavelet approximation

In the sequel we always deal with multi-dimensional periodic wavelets ψper
j,k , which are

compactly supported, see (P1), have vanishing moments of order m, see (P2), and form
a Riesz basis, see (P3). The last subsection motivates to introduce an approximation
operator Pn, which truncates the wavelet decomposition, by

Pnf :=
∑
j∈Jn

∑
k∈Ij

〈f, ψper∗
j,k 〉ψ

per
j,k , (3.20)

in order to approximate a function f ∈ L2(Td). To do so, we define the index sets

Jn = {j ∈ Zd | j ≥ −1, |j|1 ≤ n}. (3.21)

The operator Pn is the projection of a function in L2(Td) onto the space

V per
n (Td) =

∑
j∈Jn

d⊗
i=1

V per
ji
. (3.22)

In Figure 3.3 every small square stands for one multi-index k. The operator P3 chooses

-1 0 1 2 3
-1
0
1

2

3

j1

j2

Figure 3.3.: Illustration of the number of 2-dimensional indices k where |j| ≤ 3.

those wavelet functions, for which the corresponding square is colored, i.e. all k in the
index-set Ij where |j|1 ≤ 3. Using Theorem 3.9, we estimate the approximation error of
this operator by

Corollary 3.10. Let f ∈ Hs
mix(Td). For s < m we have for the projection operator Pn

defined in (3.20)
‖f − Pnf‖L2(Td) . 2−sn ‖f‖Hs

mix(Td)
.

Proof. Due to the wavelet decomposition of f , we have

‖f − Pnf‖2L2(Td) .
∑
j≥−1

|j|1>n

∑
k∈Ij

|〈f, ψper∗
j,k 〉|

2 =
∑
j≥−1

|j|1>n

∑
k∈Ij

2−2|j|1s22|j|1s|〈f, ψper∗
j,k 〉|

2

. 2−2ns ‖f‖2Hs
mix(Td)

.

Taking the square root gives the assertion.
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Note that this result can be compared with [2, Theorem 3.25] for m = 2. But we get a
better approximation rate, since we proved the characterization in Theorem 3.9, whereas
in [2] only a characterization of type from Theorem 3.5 was proven. Related results also
appeared in [13, Theorem 3.2], [22, Proposition 6], [36, Theorem 2.11], but with less
transparent requirements on the wavelets.

We also give a relation between the number of necessary parameters (degrees of freedom)
and the order of approximation. The content of the Lemma below is essentially known,
see [5, Lem. 3.6].

Lemma 3.11. Let N := rank Pn be the number of parameters, that we need to describe
the space V per

n (Td), defined in (3.22), which is induced by a wavelet which fulfills (P1),
(P2) and (P3). Then

N = 2n
(

nd−1

(d− 1)!
+O(nd−2)

)
= O(2n nd−1).

Proof. The number of parameters is

N =
∑
j∈Jn

|Ij| =
∑
j∈Jn

2|j|1 =
∑

u∈P([d])

∑
ju≥0

|ju|1≤n

2|ju|1 , (3.23)

where u always denotes the index set u = {i ∈ [d] | ji ≥ 0}. We consider each summand
seperately. Therefore we consider the case where j ≥ 0,

∑
j≥0

|j|1≤n

2|j|1 =
d+n∑
i=d

2i−d
∑
|j|1=i

1 =
d+n∑
i=d

2i−d
(
i− 1

d− 1

)
=

n∑
i=0

2i
(
i+ d− 1

d− 1

)
,

since there are
(
i−1
d−1

)
partitions of i into non-zero natural numbers. For this sum holds

n∑
i=0

2i
(
i+ d− 1

d− 1

)
= 2n

(
nd−1

(d− 1)!
+O(nd−2)

)
.

Summing over all u ∈ P([d]) gives us

N =
d∑

k=0

(
d

k

)
2n
(

nk−1

(k − 1)!
+O(nk−2)

)
= O(2n nd−1).

Corollary 3.12. Let f ∈ Hs
mix(Td). For 0 < s < m we have for the projection operator

Pn defined in (3.20) with N := rank Pn. Then

‖f − Pnf‖L2(Td) . N−s(logN)s(d−1) ‖f‖Hs
mix(Td)

.

Proof. This follows from Corollary 3.10 together with Lemma 3.11.

Note that the previous corollary deals with the case s < m, i.e. the smoothness s is
smaller than the order m of vanishing moments of the wavelet. For the case s = m we
can only prove the following worse bound, which is based on the estimate in Theorem 3.5.
We do not know whether this bound is optimal or can be improved.
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Corollary 3.13. Let f ∈ Hm
mix(Td) and Pn being the approximation operator defined

in (3.20). Then

‖f − Pnf‖L2(Td) . 2−mn n(d−1)/2 ‖f‖Hm
mix(Td)

. N−m(logN)(m+ 1
2
)(d−1) ‖f‖Hm

mix(Td)
.

Proof. Like in Corollary 3.10 we have

‖f − Pnf‖2L2(Td) .
∑
j≥−1

|j|1>n

∑
k∈Ij

2−2|j|1m22|j|1m|〈f, ψper∗
j,k 〉|

2

. ‖f‖2Hm
mix(Td)

∑
j≥−1

|j|1>n

2−2|j|1m.

In contrast to Corollary 3.10 we have to sum over the indices j instead of taking the
supremum. By first considering the cases where j ≥ 0, we have by [5, Lemma 3.7], that∑

j≥0

|j|1>n

2−2|j|1m ≤ 2−2nm
(
nd−1

(d−1)! +O(nd−2)
)
.

Taking the scaling functions into account, which are constant, i.e. ψ−1,0 = 1 we have∑
j≥−1

|j|1>n

2−2|j|1m =
∑
u∈[d]

∑
ju≥0

|ju|1>n

2−2|j|1m

. 2−2nm
d∑
`=0

(
n`−1

(`−1)! +O(n`−1)
)

= 2−2nm
(
nd−1

(d−1)! +O(nd−1)
)
.

The estimation regarding the numberN of parameters follows analogously as in Lemma 3.11.

Remark 3.14. With literally the same argument we obtain an analogous L2-bound also
for f ∈ Bs

2,∞(T) if s < m. This is a direct consequence of Theorems 3.7, 3.9.

The characterizations of our wavelet spaces also allow a bound on the L∞-error.

Theorem 3.15. For 1/2 < s < m we have for the projection operator Pn defined in (3.20)

‖f − Pnf‖L∞(Td) . 2−n(s−1/2)n(d−1)/2 ‖f‖Hs
mix(Td)

,

‖f − Pnf‖L∞(Td) . 2−n(s−1/2)nd−1 ‖f‖Bs
2,∞(Td) ,

whereas for s = m we have

‖f − Pnf‖L∞(Td) . 2−n(m−1/2)nd−1 ‖f‖Hm
mix(Td)

.

Proof. Using triangle inequality we obtain in case 1/2 < s < m

‖f − Pnf‖L∞(Td) = sup
x∈Td

∣∣∣∣∣∣
∑
|j|1>n

∑
k∈Ij

〈f, ψ∗,perj,k 〉ψ
per
j,k(x)

∣∣∣∣∣∣
≤ sup

x∈Td

∣∣∣∣∣∣
∑
|j|1>n

∥∥∥(〈f, ψ∗,perj,k 〉ψ
per
j,k(x)

)
k∈Ij

∥∥∥
`1

∣∣∣∣∣∣ . (3.24)
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Applying Cauchy-Schwarz-inequality yields

(3.24) ≤ sup
x∈Td

∣∣∣∣∣∣
∑
|j|1>n

‖(〈f, ψ∗,perj,k 〉)k∈Ij‖`2 ‖(ψ
per
j,k(x))k∈Ij‖`2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∑
|j|1>n

2−|j|1s2|j|1s

∑
k∈Ij

|〈f, ψ∗,perj,k 〉|
2

1/2 sup
x∈Td

∑
k∈Ij

|ψj,k(x)|2
1/2

∣∣∣∣∣∣∣ .
Incorporating |ψj,k(x)| . 2j/2 implies

(3.24) .

