
Technische Universit�at Chemnitz-Zwickau

DFG-Forschergruppe \SPC" � Fakult�at f�ur Mathematik

Matthias Pester

ON LINE VISUALIZATION IN

PARALLEL COMPUTATIONS

Fakult�at f�ur Mathematik

TU Chemnitz-Zwickau

D-09107 Chemnitz, FRG

(0371)-531-2656

(0371)-531-2657 (fax)

m.pester@mathematik.tu-chemnitz.de

01.11.94

Preprint-Reihe der Chemnitzer DFG-Forschergruppe

\Scienti�c Parallel Computing"

SPC 94 23 November 1994

Workshop on Visualization

D. Kr�oner and R. Rautmann (Eds)

1995 VSP/TEV

ON-LINE VISUALIZATION IN PARALLEL COMPUTATIONS

M. Pester

Faculty of Mathematics, Technical University of Chemnitz-Zwickau,

D-09107 Chemnitz, Germany

ABSTRACT

The investigation of new parallel algorithms for MIMD computers requires some

postprocessing facilities for quickly evaluating the behavior of those algorithms.

We present two kinds of visualization tool implementations for 2D and 3D �nite

element applications to be used on a parallel computer and a host workstation.

1. INTRODUCTION

In December 1992, at the Technical University of Chemnitz-Zwickau there was

established a research group in the �eld of Scienti�c Parallel Computing (SPC)

named \Algorithmische Grundlagen der Simulation von ausgew�ahlten Prob-

lemen der Kontinuumsmechanik auf massiv parallelen Rechnern"

1

. The main

purpose of this group is to investigate parallel numerical algorithms for the

solution of large problems arising from di�erential equations in solid and
uid

mechanics on massively parallel message passing MIMD computers with pro-

cessor numbers of 100 and more.

For this purpose the major demand of the researchers is to get a quick and

dirty on-line visualization at any intermediate stage of the parallel algorithms,

rather than producing a �nal high-quality postprocessing presentation of the

results.

After some initial remarks on problems of pre- and postprocessing on par-

allel computers we will present two methods of visualizing data computed on

such machines. The �rst method uses the X11 standard library calls on the

parallel machine, the second method is based on a visualization tool for high

performance graphics workstations using a socket-based data connection.

1

supported by the German Research Foundation (DFG)

2 M. Pester

2. PARALLEL PRE- AND POSTPROCESSING

First, we shall remark that there is a di�erent point of view between sequential

and parallel processing with respect to the data interfaces from preprocessing

to computation on the one hand, and from computation to postprocessing on

the other hand.

One reason for using parallel computers is to get better access to the large

amount of data, since it can be computed and stored locally on the processors.

As Figure 1 illustrates, the classical tasks of pre- and postprocessing have to

be split into two parts each, one of them running on the parallel machine while

the other one can be done more practically on a workstation.

On the part of the parallel computer we have to de�ne three data interfaces

for preprocessing steps:

Interface I is the external interface to be submitted to the parallel computer

including the geometric boundary representation of the domain
 with an initial

coarse grid

0

de�ned by

� the list of nodes (name, coordinates)

� the list of edges (name, node pointers)

� the list of faces (name, edge pointers), in 2D these are the subdomains.

� the list of subdomains (name, face pointers)

� the list of boundary conditions de�ned for edges in 2D or faces in 3D (name

of the edge/face, descriptors and values)

Interface II is the local interface on each processor after any steps of par-

allel mesh re�nement. Its data structure is similar to Interface I. Boundary

conditions can be easily passed down to the new edges or faces.

Interface III is the FEM data interface for generating the system matrices.

Boundary conditions have to be evaluated with respect to the nodes.

Thus, the part of preprocessor running on the workstation does not pro-

vide the �nite element mesh for generating and solving the system, but it

supplies the geometric information including boundary conditions and infor-

mations about domain decomposition, e. g. preferences for the mapping of the

subdomains to the processors. Therefore, the parallel computer starts with a

coarse grid having one subdomain (or a few of them) per processor (see Fig. 2).

The initial step of the parallel processing is to re�ne the mesh locally keeping

the boundary conditions under consideration for generating the local matrices

of the equation system to be solved [2].

The same problem of reducing the amount of data which is required to be

transmitted arises in the postprocessing phase.

