
Multiple Architecture Modeling Design Method for Mixed Signal
and Multi Domain System Simulation - First Solutions

Michael Schlegel, Göran Herrmann, Dietmar Müller

Faculty of Electrical Engineering and Information Technology,
Chemnitz University of Technology,

Reichenhainer Str. 70, D-09126 Chemnitz, Germany

e-mail: michael.schlegel@infotech.tu-chemnitz.de

ABSTRACT

During the design process of MEMS digital,
analogue electrical and non-electrical
models at different abstraction levels may
appear. The abstraction levels of the inter-
faces depend on the abstraction levels of the
models. If system models are developed
within the scope of a system design it might
have been necessary to modify the interfaces
of the system and component models at
every design step. The aim of the work
presented in this paper is to present a new
methodical approach which makes it
possible to keep the interface of a compo-
nent unchanged if the abstraction level of
the component has changed. This paper is an
abridged version of a poster, which gives an
overview of problems which occur when
analogue and digital interfaces at different
abstraction levels are connected. The poster
describes a practicable solution for these
problems and its realization in VHDL-AMS.

KEYWORDS

design methodology, MEMS design, top
down design, unified interface, modeling

1 INTRODUCTION

System design using a top down strategy
normally starts with a system model at high
level of abstraction. Abstraction of the
components of the system model decrease
during the design process. The hardware
description language VHDL allows to
describe more than one architecture for one
interface (entity) when designing digital
systems. So it is possible to handle
architectures with different abstraction
levels for one component. Now this feature
is also available for the design of
heterogeneous systems by means of the
extension of VHDL to VHDL-AMS (VHDL
Analogue and Mixed Signal). The design of
different architectures for one component
has become common usage since the
introduction of VHDL. But if this feature of
VHDL should be used to describe
components at different abstraction levels
then the problem may occur that the models
at different abstraction levels use different
interfaces.

In the following sections a new methodical
approach called Multi Architecture
Modeling (MAM) is presented. If this new

approach is used when designing the first
abstract models in a top down design
process then these models can be replaced
later by refined models without any modi-
fication to their interfaces or the interfaces
of the system model. As a constraint to this
new methodical approach, the modeling
overhead should be as little as possible in
comparison with the customary modeling.

2 PROBLEMS AND THEIR
SOLUTIONS

2.1 Digital interfaces

Digital interfaces usually use SIGNALS. The
abstraction level has an influence on the
used datatype. E. g. the datatype integer is
used on functional or algorithmic level and
the datatype bit_vector or a vector of
multi value logic is used on register transfer
level. A conversion between these types is
still possible simply by a datatype
conversion function. So two approaches are
conceivable – an interface of datatype
integer or bit_vector. The approach
using datatype integer may cause the
following properties:
• small overhead
• additional delta cycles
• If the interface contains vectors of multi

value logic then a loss of information of the
states X, Z etc. can not be avoided.

The better approach is to use the datatype
bit_vector or a vector of multi value logic.
In this case the following properties will
result:
• small overhead
• additional delta cycles
• If the interface contains vectors of multi

value logic then a loss of information of the
states X, Z etc. exists only as long as models
with higher abstraction level are in the
system model. This loss of information may
be avoided by additional SIGNALS handling
these states inside the component model, but
then a larger overhead will appear.

2.2 Analogue electrical and non-
electrical interfaces

Abstract analogue components are often
described as functional blocks. The interface
objects may be QUANTITIES. They
represent time and value continuous
information. In opposition to this, detailed
analogue models are described as
conservative nets. In this case the interface
is a TERMINAL. The TERMINALS consist of
an ACROSS value (e. g. voltage) and a
THROUGH value (e. g. current) and represent
a conservative node which meet Kirchhoffs'
law. TERMINALS can not be connected
directly to QUANTITIES. So until now the
system model has to be modified when the
interface has changed. This takes a lot of
time and may cause errors in the model. So
either one TERMINAL or two QUANTITIES
(one for the ACROSS and one for the
THROUGH value) are necessary for a
common interface object.

Approach 1: Usage of two QUANTITIES as
interface
Component at high abstraction level:
Approach with MAM conventional approach

PORT(QUANTITY q1i,q1u:IN real; PORT(QUANTITY q1:IN real;
 QUANTITY q2i,q2u:OUT real); QUANTITY q2:OUT real);

q2u==F(q1u,q1u’dot,t); q2==F(q1,q1’dot,t);
q2i==0.0;

Component at low abstraction level:
Approach with MAM conventional approach

PORT(QUANTITY q1i,q1u:IN real; PORT(TERMINAL t1, t2:
 QUANTITY q2i,q2u:OUT real); electrical);

QUANTITY u ACROSS i
 THROUGH t1 to t2;

q1i + q2i==0.0; i==u / R;
q1u - q2u==q1i * R;

Properties of this approach:
• In this approach abstract models using

MAM need a second simultaneous statement
(equation) which is technically necessary
but functionally redundant.