∣∣∣∣∣∣∣
∑
|j|1>n

2−|j|1(s−1/2)2|j|1s

∑
k∈Ij

|〈f, ψ∗,perj,k 〉|
2

1/2
∣∣∣∣∣∣∣

and finally, with Hölder’s inequality and Theorem 3.9,

≤

∑
|j|1>n

2−2|j|1(s−1/2)

1/2

‖f‖Hs
mix(Td)

≤ 2−n(s−1/2)n(d−1)/2 ‖f‖Hs
mix(Td)

.

Note, that the last estimate boils down to estimate the sum, which has been already done
in Corollary 3.13.

In the remaining case where s = m, we only have the weak characterization in Theo-
rem 3.5. This gives a slightly worse bound for the L∞-error. Like in the previous estimates
we have

‖f − Pnf‖L∞(Td) .

∣∣∣∣∣∣∣
∑
|j|1>n

2−|j|1(s−1/2)2|j|1s

∑
k∈Ij

|〈f, ψ∗,perj,k 〉|
2

1/2
∣∣∣∣∣∣∣

we extract the supremum in every summand,

≤

∑
|j|1>n

2−|j|1(s−1/2)


 sup
|j|>n

2|j|1s

∑
k∈Ij

|〈f, ψ∗,perj,k 〉|
2

1/2


. 2−n(s−1/2)nd−1 ‖f‖Hs
mix(Td)

,

where we bounded the last sum again by using [5, Lemma 3.7]. The estimation for the
space Bs

2,∞(Td) follows similarly.

Note that, using Lemma 3.11 this Theorem can also be written in terms of the number
of degrees of freedom N , which gives for s < m

‖f − Pnf‖L∞(Td) . N−s+1/2 (logN)s(d−1) ‖f‖Hs
mix(Td),

and for s = m

‖f − Pnf‖L∞(Td) . N−m+1/2 (logN)(m+1/2)(d−1) ‖f‖Hm
mix(Td).
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3.4. Tools from probability theory

In this subsection we collect some basic tools from probability theory, which we will apply
later to our concrete settings. Concentration inequalities describe how much a random
variable spreads around the expectation value. One basic result about the spectral norm
of sums of complex rank-1-matrices from [40, Theorem 1.1] is the following.

Theorem 3.16 (Matrix Chernoff). Consider a finite sequence Ai ∈ CN×N of inde-
pendent, random, self-adjoint, positive definite matrices, where the eigenvalues satisfy
µmax(Ai) ≤ R almost surely. Define

µ := µmin

(∑
i

E(Ai)

)
and µ̃ := µmax

(∑
i

E(Ai)

)
,

then

P

(
µmin

(∑
i

Ai

)
≤ (1− δ)µ

)
≤ N

(
e−δ

(1− δ)1−δ

)µ/R
,

P

(
µmax

(∑
i

Ai

)
≥ (1 + δ)µ̃

)
≤ N

(
eδ

(1 + δ)1+δ

)µ̃/R
.

We will use this theorem in Theorem 3.19 to prepare error estimates for the recovery
of individual functions.

Another basic inequality which we will use later is the Bernstein inequality, see [38,
Theorem 6.12].

Theorem 3.17. Let P be a probability measure on Td, B > 0 and σ > 0 be real numbers
and M ≥ 1 be an integer. Furthermore, let ξ1, . . . , ξM : Td → R be independent random
variables satisfying E ξi = 0, ‖ξi‖∞ ≤ B and E ξ2i ≤ σ2 for all i = 1, . . . ,M . Then we
have

P

(
1

M

M∑
i=1

ξi ≥
√

2σ2τ

M
+

2Bτ

3M

)
≤ e−τ , τ > 0.

3.5. Hyperbolic wavelet regression

So far we have bounded the error between a function and the approximation operator Pnf ,
defined in (3.20), in Corollary 3.10. Now we want to consider the case where we have
random sample points x ∈ X ⊂ Td with cardinality |X | = M together with the function
values y = (f(x))x∈X . In the sequel we always consider the case where the samples x ∈ X
are drawn i.i.d. at random according to the uniform Lebesgue measure. For that reason
we introduce the d-dimensional probability measure dP = ⊗di=1 dxi. In this scenario we
do not have the wavelet coefficients 〈f, ψper,∗

j,k 〉 at hand. However, we study least squares
solutions of the overdetermined system

Aa = y, (3.25)

where A = (ψper
j,k(x))

x∈X ,
j∈Jn
k∈Ij
∈ CM×N is the hyperbolic wavelet matrix with M > N . At

some point we will reduce the number of columns of the hyperbolic wavelet matrix A. For
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that reason we will always denote the number of parameters, i.e. the number of columns
of our wavelet matrix, by N . In order to also minimize the L2(Td)-error, we minimize the
residual ‖Aa− y‖2. Multiplying the system (3.25) with A∗ gives

A∗Aa = A∗y.

If the hyperbolic wavelet matrix A has full rank, the unique solution of the least squares
problem is

a = (A∗A)−1A∗y =: A+y.

Computing these coefficients a gives us the wavelet coefficients of an approximation SXn f
to f , i.e

SXn f :=
∑
j∈Jn

∑
k∈Ij

aj,kψ
per
j,k . (3.26)

To compute this approximant SXn f numerically, we have to ensure that the condition
number of the matrix A∗A is bounded away from zero. In order to apply Theorem 3.16
to our purposes, we use for i = 1, . . .M and xi ∈ X the matrices

Ai =
1

M

((
ψper
j,k(xi)

)
j∈Jn
k∈Ij

)((
ψper
j,k(xi)

)
j∈Jn
k∈Ij

)>
.

Hence, we have
∑M

i=1Ai = 1
M
A∗A. Additionally, these matrices fulfill the conditions in

Theorem 3.16. Since we will often consider the mass matrix

Λ :=
1

M
E(A∗A), (3.27)

we have a closer look to its structure. In fact, the matrix Λ has entries 〈ψper
j,k , ψ

per
i,` 〉,

that are zero for j 6= i because of the orthogonality of the one-dimensional wavelets for
different scales j and i, see (3.5). We denote the entries of the matrix Λ for k ∈ Ij by

λj,k : =
d∏
i=1

〈ψper
ji,0
, ψper

ji,ki
〉 =

d∏
i=1

∫
T
ψper
ji,0

(xi)ψ
per
ji,ki

(xi) dx.

Having a closer look at these entries, we see that there are only at most d2S − 1e ones of
the λj,k non-zero for every one-dimensional index j. Additionally, these non-zero entries
are the same for every index j. Furthermore, the matrix Λ is symmetric. Since the matrix
Λ has the entries 〈ψper

j,k , ψ
per
i,` 〉, it has a block structure and every block is dedicated to one

index j. Therefore we introduce the partial matrices

Λj := (λj,k−`)k∈Ij ,`∈Ij = ⊗di=1 circ
(

(λji,ki)ki∈Iji

)
, (3.28)

where the circulant matrices circy ∈ Cr×r are defined by (circy)i,j = yi−j+1 mod r and ⊗
denotes the Kronecker product of matrices. Figure 3.4 shows the structure of Λ for d = 1
and the Chui-Wang wavelets of order m = 2, which mean, in every column of every block
there are at most 4m−1 non-zero entries, only 2m−1 of them are different. Equal colors
in the picture stand for equal matrix entries. In higher dimensions we get one block for
every index j, which is the Kronecker product of the one-dimensional circulant matrices.

Having these only few different entries of Λ in mind, we can bound the lowest eigenvalue
of this matrix away from zero.
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Λ2

Λ3

Λ4

Λ5

Figure 3.4.: Illustration of the non-zero entries of the matrix Λ for d = 1.

Lemma 3.18. Let the matrix Λ be defined like in (3.27). Then we can bound the eigen-
values of this matrix by

µmin(Λ) ≥ γdm, (3.29)

µmax(Λ) ≤ max{1, δdm}, (3.30)

where the constants γm and δm are the Riesz bounds from (P3).

Proof. As usual, we begin with the one-dimensional case. As mentioned before this lemma,
this matrix has only few non-zero entries. In fact, for d = 1 we have a block-diagonal
matrix with blocks belonging to every j, see also 3.4. To be precise, the blocks are
circulant matrices

circ
(
(λj,k)k∈Ij

)
= circ(λj).