As an example we consider a system of linear equations with more than

ON-LINE VISUALIZATION IN PARALLEL COMPUTATIONS 3

Preprocessing

Solver

Postprocessing

Geometry / Boundary conditions

Parallel numerical solution

Graphic device

Distribute subdomains

Parallel mesh generation

Output data selection

Visualization

Parallel computer

Workstation

Workstation

�

�

�

�

�

�

�

�)

P

P

P

P

P

P

P

Pq

? ?? ? ? ? ?

? ? ? ? ?

? ?

P

P

P

P

P

P

P

Pq

�

�

�

�

�

�

�

�)

Fig. 1. Pre- and postprocessing interfaces on a parallel computer

4 millions of unknowns (one per node). The solution of this system takes about

34 seconds on a 64-processor system (GC-PowerPlus). Assuming a graphical

window of 400 � 400 pixels each pixel on the screen would have to show 25

nodes (or 8 nodes if we had 3 degrees of freedom per node), i. e. most of the

data sent to the display would be useless.

In order to get a su�ciently quick on-line visualization it is necessary to

reduce the amount of data before sending it to the displaying workstation.

This is a new interface between the computed data being situated in the local

memory of the processors and the output device which is, in general, controlled

sequentially. A decision is to be made if the large amount of data should be

sent to a postprocessor on the host workstation or if the postprocessing should

be done on the parallel processors themselves, at least in part.

The internal (hierarchical) data structures of the parallel algorithms we have

in mind (see [2]) are well suited for this purpose. Based on a stepwise re�nement

of the initial coarse grid

0

we get a hierarchical list of meshes

i

of level

i (i = 1; 2; : : :) where

i

�

i�1

. With each level of mesh re�nement the

amount of data increases by a factor of � 4 for 2D or � 8 for 3D. Thus,

4 M. Pester

coarse grid, subdomains parallel generated mesh

Fig. 2. Coarse grid and parallel mesh re�nement (3 levels)

the e�ort at data handling for the postprocessing can essentially be reduced by

selecting a lower level j for visualization than for computation. The higher level

brings the computational accuracy. Selecting the lower level for visualization

means to extract the corresponding subset of the computed data. This is easy

if the re�nement algorithm places all new elements (nodes, edges, faces) behind

the previous data in each list. However, it is necessary to keep this geometric

information of some lower levels in memory instead of throwing them away

after the mesh re�nement. It is clear that the additional memory requirement

for all lower level information together is less than that for the last level.

3. POSTPROCESSING ON THE PARALLEL COMPUTER

As a �rst example of realizing any on-line visualization for parallel algorithms

we consider the case of generating pixel data on the parallel computer, i. e. just

on the same processor where the data of interest is produced. The assumptions

we make are the following:

� The program runs on a parallel MIMD computer with message passing (dis-

tributed memory).

ON-LINE VISUALIZATION IN PARALLEL COMPUTATIONS 5

� The communication network within the parallel computer is based on a

(virtual) hypercube topology. The processors are numbered from 0 to 2

n

�1.

� At least one processor (say processor 0) is linked to the host workstation

(direct link or connected to a remote host via ethernet).

� The X11 library function calls [3] are available on the parallel computer (at

least on processor 0) which may contact the X server on the user's worksta-

tion (e. g. via ethernet or FDDI).

� The graphical display appears as a separate window di�erent from the text

window where the program was started from. Any interaction with the user

that is necessary for the visualization can be done using the mouse in the

graphical window or the keyboard in the text window.

The chose of a hypercube topology for message passing was caused by several

advantages for the implementation of the inter-processor communicationswhich

occur in our applications. Any global communication needs n = logP time

steps only for P = 2

n

processors. However, also a sequential transmitting of

data from all processors to processor 0 is possible by selecting a subset of

hypercube links forming a processor ring [6, 4].

Within the initialization step of the parallel program the processor 0 opens a

connection to the X server of the destined workstation where the display should

appear. This is realized by X11 library functions such as XOpenDisplay [3].

Then the visualization of intermediate or �nal results can be done by the

following algorithmwhich is executed on each processor of the parallel machine.

Algorithm 1.

1. What is to do?

Verify which data is to be displayed in which manner. For that purpose

processor 0 interacts with the user and then broadcasts the user's \message"

to the other processors. If the message was \go on" then return.

2. Distributed Postprocessing

Compute locally the required data (e. g. isolines, colored areas) for the sub-

domain(s) of the current processor. Generate a set of polygons to be drawn

or �lled with speci�ed colors of a given palette. Here, we use device inde-

pendent coordinates, e. g. for a virtual display of 32000� 32000 Pixels.

