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1 Introduction

If the solution of a partial di�erential equation has di�erent behaviour in di�erent space

directions then it is an obvious idea to re
ect this in a �nite element approximation by us-

ing a family of meshes with di�erent mesh sizes in di�erent directions, so-called anisotropic

meshes. Applications include the approximation of edge and interface singularities in dif-

fusion dominated problems (Poisson type equations, Lam�e system) [1, 3], of boundary and

interior layers arising in convection-dominated problems [2, 10, 13, 15, 20, 21], of solutions

of problems with strongly anisotropic material parameters, and of functions with di�erent

space and time behaviour [8].

However, the majority of papers in �nite element theory and applications does not con-

sider anisotropic elements, they are often explicitely excluded. As to the authors' knowledge,

commercial �nite element codes do not allow to use such elongated or 
attened elements.

Some reasons for this may be a lack in the classical �nite element theory or the instance that

anisotropic elements must be applied more carefully than isotropic ones for a good approx-

imation. In this paper, we want to contribute to the theoretical foundation of anisotropic

�nite elements and to show an application of them.

For an introduction into the �eld we recall that the proof of �nite element approximation

properties is usually based on the knowledge of local interpolation error estimates. Here, we

consider simplicial elements e � IR

d

, d = 2; 3, and Lagrangian interpolation in spaces P

k

of

polynomials of maximal degree k � 1. The interpolant I

(k)

h

v of a continuous function v is

uniquely determined by (I

(k)

h

v)(x

(i)

) = v(x

(i)

), i = 1; : : : ; n, n = dimP

k

=

�

k+d

d

�

, where x

(i)

are the nodal points of the element e.

In the classical interpolation theory, see for example [7], it is proved that for v 2

W

k+1;p

(e), p 2 [1;1] and m = 0; : : : ; k, there holds

jv � I

(k)

h

v;W

m;p

(e)j � C%

�m

e

h

k+1

e

jv;W

k+1;p

(e)j; (1.1)

where h

e

and %

e

denote the diameters of the �nite element e and of the largest inscribed ball

in e, respectively, and W

k;p

( : ) are the usual Sobolev spaces with the seminorm j : ;W

k;p

( : )j,

see Section 2. Clearly, the assumption of a bounded aspect ratio,

h

e

=%

e

� C

A

; (1.2)

which is equivalent to Zl�amal's minimal angle condition, leads to the well-known estimate

jv � I

(k)

h

v;W

m;p

(e)j � C

I

h

k+1�m

e

jv;W

k+1;p

(e)j (1.3)

and the expectation that C

I

would grow with C

m

A

. Consequently, anisotropic elements with

a very large (h

e

� %

e

) or even unbounded (h

e

=%

e

! 1 for h

e

! 0) aspect ratio were not

considered for m � 1.

Yet in the mid-seventies the proof of (1.3) had been improved for some special cases of d,

k, m, and p. The condition (1.2) was relaxed to a maximal angle condition (see Section 2)

in [4] for d = 2, k = 1; 2; 3, m = 1, p = 2, and in [9] for d = 2; 3, k = 1; 2; : : :, m = 0; : : : ; k,

p 2 [1;1], k+1�m > d=p for p <1, k+1�m � 0 for p =1. For some of these cases the

assumptions were reformulated in [11, 12]. We remark that the case d = 2, k = m = 1, p =1

was already proved in 1957 [19]. Nevertheless these results were rarely applied because the

possible advantage of using elements with di�erent diameters in di�erent directions was not

exploited, only the largest of them is used in (1.3).

This remedy was removed in [1] by proving sharper (anisotropic) interpolation error

estimates in the cases d = 2; 3, m = 1, and general k and p using a generalization of

the Bramble-Hilbert theory [5, 6]. Here, the maximal angle condition and an additional

coordinate system condition (see Section 2) are necessary. In [1], non-Lagrangian elements

and rectangular elements were considered as well, and an application to edge singularities
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Figure 2.1: Illustration of the de�nition of the element related mesh sizes.

is given. We remark that the case d = 2, m = 0, k = 1, p = 2 was already treated in [16].

Anisotropic interpolation error estimates for functions from certain weighted Sobolev spaces

were derived and applied in [3] (d = 3, m = 1, k = 1, p > 2). Moreover, anisotropic error

estimates for meshes of tensor product type were used in the context of adaptive algorithms

in [17, 18].

The outline of the paper is as follows: After the introduction of some notation we derive in

Section 3 a slight extension of the classical inverse inequality which is useful in our application

of anisotropic elements in stabilized Galerkin methods. In Section 4 we extend the local

interpolation error estimates of [1] to general m = 0; 1; : : : ; k (Theorem 4.2). A particular

contribution is that we consider more detailed than in [1] the choice of the reference elements

in three dimensions and the transformation to them (Appendix) which leads to an equivalent

but more geometrical assumption on the admissible �nite elements (maximal angle condition,

coordinate system condition) than the more abstract setting in [1]. Moreover, we establish

with Theorem 4.3 a weak anisotropic interpolation error estimate which holds also in the

exceptional cases of Theorem 4.2. The results are summarized in Corollary 4.4 and allow

also the statement of estimates in the form (1.3) for all these cases (Corollary 4.5). In

Section 5, we prove the density of the family of �nite element spaces in W

1;2

(
) in the case

of anisotropic meshes.

All these results are applied in the numerical analysis of stabilized Galerkin methods on

general meshes in [2]. The main results of that paper are summarized in Section 6. Some

numerical examples show the practical applicability of anisotropic meshes. In the last section

we discuss the necessity of the maximal angle condition and the coordinate system condition.

2 Notation

To take advantage of the di�erent sizes of the element e in di�erent directions we introduce

the following notation, compare Figure 2.1. For e � IR

2

let E

e

be the longest edge of e. Then

we denote by h

1;e

� meas

1

(E

e

) its length and by h

2;e

� 2meas

2

(e)=h

1;e

the diameter of e

perpendicularly to E

e

. In the three-dimensional case, we proceed by analogy. Let again E

e

be the longest edge of e, and let F

e

be the larger of the two faces of e with E

e

� F

e

. Then we

denote by h

1;e

� meas

1

(E

e

) the length of E

e

, by h

2;e

� 2meas

2

(F

e

)=h

1;e

the diameter of F

e

perpendicularly to E

e

, and by h

3;e

� 6meas

3

(e)=(h

1;e

h

2;e

) the diameter of e perpendicularly

to F

e

. Note that for the element sizes the relation h

1;e

� : : : � h

d;e

holds and that the

element has the volume

1

d!

h

1;e

� � �h

d;e

.

Introduce further an element related Cartesian coordinate system (x

1;e

; x

2;e

; x

3;e

) such

that (0; 0; 0) is a vertex of ê, E

e

is part of the x

1;e

{axis, and F

e

is part of the x

1;e

; x

2;e

{

plane. For deriving interpolation error estimates we have to assume that the elements ful�ll

a maximal angle condition, see also [1, 4, 9, 11, 12] for equivalent formulations.