For the case j = −1 this is only 1, which is also the eigenvalue. For j ≥ 0 we use [32,
Theorem 3.31] and we write a circulant matrix as

circ(λj) = F−12j diag(F 2j(λj))F 2j ,

where F 2j =
(
wk`2j
)2j
k,`=0

is the Fourier matrix of dimension 2j with the primitive 2j-th

roots of unity w2j := e−2πi2
−j

. In order to bound the eigenvalues of the matrix Λ, we have
to determine the infimum and supremum of all eigenvalues of all blocks Λj. Since the
Fourier matrices are orthogonal, we have

µmin(circ(Ψj)) = min |F 2j(λj)|,

and analog for the maximum. To bound this term we calculate the Fourier coefficients
(see (1.1)) of the wavelets ψj,k(x) using substitution in the integral by

c`(ψj,k) = 2−
j
2w`k2j c `

2j
(ψ).
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We begin with the case where j is big enough, such that 2j > S, so that λj = (〈ψj,0, ψj,k〉)k∈Ij .
Therefore we get, using Parsevals’ equality,

〈ψj,0, ψj,k〉 =
∑
`∈Z

c`(ψj,0)c−`(ψj,k) =
∑
`∈Z

w−`k
2j

2−jc `
2j

(ψ)c−`
2j

(ψ) =
2j−1∑
r=0

w−rk
2j

2−j
∑
s∈Z

∣∣∣c r
2j

+s
(ψ)
∣∣∣2 .

We denote

E(wr2j) =
∑
s∈Z

∣∣∣c r
2j

+s
(ψ)
∣∣∣2 .

Hence,

(F 2j(λj))i =
2j−1∑
k=0

wik2j〈ψj,0, ψj,k〉 =
2j−1∑
k=0

2j−1∑
r=0

wik2jw
−rk
2j

2−jE(wr2j) = E(wi2j).

For the other case, where 2j ≤ S, we get the same estimates in a similar way. Therefore
the eigenvalues of our block of the desired matrix Λ are bounded by

min
r
E(wr2j) ≤ µmin(Λj) ≤ µmax(Λj) ≤ sup

r
E(wr2j).

These extreme values coincide with the Riesz constants, which can be seen as follows∥∥∥∥∥∥
2j−1∑
k=0

dj,kψj,k

∥∥∥∥∥∥
2

L2(T)

=
∑
`∈Z

2j−1∑
k1,k2=0

dj,k1 dj,k2c`(ψj,k1)c−`(ψj,k2)

=
∑
`∈Z

2j−1∑
k1,k2=0

dj,k1 dj,k2w
`(k1−k2)2−j|c `

2j
(ψ)|2

=
2j−1∑
r=0

2j−1∑
k1,k2=0

dj,k1 dj,k2w
r(k1−k2)2−j

∑
s∈Z

|c r
2j

+s
(ψ)|2

=
2j−1∑
r=0

∣∣∣d̂r∣∣∣2 2−j E(wr2j),

where d̂r is the r-th component of d̂ = F 2jd = F 2j(dj,k)k∈Ij . Taking into account that

‖d̂‖22 = 2j ‖d‖22, the one-dimensional assertion follows.
To generalize this to the multi-dimensional case, we have a closer look at the matrix

Λ for d > 1. Again we have a block diagonal matrix, because of the orthogonality of
the wavelets ψper

j,k for different scales j. So according to every j ≥ −1, we have a block
in the matrix Λ. Because of the tensor product form of our wavelet functions ψper

j,k , we
order the functions ψper

j,k in the matrix A such that the block belonging to j is equal to
the Kronecker product

⊗di=1(circλji).

Since the eigenvalues of the Kronecker product of a matrix are the products of the eigen-
values of the matrices, we can bound the smallest eigenvalue of every block matrix by γdm
and the largest eigenvalues by δdm. The eigenvalue µ = 1 is explained by the first block
for j = −1, which is basically 1.
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Let us again consider the example of the Chui-Wang wavelets from Example 3.2. The
function E in the previous proof is in this case the Euler-Frobenius polynomial Ψ2m from
[33]. From there we also get the Riesz-constants, which are summarized in Table 3.1.

The previous Lemma gives us one constant in Theorem 3.16. For the other constant R
let us introduce the spectral function

R(n) : = sup
x∈Td

∑
j∈Jn

∑
k∈Ij

|ψper
j,k(x)|2. (3.31)

In order to give an estimation of the complexity of R(n) we denote for every j ≥ −1 the
subset of indices u = {i ∈ [d] | ji ≥ 0}. Hence, there holds

R(n) = sup
x∈Td

∑
j∈Jn

∑
k∈Ij

2|ju|1|
∑

`u∈Z|u|
ψ(2ju(xu + `u)− ku)|2

≤
∑
j∈Jn

2|j|1 sup
x∈Td

∑
ku∈Z|u|

|ψ(2juxu − ku)|2

=
∑
j∈Jn

2|j|1
|u|∏
i=1

(
sup
xi∈T

∑
ki∈Z

|ψ(2jixi − ki)|2
)

=
∑
j∈Jn

2|j|1
|u|∏
i=1

(
sup

yi∈[−2ji−1,2ji−1)

∑
ki∈Z

|ψ(yi − ki)|2
)

≤ N

(
sup
x∈R

∑
k∈Z

|ψ(x− k)|2
)d

=: Ncdψ, (3.32)

where we use (3.23). The supremum of
∑

k∈Z |ψ(x− k)|2 is a constant, since the wavelet
ψ is compactly supported on [0, S]. In Table 3.2 we calculated these constants for the
Chui-Wang wavelets of different orders.

m 1 2 3 4 5
cψ 1 0.7083 0.1479 0.0662 0.0252

Table 3.2.: Constants in (3.32) for the Chui-Wang wavelets.

Now we are in the position to apply Theorem 3.16 for our setting.

Theorem 3.19. Let x ∈ X drawn i.i.d. and uniformly at random, the wavelet function
ψ having vanishing moments of order m, r > 1 and γm the Riesz constant from (P3).
Then the matrix 1

M
A∗A, where A is the hyperbolic wavelet matrix from (3.25), only has

eigenvalues greater than γdm
2

with probability at least 1−M−r if

R(n) ≤ cm,dM

(r + 1) logM
, (3.33)

with the m- and d-dependent constant

cm,d = γdm log
(√

e
2

)
≈ 0.153 γdm. (3.34)
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Especially, we have for the operator norm

‖A+‖2 ≤

√
2

M γdm
. (3.35)

Proof. We have that

µmax(Ai) =
1

M

∥∥∥∥(ψper
j,k(xi)

)
j∈Jn
k∈Ij

∥∥∥∥2
2

≤ R(n)

M
, for all i = 1, . . . ,M.

Hence, we use R = R(n)
M

, µmin = γdm and δ = 1
2

in Theorem 3.16. Using the bound in
(3.33) and N ≤M , we confirm

R(n) ≤
γdmM log

(√
e
2

)
(r + 1) logM

= cm,d
M

(r + 1) logM

R(n) ≤
−γdmM log

(√
2
e

)
r logM + logN

logN +
γdmM

R(n)
log

(√
2
e

)
≤ −r logM

N

(
e−δ

(1− δ)1−δ

) γdmM

R(n)

≤ 1

M r
.

Therefore, it follows that P
(
µmin (A∗A) ≤ M γdm

2

)
≤ 1

Mr . Hence, A has singular values at

least
√

2 γdm
M

with high probability. This yields an upper bound for the norm of the Moore-

Penrose-inverse ‖A+‖2 = ‖(A∗A)−1A∗‖2 by using Proposition 3.1 in [25], i.e. (3.35)
follows.

It remains to estimate the number of samples M , such that (3.33) is fulfilled. In (3.32)
we estimated the complexity of the spectral function R(n), hence we have to require

N ≤ cm,dM

cdψ (r+1) logM
, which yields that

M ≥
cdψ (r + 1)

cm,d
N logN, (3.36)

where cm,d is the constant from (3.34). We receive an estimation of the number of samples
M in terms of the number of parameters N . In order to recover individual functions, we
get a bound of the individual error ‖f − SXn f‖L2(Td) with high probability.