3. Verify device parameters

Just before starting the graphical output of its local data, processor 0 re-

quests the necessary information about the current size of the output win-

dow in order to convert pixel data from the device independent format into

correct pixel values.

4. Internal communication

The data of the other processors is forwarded to processor 0 using the em-

6 M. Pester

bedded ring topology of our hypercube.

5. Display

Each packet of data is displayed by processor 0 just after having received

it (sparing memory). At this moment the coordinates are transformed into

proper pixel values of the current display.

6. Printing and Plotting?

Optionally, the output can be written at the same time as a postscript �le.

Some examples for 2D domains are shown in Figure 3.

qu126a - Level 2

 0.00E+00

 1.00E+00

 Field qu126a - Level 2

 0.00E+00

 1.00E+00

 Field

spc2 - Level 2 spc2 - Level 3

Fig. 3. Examples of parallel visualization for 2D domains

ON-LINE VISUALIZATION IN PARALLEL COMPUTATIONS 7

In order to visualize the solution rather quickly than in high quality there

is no e�ort spent on special e�ects such as shading and lighting. This prob-

lem itself is also a well suited subject for parallelization and is already being

discussed at other places.

4. POSTPROCESSING ON THE WORKSTATION

Generally, there exist several more comfortable programs for postprocessing

running on a workstation. Our second way of visualizing data of the parallel

program will make use of such a postprocessing tool for Finite Element data

in the following way:

Algorithm 2.

1. Two programs

Start both the parallel program on the parallel computer and the postpro-

cessor on the user's workstation.

2. External communication

Open a connection via sockets between both programs: processor 0 of the

hypercube and the graphical workstation.

3. Internal communication

All the processors have to route their (generally selected) data to processor

0 which uses a de�ned interaction protocol with the postprocessing program

to send all the data for displaying it.

4. Display

Since the two programs are running separately on di�erent machines the

parallel program may be continued after transmitting its data for displaying

while the user can interact with the postprocessor either �nding a special

perspective or creating output �les or requesting new data to be received

from the parallel computer (e. g. one of the next solutions in
uid dynamics).

One program that �ts our purpose is the GRAphical Programming Envi-

ronment (GRAPE, [8]). Based on its library, we can use a lot of prede�ned

postprocessing functions for 2D and 3D FEM completed by the necessary ad-

ditional functions for the socket communication with the parallel program.

Some examples are displayed in Figure 4.

Unfortunately, most of such programs for postprocessing are (professional)

integrated packages whose user interface is unsuited for our purpose to interact

with a parallel computer if the internal data structures are not manifested to

the user.

8 M. Pester

grape.ps grape.ps

grape.ps

exploding subdomains

grape.ps

Fig. 4. Visualization of parallel computed data using GRAPE; isolines over a cross-section

and patch mode display of solids

5. CONCLUSIONS

Both visualization methods presented above are implemented for a parallel Fi-

nite Element program running on several parallel machines. The �rst method

requires the availability of X11 calls on the parallel computer itself which may

be a disadvantage in some cases. Another disadvantage may be the idleness of

the parallel computer while the user is enjoying the displayed data. The advan-

ON-LINE VISUALIZATION IN PARALLEL COMPUTATIONS 9

tage is its \quick and dirty"-concept with an easy to use control. It was tested

successfully on transputer systems under PARIX as well as on workstations

under UNIX and PVM.

The second method only required some e�ort to add own functions and data

structures to an existing program having the big advantage of using a wide

spectrum of existing visualization tools. The \external" part of the postproces-

sor is running on a high performance graphical workstation corresponding to

the high performance parallel computer.

The general problem, however, is to deal with the large amount of data and

to �nd the right subset for displaying. Otherwise the visualization of the result

will take much more time than its computation.

REFERENCES

[1] Haase, G., Langer, U. and Meyer, A. (1990). A new approach to the dirich-

let domain decomposition method. In: Fifth Multigrid Seminar, Eberswalde

1990, (Ed. S. Hengst), Karl-Weierstrass-Institut, Berlin, R{MATH{09/90,

1{59.

[2] Meyer, A. (1990). A parallel preconditioned conjugate gradient method

using domain decomposition and inexact solvers on each subdomain. Com-

puting, 45, 217{234.

[3] Nye, A. (1990). Xlib Programming Manual for Version X11. O'Reilly &

Associates, Inc.

[4] Pester, M. (1991) Implementation und Test paralleler Basisalgorithmen

der linearen Algebra. In: Parallele Datenverarbeitung mit dem Transputer.

