
� -EXTRAPOLATION �

THEORETICAL FOUNDATION, NUMERICAL EXPERIMENT

AND APPLICATION TO NAVIER-STOKES EQUATIONS

KLAUS BERNERT

�

Abstract. This article deals with � -extrapolation { a modi�cation of the multigrid method,

which leads to solutions with an improved convergence order. The number of numerical operations

depends linearly on the problem size and is not much higher than for a multigrid method without

this modi�cation.

Section 1 and section 2 contain a short mathematical foundation of the � -extrapolation. Section 3

deals with a careful tuning of some multigrid components necessary for a successful application of

� -extrapolation.

Section 4 presents numerical illustrations to the theoretical investigations for one-dimensional test

problems.

Section 5 contains some experience with the use of � -extrapolation for the Navier-Stokes equations.
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1. Introduction. We consider a boundary-value problem

Au = f

with the solution u = u

�

and a di�erence approximation with discretization para-

meter H

A

H

u

H

= f

H

:

A and A

H

are linear operators, f is related to f

H

by

f

H

= R

H

f:(1)

R

H

is a restriction operator projecting the right hand side f into the image space of

A

H

.

The truncation error of the discrete problem is given by inserting a projection

^

R

H

u

�

of the exact solution in the discrete equation:

�

H

(u

�

) = A

H

^

R

H

u

�

� f

H

= A

H

^

R

H

u

�

� R

H

Au

�

:(2)

Operators R

H

and

^

R

H

can agree, if preimage and image of A coincide.

The approximation order of a discrete problem is de�ned by the relation

�

H

(u) = A

H

^

R

H

u� R

H

Au = O(H

p

) for u 2 C

o+p

;

where o is the order of the di�erential operator A and p is the approximation order

of operator A

H

.

An approximation of �

H

(u

�

) can be used to improve the accuracy of the original

discrete problem:

�
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Lemma 1.1. For the right hand side of A

H

u

H

=

~

f

H

let

~

f

H

= f

H

+ �

H

(u

�

) + O(H

�

) with � > p

and suppose (1), (2) and jjA

H

jj

�1

6M; M independent of H.

Then if follows jju

H

�

^

R

H

u

�

jj = O(H

�

) :

Proof: The di�erence of A

H

u

H

=

~

f

H

and A

H

^

R

H

u

�

= f

H

+ �

H

(u

�

) gives

A

H

(u

H

�

^

R

H

u

�

) = O(H

�

) ; i.e. jj(u

H

�

^

R

H

u

�

)jj 6 M �O(H

�

) �

Remark: A direct application of Lemma1.1. presupposes jj

^

R

H

u

�

�I

H

u

�

jj6O(H

�

),

this can be ful�lled most easily by

^

R

H

= I

H

. A correction of the right hand side f

H

,

which estimates �

H

(u

�

) with an error of order � > p, improves the accuracy of the

solution of A

H

u

H

= f

H

to the same order.

2. Multigrid algorithm and � -extrapolation. We assume, that the reader

is familiar with the multigrid method including the usual notations. Detailed infor-

mation can be found in [2], [14] or in [3]. A schematic representation of the multigrid

algorithm (MG-algorithm) and the full-multigrid algorithm (FMG-algorithm) is given

in the appendix of this article.

In the full approximation scheme (FAS) the problems to be solved on coarser grids

can be written in the form

A

H

u

H

= f

H

+ �

H

h

(u

h

) with �

H

h

(u

h

) = A

H

^

R

H

h

u

h

�R

H

h

A

h

u

h

:(3)

The correction term on the right hand side can be considered as an estimation of the

approximation error based on the solution on the �ner grid. Supposing

^

R

H

h

^

R

h

=

^

R

H

and R

H

h

R

h

= R

H

(4)

one can show by a short calculation, that the accuracy of the solution u

H

on the

coarse grid is the same as that of u

h

on the �ne grid (see [1]). However, a higher order

of accuracy can not be obtained in this way. Taking into consideration Lemma1:1:

we need a correction term which is a better approximation to �

H

h

(u

�

). Such an ap-

proximation gives the following

Lemma 2.1. Assume (3), H = 2h, and

(A1) ~u

h

=

^

R

h

(u

�

+ �); � = O(H

q

); � 2 C

(o+p)

(A2) �

h

(u) = O(H

p

) for u 2 C

(o+p)

(A3) R

H

h

�

h

(u

�

) =

1

2

p

�

H

(u

�

) +O(H

�

); � > p :

Then it follows

2

p

2

p

�1

�

H

h

(~u

h

) = �

H

(u

�

) +O(H

�

) with � = min(p+ q; �) .

Proof: Based on

�

H

h

(

^

R

h

u

�

) = A

H

^

R

H

h

^

R

h

u

�

� R

H

h

A

h

^

R

h

u

�

= (A

H

^

R

H

u

�

�R

H

Au

�

) � (R

H

h

A

h

^

R

h

u

�

� R

H

h

R

h

Au

�

)

= �

H

(u

�

)� R

H

h

�

h

(u

�

) = �

H

(u

�

)�

1

2

p

�

H

(u

�

) + O(H

�

)

=

2

p

� 1

2

p

�

H

(u

�

) + O(H

�

)
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we obtain �

H

h

(~u

h

) = �

H

h

�

^

R

h

(u

�

+ �)

�

= �

H

h

(

^

R

h

u

�

) + �

H

h

(

^

R

h

�)

=

2

p

� 1

2

p

�

H

(u

�

) + O(H

�

) + O(H

p+q

) : �

Lemma1.1. and Lemma2.1. together lead to the following improved formulation of

the problem for the coarse grid

A

H

u

H

= f

H

+

2

p

2

p

� 1

�

H

h

(~u

h

) :(5)

If h is the discretization parameter on the �nest grid, equation (5) gives a higher order

approximation on the grid with the discretization parameter H = 2h.

u

H

=

^

R

H

u

�

+ O(H

�

) with � > p :

Using the usual formulation (3) of the problems for coarser grids the improved accu-

racy can be carried over up to the coarsest grid.

In the correction step the solution on grid H can be transfered to grid h in such

a way, that the order � for the low-frequency part remains unchanged.

The following post-smoothing step with the right hand side f

h

tends to reduce

the improved approximation order from � back to p. This e�ect can be counteracted

in several ways:

1. The post-smoothing step on the �nest grid is supressed.

2. Only one iteration for post-smoothing is done { the e�ect on low-frequency parts

of the solution is small.

3. The right hand side f

h

is corrected by

~

f

h

= f

h

+

1

2

p

� 1

P

h

H

�

H

h

(~u

h

) :(6)

This can be done together with the � -extrapolation (5). P

h

H

is a prolongation

operator. Because of �

H

(u

�

) = O(H

p

); �

h

(u

�

) = O(h

p

) and H = 2h this

post-smoothing correction is one fourth of the correction of f

H

.

If a multigrid cycle on grid level h has been �nished, one can go to a new still �ner

grid with discretization parameter

h

2

. This is done by prolongation of the solution u

h

:

On the new grid the problem

Ah

2

uh

2

= fh

2

must be solved. Without any correction it would again tend to a solution of order p.

A new application of � -extrapolation { now for the correction of f

h

and eventually

for a post-smoothing correction of fh

2

{ improves the order to �.

Before performing the pre-smoothing step on the new grid, it is possible to correct

the right hand side fh

2

in a �ne-grid correction step, de�ned as

~

fh

2

= fh

2

+

1

2

p

(2

p

� 1)

P

h

2

h

P

h

H

�

H

h

(~u

h

) :(7)

This step can be performed at the same time as the post-smoothing correction, when

the �nest grid has not been reached.