Theorem 3.20. Let M be the number of samples satisfying (3.36), (xi)
M
i=1 drawn i.i.d.

and uniformly at random, r > 1 and f ∈ C(Td) a continuous function. Then

P
(
‖f − SXn f‖

2
L2(Td) ≤ e22 + 2

γdm

(
e22 + e2e∞

√
r logM
M

+ e2∞
r logM
M

))
≥ 1− 2M−r,

where we define e2 := ‖f − Pnf‖L2(Td) and e∞ := ‖f − Pnf‖L∞(Td). That means, the

L2(Td)-error of our approximation can be bounded with high probability by rates of the
L2(Td)-and the L∞(Td)-error of the projection Pn.
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Proof. Using the orthogonality of ψper
j,k and ψper

i,` for j 6= i we have

‖f − SXn f‖
2
L2(Td) = e22 + ‖Pnf − SXn f‖

2
L2(Td) = e22 + ‖SXn (Pnf − f)‖2L2(Td)

≤ e22 + ‖SXn ‖
2
2 ‖Pnf − f‖

2
`2(X ) . (3.37)

We apply Theorem 3.19 to bound the operator norm ‖SXn ‖2. For the `2-norm we give
a bound with high probability by using Bernstein inequality. Therefore we introduce the
random variables

ξi = |f(xi)− Pnf(xi)|2 − e22 = ηi − E(ηi),

where ηi = |f(xi)− Pnf(xi)|2. These random variables are centered, i.e. E(ξi) = 0. The
variances of these random variables can be bounded by

E(ξ2i ) = E(η2i )− E(ηi)
2 =

∫
|f(xi)− Pnf(xi)|4 dP−

(∫
|f(xi)− Pnf(xi)|2 dP

)2

≤ ‖f − Pnf‖2L∞(Td)

∫
|f(xi)− Pnf(xi)|2 dP−

(∫
|f(xi)− Pnf(xi)|2 dP

)2

≤
(
‖f − Pnf‖2L∞(Td) −

∫
|f(xi)− Pnf(xi)|2 dP

)
‖f − Pnf‖2L2(Td)

≤ ‖f − Pnf‖2L∞(Td) ‖f − Pnf‖
2
L2(Td) = e22 e

2
∞.

Furthermore, we have

‖ξi‖∞ = ‖ηi − EP(ηi)‖∞ ≤ sup
x∈Td

∣∣∣|f(x)− Pnf(x)|2 − ‖f − Pnf‖2L2(Td)

∣∣∣ ≤ e2∞.

For the last estimation we used that for positive y1, y2 it holds |y1 − y2| ≤ max{y1, y2}.
Now we are in the position to merge all inequalities in order to apply Bernstein’s

inequality from Theorem 3.17. Using τ = r logM , this yields

P

(
1
M

M∑
i=1

ξi ≥
√

2 e2∞e
2
2r logM

M
+ 2 e2∞r logM

3M

)
≤M−r.

Because of our choice for the random variables ξi, we have that

M∑
i=1

ξi + e22 =
M∑
i=1

ηi = ‖f(xi)− Pnf(xi)‖2`2(X ) .

Hence, we add the mean e22 and get

P
(
‖Pnf − f‖2`2(X ) ≤M

(
e22 +

√
2 e2∞e

2
2r logM

M
+ 2 e2∞r logM

3M

))
≥ 1−M−r. (3.38)

The terms in (3.37) are bounded with high probability. Let us define the events

A :=

{
X
∣∣∣∣‖f(xi)− Pnf(xi)‖2`2(X ) ≤M

(
e22 +

√
2 e2∞e

2
2r logM

M
+ 2 e2∞r logM

3M

)}
,

B :=
{
X
∣∣∣‖SXn ‖2 ≤√ 2

Mγdm

}
.
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Due to (3.38) and Theorem 3.19 we know that

P(A) > 1−M−r and P(B) > 1−M−r,

which implies that

P(A ∩B) ≥ 1− P(Ac)− P(Bc) ≥ 1− 2M−r.

This gives us the assertion.

In a similar way we give an estimation for the L∞-error.

Theorem 3.21. Let M be the number of samples satisfying (3.36), (xi)
M
i=1 drawn i.i.d.

and uniformly at random, r > 1 and f ∈ C(Td) a continuous function. Then

P
(
‖f − SXn f‖L∞(Td) ≤ e∞ +

(
2cm,dδ

d
m

(r+1) γdm

)1/2 (
e22

M
logM

+ e2e∞

√
rM
logM

+ r e2∞

)1/2)
≥ 1− 2M−r,

where we define as in the previous theorem e2 := ‖f − Pnf‖L2(Td) and e∞ := ‖f − Pnf‖L∞(Td).

Proof. This proof is similar to the proof of the previous theorem. Triangle inequality
gives

‖f − SXn f‖L∞(Td) = e∞ + ‖Pnf − SXn f‖L∞(Td) .

We denote the function g = Pnf − SXn f =
∑

j∈Jn
∑

k∈Ij〈g, ψ
per,∗
j,k 〉ψ

per
j,k , which gives

|g(x)| ≤

∑
j∈Jn

∑
k∈Ij

|〈g, ψper,∗
j,k 〉|

2

1/2∑
j∈Jn

∑
k∈Ij

|ψj,k(x)|2
1/2

≤ δd/2m ‖Pnf − SXn f‖L2(Td)

√
R(n).

The condition (3.33) gives a bound for R(n) and the estimation of ‖Pnf − SXn f‖L2(Td)
follows the same lines as the proof of Theorem 3.20.

We use the general Theorem 3.20 to give a bound for the approximation error with
high probability for our settings, where s = m and where s < m, using our estimates for
the errors of ‖f − Pnf‖ for both cases.

Corollary 3.22. Let the assumptions be like in Theorem 3.20. Let m be the order of
vanishing moments of the wavelets, the number of samples satisfying (3.36), and γm, δm
the Riesz constants from (P3). In the case where 1/2 < s < m we have

P
(
‖f − SXn f‖

2
L2(Td) . (1 + 2

γdm
(r +

√
r + 1)) 2−2nsnd−1 ‖f‖2Bs

2,∞(Td)

)
≥ 1− 2M−r, (3.39)

and in the case where s = m we have

P
(
‖f − SXn f‖

2
L2(Td) . (1 + 2

γdm
(r +

√
r + 1)) 2−2nmnd−1 ‖f‖2Hm

mix(Td)

)
≥ 1− 2M−r. (3.40)
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Proof. In order to apply the previous theorem, let us collect bounds for the occurring
terms. We have for the number of samples logM

M
. 2−nn−d+1, see (3.36). The L2-error

is bounded in Corollary 3.10 respectively Corollary 3.13 and the subsequent remark.
Theorem 3.15 gives us a bound for the L∞-error. Hence, we have in the case s < m,

‖f − Pnf‖L∞(Td) ‖f − Pnf‖L2(Td)

√
r logM
M

.
√
r 2−2nsnd−1 ‖f‖2Bs

2(Td)
,

‖f − Pnf‖2L∞(Td)
r logM
M

. r 2−2nsnd−1 ‖f‖2Bs
2,∞(Td) ,

and for s = m

‖f − Pnf‖L∞(Td) ‖f − Pnf‖L2(Td)

√
r logM
M

.
√
r 2−2nmnd−1 ‖f‖2Hm

mix(Td)
,

‖f − Pnf‖2L∞(Td)
r logM
M

. r 2−2nmnd−1 ‖f‖2Hm
mix(Td)

.

Theorem 3.20 gives the assertion.

Remark 3.23. Note, that this theorem establishes a bound for the error of the least
squares approximation with high probability , which has the same rate like the best ap-
proximation with the projection operator Pn in Corollarys 3.10 and 3.13. The projection
operator Pn is the optimal approximation in the wavelet spaces. Hence, with high proba-
bility we also get this optimal rate using the operator SXn . Furthermore, also the L∞-error
of SXn allows such an optimal bound by applying Theorem 3.21. Note, in this case choosing
the sampling number M according to (3.33), gives that

logM

M
sup
‖f‖≤1

‖f − Pnf‖2∞ �
1

N
sup
‖f‖≤1

‖f − Pnf‖2∞ � sup
‖f‖≤1

‖f − Pnf‖22 .

All the theoretical considerations in this section result in Algorithm 1, which determines
the approximant (3.26) from given samples X by solving a least squares algorithm with
the hyperbolic wavelet matrix A.