2. Transputer{Anwender{Tre�en TAT'90. Proceedings X, (Ed. R. Grebe and

C. Ziemann), Informatik{Fachberichte, vol. 272, Springer{Verlag, 111{118.

[5] Rieken, B. and Weiman L. (1992). Adventures in UNIX Network Appli-

cations Programming. John Wiley & Sons, Inc., New York { Chichester {

Brisbane { Toronto { Singapore.

[6] Saad Y. and Schultz M. H. (1989). Data communication in hypercubes.

Journal of parallel and distributed computing, 6, 115{135.

[7] Sunderam, V. S. (1992). PVM: A framework for parallel distributed com-

puting. Technical report, Oak Ridge National Laboratory.

[8] Wierse, A. and Rumpf, M. (1992). GRAPE Eine objektorientierte Visuali-

sierungs- und Numerikplattform. Informatik Forsch. Entw., 7 145{151.

Other titles in the SPC series:

93 1 G. Haase, T. Hommel, A. Meyer and M. Pester. Bibliotheken zur Entwick-

lung paralleler Algorithmen. May 1993.

93 2 M. Pester and S. Rjasanow. A parallel version of the preconditioned conju-

gate gradient method for boundary element equations. June 1993.

93 3 G. Globisch. PARMESH { a parallel mesh generator. June 1993.

94 1 J. Weickert and T. Steidten. E�cient time step parallelization of full-

multigrid techniques. January 1994.

94 2 U. Groh. Lokale Realisierung von Vektoroperationen auf Parallelrechnern.

March 1994.

94 3 A. Meyer. Preconditoning the Pseudo-Laplacian for Finite Element simula-

tion of incompressible
ow. February 1994.

94 4 M. Pester. Bibliotheken zur Entwicklung paralleler Algorithmen. (aktual-

isierte Fassung). March 1994.

94 5 U. Groh, Chr. Israel, St. Meinel and A. Meyer. On the numerical simulation

of coupled transient problems on MIMD parallel systems. April 1994.

94 6 G. Globisch. On an automatically parallel generation technique for tetrahe-

dral meshes. April 1994.

94 7 K. Bernert. Tauextrapolation { theoretische Grundlagen, numerische Exper-

imente und Anwendungen auf die Navier-Stokes-Gleichungen. June 1994.

94 8 G. Haase, U. Langer, A. Meyer and S. V. Nepomnyaschikh. Hierarchical

extension and local multigrid methods in domain decomposition precondi-

toners. June 1994.

94 9 G. Kunert. On the choice of the basis transformation for the de�nition of

DD Dirichlet preconditioners. June 1994.

94 10 M. Pester and T. Steidten. Parallel implementation of the Fourier Finite

Element Method. June 1994.

94 11 M. Jung and U. R�ude. Implicit Extrapolation Methods for Multilevel Finite

Element Computations: Theory and Applications. June 1994.

94 12 A. Meyer and M. Pester. Verarbeitung von Sparse-Matrizen in Kompakt-

speicherform (KLZ/KZU). June 1994.

94 13 B. Heinrich and B. Weber. Singularities of the solution of axisymmetric

elliptic interface problems. June 1994.

94 14 K. G�urlebeck, A. Hommel and T. Steidten. The method of lumped masses

in cylindrical coordinates. July 1994.

94 15 Th. Apel and F. Milde. Realization and comparison of various mesh re�ne-

ment strategies near edges. August 1994.

94 16 Th. Apel and S. Nicaise. Elliptic problems in domains with edges: anisotropic

regularity and anisotropic �nite element meshes. August 1994.

94 17 B. Heinrich. The Fourier-�nite-element method for Poisson's equation in

axisymmetric domains with edges. August 1994.

94 18 M. Pester and S. Rjasanow. A parallel preconditioned iterative realization

of the panel method in 3D. September 1994.

94 19 A. Meyer. Preconditoning the Pseudo-Laplacian for Finite Element simula-

tion of incompressible
ow. October 1994.

94 20 V. Mehrmann. A step towards a uni�ed treatment of continous and discrete

time control problems. October 1994.

94 21 C. He, V. Mehrmann. Stabilization of large linear systems. October 1994.

94 22 B. Heinrich and B. Weber. The Fourier-�nite-element method for three-

dimensional elliptic problems with axisymmetric interfaces. November 1994.

Some papers can be accessed via anonymous ftp from server ftp.tu-chemnitz.de,

directory pub/Local/mathematik/SPC. (Note the capital L in Local!)