3



If all components of the FMG-algorithm are carefully chosen, the � -extrapolation

leads to a solution of the original problem with order O(H

�

); � > p . The compu-

tational amount for the � -extrapolation itself is very small.

In the appendix a dashed box shows the place, where the FAS-MG-algorithm has

to be changed. The � -extrapolation replaces the step for calculation of F

k�1

by the

sequence of steps given below. If post-smoothing correction and �ne grid correction

are omitted, there remains only a small modi�cation in the calculation of F

k�1

.

3. Conditions for a multigrid method with � -extrapolation.

3.1. Prolongation. In the FMG-algorithmprolongation occures in two di�erent

situations. One situation is the correction of a �ne grid solution u

h

with the solution

u

H

from the coarser grid, the other is the �rst interpolation of a solution on a new

grid in the FMG-algorithm (FMG-prolongation). In booth situations it is necessary to

save the accuracy reached on the coarser grid and to avoid too strong high-frequency

errors on the �ner grid.

3.1.1. Prolongation in the correction step of the MG-algorithm. The

correction step can be written as

u

h

:= u

h

+ P

h

H

(u

H

�

^

R

H

h

u

h

) :

In the case

^

R

H

h

6= I

h

the term

^

R

H

h

u

h

causes an error, which after the correction step

can be found in the low-frequency part of the error of u

h

.

Operator P

h

H

primarily produces high-frequency errors. These errors depend on the

order of magnitude of the function to be interpolated and on the interpolation for-

mula. The interpolation error of a smooth function by an interpolation polynomial of

order (n� 1) is of order O(H

n

) (the proof is given in [13]).

Table 1 shows the order of the errors of u

H

and u

h

, the order of magnitude of

u

H

�

^

R

H

h

u

h

and �nally the order of the low- and high-frequency parts of the er-

ror of u

h

after the correction.

The conditions for the quality of the interpolation given in Table 1 are based on the

following considerations:

1. The low-frequency errors caused by

^

R

H

h

u

h

must be not larger than the (low-

frequency with respect to the �ne grid) errors in u

H

.

2. The high-frequency errors from the prolongation have a strong e�ect on the ma-

gnitude of the defects. If o is the order of the di�erential equation to be solved,

then errors in u

h

appear o times larger in the defects. In order to guarantee

that such high-frequency parts of the defects do not cause trouble, the magni-

tude of the oscillations must not exceed the magnitude of the defects themselves.

Practical experiments show, that even interpolation errors of the same order of

magnitude may decrease the convergence rate of the MG-algorithm.

In most cases there is no problem to ful�ll the conditions in the table. However,

the choices n = o or s = �� p can cause a loss of accuracy, which has to be compen-

sated by a larger number of smoothing steps or by replacing V-cycles by F-cycles.
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Table 1

Order of errors caused by prolongation and conditions for s and n

Multigrid- Error Low-frequency error of

^

R

H

h

u

h

Order of High-frequency

method of Restriction by magnitude of error of

u

H

u

h

Averaging Injection (u

H

�

^

R

H

h

u

h

) P

h

H

(u

H

�

^

R

H

h

u

h

)

(s <1) (s =1)

without p p p+ s 1 p p+ n

� -extrapolation

Conditions n > o

with � -extrapola- � p p+ s 1 p p+ n

tion without (7)

Conditions s > �� p n > o

with � -extrapola- � � �+ s 1 � �+ n

tion with (6), (7)

Conditions n > o

Parameters:

p { approximation order of the discrete operator

� { order of accuracy of the MG-method with tauextrapolation

s { order of accuracy of

^

R

H

h

n { order of the error for polynomial prolongation with degree (n�1)

o { order of the di�erential equation to be solved

3.1.2. Prolongation in the FMG-algorithm. The FMG-prolongation

~

P

h

2

h

produces the initial solution for a MG-cycle on a new grid. The quality of this in-

terpolation has a great inuence on the accuracy of the whole method. An essential

di�erence to the last section is that we have to interpolate the solution, i.e. a function

with an order of magnitude O(1), and not a correction to the solution.

If o is the order of the di�erential operator the errors caused by the interpolation

of the solution u

h

should be at least o orders smaller than the defects. This can be

obtained by

n � o > p ; i.e. n > p+ o

in the case of the FMG-algorithm without � -extrapolation and in the case of � -

extrapolation without �ne grid correction

and by n� o > � ; i.e. n > �+ o

in the case of � -extrapolation with post-smoothing- and �ne-grid correction. The con-

ditions do not guarantee smooth defects after prolongation but oscillations decrease

with the same order as the defects, if the grids become increasingly �ner.

With the usual number of pre-smoothing steps oscillations in the defects can not be

smoothed completely. If the restriction A

h

u

h

in (3) is performed with an averaging

operator, the remainig wiggles can be tolerated because R

H

h

A

h

u

h

operates like a �lter

which removes them. However, ifR

H

h

is an injection operator, the conditions n > p+o

and n > �+ o can be insu�cient. In this case the interpolation should be taken one

or two orders higher.
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3.2. Combination of the restriction operators

^

R

H

h

and R

H

h

in the context

of � -extrapolation.

3.2.1. Linear problems. In the MG-algorithmwithout � -extrapolation the two

restriction operators

^

R

H

h

und R

H

h

can be chosen independently. For the restriction

of u

h

, injection

^

R

H

h

= I

h

is su�cient, because u

h

is a smooth function. For the

restriction of A

h

u

h

, however, an averaging operator is a better choice, because the

defects are often less smooth.

In the case of � -extrapolation, the two restriction operators must �t together, as the

following considerations will show.

Special requirements must be ful�lled indeed only on the current �nest level of the

FMG-algorithm, which is used for the estimation of the discretization error. On the

coarser grids it is possible to work with the usual combination, i.e. injection for the

solution { averaging for the defect.

The essential assumption of Lemma2.1. is

(A3): R

H

h

�

h

(u

�

) =

1

2

p

�

H

(u

�

) +O(h

�

) ; � > p :

Case A:

^

R

H

h

= R

H

h

= I

H

h

;

^

R

H

= R

H

= I

H

;

^

R

h

= R

h

= I

h

(Injection { Injection)

If all restriction operatores are injection operators, assumption (A3) follows immedia-

tely from the representations of the approximation errors on two consequtive grids.

Suppose:

�

H

(u

�

) = �

I;I

H

(u

�

) = A

H

I

H

u

�

� I

H

Au

�

= I

H

c(x)H

p

+ O(H

r

)

and

�

h

(u

�

) = �

I;I

h

(u

�

) = A

h

I

h

u

�

� I

h

Au

�

= I

h

c(x)h

p

+ O(h

r

) :

Because of I

H

h

I

h

c(x)h

p

=

1

2

p

I

H

c(x)H

p

we obtain

I

H

h

�

I;I

h

(u

�

) =

1

2

p

�

I;I

H

(u

�

) +O(h

�

) with � = r > p :

In the literature the great majority of articles uses this combination of restriction

operators in the � -extrapolation step. Only in [10], [2], [7] some hints at other pos-

sibilities are given. In the case of staggered grids, injection for

^

R

H

h

, R

H

h

and because

of (4) for

^

R

H

, R

H

too is excluded, for points of the coarser grid are not collocated

with points of the �ner grid. In this situation it is necessary to work with averaging

operators. Such operators can be favourable also for nonstaggered grids, because they

have a stabilizing e�ect on the � -extrapolation.

However, there are combinations of R

H

h

and

^

R

H

h

that are inappropriate for the

� -extrapolation , though (4) is satis�ed.