Algorithm 1. Hyperbolic wavelet regression

Input: n ∈ N maximal level
M ∈ N with M

logM
& 2nnd−1 number of samples

X = (xi)
M
i=1 ∈ Td sampling nodes

y = (f(xi))
M
i=1 function values at sampling nodes

1: Construct the sparse hyperbolic wavelet matrix

A = (ψper
j,k(x))

x∈X ,
j∈Jn
k∈Ij
∈ CM×N ,

where the number N of parameters is N := dim span{ψper
j,k | j ∈ Jn,k ∈ Ij}

2: Minimize the residual ‖Aa− y‖ via an LSQR-algorithm.

Output: (aj,k)j,k ∈ CN coefficients of the approximant SXn f =
∑

j∈Jn
∑

k∈Ij aj,kψ
per
j,k
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Comparison to other work

Error estimates with piecewise linear wavelet functions, i.e. the case m = 2 are considered
in [2], where the wavelets are called “prewavelets” and the non-periodic setting is treated.
To compare, in [2, p. 117] an approximation rate 2−nsn(d−1)/2 was proven for s ≤ m
in case of Hs

mix(Td)-functions. This is due to the sub-optimal analysis of the projection
operator. We obtain the same bound for the larger space Bs

2,∞(Td) additionally with
high probability. In the case s = m our results match the results in [2]. Furthermore, we
consider quasi-optimal L∞(Td)-error bounds with high probability.

In [11] the authors also studied the approximation error of a least squares operator like
SXn . But they used an orthonormal system of basis functions and bounded expectation
of the approximation error ‖f − SXn f‖L2(Td). A recent improvement was done in [10]. In
contrast to that, we give in Corollary 3.22 a concentration inequality for the approximation
error based on the probabilistic Bernstein inequality.

In [25] also hyperbolic wavelet regression was considered. In contrast to our work they
studied the worst-case setting for the whole function class.

4. Computing the ANOVA decomposition

The hyperbolic wavelet regression in Algorithm 1 already reduces the curse of dimension-
ality because of the hyperbolic structure of our index set. This is reflected in the number
of parameters of the wavelet spaces N = O(2nnd). But we still have the dimension d in
the exponent, which grows fast for high dimensions d. Therefore we want to reduce the
number of necessary parameters further by taking into account which variable interactions
play a role for describing the function.

In this section we calculate the global sensitivity indices ρ(u, SXn f) defined in (2.4) for
the approximated functions SXn f , which we introduced in the last section. Knowing these
indices ρ(u, SXn f), we can reduce the number of parameters by omitting the ANOVA terms
which do not play a role in describing the variance of a function f ∈ L2(Td). Solving the
least-squares problem

min
a∈CN

‖Aa− y‖2 ,

where the hyperbolic wavelet matrix A ∈ RM×N has the form A = (ψper
j,k(x))

x∈X ,
j∈Jn
k∈Ij

,

leads to a coefficient vector a = (aj,k)j∈Jn,k∈Ij , which describes the approximant by

g = SXn f =
∑
j∈Jn

∑
k∈Ij

aj,kψ
per
j,k .

We calculate the global sensitivity indices ρ(u, g) in terms of the coefficient vector a.

Theorem 4.1. Let g ∈ L2(Td) be a function in the periodic wavelet space written as

g(x) =
∑
j≥−1

∑
k∈Ij

aj,kψ
per
j,k(x). (4.1)

For a function f ∈ Hs
mix(Td) let g be the projection g = Pnf defined in (3.20) or the

approximation g = SXn f from (3.26). In these cases the sum for the index j reduces to
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j ∈ Jn. Furthermore, let g be decomposed in ANOVA terms gu as in Definition 2.2. For
these terms yields

gu(xu) =
∑
ju≥0

∑
k∈I↑ju

a↑ju,k ψ
per
ju,ku

(xu),

where we define the notion for up-sampling ↑ : R|u| → Rd, given by

(↑ ju)i =

{
ji if i ∈ u,
−1 otherwise.

Then the variances σ2(gu) of these ANOVA terms for ∅ 6= u ⊆ [d] are given by

σ2(gu) =
∑
ju≥0

a>↑juΛ↑jua↑ju , (4.2)

where the matrices Λj are defined in (3.28) and we denote the vectors aj = (aj,k)k∈Ij .

Proof. We use Definition 2.2 to determine the ANOVA terms. We take into account that
the wavelets have the property that∫

T
ψper
j,k dx = δj,−1.

We use induction over |u| and begin with

g∅ =

∫
Td

∑
j≥−1

∑
k∈Ij

aj,kψ
per
j,k(x) dx = a−1,0.

The induction step reads

gu =

∫
Td−|u|

∑
j≥−1

∑
k∈Ij

aj,kψ
per
j,k(x) dxuc −

∑
v⊂u

gv(xv)

=
∑

ju≥−1

∑
k∈I↑ju

a↑ju,kψ
per
ju,ku

(xu)−
∑
jv≥0

∑
k∈I↑jv

a↑jv ,kψ
per
jv ,kv

(xv)

=
∑
jv≥0

∑
k∈I↑ju

a↑ju,kψ
per
ju,ku

(xu).

For determining the variances of these terms, we use the fact that 〈ψper
j1,k1

, ψper
j2,k2
〉 =

0, if j1 6= j2, see (3.5). Hence,

σ2(gu) =

∫
T|u|

gu(xu) dxu =

∫
T|u|

 ∑
ju≥0

|ju|1≤n

∑
k∈I↑ju

a↑ju,kψ
per
ju,ku

(xu)


2

dxu

=
∑
ju≥0

∫
T|u|

 ∑
k∈I↑ju

a↑ju,kψ
per
ju,ku

(xu)

2

dxu

=
∑
ju≥0

∑
k∈I↑ju

∑
`∈I↑ju

a↑ju,kua↑ju,`u

∫
T|u|

ψper
ju,ku

(xu)ψper
ju,`u

(xu) dxu

=
∑
ju≥0

a>↑juΛ↑jua↑ju .
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This theorem tells us that the description of a function g ∈ L2(Td) in terms of wavelets
like in (4.1) inherits the ANOVA structure of the function, since we have for every subset
u ∈ P([d]),

〈g(x), ψper,∗
↑ju,k(x)〉 = 〈gu(xu), ψper,∗

ju,ku
(xu)〉.

Note that there are only few different matrix entries in the matrices Λj . Hence, these
few entries only have to be precomputed and with (4.2) the global sensitivity indices
ρ(u, SXn f) can be computed in a fast way.

4.1. Truncating the ANOVA decomposition

So far we used in Algorithm 1 all ANOVA terms to approximate a function f ∈ Hs
mix(Td).

The number of ANOVA terms of a function is equal to 2d and therefore grows exponen-
tially in the dimension d. This reflects the curse of dimensionality in a certain way and
poses a problem for the approximation of a function, even while we use a wavelet decom-
position, which decreases the number of used parameters in comparison to using a full
grid approximation. For that reason, we want to truncate the ANOVA decomposition,
i.e., removing certain terms fu, and creating certain form of sparsity.

To this end we introduce the notion of effective dimension, see [6].

Definition 4.2. For 0 < εs ≤ 1 the effective dimension of f , in the superposition sense,
is the smallest integer ν ≤ d, such that∑

|u|≤ν

σ2(fu) ≥ ενσ
2(f).

This means, we can describe a function with low effective dimension in the superposi-
tion sense by only using a low dimensional approximant very well. For that reason, we
introduce the set Uν , where we use all ANOVA terms up to the superposition dimension
ν, i.e.

Uν := {u ∈ [d] | |u| ≤ ν}. (4.3)

Furthermore, in [34] was shown that functions of dominating mixed smoothness have low
effective dimension. There they bounded the truncation error ‖

∑
u/∈Uν fu‖L2(Td) , which

we accept in the following by supposing that a function has only dimension interactions
up to order ν.

To gain from a low effective dimension, we introduce the following ANOVA inspired
Sobolev spaces of dominating mixed derivatives with superposition dimension ν

Hs,ν
mix(T

d) = {f ∈ Hs
mix(Td) | fu = 0 for all u /∈ Uν}, (4.4)

Hs,U
mix(T

d) = {f ∈ Hs
mix(Td) | fu = 0 for all u /∈ U}. (4.5)

For functions in these subspaces of Hs
mix(Td) we adapt our algorithm to benefit from

the structure of f . The first spaces were already introduced in [15] in terms of Fourier
coefficients. But there they used trigonometric polynomials for approximation.

