

New Approaches for Generating Adaptive Numerical Grids

Vladimir Liseikin¹ A.H. Glasser² I.A. Kitaeva, Yu.V. Likhanova³

The paper presents recent results related to the development of algorithms and codes for generating both structured and unstructured grids with the use of operator Beltrami. An original description of the method was given in the monograph V.D. Liseikin Ä Computational Differential Geometry Approach to Grid Generation”, 2004, Berlin, Springer. Control of grid properties is realized by monitor metrics introduced in the physical geometry under consideration. The metrics for generating grids adapting to vector fields, gradients, and/or values of physical quantities are presented. Applications of adaptive grids to fluid dynamics and plasma related problems are demonstrated.

The work over the paper and participation in conferences are supported by CRDF (grant RU-M1-2579).

¹Institute of Computational Technologies Siberian Branch of Russian Academy of Sciences, Numerical Mathematics, Lavrent'eva, 6, 630090 Novosibirsk, Russia,
lvd@ict.nsc.ru

²Los Alamos National Laboratory,
ahg@lanl.gov

³Novosibirsk State University, Institute of Computational Technologies Siberian Branch of Russian Academy of Sciences,
kit@gorodok.net, ula@gorodok.net