• In the model on low abstraction level
Kirchhoffs’ law must be modeled explicitly
by the designer. This is complicated and
may produce errors.

• Instability of simulation may be caused.

Approach 2: Usage of one TERMINAL
Component at high abstraction level:
Approach with MAM conventional approach

PORT(TERMINAL t1,t2: PORT(QUANTITY q1:IN real;
 electrical); QUANTITY q2:OUT real);

QUANTITY q1 ACROSS t1;
QUANTITY q2 ACROSS
 q3 THROUGH t2;

q2==F(q1,q1’dot,t); q2==F(q1,q1’dot,t);

Component at low abstraction level:
Approach with MAM conventional approach

PORT(TERMINAL t1,t2: PORT(TERMINAL t1,t2:
 electrical); electrical);

QUANTITY u ACROSS QUANTITY u ACROSS
 i THROUGH t1 to t2; i THROUGH t1 to t2;

i==u / R; i==u / R;

Properties of this approach:
• small overhead
• easy to use

2.3 Digital/analogue interfaces

Even in pure digital systems it may happen
that the behavior of components of the
system has to be modeled with analogue
elements or equations because their exact
timing is relevant. The digital components
on high abstraction level usually use
SIGNALS, detailed models with analogue
behavior use TERMINALS. SIGNALS handle
time discrete information whereas
TERMINALS handle time continuos infor-
mation. So analogue to digital (A/D) and
digital to analogue (D/A) converters are
necessary. These converters have to be
simple to model and they must not have side
effects on the behavior of the model itself.
Another question is, which kind of interface
object has to be used. As it is shown in
section 2.2, the use of terminals is
unavoidable in order to describe the
analogue behavior correctly. On the other

hand, SIGNALS carry the digital information
including the events controlling the digital
simulator. Therefore it is necessary to
transmit these events also by the interface. A
solution would be to work with double
interfaces using a SIGNAL and a TERMINAL
for one port. So every component has to
provide the output information as
TERMINAL and SIGNAL. But this procedure
is very complicated and may cause problems
at bi-directional ports.

Therefore the interface should be only one
TERMINAL. But it must be considered to
provide the digital information on the
TERMINAL in a way the following digital
component can restore the events from the
TERMINAL correctly, and also an analogue
component has to handle the same
information correctly.

The output must be modeled as a simplified
real output driver to guarantee that an
analogue input can handle the values
correctly. For a SIGNAL of datatype real
the output driver may be modeled as
follows:

ENTITY outdrv IS
 PORT(SIGNAL s_in:IN real;
 TERMINAL t1:electrical);
END;

ARCHITECTURE behav OF outdrv IS
 TERMINAL t2:electrical;
 QUANTITY u_r ACROSS i_r THROUGH t2 TO t1;
 QUANTITY u_out ACROSS i_out THROUGH t2;
BEGIN

 u_out==s_in;
 u_r==i_r*R_out;
 BREAK ON s_in;

END;

The parameter R_out (output resistance)
may either be set to technology dependent or
independent values.

For the input of the receiving model at high
abstraction level the following A/D
converter may be used:

ENTITY input IS
 PORT (TERMINAL in1:electrical);
END ENTITY;

ARCHITECTURE behav OF input IS
 QUANTITY u_in ACROSS in1;
 SIGNAL s_in_r:real:=0.0;
 CONSTANT delta: real:=0.1;
 SIGNAL x1,x2: boolean;
BEGIN

 x1<=u_in’ABOVE(s_in_r+delta);
 x2<=u_in’ABOVE(s_in_r-delta);
 s_in_r<=u_in WHEN x1 OR (NOT x2);

END ARCHITECTURE;

It must be ensured to set hmin (parameter
for the smallest time step allowed of the
analog solver) less than delta/u_in’dot,
where u_in’dot is the largest value of the
derivation over time of the QUANTITY
u_in. This A/D converter requires a correct
implementation of the ABOVE-Statement in
the simulator. If this is not the case then it
might be possible to work with an value
hmax (parameter for the largest allowed
time step of the analog solver) smaller than
delta/u_in’dot. The constant delta
may be used to modify the accuracy of the
converter.

A correct recognition of events is possible
in most cases on interfaces using datatypes
bit, boolean or vectors of these types.
The recognition of events on SIGNALS of
type integer or real is not possible in
any case. Especially when using floating
point types, events may get lost or additional
events may appear. But these disadvantages
should not cause any problems when
working with synchronous designs using a
clock signal.