Maximal angle condition (2D): There is a constant 


�

< � (independent of h and e 2

T

h

) such that the maximal interior angle 


e

of any element e is bounded by 


�

: 


e

� 


�

:

3



Maximal angle condition (3D): There is a constant 


�

< � (independent of h and e 2

T

h

) such that the maximal interior angle 


F;e

of the four faces as well as the maximal

angle 


E;e

between two faces of any element e is bounded by 


�

: 


F;e

� 


�

; 


E;e

� 


�

:

For anisotropic estimates we need additionally a coordinate system condition.

Coordinate system condition (2D): The element related coordinate system (x

1;e

; x

2;e

)

can be transformed into the discretization independent coordinate system (x

1

; x

2

) via

a translation and a rotation by an angle  

e

, where j sin 

e

j � Ch

2;e

=h

1;e

:

Coordinate system condition (3D): The transformation of the element related coordi-

nate system (x

1;e

; x

2;e

; x

3;e

) into the discretization independent system (x

1

; x

2

; x

3

) can

be determined as a translation and three rotations around the x

j;e

-axes by angles

 

j;e

(j = 1; 2; 3), where

j sin 

1;e

j � Ch

3

=h

2

; j sin 

2;e

j � Ch

3

=h

1

; j sin 

3;e

j � Ch

2

=h

1

: (2.1)

Finally, let W

m;p

(e) (m 2 IN; p 2 [1;1]) be the usual Sobolev spaces with the norm and

the special seminorm

kv;W

m;p

(e)k �

8

<

:

X

j�j�m

Z

e

jD

�

vj

p

dx

9

=

;

1=p

; jv;W

m;p

(e)j �

8

<

:

X

j�j=m

Z

e

jD

�

vj

p

dx

9

=

;

1=p

;

and the usual modi�cation for p =1. We use a multi-index notation with

� = (�

1

; : : : ; �

d

); j�j = �

1

+ : : :+ �

d

; D

�

=

@

�

1

@x

�

1

1

� � �

@

�

d

@x

�

d

d

; h

�

e

= h

�

1

1;e

� � �h

�

d

d;e

the numbers �

i

(i = 1; : : : ; d) are non-negative integers.

Note that we use the symbol C for a generic positive constant, that means, C may be

of di�erent value at each occurrence. But C is always independent of the function under

consideration, of the �nite element mesh, and in Section 6 particularly of ". On the contrary,

some constants are indexed with a letter for later reference to them.

3 Inverse inequalities

We start with a lemma which the desired estimate can be derived from.

Lemma 3.1 For v 2 P

k

(e), k 2 IN arbitrary, and p 2 [1;1], the estimate













@v

@x

i

;L

p

(e)













� Ch

�1

i;e

kv;L

p

(e)k; i = 1; : : : ; d; (3.1)

holds if and only if the coordinate system condition is satis�ed for the element e.

Proof The transformation x

i;e

= h

i;e

~x

i;e

(i = 1; : : : ; d) transforms e to an element ~e of

which the largest inner ball has a diameter of order one. Thus we get from Theorem 3.2.6.

of [7] (isotropic inverse inequality)
















@~v

@~x

i;e

;L

p

(~e)
















� j~v;W

1;p

(~e)j � Ck~v;L

p

(~e)k; i = 1; : : : ; d;

and after transforming back
















@v

@x

i;e

;L

p

(e)
















� Ch

�1

i;e

kv;L

p

(e)k; i = 1; : : : ; d: (3.2)
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Assume that the coordinate system condition is satis�ed, and consider the two-dimen-

sional case. Then we have with (3.2)













@v

@x

1

;L

p

(e)













� j cos 

e

j
















@v

@x

1;e

;L

p

(e)
















+ j sin 

e

j
















@v

@x

2;e

;L

p

(e)
















� C

 

h

�1

1;e

+ C

h

2;e

h

1;e

h

�1

2;e

!

kv;L

p

(e)k

= Ch

�1

1;e

kv;L

p

(e)k:

The derivative

@v

@x

2

and the three-dimensional case can be treated by analogy.

The necessity of the coordinate system condition is shown by an example. Consider

the triangle with the vertices (0; 0), (h

1

; 0), (0; h

2

) in the element related coordinate system

(x

1;e

; x

2;e

) and the function v = x

2;e

. Then we have

kv;L

p

(e)k

p

=

Z

e

x

p

2;e

dx

e

=

1

(p+1)(p+2)

h

1;e

h

p+1

2;e













@v

@x

1

;L

p

(e)













p

=

Z

e

�

�

�

�

�

cos 

e

@v

@x

1;e

� sin 

e

@v

@x

2;e

�

�

�

�

�

p

dx

e

= j sin 

e

j

p

h

1;e

h

2;e

:

Hence, (3.1) implies j sin 

e

j � Ch

2;e

=h

1;e

. 2

Corollary 3.2 Assume that for the element e the coordinate system condition holds. Then

for v 2 P

k

, k 2 IN arbitrary, the estimate

k�v;L

p

(e)k � C

 

d

X

i=1

h

�p

i;e













@v

@x

i

;L

p

(e)













p

!

1=p

(3.3)

holds for any p 2 [1;1].

Proof Use Lemma 3.1 for w =

@v

@x

i

, i = 1; : : : ; d. 2

Note that the particular result

k�v;L

p

(e)k � C

s

h

�1

d;e

jv;W

1;p

(e)j (3.4)

can be proved without the coordinate system condition because the Laplace operator is

independent of a rotation of the coordinate system, and the change in the seminorm (which

appears for p 6= 2) during a rotation is bounded by a positive factor which depends only on

d and p.

4 Local interpolation error estimates

For the proof of error estimates of the form

kD




(v � I

(k)

h

v); L

p

(e)k � C

X

�

X

j�j=j
j

h

�

kD

�+�

v; L

p

(e)k

we proceed in the usual way: (1) transformation of the left-hand side to some reference

element ê, (2) estimation of the error on the reference element ê, (3) transformation of the

right-hand side to the element e. We recall that the transformation can be realized by

x = F (y) = By + b (4.1)

with B 2 IR

d�d

, b 2 IR

d

, d = 2; 3, e = F (ê), and that this is done to get estimates with

powers of h and a constant which is independent of the actual element. Hence, we can also

5



use a �nite number of reference elements. The choice of appropriate elements ê is discussed

in Appendix A. Each reference element has the property that for each axis of the coordinate

system (y

1

; : : : ; y

d

) there is one edge of ê � IR

d

that has length one and is parallel to this

axis. We will use this in the proof of Theorem 4.1 (error estimation on ê). In Appendix A

we prove the following feature of the transformation matrix B = (b

ij

)

d

i;j=1

from (4.1): If an

element e ful�lls the maximal angle condition and the coordinate system condition, then one

can choose a reference element ê such that

jb

jk

j � C minfh

j;e

; h

k;e

g; j; k = 1; : : : ; d;

�

�

�
b

(�1)

jk

�

�

�
� C minfh

�1

j;e

; h

�1

k;e

g; j; k = 1; : : : ; d;

9

=

;

(4.2)

where b

(�1)

jk

are the elements of B

�1

. This property is suitable for transforming the norms

from ê to e, as we will see in the proof of Theorem 4.2. | After these considerations we are

prepared to prove the error estimates.