Case B:

^

R

H

h

= I

H

h

;

^

R

H

= I

H

;

^

R

h

= I

h

; R

H

h

= M

H

h

; R

H

= M

H

; R

h

= I

h

(Injection { Averaging)

Remark: This combination can be used for nonstaggered grids, M

H

h

and M

H

are averaging operators, wich work on A

h

u

h

and Au

�

. Conditions (4) are ful�lled if

M

H

= M

H

h

I

h

is valid.

6



With �

I;M

H

(u

�

) = A

H

I

H

u

�

�M

H

Au

�

we get

�

I;M

H

(u

�

)� �

I;I

H

(u

�

) = (M

H

� I

H

)Au

�

:

Supposing

(M

H

� I

H

)' = CH

s

I

H

'

(s)

+ O(H

t

); s{order of accuracy of M

H

; t > s(8)

it follows �

I;M

H

(u

�

)� �

I;I

H

(u

�

) = CH

s

I

H

(Au

�

)

(s)

+ o(H

s

) = O(H

s

) and therefore

�

I;M

H

(u

�

) = �

I;I

H

(u

�

) +O(H

s

) = I

H

c(x)H

p

+ O(H

r

) + O(H

s

)

= I

H

c(x)H

p

+O(H

min(r;s)

) :

As for Case A it holds

�

h

(u

�

) = �

I;I

h

(u

�

) = I

h

c(x)h

p

+ O(h

r

) :

With (8) we get M

H

h

�

I;I

h

(u

�

) = M

H

c(x)h

p

+ O(h

r

) = I

H

c(x)h

p

+O(H

min(r;p+s)

)

=

1

2

p

�

I;M

H

(u

�

) +O(h

�

) ; � = min(r; s; p+ s) :

Assumption (A3) in Lemma2.1. (� > p) is ful�led only for s > p. In the case of

second order central di�erence approximations (p = 2; r = 4) even s > p+ 1 must be

required. Otherwise the e�ect of � -extrapolation is limited from the �rst to � = 3.

If the right hand side of the original problem has the property (Au

�

)

(s)

= f

(s)

� 0,

then it follows that �

I;M

H

(u

�

) � �

I;I

H

(u

�

) , because the di�erence of the two terms

depends on (Au

�

)

(s)

and on the derivatives of this term, which are all zero. The

value of � then is � = min(r; p+ s) :

Remark: The � -extrapolation can work without premise (3) of Lemma2.1., if parts

of the error in the estimation of �

H

(u

�

) are compensated by a suitable restriction for

f

H

in (5), which di�ers from M

H

. Examples for this choice can be found in [10].

Postsmooting- and �ne grid correction probably will not work in this case.

Case C:

^

R

H

h

= R

H

h

= M

H

h

;

^

R

H

= R

H

=M

H

;

^

R

h

= R

h

= I

h

(Equal averaging)

Equations (4) are ful�lled as before, if M

H

= M

H

h

I

h

. For linear operators A

H

in the

case of (8) we have

�

M;M

H

(u

�

) � �

I;I

H

(u

�

) = A

H

(M

H

� I

H

)u

�

� (M

H

� I

H

)Au

�

= A

H

CH

s

I

H

(u

�

)

(s)

�CH

s

I

H

(Au

�

)

(s)

+O(H

t

)

= CH

s

[A

H

I

H

(u

�

)

(s)

� I

H

A(u

�

)

(s)

] + O(H

t

)

= CH

s

�

I;I

H

((u

�

)

(s)

) +O(H

t

) = O(H

min(p+s;t)

) :
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As in case B, it follows that M

H

h

�

I;I

h

(u

�

) =

1

2

p

�

M;M

H

(u

�

)+O(h

�

) ; � = min(r; p+s; t):

An essential supposition is, that the restriction of the solution and the right hand side

is performed by the same averaging operator. A higher accuracy of this restriction is

not necessary up to now, because p and s sum up.

However from Lemma1.1. and Lemma2.1. it follows that ku

H

�

^

M

H

u

�

k = O(H

�

) ,

i.e. u

H

approximates with high accuracy an interpolation of u

�

with low accuracy

and is therefore only of the low accuracy O(H

s

).

Nevertheless it is possible to show convergence of order � for the solution on the �ne

grid, if the correction step from the coarse to the �ne grid is taken into consideration.

u

h

= P

h

H

u

H

+ (I

h

� P

h

H

^

R

H

h

)~u

h

= P

h

H

^

R

H

h

I

h

u

�

+ (I

h

� P

h

H

^

R

H

h

)~u

h

+O(H

�

)

= (I

h

� P

h

H

^

R

H

h

)(~u

h

� I

h

u

�

) + I

h

u

�

+O(H

�

)

= I

h

u

�

+ (I

h

� P

h

H

^

R

H

h

) �O(H

q

) + O(H

�

)

= I

h

u

�

+O(H

~�

) ; ~�=min(n+q; s+q; �)=min(n+q; s+q; p+q; r; p+s; t) :

Even post-smootiong- and �ne grid correction will work in this case, because

�

(M;M)

H

(u

�

) = �

(I;I)

H

(u

�

)+O(H

min(p+s;t)

) and Lemma2.1. result in values for �

H

h

(~u

h

),

which in case A and case C fall together up to terms of order � with

� = min(p+ q; r; p+ s; t).

Case D:

^

R

H

h

=

^

M

H

h

;

^

R

H

=

^

M

H

=

^

M

H

h

I

h

; R

H

h

=M

H

h

; R

H

=M

H

=M

H

h

I

h

;

^

R

h

=R

h

=I

h

(Nonequal averaging)

Let (

^

M

H

�I

H

)' = C

1

H

s

1

I

H

'

(s

1

)

+o (H

s

1

); (M

H

�I

H

)' = C

2

H

s

2

I

H

'

(s

2

)

+o (H

s

2

) :

If A

H

is linear, we get

�

^

M;M

H

(u

�

) � �

I;I

H

(u

�

) = A

H

(

^

M

H

� I

H

)u

�

� (M

H

� I

H

)Au

�

= A

H

C

1

H

s

1

I

H

(u

�

)

(s

1

)

�C

2

H

s

2

I

H

(Au

�

)

(s

2

)

+ o(H

min(s

1

;s

2

)

)

= O(H

(s)

) with s = min(s

1

; s

2

) ;

and it follows M

H

h

�

I;I

h

(u

�

) =

1

2

p

�

^

M;M

H

(u

�

) +O(h

�

) ; � = min(r; s) :

Remark: With s = min(s

1

; s

2

) we assume the worst case. In the case of s

1

= s

2

leading error terms may cancel.

3.2.2. � -extrapolation for nonlinear problems.Booth the FMG-algo-

rithm and the � -extrapolation can be used for nonlinear problems. To carry over the

theoretical results from the linear case to the nonlinear case the following assumptions

are to be made:
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1. jj�

H

jj 6M jjA

H

(R

H

u

�

+ �

H

) �A

H

R

H

u

�

jj ;

2. �

H

h

(

^

R

h

(u

�

) + �

h

) = �

H

h

(

^

R

h

(u

�

)) +O(H

p+q

) for �

h

= O(H

p

) ;

3. jjA

H

^

R

H

u

�

� A

H

I

H

u

�

jj 6 Cjj

^

R

H

u

�

� I

H

u

�

jj :

A systematic investigation of the nonlinear case is not intended. In the following only

a remark on the restriction cases from above is given:

Cases A and B from 3.2.1. do not depend on the linearity of A

H

or A

h

.

Equation �

M;M

H

(u

�

)� �

I;I

H

(u

�

) = O(H

min(p+s;t)

) ;

which was shown for case C, however, is not valid for nonlinear operators. This can

be shown explicitly by a simple example (see [1]). As in case D we can show only

�

M;M

H

(u

�

)��

I;I

H

(u

�

) = O(H

s

) for nonlinear problems, so that higher order restrictions

are required.