Theorem 4.1 tells us, which coefficients of the wavelets representation of a function in
L2(Td) coincide to which ANOVA terms. We truncate the operator Pn, defined in (3.20)
to a set ∅ ∈ U ⊆ P([d]) by

Pn,Uf := 〈f, 1Td〉 1Td +
∑

∅6=u∈U

∑
j∈J {u}n

∑
k∈I↑ju

〈f, ψper∗
↑ju,k〉ψ

per
↑ju,k,
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where we define analog to (3.21) the index-sets

J {u}n := {j ∈ Zd | j ≥ −1, juc = −1, |ju|1 ≤ n}

and J U
n =

⋃
u∈U J

{u}
n . Note that for the whole power set U = P([d]) we obtain the

untruncated projection Pnf from (3.20). In order to truncate the ANOVA decomposition
of f , we have to know which terms we can omit. If the function f has low superposition
dimension ν, we use Uν as truncation index set, where we have to know ν in advance
or we have to make a suitable guess. It turns out that in many real world problems the
superposition dimension is low, see [6, 14, 27, 42, 35]. Therefore we have to determine in
a first step the variances of the ANOVA terms. Then we omit in the second step these
ANOVA terms for which ρ(u, SXn f) < ε for some threshold-parameter ε.

Algorithm 1 allows us to restrict our approximation to some index-set U ⊂ P([d]),
while using the decomposition in Theorem 4.1. This coincides with deleting columns in
the matrix A, which belong to ANOVA terms guwith u /∈ U . Instead of the matrix A of
the first step we use the reduced matrix

AU = (ψper
j,k(x))

x∈X ,
j∈JUn
k∈Ij

,

which allows us to increase the maximal level n. The whole algorithm is summarized in
Algorithm 2. One remaining question is, how much samples do we need for the approx-
imation if we only use some columns AU of the hyperbolic wavelet matrix. Again, we
denote by N the number of parameters, i.e. N = dim span{ψper

j,k | j ∈ J ,k ∈ Ij}. If we
do require nothing to the index set J , we have

sup
x∈Td

∑
j∈J

∑
k∈Ij

∣∣ψper
j,k(x)

∣∣2 .∑
j∈J

2|j|1 = N,

which follows by the same arguments as in (3.32). This shows that our theory in Sec-
tion 3.5 also applies if we choose other index sets than Jn as for the hyperbolic wavelet
regression. Especially we can also apply Theorem 3.19. If we use a number of N wavelets
for the approximation, we have to use M ≈ N logN samples. Especially, if we choose
an index set J = J Uν

n , this has cardinality
(
d
ν

)
2nnν−1. Therefore, we do in a first step

the hyperbolic wavelet approximation with the matrix AUν . Then we calculate the global
sensitivity indices of the resulting approximant. In the second step we omit ANOVA terms
with low variances. This reduction allows us to increase the accuracy, i.e. to increase n.
Algorithm 2 summarizes that approach.

The theory in Section 3.5 suffers from the truncation to low dimensional terms. All
proofs can be done in the same way, but instead of the d-dependence we receive the
a ν-dependance. The number N of necessary parameters reduces in this case to N =
O
((

d
ν

)
2nnν−1

)
. The number of samples has to fulfill

M ≥
cνψ(r + 1)

γνm log((e/2)(1/2))
N logN = O

((
d

ν

)
2nnν

)
.

Similarly to Corollary 3.22 we get

P
(
‖f − SX ,Uνn f‖2L2(Td) . (1 + 2

γνm
(r +

√
r + 1)) 2−2ns ‖f‖2Hs

mix(Td)

)
≥ 1− 2M−r,
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regression type space defined in N M
full grid Hs(Td) O(2nd) O(2ndnd)

hyberbolic Hs
mix(Td) (A.1) O(2nnd−1) O(2nnd)

truncated hyperbolic Hs,ν
mix(Td) (4.4) O(

(
d
ν

)
2nnν−1) O(

(
d
ν

)
2nnν)

ANOVA-hyperbolic Hs,U
mix(Td) (4.5) O(2n |U |nmaxu∈U |u|−1) O(2n |U |nmaxu∈U |u|)

Table 4.1.: Number of needed wavelet functions N and needed cardinality M of samples
in different settings.

where we eliminate the d-dependance. The approximation operator SX ,Uνn is defined in
Algorithm 2. Analog estimates can be done for the L∞-error as well as for the spaces
Bs

2,∞(Td).

To conclude this, in Table 4.1 we summarize the asymptotic behavior of full grid ap-
proximation, hyperbolic wavelet approximation as well as approximation of functions
with low effective dimensions using ANOVA ideas. For the comparison with the full grid
see [2, Section 3.5]. The hyperbolic wavelet regression coincides with Algorithm 1. The
truncated hyperbolic regression coincides with steps 2, 3 of Algorithm 2. Finally, the
ANOVA-hyperbolic wavelet regression coincides with steps 6, 7 of Algorithm 2. In all
cases we end up with the approximation error from Corollary 3.22.

Remark 4.3. To compare our theory with the results in [34], in the Fourier setting a full
grid approximation with polynomial degree at most 2n has the same approximation rate,
number of parameters N and number of needed samples M as the full grid approximation
in the wavelet case. Choosing hyperbolic cross index sets in frequency domain gives a
similar cardinality of the index set as the hyperbolic wavelet regression. But for this
case no fast algorithms are available so far. However, in [34] they use full index sets of
dimension ν, which give the worse estimates N = O(

(
d
ν

)
2nν) in comparison to the third

line of Table 4.1.

5. Numerical results

After deriving our theoretical statements in the previous chapters, in this section we now
underpin our findings by several numerical results. We use the Chui-Wang wavelets from
Example 3.2, which fulfill the properties (P1), (P2) and (P3). First we give estimates
about the computational cost. We begin with a kink function to illustrate our theorems
from Section 3 by using Algorithm 1. Our second example shows the benefit of using
wavelets with vanishing moments of higher order for function with higher regularity. The
example in Section 5.3 of a high-dimensional function shows that Algorithm 2 is a powerful
method. The last example in Section 5.5 shows that even functions in a Sobolev space
with low regularity benefit from the ANOVA ideas.

5.1. Computational cost

In order to determine the complexity of our algorithms we first calculate the complexity
of one matrix multiplication with the hyperbolic wavelet matrix. For fixed j ∈ Jn there
are at most d2m − 1ed non-zero entries in every block of columns in every row. Since
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Algorithm 2. ANOVA - Hyperbolic wavelet regression

Input: d dimension
ν superposition dimension
X = (xi)

M
i=1 ∈ Td sampling nodes

y = (f(xi))
M
i=1 function values at sampling nodes

0 < ε < 1 threshold parameter

1: Choose n such that for N =
⋃

j∈J |Ij| holds M > N logN , where we define J = J Uν
n .

2: Construct the sparse matrix

AUν = (ψper
j,k(x))

x∈X ,
j∈J
k∈Ij
∈ CM×N .

3: Solve the overdetermined linear system AUν (aj,k)j,k = y via an LSQR-algorithm.
This gives us the approximation

SX ,Uνn f :=
∑

j∈JUνn

∑
k∈Ij

aj,kψ
per
j,k

4: Determine ρ(u, SX ,Uνn f) using Theorem 4.1.
5: U ← {u | ρ(u, SX ,Uνn f) > ε} ∪∅
6: Choose n such that for N =

⋃
j∈JUn

|Ij | holds M > N logN .
7: Construct the sparse matrix

AU = (ψper
j,k(x))

x∈X ,
j∈JUn
k∈Ij

∈ CM×N .

8: Solve the overdetermined linear system AU (aj,k)j,k = y via an LSQR-algorithm.

Output: (aj,k)j,k ∈ CN coefficients of the approximant SX ,Un f :=
∑

j∈JUn

∑
k∈Ij aj,kψ

per
j,k

∑
u∈U

∑
|ju|≤n

1 =
∑

uO(n|u|), every matrix multiplication with the hyperbolic wavelet
matrix AU has complexity

O(M
∑
u

O(n|u|)) = O(2n|U |nmax |u|) = O(M(logM)max |u|).

The cases where we choose U = P([d]) in Algorithm 1 and U = Uν in Algorithm 2 are
included in this consideration. Note that in contrast to the Fourier setting, see [34], our
index set has a lower cardinality N , which gives a better complexity of the algorithm.