Theorem 4.1 Let ê � IR

d

, d = 2; 3, be one of the reference elements introduced above, and

I

(k)

v̂ be the Lagrangian interpolant of v̂ 2 W

k+1;p

(ê) with polynomials of order k. Then for

any multi-index 
 with j
j � k the estimate

kD




(v̂ � I

(k)

v̂);L

p

(ê)k � CjD




v̂;W

k+1�j
j;p

(ê)j (4.3)

holds if and only if

d = 2 or 
 62 f(k; 0; : : : ; 0); : : : ; (0; : : : ; 0; k)g or p > 2: (4.4)

Note thatD




is always related to the coordinate system under consideration: (x

1

; : : : ; x

d

),

(y

1

; : : : ; y

d

) or (x

1;e

; : : : ; x

d;e

), for example

D




v �

@

j
j

v

@




1

x

1

� � �@




1

x

d

and D




v̂ �

@

j
j

v̂

@




1

y

1

� � �@




1

y

d

;

where v(x) = v(F (y)) = v̂(x). Because this is always obvious, we omit a further index.

Proof The proof is a slight extension of Theorem 1 in [1], where j
j = 1 is assumed.

We use Lemma 3 of that paper with P = P

k

, Q = P

k�j
j

, that means, it remains to �nd

linear functionals f

i

2 (W

k+1�j
j;p

(ê))

0

, i = 1; : : : ; J , J = dimP

k�j
j

=

�

k�j
j+d

d

�

, with the

properties

f

i

(D




I

(k)

v̂) = f

i

(D




v̂); i = 1; : : : ; J; for all v̂ 2 W

k+1;p

(ê); (4.5)

if all f

i

; i = 1; : : : ; J; vanish on some q 2 P

k�j
j

; then q = 0: (4.6)

We will illustrate this choice in four typical examples, all other cases are then canonical. In

all cases one can prove (4.5) owing to v̂(y) = I

(k)

v̂(y) in the nodal points. For the illustration

we choose the reference tetrahedron ê with the vertices (0; 0; 0), (1; 0; 0), (0; 1; 0), and (1; 0; 1),

and k = 3, see Figure 4.1. A cubic element is chosen because all four cases can be explained

only for k � 3.

(i) For 
 = (2; 0; 0) we have J = dimP

1

= 4 and we choose

f

1

(w) =

1

3

R

0

1

3

+�

R

�

w(y

1

; 0; 0) dy

1

d�; f

2

(w) =

2

3

R

1

3

1

3

+�

R

�

w(y

1

; 0; 0) dy

1

d�;

f

3

(w) =

1

3

R

0

1

3

+�

R

�

w(y

1

;

1

3

; 0) dy

1

d�; f

4

(w) =

2

3

R

1

3

1

3

+�

R

�

w(y

1

; 0;

1

3

) dy

1

d�:

6
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Figure 4.1: Nodes for a cubic tetrahedral element.

For q = a

0

+ a

1

y

1

+ a

2

y

2

+ a

3

y

3

the functionals have the values

f

1

(q) =

1

27

(3a

0

+ a

1

); f

2

(q) =

1

27

(3a

0

+ 2a

1

);

f

3

(q) =

1

27

(3a

0

+ a

1

+ a

2

); f

4

(q) =

1

27

(3a

0

+ 2a

1

+ a

3

);

which obviously vanish only for a

0

= a

1

= a

2

= a

3

= 0: Due to trace theorems we have

jf

i

(w)j � Ckw;L

1

(line)k � Ckw;W

1;1

(face)k � Ckw;W

2;1

(ê)k � Ckw;W

2;p

(ê)k

for any p � 1, and all desired properties are proved.

(ii) For 
 = (1; 1; 0) we choose

f

1

(w) =

1

3

R

0

1

3

R

0

w(y

1

; y

2

; 0) dy

2

dy

1

; f

2

(w) =

2

3

R

1

3

1

3

R

0

w(y

1

; y

2

; 0) dy

2

dy

1

;

f

3

(w) =

1

3

R

0

2

3

R

1

3

w(y

1

; y

2

; 0) dy

2

dy

1

; f

4

(w) =

2

3

R

1

3

1

3

R

0

w(y

1

; y

2

;

1

3

) dy

2

dy

1

;

and proceed as above.

(iii) For 
 = (3; 0; 0) we have J = 1 and choose

f(w) =

1

3

R

0

1

3

+�

R

�

1

3

+�

R

�

w(y

1

; 0; 0) dy

1

d�d�:

The main di�erence to (i) is that this functional is bounded in W

1;p

(ê) only for p > 2.

The counterexample for p � 2 in [1, page 283] extends in an obvious way to our case: For

v

"

(y) = (1�minf1; " ln j ln(r=e)jg) y

3

1

, r = (y

2

2

+ y

2

3

)

1=2

, there holds

v

"

(j �

1

3

; 0; 0) = 0 (j = 0; : : : ; 3); I

(k)

v

"

(y

1

; 0; 0) = 0;

@

3

I

(k)

v

"

@y

3

1

= 0;

@

3

v

"

@y

3

1

= 1�minf1; " ln j ln(r=e)j)

"!0

�! 1 pointwise in ê:

That means

Z

ê

�

�

�

�

�

@

3

@y

3

1

(v

"

� I

(k)

v

"

)

�

�

�

�

�

p

dy

"!0

�! meas

3

(ê) =

1

6

but

�

�

�

�

�

@

3

v

@y

3

1

;W

1;p

(ê)

�

�

�

�

�

p

� C"

1

Z

0

r

�p+1

j ln(r=e)j

�p

dr

| {z }

bounded for p�2

"!0

�! 0:

7



(iv) For 
 = (2; 1; 0) we choose

f(w) =

1

3

R

0

1

3

+�

R

�

1

3

R

0

w(y

1

; y

2

; 0) dy

2

dy

1

d�

and �nd that this functional is bounded in W

1;p

(ê) for all p � 1. 2

We consider now a general element e � IR

d

, d = 2; 3, in the discretization independent

coordinate system and transform the estimate (4.3). In order to indicate that the inter-

polation properties depend on the mesh, we index now the interpolation operator with an

h.