3.2.3. Conditions for a multigrid method with � -extrapolation. All con-

ditions of 3.2. concerning restriction are concentrated in Table 2 below:

Remark: The table contains only those restriction operators, which are necessary

for the implementation of � -extrapolation.

^

R

h

=I

h

; R

h

=I

h

;

^

R

H

=

^

R

H

h

I

h

; R

H

=R

H

h

I

h

is assumed for the other restriction operators in all cases.

Conclusions:

1. The �rst choice for the restriction operators (case A) can be used for nonstag-

gered grids without essential restraints both for linear and nonlinear problems.

If the possible order of accuracy for the solution is not reached, the cause may

be nonsmooth defects in the � -extrapolation step. A higher order of the FMG-

prolongation or a higher number of smoothing steps will give better results in this

situation.

2. Because of the averaging in the restriction ofA

h

u

h

� -extrapolation combined with

the second choice of restriction operators (caseB) is less sensible to the quality

of smoothing and FMG-prolongation.

The increased order of accuracy of the restriction R

H

h

(s > p+ 1 or s > p+ 2) in

the case f

(s)

6� 0 leads to some additional work.

3. Restriction operators according to caseC for linear problems give the advantage

of case B without an increased accuracy of the restriction operators R

H

h

and

^

R

H

h

.

For nonlinear problems higher order restriction operators are needed.

4. CaseD is the most obvious generalization of caseA. The restriction operators

are chosen independently as averaging operators with high accuracy (close to

injection operators). In the case of staggered grids caseD is the only way to use

� -extrapolation.
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Table 2

Conditions in coherence with restriction and � -extrapolation

Case of restriction �; � as function Condition Condition Condition for

of n; p; q; r; s; t for�>p+1 for�>p+2 �>4 if p=2

A: (Injection-Injection) � =r q > 2 q > 2

^

R

H

h

= I

H

h

; R

H

h

= I

H

h

� =min(p+ q; r) r > p+ 2 r > 4

B:(Injektion-Averaging) � =min(r; s) q > 2 q > 2

^

R

H

h

= I

H

h

; R

H

h

= M

H

h

s > p+ 1 r > p+ 2 r > 4

� =min(p+ q; r; s) s > p+ 2 s > 4

� =min(r; p+ s) q > 2 q > 2

if f

(s)

� 0 : r > p+ 2 r > 4

�=min(p+q;r;p+s) s > 2 s > 2

C: (Equal averaging) � =min(r; p+ s; t) q > 2;n>2 q > 2; n > 2

^

R

H

h

= M

H

h

; R

H

h

=M

H

h

t > p r > p+ 2 r > 4

linear Problems: ~�=min(n+q;s+q;r; s > 2 s > 2

p+q; p+s; t) t > p + 2 t > 4

nonlinear Problems: see caseB, upper part

D:(Nonequal averaging)

^

R

H

h

=

^

M

H

h

; R

H

h

=M

H

h

in general as caseB, upper part

Parameters:

� { approximation order of the multigrid method with � -extrapolation

� { order of the error in R

H

h

�

h

(u

�

) =

1

2

p

�

H

(u

�

) + O(H

�

)

q { approximation order of u

h

before application of � -extrapolation

p { approximation order of the discrete operator A

h

o { order of the di�erential equation

r { order of the second term of the appoximation error �

H

(�) = c(x)H

p

+O(h

r

)

n { order of accuracy of prolongation with a polynomial of degree (n�1)

s { order of accuracy of the restriction operator R

H

=M

H

or minimal order if two di�erent restriction operators are used

t { order of the second error term of the restriction, (M

H

�I

H

)(�) = d(x)H

s

+O(H

t

)

4. Experiments with one-dimensional problems. Many properties of the

multigrid method are independent of the dimension of the problem to be solved. In

this section we use the following one-dimensional test problems to verify the results

from the last section.

�u

00

= f(x) = �

2

cos(�x) ; u(�1) = u(1) = 0 (T1)

with the solution u(x) = cos x ;

�u

00

= f(x) = k(k � 1)x

k�2

; u(�1) = u(1) = 0 (T2)

with the solution u(x) = 1� x

k

for k = 4; 10

10



and as a nonlinear problem

uu

x

� �u

xx

= 0 ; u(�1) = tanh(

1

2�

) � 1; u(1) = � tanh(

1

2�

) � �1 (T3)

with the solution u(x) = � tanh(

x

2�

) for � = 0:1; 0:005 :

Problems (T1), (T2), (T3) are discretized by the standard central di�erences of second

order. We use a sequence of nonstaggered equally spaced grids with 2

N

+ 1 points

( N = N

min

; N

min

+ 1; : : : ; N

max

; N

min

> 1; N

max

6 11). The use of such a large

number of grids is not realistic for problems with two ore three dimensions. It was

done only to assure, that the improved accuracy occures not only for two or three

grids.

In all cases the !-Jacobi method

û

h

= u

h

+ !D

�1

A

(f

h

�A

h

u

h

)

with ! =

2

3

was used for smoothing. D

A

is a diagonal matrix with the elements of

the main diagonal of A

h

.

Test 1: E�ect of � -extrapolation

Figure 1 shows the errors for the results of the FMG-method for problem (T2) with

the solution u(x) = 1 � x

10

. The left-hand side contains the errors without � -

extrapolation, on the right-hand side the results with � -extrapolation are plotted.

The calculation was done with 7 grids starting with 33 up to 2049 gridpoints. For the

calculation without � -extrapolation one V-cycle with one pre- and one post-smoothing

step was used at each grid level. The calculation with � -extrapolation was performed

with two such V-cycles at each grid.

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

-1 -0.5 0 0.5 1

33 gridpoints

65 gridpoints

129 gridpoints

257 gridpoints

513 gridpoints

1025 gridpoints

2049 gridpoints

Fig. 1. Error without and with � -extrapolation

Results: The second approximation order of the FMG-algorithm is raised to 4th

order by � -extrapolation. This is typical for central di�erences, because the second

term of the error expansion is not of third but of fourth order (p = 2; r = 4). With

� -extrapolation the grid with 257 points gives a higher accuracy as the eight times

�ner grid without � -extrapolation.
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Test 2: Inuence of restriction and prolongation

Table 3 shows convergence rates � for the normal MG-algorithm and the largest er-

rors for the FMG-method with eight grids. The results refer to problem (T1) with

the solution u(x) = cos x and 1025 points on the �nest grid. In the notation T (i; j)

for the type of the cycle we have T =

�

V; V-cycle

F; F-cycle

; i; j are the numbers of pre-

and post-smoothing iterations. To avoid any negative inuence on the FMG-results,

quintic FMG-prolongation was used.

Table 3

Convergence rates and accuracy in dependence on restriction and prolongation

Type R

H

h

is averaging operator R

H

h

is injection operator

Multigrid algorithm of P

H

h

linear P

H

h

cubic P

H

h

linear P

H

h

cubic

Cycle (n = o) (n = o)

MG-algorithm V (1; 1) � = 0:31 � = 0:10 � = 0:30 � = 0:10

without � -xtrapolation V (2; 2) � = 0:11 � = 0:04 � = 0:11 � = 0:04

FMG-algorithm V (1; 1) 0:56E�09 0:41E�11 0:58E�09 0:28E�10

with � -extrapolation V (2; 2) 0:73E�11 0:59E�11 0:16E�11 0:37E�11

without post-smoothing F (1; 1) 0:36E�11 0:34E�11 0:27E�10 0:27E�10

and �ne-grid correction F (2; 2) 0:59E�11 0:59E�11 0:16E�11 0:32E�11

FMG-Algorithm V (1; 1) 0:46E�09 0:15E�11 0:60E�09 0:27E�10

with � -extrapolation V (2; 2) 0:12E�11 0:93E�12 0:92E�11 0:74E�11

with post-smooting- F (1; 1) 0:14E�11 0:98E�12 0:26E�10 0:25E�10

and �ne-grid correction F (2; 2) 0:98E�12 0:98E�12 0:64E�11 0:62E�11

Remark: For the FMG-algorithm the headline \R

H

h

ist injection operator" is

meant for the current �nest grid only (we call it � -restriction). On coarser grids

the defects were restricted as usual by an averaging operator. To perform the � -

extrapolation, the restriction operator

^

R

H

h

on the current �nest level was chosen in

agreement with R

H

h

(see Table 2, cases A and C). On coarser grids and in the MG-

algorithm without � -extrapolation

^

R

H

h

= I

H

h

was used.