If the input logic is working with a clock
signal then the ABOVE statement may not be
needed by using the following process:

PROCESS(clk)
BEGIN
 IF clk’EVENT and clk’LAST_VALUE=’0’ THEN

-- L-H Slope on clk
 s_in_r<=u_in;
 END IF;
END PROCESS;

Components on low abstraction level
(modeled as analogue behavior) may work
without an additional driver or receiver.

3. CONCLUSION AND OUTLOOK

If a component is using the interface which
is necessary on low abstraction level already
at the highest level in a “top down” design
then the insertion of components on
different abstraction levels into the system
model can be done easily (see second
approach in section 2.1 and 2.2). This is also
true when the design by a “bottom up”
method starts on low abstraction level and
the later developed models for system
simulation are using the same interfaces as
the detailed models.

The replacement of digitally modeled com-
ponents by analogue modeled components
may also be done easily when TERMINALS
are used as interface objects. The necessary
drivers and receivers may be stored in a
library so they can be accessed without the
need to rewrite them. So the overhead in
modeling is limited. It is still not possible to
resolve multiple drivers at a bus by a
resolution function. This feature will be
realized soon for signals of type bit,
boolean and std_ulogic.

The main disadvantage of this new approach
is that the interfaces of all components must
be known in every detail even at the
beginning of the design process when doing
a design by a “top down” method. But also
in this case it can be recommended to use
this method as far as the interfaces are
known, because it is easier to add or modify
a few ports than the whole interface. For
large, pure digital designs e. g. [5] or
designs with automatically synthesized
interfaces e. g. [6] this method cannot be
recommended. Possibilities to remove this
problem will be explored in the next steps of
evaluation of this approach. If the interfaces

are known then the MAM approach may
help to reduce errors in system design and it
seems to be a powerful approach for
improving the cooperation between
component and system designers when
developing MEMS.

The overhead for component modeling on
high abstraction level is limited to a
conversion of the interface inside the model.
This conversion is done in digital
components by a datatype conversion
function, in analogue components by an
additional definition of a branch QUANTITY
and in analogue-digital mixed interfaces by
a special driver and receiver for the digitally
modeled component. So there is only a
small modeling overhead in the design
process of abstract models. The MAM does
not cause any significant overhead in the
models at low abstraction level. The
methodical approach of the MAM is in
conformity with the Language Reference
Manual of VHDL-AMS [1] which could be
proved by first simple examples.

This new methodical approach to design
components of heterogeneous systems on
different abstraction levels with uniform
interfaces must be evaluated by future
designs. Therefore the design of a vibration
sensor system using a sensor array – in the
scope of the SFB379 (collaborative research
center) – will be done using the MAM
method. The focus will here be set on the
practical feasibility of this method.

ACKNOWLEDGMENTS

The work presented here has been done in
project A2 "System Design" of the SFB 379,
which is funded by the German Science
Foundation (Deutsche Forschungsgemein-
schaft DFG).

REFERENCES

[1] The Institute of Electrical and Electronics
Engineers, Inc.: IEEE Standard VHDL
Language Reference Manual (Integrated
with VHDL-AMS changes). IEEE Std
1076.1, 1999. - ISBN 0-7381-1640-8

[2] Rosenberger, R.; Huss, S. A.: A Systems
Theoretic Approach to Behavioral Mo-
deling and Simulation of Analog Func-
tional Blocks. IEEE/ACM Design, Auto-
mation and Test Conference Europe,
Paris, 1998

[3] Hanna, J. P.; Hillman, R. G.: A Common
Basis for Mixed-Technology Micro-
System Modeling. International Confer-
ence on Modeling and Simulation of
Microsystems MSM 99, San Juan, Puerto
Rico, U.S.A., Apr. 19-21, 1999, pp. 679-
682, ISBN 0-9666135-4-6

[4] Schlegel, M.; Müller, D.: Gesamtsystem-
simulation mit VHDL-AMS am Beispiel
der Rundumprojektion mit 2D- Mikro-
spiegelarray. Scientific Reports, Journal
of the University of Applied Science
Mittweida, 14th International Scientific
Conference Mittweida, Nr. 10, 2000,
Mittweida, Germany, 08.-11. November
2000, ISSN 1437- 7624, pp. 87-94

[5] Siegmund R.; Kretzschmar, C.; Müller,
D.: Adaptive Partial Businvert Coding for
Power-Efficient Data Transfer over Wide
System Busses. XIII International Sympo-
sium on Integrated Systems and Circuit
Design SBCCI 2000, Manaus (Brazil),
September 2000, 18-23, 2000, ISBN
0-7695-0843-X

 [6] Siegmund, R.; Müller, D.: Synthesis of
System-on-Chip Communication Archi-
tectures from Interface-based System
Specifications. ITG Workshop Mikro-
elektronik für die Informationstechnik,
20.-21. November 2000, Darmstadt, in:
ITG-Fachbericht Nr. 162, ISBN 3-8007-
2586-X