Theorem 4.2 Assume that the element e ful�lls the maximal angle condition and the coor-

dinate system condition. Then for the di�erence between a function v 2 W

k+1;p

(e) and its

Lagrangian interpolant I

(k)

h

v 2 P

k

(e) the estimate

kD




(v � I

(k)

h

v);L

p

(e)k

p

� C

X

j�j=k+1�j
j

X

j�j=j
j

h

�p

e

kD

�+�

v;L

p

(e)k

p

(4.7)

holds if d = 2 or j
j < k or p > 2.

Proof From (4.2) we obtain the relations

�

�

�

�

�

@v

@x

k;e

�

�

�

�

�

=

�

�

�

�

�

�

d

X

j=1

@v

@y

j

@y

j

@x

k;e

�

�

�

�

�

�

�

d

X

j=1

�

�

�
b

(�1)

jk

�

�

�

�

�

�

�

�

@v̂

@y

j

�

�

�

�

�

� C

d

X

j=1

minfh

�1

j;e

; h

�1

k;e

g

�

�

�

�

�

@v̂

@y

j

�

�

�

�

�

;

�

�

�

�

@v̂

@y

k

�

�

�

�

� C

d

X

j=1

minfh

�1

j;e

; h

�1

k;e

g

�

�

�

�

�

@v

@x

j;e

�

�

�

�

�

;

and conclude (in multi-index notation)

jD




vj � C

X

j�j=j
j

h

��

e

jD

�

v̂j; jD

�

v̂j � Ch

�

e

X

jtj=j�j

jD

t

vj; jD

�

v̂j � C

X

jsj=j�j

h

s

e

jD

s

vj:

These estimates and Theorem 4.1 imply

kD




(v � I

(k)

h

v);L

p

(e)k

p

� Cmeas(e)

X

j�j=j
j

h

��p

e

kD

�

(v̂ � I

(k)

v̂);L

p

(ê)k

p

� Cmeas(e)

X

j�j=k+1�j
j

X

j�j=j
j

h

��p

e

kD

�+�

v̂;L

p

(ê)k

p

� C

X

j�j=k+1�j
j

X

j�j=j
j

h

��p

e

X

jtj=j�j

X

jsj=j�j

h

�p

e

h

sp

e

kD

s+t

v;L

p

(e)k

p

= C

X

jtj=j
j

X

jsj=k+1�j
j

h

sp

e

kD

s+t

v;L

p

(e)k

p

;

and the theorem is proved. 2

For the case d = 3, j
j = k, we can prove a weaker result for all p � 1.

Theorem 4.3 Assume that the element e ful�lls the maximal angle condition and the coor-

dinate system condition. Then for v 2 W

k+2;p

(e) the estimate

kD




(v � I

(k)

h

v);L

p

(e)k

p

� C

X

k+1�j
j�j�j�k+2�j
j

X

j�j=j
j

h

�p

e

kD

�+�

v;L

p

(e)k

p

(4.8)

holds for d = 2; 3; p � 1, 0 � j
j � k + 1.
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Proof It is su�cient to treat the cases which are not covered by the previous theorem:

d = 3 and j
j = k. (j
j > k yields the trivial case I

(k)

h

v = 0.) Consider a linear functional

f 2

�

W

2;p

(ê)

�

0

with f(1) 6= 0. Then

�

jf(v̂)j

p

+ jv̂;W

1;p

(ê)j

p

+ jv̂;W

2;p

(ê)j

p

�

1=p

is a norm, equivalent to kv̂;W

2;p

(ê)k, see for example [14, x4.5]. Consequently,

kv̂;L

p

(ê)k

p

� C

0

@

jf(v̂)j

p

+

X

1�j�j�2

kD

�

v̂;L

p

(ê)k

p

1

A

:

We proceed now as in the proof of Theorem 4.1. Because of the weaker assumption f 2

�

W

2;p

(ê)

�

0

instead of f 2

�

W

1;p

(ê)

�

0

there, we can use here the same functional f , but

without the restriction p > 2, to get

kD




(v̂ � I

(k)

v̂);L

p

(ê)k � C

X

1�j�j�2

kD

�+


v̂;L

p

(ê)k:

The transformation from ê to e is carried out as in the proof of Theorem 4.2. 2

Corollary 4.4 Assume that the element e ful�lls the maximal angle condition and the co-

ordinate system condition. Then for v 2 W

k+1;p

(e), I

(k)

h

v 2 P

k

(e) and m = 0; : : : ; k, the

estimate

jv � I

(k)

h

v;W

m;p

(e)j

p

� C

X

j�j=k+1�m

h

�p

e

jD

�

v;W

m;p

(e)j

p

(4.9)

holds, if d = 2 or m < k or p > 2. If v 2 W

k+2;p

(e) there holds

jv � I

(k)

h

v;W

m;p

(e)j

p

� C

X

k+1�m�j�j�k+2�m

h

�p

e

jD

�

v;W

m;p

(e)j

p

(4.10)

for d = 2; 3, m = 0; : : : ; k, and any p � 1.

Corollary 4.5 Assume that the element e ful�lls the maximal angle condition. Then for

v 2 W

k+1;p

(e), I

(k)

h

v 2 P

k

(e) and m = 0; : : : ; k, the estimate

jv � I

(k)

h

v;W

m;p

(e)j � Ch

k+1�m

1;e

jv;W

k+1;p

(e)j (4.11)

holds, if d = 2 or m < k or p > 2. If v 2 W

k+2;p

(e) there holds

jv � I

(k)

h

v;W

m;p

(e)j � C

k+2

X

`=k+1

h

`�m

1;e

jv;W

`;p

(e)j (4.12)

for d = 2; 3, m = 0; : : : ; k, and any p � 1.

Proof If we assumed the coordinate system condition the assertion follows immediately from

Corollary 4.4. Because the seminorms remain equivalent during a rotation of the coordinate

system, the coordinate system condition can be omitted. 2

We remark that partial cases of this Corollary were proved in [4, 9, 11, 12, 19] without

knowing the anisotropic estimates.

If v has the property v 2 W

r+1;p

(e) with r > k (or r > k + 1) then the estimates (4.9)

and (4.11) (or (4.10) and (4.12), respectively) hold true. If r < k (or r < k + 1) we should

use I

(r)

h

for interpolation. Note that I

(r)

h

u 2 V

h

, too. V

h

is de�ned in (5.2).
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5 The family of �nite element spaces

Let T

h

= feg be an admissible triangulation of 
 =

S

e

e, that means, let properties (T

h

1)

� � � (T

h

5) of [7, Chapter 2] be ful�lled. Assume that all elements of T

h

satisfy the maximal

angle condition. Moreover, introduce the spaces V and V

h

by

V � W

1;2

0

(
) � fv 2 W

1;2

(
) : vj

@


= 0g; (5.1)

V

h

� fv 2 V : vj

e

2 P

k

(e) 8e 2 T

h

g: (5.2)

The index h indicates that we are considering a family of spaces for h ! +0, h itself char-

acterizes the mesh size; we can for example think of h = max

e2T

h

h

1;e

.