Conclusions:

1. Table 3 shows that the condition n > o (see Table 1) for the minimal accuracy of

prolongation is correct. In fact, linear prolongation in the case o = 2 is possible,

but in some situations the ability of the numerical algorithms is not trated fully

in this way. The convergence rates of the MG-algorithm with cubic prolongation

are better. In the case of � -extrapolation for the V (1; 1)-cycle the fourth order of

accuracy occures only on the �rst grids, on �ner grids the order reduces to a value

between two and three. However, this e�ect can be easily removed by increasing

the number of smoothing steps.

2. For the accuracy of the FMG-algorithm with � -extrapolation without post-

smoothing correction Table 3 shows the following behaviour: If the amount for

smoothing is small restriction with averaging operators gives the better results,

because averaging leads to a better estimation of the discretization error. In the

12



case of more smoothing iterations restriction by injection gives solutions with

higher accuracy.

An explanation of the observed e�ect can be given by the accuracy of the error

estimation and by the low-frequency error, which is proceeded from a restriction

with s = �� p (see Table 1).

3. In the case of injective � -restriction the algorithm of post-smoothing- and �ne-

grid correction is poor. Only a V (3; 3)-cycle with three additional pre-smoothing

iterations on the current �nest level reduces the error to 0:35E�12. This gain of

accuracy cannot justify the increased amount of work.

In the case of � -restriction by averaging operators we get reduced errors with

a less increased amount of work. Comparable results can be obtained, if in a

calculation without post-smoothing- and �ne-grid correction the post-smoothing

step at the �nest grid is omitted (see Table 4 below). Only the defects are less

smooth in this case. Obviously post-smoothing- and �ne-grid correction can give

a somewhat higher accuracy, if the correction term in the ��extrapolation step

has been calculated accurately. The use of averaging operators for restriction in

this context is more e�cient than an increased number of smoothing steps.

Remark on the application of � -extrapolation in combination with ave-

raging operators for restriction: For test problem (T2) the �rst attempts with

� -extrapolation in combination with averaging operators failed { the method provided

results with second order accuracy, as in the case without � -extrapolation.

The reason for this problem was the inuence of boundary points. Indeed a restric-

tionM

H

h

A

h

u

h

cannot work for the neighbors of boundary points, because A

h

u

h

is not

de�ned at the boundary. The use of I

H

h

A

h

u

h

for these points seems to be a possible

compensation. Unfortunately this a�ects the error estimates. Every deviation from

M

H

h

in the �rst inner gridpoint inuences the error estimate at the next point. A

simple way to overcome this problem is the omission of the � -extrapolation at the �rst

inner gridpoints. The second order accuracy for the related equations does not spoil

the overall fourth order for the solution. The accuracy is only somewhat reduced by

an additional error term of fourth order. This term is small, when compared with the

di�erence between second and fourth order accuracy.

The described e�ect was observed only for problem (T2). This can be explained by

the fact, that the second derivative of the solution of the other problems vanishes at

the boundary.

Test 3: The e�ciency of di�erent variants of � -extrapolation can be studied in Table 4

The variants are

Algorithm1: � -extrapolation without post-smoothing- and �ne-grid correction

Algorithm2: { same as Algorithm 1, but without the post-smoothing step

on the �nest grid

Algorithm3: � -extrapolatioin with post-smoothing correction

Algorithm4: � -extrapolation with post-smoothing- and �ne-grid correction

Table 4 contains the largest absolute values for the error of problem (T1). The errors

are given for all grid levels. The calculation was performed with a V (1; 1)-cycle, cubic

prolongation, quintic FMG-prolongation and restriction by an averaging operator (for

u

h

on the current �nest grid only).
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Table 4

Accuracy of di�erent variants of � -extrapolation

Grid Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Factor

1 ( 9 points) 0:13E�01 0:13E�01 0:13E�01 0:13E�01

2 ( 17 points) 0:27E�04 0:27E�04 0:18E�04 0:18E�04 707:78

3 ( 33 points) 0:40E�05 0:40E�05 0:14E�05 0:14E�05 12:83

4 ( 65 points) 0:24E�06 0:24E�06 0:74E�07 0:73E�07 19:42

5 ( 129 points) 0:15E�07 0:15E�07 0:48E�08 0:48E�08 15:39

6 ( 257 points) 0:96E�09 0:96E�09 0:31E�09 0:31E�09 15:18

7 ( 513 points) 0:62E�10 0:62E�10 0:21E�10 0:21E�10 14:57

8 (1025 points) 0:41E�11 0:17E�11 0:15E�11 0:15E�11 14:11

Remark: The last column of the table contains the reciprocal values of the quo-

tients of consecutive errors for Algorithm4. The fourth order accuracy can be seen

for the third and all �ner grids, on grid 2 we have a jump from second order accuracy

(calculation without � -extrapolation on the �rst grid) to fourth order.

Conclusions:

1. On the �nest grid the result of Algorithm2 is slightly better than that of Algo-

rithm1, because the post-smoothing step of Algorithm1 recovers errors of second

order. This e�ect increases with the number of post-smoothing iterations.

2. Algorithm3 with post-smoothing correction on all grids beginning with the se-

cond is more accurate than Algorithm1 by a factor two to three. The second

order error parts which normally are introduced by post-smoothing do not ap-

pear. On the �nest grid the same accuracy as with Algorithm2 is reached.

3. Algorithm4 gives the same results as Algorithm3. At least for linear problems the

�ne-grid correction does not pay. The avoidance of a small low-frequency error

in the pre-smoothing step is unnecessary because this error can hardly inuence

the error estimation but can easily be removed on coarser grids.

Test 4: Inuence of the FMG-prolongation

Problem (A1) is solved with a V (1; 1)-cycle and cubic prolongation P

h

H

under the

same conditions as in test 2 above. The purpose of the test is a comparison of cubic

and quintic FMG-prolongation

~

P

h

H

.

Table 5 shows the decrease of the error on the consequtive grids, the factors indicate,

how much smaller is an error in comparison with the previous grid.

Conclusions:

1. In agreement with 3.1.2 in the case of � -restriction by averaging cubic FMG-

prolongation (n = p + o) is su�cient to obtain fourth order convergence. With

� -restriction by injection cubic FMG-prolongation gives only second order con-

vergence; the mechanism of � -extrapolation fails, because the defects after pre-

smoothing are not smooth. A V (2; 2)- or a F (3; 3)-cycle have second order too.

Only an extremly high number of smoothing iterations leads to fourth order.
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2. Quintic FMG-prolongation in combination with � -restriction by averaging gives

a higher accuracy than cubic FMG-prolongation. The combination of quintic

FMG-prolongation and injective � -restriction results in a fourth order method

with somewhat reduced accuracy.

Table 5

Table 5: Accuracy of the solution in dependence on the FMG-prolongation

� -restriction by averaging � -restriction by injection

Grid cubic FMG-Prol. quintic FMG-Prol. cubic FMG-Prol. quintic FMG-Prol.