The second factor which plays a role is the number of iterations r∗. The whole algorithm
has a complexity of

O(r∗M(logM)max |u|).

Theorem 3.19 gives us an estimation about the minimal eigenvalues of the matrix A∗A.
In order to bound the maximal eigenvalues of the matrix A∗A, we can use the same
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argumentation as in the proof of Theorem 3.19 together with the bound for the maximal
eigenvalues in Theorem 3.16. This gives us for r > 1

P
(
µmax (A∗A) ≥ 3M

2

)
≤ 1

Mr ,

if we are in the setting of logarithmic oversampling. Hence, with high probability we can
bound the condition number of the matrix A∗A by

κ(A∗A) :=
µmax(A

∗A)

µmin(A∗A)
≤ 3

γdm
.

Following [1, Example 13.1] the maximal number of iteration r∗, to achieve an accuracy
of ε, can be bounded by

r∗ ≤ log

(
2

ε

) (
log

(
1 + (γdm/3)1/4

1− (γdm/3)1/4

))−1
.

As an example, if we aim an accuracy of ε = 10−4 and we choose as parameters the order
of vanishing moments m = 3 and the dimension d = 2, this bound gives us r∗ ≤ 85 with
high probability.

The calculation of the global sensitivity indices in step 4 of Algorithm 2 does not play
role compared to the LSQR-algorithm, since this can be done in a fast way. There are
only few different matrix entries in the matrices Λj in (4.2), so these few entries can be
precomputed. Also, these matrices are sparse circulant matrices of size smaller than 2nν .

5.2. Kink test function

We start with an example of an L2(Td)-normalized kink function,

f : Td → R, f(x) =
d∏
i=1

(√
98415

32
max

(
1

9
− x2, 0

))
∈ B3/2

2,∞(Td), (5.1)

which has the Fourier-coefficients

ck(f) =
d∏
i=1


27
8

√
15
2

3 sin(2kiπ/3)−2kiπ cos(2kiπ/3)

π3k3i
for ki 6= 0,√

15
2

for ki = 0,

i.e. the Fourier coefficients of this function decay like |ck(f)| ∼
∏d

i=1 (1 + |ki|2)−1. Conse-

quently, f ∈ Hs
mix(Td) with s = 1+ 1

2
−ε = 3

2
−ε. In addition it follows that f ∈ B3/2

2,∞(Td).
Hence, we use wavelets with vanishing moments of order m > 3

2
.

We will begin with the one-dimensional function, which is plotted in Figure 5.1. For our
approximation we use n = 9, i.e we have N = 1024 parameters. To apply our theory, we
have to choose logarithmic oversampling. For that reason we sample the function at the
i.i.d. samples X with |X | = M = 20000. Then we use Algorithm 1 to approximate the
coefficients aj,k ≈ 〈f, ψper,∗

j,k 〉. Figure 5.2 shows the resulting coefficients. Our test function

is piecewise polynomial of degree 2, only at the two kink points we have regularity 3
2
.
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Figure 5.1.: The kink function (5.1) for d = 1.
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Figure 5.2.: Wavelet coefficients of the kink function after approximation for m = 2 (left)
and m = 3 (right) for d = 1.

Figure 5.2 shows that the wavelet coefficients detect locally lower regularity. This is due
to the compact support of the wavelets.

In Figure 5.3a we plotted the sums
∑
|j|1=n

∑
k∈Ij |aj,k|

2. In Theorem 3.9 we proved

that
∑

k∈Ij |〈f, ψ
∗,per
j,k 〉|2 decay like 2−2ns. Lemma 3.11 gives the estimation that there

are
(
n+d−1
d−1

)
= O(nd−1) indices j, such that |j|1 = n. This gives us a proposed decay

rate 2−3nnd−1. We see this decay even though we approximated the wavelet coefficients
〈f, ψ∗,perj,k 〉 by the solutions aj,k of the hyperbolic wavelet regression.

Using different parameters n, while always ensuring logarithmic oversampling, we see
the decay of the L2(Td)-error in Figure 5.3b. It matches the proposed error bound
2−3/2nn(d−1)/2 from Corollary 3.22. To measure the error we use the root mean squared
error (RMSE), which is defined by

RMSE =

(
1

|Xtest|
∑

x∈Xtest

|f(x)− (SXn f(x))|2
)1

2

,

for some sample points Xtest ⊂ Td, which gives us a good estimator for the L2(Td)-error
‖f − SXn f‖L2(Td). Since we always use L2(Td)-normalized test functions, the RMSE can

be interpreted as a relative error. For the RMSE we use random points Xtest ⊂ Td with
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Figure 5.3.: Approximation of the kink function.

|Xtest| = 106 as test samples.

5.3. A function with higher mixed regularity

We consider the following test function

f : T3 → R, f(x) =
3∏
i=1

B3(4xi − 1
π
), x ∈ [−1

2
, 1
2
)3, (5.2)

where we use the B-spline from (3.1). This function is in H
5/2−ε
mix (T3) and in B

5/2
2,∞(Td).

We do an approximation using Algorithm 1, where we use Chui-Wang wavelets of order
m = 2 and m = 3.
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Figure 5.4.: Decay of the RMSE for the test function (5.2).

While always ensuring logarithmic oversampling, we use |Xtest| = 3M samples for cal-
culation of the RMSE. The results can be seen in Figure 5.4. This confirms our proposed
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error decay from Corollary 3.22. For m = 2 we are in the setting where s = m and
the error decays a bit faster than 2−2nn but slower than 2−2n (recall that d = 3). If we
use wavelets of higher regularity, i.e. m = 3, we reduce the error as well as the decay
rate compared to m = 2. We are in the case where s < m and since the test function
is in B

5/2
2,∞(Td), we proved that the error decays like 2−5/2nn, which is confirmed by the

numerical experiments.

5.4. A high-dimensional function with low effective dimension

The Ishigami function [24] is used as an example for uncertainty and sensitivity analysis
methods, because it exhibits strong non-linearity and non-monotonicity. Since we are in
the periodic setting, we consider the suited periodized version, add a term which consists
of a B-spline term and add additional dimensions, which do not contribute to the function
f : T8 → R with

f(x) = c (−7
2

+ sin(2π x1) + 7 sin2(2π x2) + 0.1x43 sin(2π x1) + 103 g(xv)), (5.3)

where v = {6, 7, 8} and g is a tensor product of a three-dimensional B-spline, see (3.1),
of order 6, given by g(xv) =

∏8
i=6

(
B6(2

4xi)− 1
16

)
and the constant c is such that

the function is normalized to ‖f‖L2(Td) = 1. The ANOVA terms and their variances
can be computed analytically. The variances of fu are non-zero only for the indices
u ∈ {{1}, {2}, {1, 3}, {6, 7, 8}}. It follows easily that the effective dimension of f , in the
superposition sense, see Definition 4.2, for εs = 1 is ν = 3. We use this function to test
Algorithm 2 and initially choose n = 2, which means that we use N = 2269 param-
eters. Therefore we randomly draw M = 105 sample points on T8. Figure 5.5 shows
all |U3| = 92 resulting global sensitivity indices from the first step of our algorithm as
proposed in Theorem 4.1 in comparison to the analytically calculated global sensitivity
indices. Although we have low maximal level n, we can detect the correct ANOVA terms.
Numerical experiments showed that even with a maximal level 0 or 1, we can detect the
correct ANOVA terms. In the second step we use this information and build an adapted
model, i.e. we use U = {∅, {1}, {2}, {1, 3}, {6, 7, 8}} and increase the maximal level to
n = 6.

To approximate the L2(Td)-error, we use the RMSE with random test samples with
|Xtest| = 106. The second step of Algorithm 2 allows us to decrease this RMSE from 0.479
after the first step to 0.064. We stress the fact, that this strategy, finding the unimportant
dimension interactions and building an adapted model, allows an interpretation of the
data. See also [35] for real world application in combination with a Fourier basis.