Lemma 5.1 (Density of V

h

in V ) Let u 2 V be an arbitrary function, then

lim

h!+0

inf

v

h

2V

h

ku� v

h

;W

1;2

(
)k = 0:

Proof The lemma is proved in [7, Theorem 3.2.3] for isotropic elements. However, this

assumption is not essential: Assume we are given an arbitrary but �xed real number � > 0.

From a standard density argument we can determine a function v 2 V \W

2;1

(
) such that

ku� v;W

1;2

(
)k <

�

2

: (5.3)

Using Corollary 4.5 we �nd

kv � I

(1)

h

v;W

1;2

(
)k

2

�

X

e

meas

3

(e)kv � I

(1)

h

v;W

1;1

(e)k

2

� C

X

e

meas

3

(e) h

2

1;e

kv;W

2;1

(e)k

2

� Cmax

e

h

2

1;e

meas

3

(
)kv;W

2;1

(
)k

2

:

Thus for a su�ciently small mesh size we obtain

kv � v

h

;W

1;2

(
)k <

�

2

: (5.4)

Using the triangle inequality, the assertion is proved via (5.3) and (5.4). 2

6 Application to convection-di�usion problems

In this section we want to review part of the investigation of the Galerkin/Least-squares

scheme which is done in [2] using the results of the previous sections. In a bounded polygonal

domain 
 � IR

2

we consider the second order elliptic boundary value problem

L

"

u � �"�u + b � ru = f in 
 (6.1)

u = 0 on @
; (6.2)

with the basic assumptions

(H.1) 0 < " � 1, b 2 [W

1;1

(
)]

d

, f 2 L

2

(
),

(H.2) r � b = 0 almost everywhere in 
.
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Problem (6.1) (6.2) is a linear(ized) di�usion-convection model. In the case of large Peclet

numbers P (x) � "

�1

kb(x);R

d

k � 1 the problem is of singularly perturbed type and the

solution u may generate sharp boundary or interior layers where the solution of the limit

problem with " = 0 is not smooth or cannot satisfy the boundary condition (1.2). The

resolution of such layers is often the main interest in applications.

On any family of meshes T

h

satisfying elementwise the maximal angle condition we in-

troduce the following stabilized �nite element method of Galerkin/Least-squares type:

Find U

h

2 V

h

; such that B

SG

(U

h

; v

h

) = L

SG

(v

h

) 8v

h

2 V

h

: (6.3)

with

B

SG

(u; v) � "(ru;rv)




+

1

2

f(b � ru; v)




� (b � rv; u)




g+

X

e

�

e

(L

"

u; L

"

v)

e

; (6.4)

L

SG

(v) � (f; v)




+

X

e

�

e

(f; L

"

v)

e

; (6.5)

and a set f�

e

g of non-negative numerical di�usion parameters to be determined below. Here,

(: ; :)

G

denotes the inner product in L

2

(G), G � 
, and V

h

is introduced in Section 5. Note

that the standard Galerkin method is received for �

e

= 0 for all e, but its solution may su�er

from non-physical oscillations unless the mesh Peclet numbers P

e

� "

�1

h

e

kb; [L

1

(e)]

2

k are

su�ciently small. | We introduce now an energy type norm according to

jjj v jjj

2

";�

� B

SG

(v; v) = "krv;L

2

(
)k

2

+

X

e

�

e

kL

"

v;L

2

(e)k

2

:

For the solution U

h

of (6.3) the following lemmata were proven.

Lemma 6.1 (Uniqueness and stability) With � � max

e

�

e

there holds for the solution

U

h

2 V

h

and the residual L

"

U

h

� f the estimate

jjjU

h

jjj

2

";�

+

X

e

�

e

kL

"

U

h

� f ;L

2

(e)k

2

� D

2

� C("

�1

+ �)kf ;L

2

(
)k

2

: (6.6)

Lemma 6.2 (Strong convergence) Assume that (H.1), (H.2) and the technical condition

lim

h!+0

max

e

f�

e

("C

2

s

h

�2

d;e

+ B

2

e

"

�1

+ C

e

)g = 0 on the parameter set f�

e

g are valid. Then the

solution U

h

2 V

h

converges strongly in V to the weak solution u 2 V according to

lim

h!+0

jjj u� U

h

jjj

";0

= 0: (6.7)

Lemma 5.1 was used in the proof. | In the case of smooth solutions as stated by

(H.3) u 2 V \W

r+1;2

(
) for some r 2 IN , r � 1,

the following error estimates were proved using the results of Sections 3 and 4.

Theorem 6.3 Let (H.1), (H.2), (H.3), as well as the maximal angle condition and the

coordinate system condition be satis�ed. Under the assumption �

e

� C

�2

s

"

�1

h

2

d;e

the approx-

imation error can be estimated by

jjj u� U

h

jjj

2

";�

�

X

e

I

e

(u); (6.8)

I

e

(u) � C

X

j�j=r�1

X

j�j=1

X

j
j=1

E

e;�;


h

2(�+�)

e

kD

�+�+


u;L

2

(e)k

2

; (6.9)

E

e;�;


� " + �

e

("

2

h

�2�

e

+ B

2

e

) + h

2


e

minf"

�1

B

2

e

; 2�

�1

e

g; (6.10)

provided that u 2 W

r+1;2

(
).
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U(M)

M




anisotropic element K

h

�;K

h

�;K

K

� = dist(x;M)

�

Figure 6.1: Anisotropic mesh in the boundary layer region

The parameter set f�

e

g is chosen by minimizing E

2

e

with respect to �

e

. The result is

formulated in the following lemma for isotropic elements. Similar analysis an be done for

elements in the layer, see [2].

Lemma 6.4 The error term I

e

(u) of an isotropic element e (outside the re�nement layer

R

h

) with h

e

= O(h

1;e

) is minimal for

�

e

=

h

2

e

"

p

1 + P

2

e

if P

2

e

�

~

P

2

e

� (1 +

p

5)=2 (6.11)

(convection dominated case), and

�

e

�

h

2

e

"

if 0 � P

e

�

~

P

e

(6.12)

(di�usion dominated case). Hence there holds

I

e

(u) � C"(1 + P

e

)h

2r

e

ju;W

r+1;2

(e)j

2

; (6.13)

1 � r � k, P

e

� B

e

h

e

"

�1

.

The idea is now to construct a �xed mesh with anisotropic re�nement in the layer regions,

to use an isotropic mesh away from the layers which could be (isotropically) re�ned via

standard adaptive methods, and to choose h

2;e

in the boundary layers in such a way that

the error term I

e

(u) is equidistributed on T

h

. Hereby, the �rst task is to detect the location

of the manifolds where the boundary and interior layers emanate. This can be accomplished

based on a priori knowledge or a posteriori in an adaptive method, see for example [21].