9 0:13E�01 � 0:13E�01 � 0:13E�01 � 0:12E�01 �

17 0:17E�03 76:97 0:27E�04 484:80 0:11E�01 1:16 0:22E�03 57:92

33 0:16E�04 10:35 0:40E�05 6:67 0:31E�02 3:54 0:28E�04 7:87

65 0:11E�05 15:14 0:24E�06 16:73 0:80E�03 3:93 0:18E�05 15:86

129 0:70E�07 15:29 0:15E�07 15:88 0:20E�03 3:98 0:12E�06 15:39

257 0:46E�08 15:33 0:96E�09 15:67 0:50E�04 4:00 0:72E�08 16:22

513 0:31E�09 14:91 0:62E�10 15:44 0:13E�04 4:00 0:45E�09 15:86

1025 0:21E�10 14:53 0:41E�11 15:14 0:31E�05 4:00 0:28E�10 16:29

Remark: Besides cubic and quintic FMG-prolongation an interpolation with the dif-

ference approximation of the original equation was tested. The results were close to

those of quintic prolongation.

Test 5: � -extrapolation for nonlinear problems

We consider problem (T3), the Burger's equation. Apart from the fact, that a com-

bination of restriction operators according to case 3 is not favourable, the FMG-

algorithm with � -extrapolation works in the nonlinear case too. However, for our

test problem we have to pay attention to some specialities.

1. With � � 1 the change from the left boundary value u(�1) � 1 to the right

boundary value u(1) � �1 takes place in a very narrow region. This excludes

grids, which have not enough gridpoints in this region. As an orientation we can

take the stability constraint for the di�erence scheme Re

h

=

uh

�

< 2 . For the

number of gridpoints this means n > �

�1

, i.e. n

min

= 17 for � = 0:1 and

n

min

= 257 for � = 0:005 :

2. In the same context we must take into consideration, that the error of derivatives

of functions, which are to be interpolated, becomes very large for small values

of �.

Results for � = 0:1:

A V (1; 1)-cycle in the case of 6 grids (from 33 to 1025 points) has fourth order of

convergence. If a 7th grid with 17 points is added, the order of convergence is not

much larger than two. Even with a V (3; 3)-cycle the order of convergence is below

three. A F (1; 1)-cycle is more robust. In the case of seven grids it gives fourth order

of convergence beginning with the third grid (65 points). If eight grids are used (the

coarsest has 9 points only) fourth order is reached on the last four grids. Table 6

shows factors for the convergence and the absolut error on the �nest grid.
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Table 6

Convergence of the FMG-method for di�rent cycles

Type of MG-algorithm

Number of V (1; 1) V (1; 1) V (3; 3) F (1; 1) F (1; 1)

gridpoints 6 grids 7 grids 7 grids 7 grids 8 grids

9 �

17 � � � 1:5

33 � 5:2 7:6 5:1 6:7

65 19:8 4:8 6:0 26:4 7:3

129 16:1 5:1 7:0 333:5 14:8

257 20:5 5:0 6:8 5:1 22:6

513 15:1 5:1 7:0 16:2 37:0

1025 19:3 5:1 7:0 49:6 52:0

Error 0:74E�08 0:40E�05 0:62E�06 0:37E�09 0:79E�08

Results for � = 0:005:

Figure 2 shows the solutions of a di�erence method for one grid with 129 ((a), dia-

monds) and 257 (b) points in the interval [�0:05; 0:05]. The change from oscillating

solutions to physically correct approximations is evident. A two-grid method (c) with

� -extrapolation and 257 points on the �nest grid yields some gain of accuracy, al-

though the coarse grid with 129 points for the one-grid method is too coarse. (The

problem on this grid is stabilized by the correction term on the right hand side in

the multigrid method.) The most accurate solution with �ve grids from 129 to 2049

gridpoints (line (d)) has a maximal deviation from the correct solution of 0:16E�5.

Without � -extrapolation this deviation is 0:14E�2 (see Table 7).
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1.5

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

(a)

3

3

3

3

3

3

3

3

(b)

(c)

(d)

Fig. 2. Zoom of solutions for the Burgers equation with � = 0:005

Remarks on Table 7:

1. Taking into consideration the structure of the solution, three pre- and post-

smoothing iterations were performed only in the small range, where the solution

actually changes. Outside of this region one iteration was su�cient. A better

investigated variant of such a strategy can be found in [6]. All calculations, ex-

cluding the last, were done with Algorithm2, i.e. without post-smoothing- and

�ne-grid correction and without the post-smoothing step on the �nest grid.

2. If nonlinearity and/or the use of relative coarse grids cause a noticeable change
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Table 7

Convergence of the FMG-method for Burgers equation with � = 0:005

Maximal error on

FMG-method grid 1 grid 2 grid 3 grid 4 grid 5

(2049 Points)

F (3; 3)-cycle

without 0:62E+0 0:67E{1 (9; 2) 0:37E{1 (1:8) 0:49E{2 (7:6) 0:14E{2 (3:5)

� -extrapolation

V (3; 3)-cycle 0:62E+0 0:24E+0 (2:5) 0:18E{1 (13:6) 0:17E{2 (10:7) 0:28E{3 (5:9)

F (3; 3)-cycle 0:62E+0 0:24E+0 (2:5) 0:43E{1 (5:7) 0:17E{2 (25:2) 0:33E{4 (51:6)

F (3; 3)-cycle,  > 1 MG-cycles on grids 2� 4

 = 2 in FMG: 0:62E+0 0:22E+0 (2:7) 0:12E{1 (19:2) 0:16E{3 (74:4) 0:63E{5 (24:6)

 = 3 in FMG: 0:62E+0 0:53E{1 (11:5) 0:54E{2 (9:8) 0:13E{3 (42:0) 0:22E{5 (58:2)

 = 2 in FMG, 0:62E+0 0:11E+0 (5:5) 0:35E{2 (31:7) 0:22E{3 (16:5) 0:16E{5 (132:1)

see remark 2:

as above, 0:62E+0 0:91E{1 (6:7) 0:10E{2 (91:1) 0:30E{4 (33:9) 0:35E{5 (8:3)

Algorithm4

of the solution from one grid to the next, then it is advantageous to perform

 > 1 MG-cycles on each grid level of the FMG-method. On the last two grids,

however, it was possible to work with  = 1 without loss of accuracy.

Moreover it is possible to perform the �rst MG-cycle on a new grid without

� -extrapolation (see [12]). Obviously in the second MG-cycle the error can be

estimated more precisely than immediately after FMG-prolongation and pre-

smoothing. During the two last calculations on grid 2 and grid 3 the � -extra-

polation was done only in the second F-cycle.

Conclusions:

1. Even in the case of the V (3; 3)-cycle some additional MG-cycles on the �nest

grid reduced the error to a value of about 0.5E-5. This shows, that � -extrapola-

tion works also for strongly nonlinear problems. However, the nonlinearity of a

problem should be treated already on coarser grids. This can be tried by using

the F-cycle and by the modi�cation described in remark 2 above, as the last two

calculatons show.

2. In comparison with algorithm2 the algorithm of post-smoothing- and �ne-grid

correction gives a little gain of accuracy on the coarser grids. On the �nest grid

the accuracy is not improved.

5. Solution of Navier-Stokes equations with � -extrapolation . There are

di�erent ways to produce di�erence methods with higher order accuracy, for instance

the use of di�erence formulas over an enlarged stencil [8], [9] or compact di�erence

schemes [16], [5]. The � -extrapolation seems to be attractive because it is easy to

implement and has low expense. Moreover, there arises a possibility to estimate the

error of the solution.

The change from one-dimensional test problems to the case of the two-dimensional

Navier-Stokes equations includes the increase of space dimensions and the change
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from one equation to a system of equations.