5.5. A function with small mixed regularity

In the sequel we consider the following pyramid-like function having diagonal kinks on
the one hand and a coupling of only two variables in each summand on the other hand.

f(x) = 2
√

6
3∑
i=1

(
1
3
−max{|x2i−1|, |x2i|}

)
, x ∈ [−1/2, 1/2)6. (5.4)

This function can be periodically extended since it is constant on the boundary. It takes
some efforts (but it is possible) to show that that this functions has a mixed Besov-
Nikolskij regularity of s = 1/2 + 1/(2p) in the sense of Bs

p,∞(T6), see Definition A.1,
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Figure 5.5.: Global sensitivity indices ρ(u) of the function (5.3) analytically computed
and from Algorithm 2 with n = 2.

where p may vary in [1,∞]. In fact, the mixed regularity is the same as for the function
g(x1, x2) = (x1−x2)+. So we even have smoothness s = 1 if p = 1 which would be relevant
for integration problems and lead to a rate of n−1. This might have some relation to [21],
where functions of “type” g have been considered.

In fact, we choose the superposition dimension ν = 2 and use Algorithm 2 for different
levels n. We always consider the logarithmic oversampling where M & N logN . In a first
experiment we test steps 1 to 3 of Algorithm 2, i.e. we choose as index set U2 = {u ∈
P([6]) | |u| ≤ 2}, see (4.3). For the RMSE we use a random test sample Xtest of size
3M . The results can be seen in Figure 5.6a, where we plot the RMSE in relation to the
number of parameters N . The regularity in Bs

2,∞(T6) determines the rate s = 3/4 which
coincides with the proposed rate from Corollary 3.22.

Calculating the global sensitivity indices ρ(u, SX ,Uνn ), see Figure 5.6c in step 4 of Algo-
rithm 2, gives us (already for the low maximal index n = 1) the index set

U = {∅, {1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {3, 4}, {5, 6}} ⊂ U2. (5.5)

Actually, the test function f is for this set U in Hs,U
mix(T6), see (4.5). In a second experi-

ment we use the steps 6 to 8 of our algorithm with this index set U for different maximal
levels n. The resulting RMSE in comparison to the approximation with the index-set Uν is
plotted in Figure 5.6a. As expected, the same approximation error needs less parameters
and therefore less samples compared to the bigger set U2.

In Figure 5.6b we study the solution vector aj,k from the finest approximation using
the index set U2. We plot for every u ∈ U2 the sum( ∑

↑ju
|ju|1=n

∑
k∈Ij

|aj,k|2
)1/2

.

The ANOVA terms of order 1 are black, the terms of order 2 are magenta. This example
shows that the ANOVA terms of lower order can be smoother than the function f itself,
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see also [21]. The functions fu with |u| = 1 are of the form f{1}(x1) = c ( 1
12
− x21) and are

in H
3/2−ε
mix (T). But the only kink position is at −1

2
, which is a point where the wavelets

also have lower regularity. Therefore, we see that the sum of the wavelet coefficients of
the one-dimensional terms decay like 2−2n, which coincides with the regularity s = 2.
Regarding the two-dimensional terms, the three biggest sums belong to the index sets
{1, 2}, {3, 4} and {5, 6}, which are part of U in (5.5). Note, that for n = 1 the plotted
sums do not distinguish the three relevant two-dimensional terms from the other ones,
but the computation of the global sensitivity indices with (4.2) does, see Figure 5.6c.

In Figure 5.6d we see the number of necessary samples for different wavelet indices. The
classical hyperbolic wavelet regression in Algorithm 1 needs O(2nn6) samples. The restric-
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Figure 5.6.: Numerical results for the pyramid function (5.4).
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tion to low dimensional terms using the index set U2 reduces this number to O(
(
6
2

)
2nn2).

The further reduction to the index set U in (5.5), which reduces the number of two-
dimensional terms to three, again reduces the number of necessary samples significantly
to O(3 · 2nn2), by inheriting the same approximation error.

A. Besov-Nikolskij-Sobolev spaces of mixed smoothness
on the d-torus

Here we summarize some relevant results from [17, Chapt. 3]. In particular we give
the standard definition of the used function spaces. Let us first define Besov-Nikolskij
spaces of mixed smoothness. We will use the classical definition via mixed moduli of
smoothness. Let us first recall the basic concepts. For univariate functions f : T→ C the
m-th difference operator ∆m

h is defined by

∆m
h (f, x) :=

m∑
j=0

(−1)m−j
(
m

j

)
f(x+ jh) , x ∈ T, h ∈ [0, 1] .

Let u be any subset of {1, ..., d}. For multivariate functions f : Td → C and h ∈ [0, 1]d

the mixed (m,u)-th difference operator ∆m,u
h is defined by

∆m,u
h :=

∏
i∈u

∆m
hi,i

and ∆m,∅
h = Id,

where Id f = f and ∆m
hi,i

is the univariate operator applied to the i-th coordinate of f
with the other variables kept fixed.

Definition A.1. Let s > 0 and 1 ≤ p ≤ ∞. Fixing an integer m > s, we define the space
Bs
p,∞(Td) as the set of all f ∈ Lp(Td) such that for any u ⊂ {1, ..., d}∥∥∆m,u

h (f, ·)
∥∥
Lp(Td)

≤ C
∏
i∈u

|hi|s

for some positive constant C and introduce the norm in this space

‖ f ‖Bs
p,∞ :=

∑
u⊂{1,...,d}

| f |Bs
p,∞(u),

where

| f |Bs
p,∞(u) := sup

0<|hi|≤1, i∈u

(∏
i∈u

|hi|−s
) ∥∥∆m,u

h (f, ·)
∥∥
Lp(Td)

.

Let us proceed to the related (univariate) Sobolev spaces with smoothness s ∈ N.

Hs
p(T) :=

{
f : T→ C | ‖f‖Hs

p(T)
<∞

}
,

where the norm is defined by

‖f‖pHs
p(T)

=
∑

0≤k≤s

‖Dkf‖pLp(T) ,
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with Dkf = dk

dxk
f . An equivalent norm for this function space is

‖f‖pHs
p(T)

= ‖f‖pLp(T) + ‖Dsf‖pLp(T) .

In this paper we are mainly interested in the case p = 2 but higher dimensions d. We
introduce the so-called Sobolev spaces with dominating mixed derivatives Hm

mix(Td) in the
usual way:

Hs
mix(Td) :=

{
f : Td → C | ‖f‖Hs

mix(Td)
<∞

}
, (A.1)

where the norm is defined by

‖f‖Hs
mix(Td)

=
∑

0≤‖k‖∞≤s

‖Dkf‖L2(Td) , (A.2)

with the partial derivatives Dkf = ∂k1+...+kd

∂x
k1
1 ···∂x

kd
d

.

It clearly holds for d = 1

Hs
mix(T) = Hs

2(T) =: Hs(T) .

The case p = 2 allows for a straight-forward extension to fractional smoothness parame-
ters.

Definition A.2. Let s > 0. Then we define

Hs
mix(Td) :=

{
f : Td → C | ‖f‖Hs

mix(Td)
<∞

}
,

where the norm is defined by

‖f‖2Hs
mix(Td)

=
∑
k∈Zd
|ck(f)|2

d∏
i=1

(1 + |ki|2)s,

This norm is equivalent to the norm in (A.2) for s ∈ N, see [26]. We will consider the
case where s > 1

2
, since in this case we have that Hs

mix(Td) ↪→ C(Td), which is necessary
to sample the function.

There is a further useful equivalent norm which is based on a decomposition of f in
dyadic blocks. We introduce the dyadic blocks

Jj =

{
{k ∈ Z | 2j−1 ≤ |k| < 2j} if j ≥ 1,

{0} if j = 0.

For j ∈ Nd
0 we define

Jj := Jj1 × ...× Jjd .

if all components belong to N0. Using these dyadic blocks, we decompose the Fourier
series of the function f into

f =
∑
j∈Zd0

fj(x) with fj(x) =
∑
k∈Jj

cke2πi〈k,x〉
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in case that j ∈ Nd
0 and fj := 0 otherwise. This immediately gives

‖f‖2Hs
mix
�
∑
j∈Nd0

22|j|1s‖fj‖2L2(Td). (A.3)

Interestingly, there is also a Fourier analytic characterization of the above defined Besov-
Nikolskij spaces Bs

p,∞(Td) which even works for 1 < p <∞. Instead of taking the `2-norm

of the weighted sequence (2|j|1s‖fj‖Lp(Td))j∈Nd0 we take the `∞-norm. We have

‖f‖Bs
p,∞ � sup

j∈Nd0

2|j|1s‖fj‖Lp(Td) .
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