For simplicity we assume that a layer of thickness O("

�

ln

1

"

) is located at some straight

line M � 
. We introduce local coordinates (�; �) with � = 0 at M . As a starting point, we

generate an orthogonal mesh via lines � = �

i

, � = �

j

with real numbers �

i

, �

j

(i = 0; : : : ; i

0

,

j = 0; : : : ; j

0

) and particularly �

0

= 0, �

i

0

= d(") � "

�

ln

1

"

, see Figure 6.1. We assume

that for a layer rectangle K = [�

i

; �

i+1

] � [�

i

; �

i+1

] the relation h

�;K

� �

i+1

� �

i

� h

K

�

h

�;K

� �

j+1

� �

j

holds close to M . The exceptions are geometric singularities (corners)

of M \ @
 where possibly di�erent layers intersect. Note that our approach guarantees

a stronger re�nement there. The rectangles K are split into 2 triangles which satisfy the

maximal angle condition and the coordinate system condition with respect to the �tted

coordinate system. The mesh outside the (�xed) layer regions should be of isotropic type.

In this way the assumptions of Theorem 6.3 are satis�ed.

There are di�erent possibilities of the choice of h

�;K

and h

�;K

. We propose h

�;K

= O(h)

with a global mesh parameter h and h

�;K

= "

�

h if dist(e;M) � C

1

"

�

ln

1

"

. Then we double

h

�;K

in �-direction (perpendicularly to M) until � = C

2

h

�

ln

1

h

and choose h

�;K

= O(h) if

� � C

2

h

�

ln

1

h

. In [2] we present a more detailed analysis for boundary layers of out
ow type

(� = 1) and characteristic layers (� = 0:5) and derive global error estimates with respect to

12



0 1

0.125

0 1

0.125

Figure 6.2: Isoline plots for " = 10

�4

, � = 0 and � = 1

the norm jjj : jjj

";�

which are uniformely valid for "! +0. The critical point is an assumption

on Sobolev norm estimates of u in the neighbourhood of M which are hard to prove.

The following illustrative example is concerned with characteristic layers. Let 
 = (0; 1)

2

and

�"�u+ x

�

2

@u

@x

1

= 0 in 
;

u = sin(5�x

1

) on fx 2 @
 : x

2

= 0g;

u = 1 elsewhere.

A characteristic layer appears at M = (0; 1) � f0g, it has the thickness O("

�

ln

1

"

) with

� = (2� + 2)

�1

. The resolution of the layer is accomplished via an anisotropic boundary

layer mesh with h

�

= h = 1=128 and h

�

= "

�

h if 0 � � � x

2

� "

�

ln

1

"

. An isoline plot

is shown in Figure 6.2 for " = 10

�4

, � = 0 and � = 1. The layer at x

2

= 0 is obviously

enlarged under the no-slip condition for the �eld b =

�

x

2

0

�

compared with the slip condition

b =

�

1

0

�

for � = 0. | We found a resolution of the boundary layer with about 48 000

elements of the same quality as with an isotropic uniform mesh with about 2 million elements.

7 Discussion of the maximal angle and the coordinate sys-

tem conditions

In this last section we discuss the necessity of the conditions.

Lemma 7.1 If the maximal angle condition is not ful�lled, then Theorem 4.2 is not valid.

Proof In the two-dimensional case, we consider the triangle e with the vertices (0; 0), (h

1

; 0),

(

1

2

h

1

; h

2

), and v = x

2

1

. One can directly calculate that










@

@x

2

(v � I

h

v);L

2

(e)










2

P

j�j=1

P

j�j=1

h

2�

e

kD

�+�

v;L

2

(e)k

2

�

h

5

1

h

�1

2

h

3

1

h

2

=

�

h

1

h

2

�

2

� cot

2




e

!1:

From this we get immediately the necessity of the maximal angle condition for the angles

of the faces of a tetrahedron. At last, consider an example where this condition is satis�ed,
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but not the condition to the angles at the edges: For the tetrahedron with the vertices

(0; 0; 0), (h; 0; 0), (0; h; 0), and (

1

3

h;

1

3

h; h

�

) (� > 1) and for v = x

2

1

we �nd

X

j�j=1

h

�p

jD

�

v;W

1;p

(e)j

p

= (2h)

p

meas

3

(e);

I

h

v = hx

1

�

2

9

h

2��

x

3

;













@

@x

3

(v � I

h

v);L

p

(e)













p

=

�

2

9

h

2��

�

p

meas

3

(e);

and, consequently,










@

@x

3

(v � I

h

v);L

p

(e)










p

P

j�j=1

h

�p

jD

�

v;W

1;p

(e)j

p

=

�

1

9

h

1��

�

p

�>1

h!0

�! 1:

We remark that the case p =1 was already considered in [12, Examples 8, 9]. 2

As seen in the proof of Lemma 7.1, there are elements which satisfy the maximal angle

condition related to the triangular faces but not for the angles at the edge. Also the converse

is true, see [12, Example 9]. That means, both conditions are independent.

At this point we want to remark that an uncontrolable growth of the interpolation error

for degenerate elements gives no information about the approximation error of the corre-

sponding �nite element method. In the literature we can �nd two examples where triangles

with large angles are considered and the interpolation error in the W

1;2

-norm grows to in-

�nity. But while in [4] the �nite element error grows to in�nity as well, there is an example

in [1] where a modi�ed interpolate and thus the �nite element solution converge.

The following numerical example underlines the necessity of the coordinate system con-

dition. Consider again the unit square and

�"�u +

 

1

0:5

!

� ru = 0 in 
;

u = 1 on fx 2 @
 : x

1

= 0; 0:25 � x

2

� 1g;

u = 0 elsewhere on @
:

An interior layer emanates from the discontinuity at (0; 0:25) along the manifold M

1

=

fx 2 
 : x

2

= 0:5x

1

+ 0:25g and intersects at (1; 0:75) with a boundary layer along M

2

=

[(0; 1)� f1g] [ [f1g � (0:75; 1)]. An anisotropic mesh is constructed in the neighbourhood

of M

1

and M

2

similarly to the proposal in Section 6. The maximal aspect ratio is about

h

�;K

=h

�;K

= 240. The layers are well resolved for " = 10

�4

if the coordinate system condition

is satis�ed with respect to an orthogonal coordinate system with the �-axis at M

1

, compare

Figure 7.1(a). On the other hand, wiggles occur at M

1

if the angle between M

1

and the

�-axis is 2

�

, see Figure 7.1(b).

A Properties of the transformation to a reference element

In this Appendix we will show that the geometrical description of �nite elements by the max-

imal angle condition and the coordinate system condition is su�cient for the more abstract

condition (4.2) on the elements of the transformation matrix B in (4.1). For this we will

split the transformation (4.1) into two parts:

x = B

1

x

e

+

~

b; x

e

= B

2

y + b

2

; (A.1)

with B = B

1

B

2

and

~

b = b� B

1

b

2

. The notation was introduced in Sections 2 and 4.