Examples for the use of � -extrapolation for scalar equations on multidimensional regi-

ons can be found in [11] for the Poisson equation over the unit square or in [15] for the

same equation on a three-dimensional region, which is de�ned by three overlapping

cylindrical grids.

Beside the use for scalar equations (Poisson equation, nonlinear potential equation

{ with special respect to Neumann boundary conditions) in [12], � -extrapolation is

applied to the solution of the shell problem for the calculation of stresses and defor-

mations in weakly curved thin elastic shells. This problem leads to a system of four

poisson-like equations with nonlinear coupling.

In most cases it was possible to improve the convergence order from two to four or to

a value close to four by implementing the � -extrapolation. For smooth solutions this

should be attainable for the Navier-Stokes equations too.

5.1. Discretization of the Navier-Stokes equations. The Navier-Stokes

equations are considered in the form

r � uu� ��u+rp = f in 


r �u = 0 in 


u = u

�

on @


(9)

over a rectangular region 
. In these equations u stands for the velocity with com-

ponents u and v, p denotes the pressure, � is the kinematic viscosity and f is an

external force with components f

x

and f

y

. Equation (9) is discretized by a second

order di�erence approximation on staggered grids:

u

he

u

e

�u

hw

u

w

2h

x

+

v

hn

u

n

�v

hs

u

s

2h

y

� �

�
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e

�2u+u

w

h

2

x

+

u

n

�2u+u

s

h

2

y

�

+

p

he

�p

hw

h

x

= f

x

u

he

v

e

�u

hw

v

w

2h

x

+

v

hn

v

n

�v

hs

v

s

2h

y

� �

�

v

e

�2v+v

w

h

2

x

+

v

n

�2v+v

s

h

2

y

�

+

p

hn

�p

hs

h

y

= f

y

u

he

� u

hw

h

x

+

v

hn

� v

hs

h

y

= 0 :

The �rst two equations refer to the inner points of the grid for the u- and v-components

of the velocity. The discrete continuity equation is written for the centers of the

meshes, where the pressure is de�ned. Positions, which are shifted by h

x

in x-direction

and by h

y

in y-direction, are called w; e; s; n ; shift operations by half steps are

indicated by hw; he; hs; hn . In the convection term this leads to the calculation of

averages. Fictive grid points outside the region 
 are introduced at the upper and

the lower boundary for u and on the left and the right boundary for v. Values for the

tangential velocity components in these points must be extrapolated from the interior

of 
.

5.2. Implementation of the � -extrapolation . A detailed presentation of the

MG-method, which was used for the Navier-Stokes equations is not intended at this

place. Only components, which are related to the � -extrapolation are discussed in

the following subsection. At �rst we consider the calculation of the � -extrapolation

terms. The system of discretized equations can be written in the form

A

h

(u

h

)u

h

+ GRAD

h

p

h

= f

h

DIV

h

u

H

= g

h

;
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where the �rst equation is a vector equation with two components. Right hand sides

g

h

6= 0 are introduced by the MG-method. On the �nest grid we have g

h

= 0. Using

��extrapolation the problem on a coarser grid is

A

H

(u

H

)u

H

+ GRAD

H

p

H

= R

H

h

f

h

+

4

3

�

H

h

(u

h

; p

h

)

DIV

H

u

H

= R

H

h

g

h

+

4

3

�

H

h

(u

h

)

with

�

H

h

(u

h

; p

h

) = A

H

(

^

R

H

h

u

h

)

^

R

H

h

u

h

+ GRAD

H

^

R

H

h

p

h

� R

H

h

A

h

(u

h

)u

h

�R

H

h

GRAD

h

p

h

�

H

h

(u

h

) = DIV

H

^

R

H

h

u

h

� R

H

h

DIV

h

u

h

:

The choice of the restriction operators is explained in 5.3.2.

5.3. Components of the multigrid method.

5.3.1. Smoothing. The Smoothing step is based on the !-Jacobi method. At

�rst this method is applied on the two components of the momentum equation. Then

a correction of the calculated velocity �eld
~
u is performd. On the current �nest

level this correction makes the velocity divergence-free; on coarser grids it takes into

consideration the right hand sides g which are de�ned by the MG-algorithm (indices

H or h are omitted in the following). From equations

^
u =

~
u+GRAD �p; p̂ = p+ �p(10)

and DIV
^
u = g ; where GRAD and DIV are discrete counterparts of the correspon-

ding di�erential operators, we obtain

DIV GRAD �p = g �DIV
~
u:(11)

With the solution �p of this Poisson equation the �elds
~
u; p are updated to

^
u; p̂ ac-

cording to (10). Then the whole smoothing cycle can be repeated.

The solution of the Poisson equation (11) is done with an inner multigrid method.

Bevor starting a smoothing step, velocity components for �ctive points must be cal-

culated. For the MG-method without � -extrapolation a �rst order extrapolation is

su�cient. In the case of � -extrapolation third order extrapolation is necessary.

5.3.2. Restriction. Outside the � -extrapolation step linear restriction opera-

tors can be used. In connection with the � -extrapolation the situation is more com-

plicated:

Because of the staggered grids for the velocity components only cases C and D from

Table 2 are possible.

Hence the restriction of u

h

and A

h

u

h

for the momentum equation can be performed

by the same averaging operator

^

R

H

h

= R

H

h

with fourth order accuracy.

For the pressure again a fourth order restriction operator (that means a bicubic inter-

polation) is needed, because the two restriction operators

^

R

H

h

and R

H

h

are not de�ned

on the same grid.

In the case of the continuity equation, linear restriction forDIV u is possible (operator

R

H

h

) independently from the cubic restriction of u. As in caseB this linear restriction

causes no errors, because the right hand side of the original problem vanishes. The
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cubic restriction for u leads to a fourth order error, if we compare it with injection.

This has no inuence on the � -extrapolation.

Taking into account the restriction of the right hand side of (11) it must be warned of

any \better" interpolation for DIV u. Operator DIV GRAD has an one-dimensional

null space. Consequently the right hand side of (11) has to ful�ll a solvability condi-

tion (the sum of all components must be zero) and this relation must be conseved by

the restriction. This is done by linear restriction, because the values from the �ner

grid are summed up in groups only.

5.3.3. Prolongation. The errors of prolongation in the MG-algorithm should

be no larger than of second order for the velocity components (n > o; o = 2) and

of �rst order for the pressure (o = 1). With linear prolongation for u and p these

conditions are ful�lled.

In the case of FMG-prolongation according to 3.1.2 (condition n > p+o) fourth order

for the velocity (p = 2; o = 2) and third order for pressure (p = 2; o = 1) is needed.

This means cubic FMG-prolongation for u and quadratic or cubic prolongation for

the pressure too.

Unsymmetrical interpolation formulae at the boundaries cause larger interpolation

errors than symmetrical formulae of the same order in the interior. For this reason

near the boundary interpolation of an order higher than three was used.

5.4. Test calculations for two problems.

5.4.1. Problem 1. At �rst we consider the straight ow through a channel.

The calculation is done in the unit square. At the upper and lower boundary the ow

pro�le is given, at the left and right boundary we apply no slip boundary conditions.

Using a parabolic pro�le would not show any e�ect for � -extrapolation, because the

di�erence method would give the exact solution without � -extrapolation. Analogously

with a polynomial of fourth order the method with � -extrapolation should give the

exact solution.