We start with the two-dimensional case, consider the reference element ê with the nodes

(0; 0), (1; 0), and (0; 1), and remark that the assertion is implicitely contained in the proof

of Theorem 2 of [1].
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(a) (b)

Figure 7.1: Dependence of the resolution of an internal layer on the satisfaction of the

coordinate system condition
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Figure A.1: Notation and illustration of the two-dimensional case.

Lemma A.1 Assume that an element e � IR

d

, d = 2, satis�es the maximal angle condition

(see Subsection 4.1). Then the elements of matrix B

2

=

�

b

(2)

jk

�

d

j;k=1

ful�ll the relations

0 < C

1

h

j;e

� jb

(2)

jj

j � C

2

h

j;e

for j = 1; : : : ; d;

jb

(2)

jk

j � C minfh

j;e

; h

k;e

g for j; k = 1; : : : ; d;

9

=

;

(A.2)

Proof For simplicity we omit in the proof the upper index of the elements of the matrix

(b

jk

instead of b

(2)

jk

) and the second index e (h

i

instead of h

i;e

, x

i

instead of x

i;e

). Introduce

the notation as illustrated in Figure A.1 and consider �rst the case � <

1

2

h

1

. By

cot


e

=

cot


1

cot


2

� 1

cot


1

+ cot


2

=

h

2

h

1

�

�(h

1

� �)

h

1

h

2

we get using 


e

< 


�

and Taylor's formula for

p

1 + 2x

� =

h

1

2

8

<

:

1�

v

u

u

t

1 + 2

 

2

h

2

h

1

cot


e

� 2

�

h

2

h

1

�

2

!

9

=

;

= �h

2

cot


e

+ h

1

o

�

h

2

h

1

�

� Ch

2

:

With

B

2

=

 

h

1

�

0 h

2

!

the relations (A.2) can be concluded.

The case � >

1

2

h

1

is traced back via a re
ection at x

1

=

1

2

h

1

to the previous case. Note

that re
ections at coordinate planes and translations do not in
uence condition (A.2). 2
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Figure A.2: Reference elements in the three-dimensional case.
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Figure A.3: Notation and illustration of Case 1 in three dimensions.

In the three-dimensional case, it is necessary to consider two reference elements ê

1

and

ê

2

, as given in Figure A.2. Note that anisotropic elements can have three or four edges with

length of order h

1

. They are mapped to ê

1

and ê

2

, respectively.

Lemma A.2 Assume that an element e � IR

3

satis�es the maximal angle condition (see

Subsection 4.1). Then one can choose ê

1

or ê

2

as the reference element such that the elements

of matrix B

2

=

�

b

(2)

jk

�

3

j;k=1

ful�ll (A.2).

Proof We consider three main cases, all other cases are equivalent to one of them by

re
ection at coordinate planes and translation.

Case 1. Consider the situation as given in Figure A.3 with

0 < � <

h

1

2

; �h

2

< � <

h

2

2

; 0 < � <

h

1

2

: (A.3)

(AB is the largest edge.) As in the two-dimensional case, we get from <

)

ACB � 


�

< � that

0 < � < C h

2

. With the same technique we �nd

cot <

)

ADB =

q

h

2

3

+ �

2

h

1

�

�(h

1

� �)

h

1

q

h

2

3

+ �

2

;

� � C

q

h

2

3

+ �

2

: (A.4)

That means immediately

� � Ch

2

(A.5)

but we will improve this later. For � we have to distinguish the cases � < 0 and � > 0, and

we will consider the angles at the edges AB and BD, respectively. Generally, an angle '

at some edge can be expressed as follows: Let n

1

and n

2

be the outer normals of the faces

forming the edge, then

cos' = �

n

1

� n

2

jn

1

jjn

2

j

and sin' =

jn

1

� n

2

j

jn

1

jjn

2

j

:
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Figure A.4: Notation and illustration of Case 2 in three dimensions.

Via goniometric identities we imply for tan

'

2

the expression

tan

'

2

=

1� cos'

1 + cos'

=

(1� cos')

2

sin

2

'

=

(jn

1

jjn

2

j+ n

1

� n

2

)

2

jn

1

� n

2

j

2

which is bounded if and only if ' � 


�

< �. Using

n

ABC

=

0

B

@

0

0

�1

1

C

A

; n

ABD

=

0

B

@

0

�h

3

�

1

C

A

; n

BCD

=

0

B

@

h

2

h

3

h

3

(h

1

� �)

h

2

(h

1

� �)� �(h

1

� �)

1

C

A

we get for the case � < 0

tan




�

2

� tan

'

AB

2

=

�

q

�

2

+ h

2

3

� �

�

2

h

2

3

=

�

�

h

3

�

2

2

4

s

1 +

�

h

3

�

�

2

+ 1

3

5

2

> 4

�

�

h

3

�

2

; (A.6)

consequently j�j < Ch

3

.

Using � � h

1

h

2

+ ��� h

1

�� h

2

� and

p

a

2

+ b

2

� maxfjaj; jbjg, we conclude for the case

� > 0

tan




�

2

� tan

'

BD

2

=

�

q

�

2

+ h

2

3

q

h

2

2

h

2

3

+ h

2

3

(h

1

� �)

2

+ �

2

� h

2

3

(h

1

� �) + ��

�

2

[h

3

�(h

1

� �) + h

3

�]

2

+ [�h

2

h

3

]

2

+

�

h

2

h

2

3

�

2

�

�

2

�

2

h

2

2

h

2

3

�

(h

1

� �)

2

+ �

2

+ h

2

3

�

=

�

�

h

3

�

2

h

1 +

��

h

1

h

2

�

�

h

2

�

�

h

1

i

2

�

1�

�

h

1

�

2

+

�

�

h

1

�

2

+

�

h

3

h

1

�

2

:

With (A.3), (A.5), we �nd

1 +

��

h

1

h

2

�

�

h

2

�

�

h

1

� C > 0 and

�

1�

�

h

1

�

2

+

�

�

h

1

�

2

+

�

h

3

h

1

�

2

� C:

Consequently, we get � < Ch

3

, and with (A.4) � < Ch

3

. Realizing that

B

2

=

0

B

@

h

1

� �

0 h

2

�

0 0 h

3

1

C

A

for the reference element ê

1

, condition (A.2) is concluded.