Therefore the calculations were performed with the pro�le

u(x) = 0; v(x) = 0:2x (x� 1)(x+ 1)(x� 2)(x� 10) ;

which over x 2 [0; 1] looks similar to a parabola. If this pro�le is taken to be the

solution for v(x; y) and if u(x; y) vanishes, the following right hand side must be

taken

f

x

(x; y) � 0; f

y

(x; y) = ��

@

2

v

@x

2

= �� � 0:4(10x

3

� 72x

2

+ 12):

The related pressure �eld is p � 0. (A pressure �eld, which falls linearly with y can

be obtained, if the number 12 on the right hand side is omitted. The velocity remains

unchanged in this case.) The calculation was performed with � = 0:1, because the

smoothing method works for small Reynolds numbers only.

Results: Problem1 was solved on a sequence of grids with 4 � 4; 8 � 8; : : : ; to

256 � 256 meshes. One F-cycle was performed on each grid. On the current �nest

level two pre-smoothing iterations were performed and excluding the �nest grid two

post-smoothing iterations too. In all other situations one smoothing iteration was

su�cient. Table 8 shows the maximal error of the v-component of the velocity for the

FMG-method without and with use of � -extrapolation. Postsmoothing- and �ne-grid
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Table 8

Maximal errors and factors for the decrease of errors for problem

FMG { Method

Grid without � -extrapolation with � -extrapolation

4 � 4 0:21E�02 � 0:21E�10 �

8 � 8 0:37E�03 5:60 0:37E�03 5:60

16 � 16 0:34E�04 0:39 0:18E�04 20:80

32 � 32 0:36E�05 3:89 0:93E�06 19:33

64 � 64 0:17E�05 5:00 0:73E�07 12:69

128 � 128 0:40E�06 4:24 0:51E�08 14:33

256 � 256 0:10E�06 4:03 0:31E�09 16:52

correction were not applied. The �rst use of � -extrapolation was done on the grid

with 16 � 16 meshes.

Table 8 shows, that the algorithm of � -extrapolation works for the Navier-Stokes

equations too, which are more complicated than the one-dimensional problems in the

last section. However, our problem treates a very simple ow, which may be not

representative.

5.4.2. Problem 2. As a second example problem we use a rotating ow

u(x; y) = sin�x cos�y ; v(x; y) = � cos�x sin�y

in the square [0; 1]� [0; 1] with a viscosity parameter � = 0:01 .

Setting this solution in (9) we get the right hand side

f

x

(x; y) = � sin�x (cos�x+ 2�� cos�y) ; f

y

(x; y) = � sin�y (cos�y � 2�� cos �x) :

At the boundary now the normal components of the velocity are zero, while the tan-

gential components are functions of x or y.

Results: On a sequence of grids with 8 � 8 to 256 � 256 meshes on each grid one

to three F-cycles with one pre- and one post-smoothing iteration were performed. On

the current �nest level one additional pre-smoothing iteration was done, on the �nest

grid the post-smoothing step was supressed. Again post-smoothing- and �ne-grid

correction were not applied. Table 9 shows the maximal error for the v-component

of the solution The �rst use of � -extrapolation was done on the third grid, which

caused a remarkable decrease of the error. A single F-cycle, however, can not exploite

the possible increase of accuracy. To do this by additional cycles on the �nest grid is

ine�cient; the better way is to use a larger number of F-cycles on the coarser grids.

The solution on the 64 � 64-grid in this case is more accurate than a solution without

� -extrapolation on a 256 � 256-grid.

Again the solution of our problem was obtained with fourth order convergence and

an computational cost, which depends linearly on the number of grid points.

6. Conclusions. The authors experience with � -extrapolation can be summari-

zed as follows:

1. The � -extrapolation is a very e�cient method to improve the accuracy of mul-

tigrid methods. It can be applied for linear as well as for nonlinear problems,

provided the solution is su�ciently smooth.
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Table 9

Convergence for di�erent FMG-cycles

FMG { method with tauextrapolation without tau-

Grid F (1; 1)-cycle { two times { three times extrapolation

8 � 8 0:28E-02 0:28E-02 0:28E-02 0:28E-02

16 � 16 0:81E-02 0:34 0:83E-03 3:35 0:97E-03 2:68 0:97E-03 2:68

32 � 32 0:17E-03 48:06 0:19E-04 44:36 0:74E-05 131:29 0:27E-03 3:62

64 � 64 0:15E-04 11:35 0:11E-05 16:69 0:84E-06 8:79 0:68E-04 3:96

128 � 128 0:40E-05 3:70 0:33E-06 3:43 0:51E-07 16:42 0:17E-04 3:99

256 � 256 0:41E-06 9:68 0:13E-07 24:68 0:19E-08 26:48 0:42E-05 4:00

additional 0:12E-06 33:71 0:46E-08 70:72 0:18E-08 28:31

single cycles 0:28E-07 143:33 0:15E-08 216:93

2. The most reliable way to implement the � -extrapolation algorithm is the use of

injective restriction operators in the � -extrapolation step combined with an im-

proved number of smoothing steps and a high order FMG-prolongation.

3. The application of � -extrapolation combined with restriction operators, which

are averaging operators, is more complicated. This is caused by the fact, that

not all combinations of restriction operators are applicable (see 3.2.3). However,

with averaging operators the improved accuracy can be obtained with lower com-

putational work (because no special requirements for the MG-algorithm must be

ful�lled).

4. Postsmoothing- and especially �ne-grid correction are appendixes to the � -extra-

polation, which give only a small gain of accuracy of the solution in comparison

with Algorithm1. These improvements of the basic algorithm should not be app-

lied. On the other hand it can be recommended to omit the last post-smoothing

step (Algorithm2).

5. In the case of nonlinear problems it is important to solve the problem on the

coarsest grid with su�cient accuracy. The coarsest grid must not be too coarse.

6. To exauste the full potential of the � -extrapolation algorithm, it can be necessary

to perform more than one MG-cycle on each grid level. Before setting  to a value

of two or three all other possibilities for a failure of the � -extrapolation should

be excluded. Even in cases, where  > 1 is necessary for the coarser grids, on the

�ner grids one MG-cycle can be su�cient.

7. Besides a study of the behavior of the solution an experimental analysis of the

� -extrapolation algorithm should include a study of the defects. Only a look on

the behaviour of the defects permits a deeper understanding of some properties

of the method.

8. Staggered grids do not exclude the application of � -extrapolation. However, they

make it's application more complicated and require the use of the most expensive

variant for the restriction operators in the � -extrapolation step.
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Appendix: MG- and FMG-algorithm and � -extrapolation
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�A

k

U

k

) +A

k�1

Y

k�1

U

k�1

 MG

�

(Y

k�1

; F

k�1

)

U

k

 U

k

+ �P

k

k�1

(U

k�1

� Y

k�1

)

U

k

 S

�

2

k

(U

k

; F

k

)

END IF

� -extrapolation :

�

k

k�1

= A

k�1

Y

k�1

�R

k�1

k

A

k

U

k

F

k�1

= R

k�1

k

F

k

+

2

p

2

p

�1

�

k

k�1

F

k

= I

k

f +

1

2

p

�1

P

k

k�1

�

k

k�1

(post-smoothing correction)

F

k+1

= I

k+1

f +

1

2

p

(2

p

�1)

P

k+1

k

P

k

k�1

�

k

k�1

(�ne grid correction)

Symbols:

A

k

discrete operator

U

k

discrete solution

F

k

right hand side

S

k

smoothing operator

^

R

k�1

k

restriction operator for U

k

R

k�1

k

restriction operator for A

k

U

k

P

k

k�1

prolongation operator

~

P

k

k�1

FMG-prolongation operator

�

k

k�1

discretization error

p approximation order of A

k

I

k

injection operator

f right hand side of the continous problem

�

1

number of pre-smoothing steps

�

2

number of post-smothing steps

� parameter for the type of MG-cycle

� damping parameter for nonlinear problems

 parameter for the type of FMG-cycle

k number of grids

kk index for the current level
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