Case 2: Consider the situation in Figure A.4 with (A.3) being valid again. The transfor-

mation to ê

2

is

x

e

=

0

B

@

h

1

� ��

0 h

2

�

0 0 h

3

1

C

A

y;
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Figure A.5: Notation and illustration of Case 3 in three dimensions.

and as above one can show relation (A.2): <

)

ACB � 


�

< � and <

)

ADB � 


�

< � lead to

� � Ch

2

and � � C

q

h

2

3

+ �

2

� Ch

2

; (A.7)

respectively. For � < 0, we get j�j � Ch

3

from (A.6). For � > 0, we use n

ABD

= (0;�h

3

; �)

T

,

n

ADC

= (�h

2

h

3

; �h

3

; �)

T

with � � h

2

(h

1

� �)� ��, and �nd

tan




�

2

� tan

'

AD

2

=

�

q

�

2

+ h

2

3

q

h

2

2

h

2

3

+ �

2

h

2

3

+ �

2

+ �h

2

3

� ��

�

2

[�h

3

+ ��h

3

]

2

+ [�h

2

h

3

]

2

+

�

h

2

h

2

3

�

2

�

�

2

�

2

h

2

2

h

2

3

�

(h

1

� �)

2

+ �

2

+ h

2

3

�

=

�

�

h

3

�

2

h

2

1

h

2

2

h

1�

�

h

1

�

�

h

1

�

h

2

i

2

h

2

1

h

2

2

�

�

1�

�

h

1

�

2

+

�

�

h

1

�

2

+

�

h

3

h

1

�

2

�

:

With (A.3) and (A.7) we conclude that j�j < Ch

3

and � < Ch

3

.

Case 3: The situation is illustrated in Figure A.5 and we assume

0 � � <

h

1

2

; 0 � � �

h

2

2

; 0 � � + � �

h

1

2

: (A.8)

The transformation to ê

1

is

x

e

=

0

B

@

h

1

� � �� �

�h

2

�h

2

��

0 0 h

3

1

C

A

y +

0

B

@

�

h

2

0

1

C

A

:

From <

)

ACB � 


�

< � and <

)

ADB � 


�

< � we get � � Ch

2

and �+� � Ch

2

. Furthermore,

we consider '

AD

: Using n

ABD

= (0;�h

3

; h

2

� �)

T

, n

ADC

= (�h

2

h

3

; �h

3

; �)

T

, � � h

2

� + ��,

we obtain

tan




�

2

� tan

'

AD

2

=

�

q

h

2

3

+ (h

2

� �)

2

q

h

2

2

h

2

3

+ �

2

h

2

3

+ �

2

� �h

2

3

+ (h

2

� �)�

�

2

h

2

2

h

2

3

�

(� + �)

2

+ (h

2

� �)

2

+ h

2

3

�

�

(h

2

� �)

2

(� + �)

2

+ (h

2

� �)

2

+ h

2

3

�

�

2

h

2

2

h

2

3

=

(

1

2

h

2

)

2

Ch

2

2

�

�

2

h

2

2

h

2

3

:

Consequently, it is

j�j = jh

2

� + ��j � Ch

2

h

3

: (A.9)

Additionally, we consider '

BD

: Using n

ABD

= (0;�h

3

; h

2

� �)

T

, n

BCD

= (h

2

h

3

; h

3

(h

1

�

�); h

1

� � �)

T

, � as before, we obtain

tan




�

2

� tan

'

BD

2
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=

�

q

h

2

3

+ (h

2

��)

2

q

h

2

2

h

2

3

+ (h

1

��)

2

h

2

3

+ (h

1

���)

2

� (h

1

��)h

2

3

+ (h

2

��)(h

1

���)

�

2

h

2

2

h

2

3

�

(h

1

� � � �)

2

+ (h

2

� �)

2

+ h

2

3

�

�

(h

2

� �)

2

(h

1

� � �)

2

h

2

2

h

2

3

�

(h

1

� � � �)

2

+ (h

2

� �)

2

+ h

2

3

�

�

(

1

2

h

2

)

2

(h

1

� � �)

2

Ch

2

1

h

2

2

h

2

3

=

1

C

�

�

h

3

�

�

h

2

h

3

�

2

;

that means

�

h

2

h

3

�

r

C tan




�

2

�

�

h

3

�

�

h

2

h

3

+

r

C tan




�

2

;

and with (A.9) � � Ch

3

. Consequently, (A.9), � � Ch

2

, and � � Ch

3

lead to � � Ch

3

.

Other cases: The situations C = (�; h

2

; 0), D = (�; �;�h

3

), and C = (h

1

� �; h

2

; 0),

D = (h

1

� �; �;�h

3

), (A.3) being valid in each case, are equivalent to Case 1; C = (�; h

2

; 0),

D = (h

1

� �; �;�h

3

), and C = (h

1

� �; h

2

; 0), D = (�; �;�h

3

), (A.3) being valid as well,

are traced back to Case 2; C = (�; h

2

; 0), D = (�; h

2

� �;�h

3

), and C = (h

1

� �; h

2

; 0),

D = (h

1

��; h

2

��;�h

3

), (A.8) being valid in these cases, are equivalent to Case 3. Note that

there are no further cases. Particularly, a situation as C = (�; h

2

; 0),D = (h

1

��; h

2

��;�h

3

),

is impossible because '

AD

! �. 2

Lemma A.3 Assume that an element e � IR

d

, d = 2; 3, satis�es the coordinate system

condition (see Section 2). Then the elements of matrix B

1

=

�

b

(1)

jk

�

d

j;k=1

satisfy the relations

0 < C

1

� jb

(1)

jj

j � C

2

for j = 1; : : : ; d;

jb

(1)

jk

j � Ch

j;e

=h

k;e

for k = 1; : : : ; j � 1; j = 2; : : : ; d;

jb

(1)

jk

j � Ch

k;e

=h

j;e

for k = j + 1; : : : ; d; j = 1; : : : ; d:

9

>

>

>

=

>

>

>

;

(A.10)

Proof We give here the proof for d = 3; in the two-dimensional case the proof is similar.

B

1

is a product of three matrices B

11

, B

12

, B

13

, describing rotations:

B

11

=

0

B

@

1 0 0

0 cos 

1;e

sin 

1;e

0 � sin 

1;e

cos 

1;e

1

C

A

; B

12

=

0

B

@

cos 

2;e

0 sin  

2;e

0 1 0

� sin  

2;e

0 cos 

2;e

1

C

A

;

B

13

=

0

B

@

cos 

3;e

sin 

3;e

0

� sin 

3;e

cos 

3;e

0

0 0 1

1

C

A

:

Using (2.1) and j cos 

i;e

j � C (i = 1; : : : ; d) one can compute (A.10). 2

Theorem A.4 One can choose a reference element such that the elements of the matrix

B = B

1

B

2

satis�es the relations (4.2). In two dimensions the reference element can be

chosen as in Figure A.1, in three dimensions we use two reference elements, see Figure A.2.

Proof The �rst relation in (4.2) is a consequence of Lemmata A.1 { A.3. The second

relation can be proved via the explicit formula for the coe�cients of the inverse matrix B

�1

.

2
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