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Abstract. This paper is concerned with the anisotropic singular behaviour of the solution of

elliptic boundary value problems near edges. The paper deals �rst with the description of the analytic

properties of the solution in newly de�ned, anisotropically weighted Sobolev spaces. The �nite element

method with anisotropic, graded meshes and piecewise linear shape functions is then investigated for

such problems; the schemes exhibit optimal convergence rates with decreasing mesh size. For the proof,

new local interpolation error estimates in anisotropically weighted spaces are derived. Moreover, it is

shown that the condition number of the sti�ness matrix is not a�ected by the mesh grading. Finally, a

numerical experiment is described, that shows a good agreement of the calculated approximation orders

with the theoretically predicted ones.
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1 Motivation and main ideas

1.1 The boundary value problem and analytical results

In this paper we want to study the approximation properties of the �nite element method

with anisotropic meshes (for an introduction to anisotropic meshes see Subsection 1.2)

for certain elliptic boundary value problems over three-dimensional domains.

Let 
 � R

3

be a bounded domain with non-intersecting edges. Especially we will

focus on prismatic domains


 = G� I; (1.1)

where G � R

2

is a polygonal domain and I = ] 0; z

0

[ � R

1

is an interval. The domain

G may have a corner with interior angle ! > � at the origin; thus 
 has an edge which

is part of the x

3

-axis. The case of more than one edge can be treated similarly because

the edge singularities we are interested in, are of local nature only.

Over this domain 
, we consider the variational form of the boundary value problem

which is given by the second order di�erential equation

�

3

X

i;j=1

a

ij

@

ij

u = f in 
; (1.2)

with either Dirichlet boundary conditions

u = 0 on @
; (1.3)

or Newton boundary conditions

3

X

i;j=1

a

ij

@

i

u n

j

+ �u = 0 on @
: (1.4)

The constant coe�cients a

ij

= a

ji

2 R ful�ll

9� > 0 :

3

X

i;j=1

a

ij

�

i

�

j

� �j�j

2

8� 2 R

3

; (1.5)

n

j

(j = 1; 2; 3) are the elements of the outward normal vector, and we assume � � 0 on

@
 and � = �(x) � �

0

> 0 for all x in a part @


T

� @
 with meas

2

(@


T

) > 0. Then,

the variational form is given for Dirichlet boundary conditions by:

�nd u 2 V

0

such that a(u; v) = (f; v) for all v 2 V

0

; (1.6)

and in the case of problem (1.2)(1.4) by:

�nd u 2 V such that a(u; v) = (f; v) for all v 2 V: (1.7)

The bilinear form a(:; :) and the linear form (f; :) are de�ned by

a(u; v) :=

Z




3

X

i;j=1

a

ij

@

i

u@

j

v dx+

Z

@


�uv d�; (1.8)

(f; v) :=

Z




fv dx; (1.9)

where the surface integral in (1.8) disappears in the case of Dirichlet boundary conditions

(1.3). We use the abbreviations @

i

for

@

@x

i

and @

ij

for @

i

@

j

. The spaces are de�ned by

V := H

1

(
) and V

0

:= fv 2 H

1

(
) : vj

@


= 0g. For the data we consider f 2 L

p

(
)

(p � 2) and � 2 W

1�1=p;p

(@
) \ W

1�1=s;s

(@
) for some s > 3. L

p

(:) (1 � p � 1)
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are the usual Lebesgue spaces, W

s;p

(:) (s � 0, 1 � p � 1) the Sobolev(-Slobodetski��)

spaces (sometimes we write W

0;p

(:) for L

p

(:)), and H

s

(:) := W

s;2

(:). | Note that the

conditions of the Lax{Milgram lemma are satis�ed; thus the solution u 2 H

1

(
) of

problems (1.6) and (1.7) exists and is unique.

It is well known that for domains with edges with interior angle ! > � the so-called

shift theorem (u 2 H

k+2

(
) for f 2 H

k

(
)) does not hold, and there are many papers

where the regularity of the solution of these and more general problems is studied. We

mention here the papers of Kondrat'ev [15] and Maz'ya/Plamenevski�� [18].

In [15], a representation formula for the solution u for f 2 L

2

(
) is given:

u = �(r)(x) r

�

�(') + u

r

with � =

�

!

A

;  2 W

2;2

�

(
); (1.10)

where r; ' are polar coordinates in the plane perpendicular to the edge, !

A

2 ]�; 2�[

is a real number depending on ! and a

ij

(see Subsection 2.3), �(r) is a smooth cut-o�

function, �(') = sin�' for Dirichlet boundary conditions and �(') = cos�' for Neu-

mann/Newton boundary conditions, W

2;2

�

(
) := fv 2 D

0

(
) : r

�

D

�

v 2 L

2

(
) 8j�j �

2g, � = (�

1

; �

2

; �

3

) is a multi-index and D

�

:= @

�

1

1

@

�

2

2

@

�

3

3

.

In [18], the solution is described in the framework of another type of weighted Sobolev

spaces: let f 2 L

p

(
) then

u 2 V

2;p

�

(
) for � > 2�

2

p

�

�

!

A

; (1.11)

V

2;p

�

(
) := fv 2 D

0

(
) : r

��2+j�j

D

�

v 2 L

p

(
) 8j�j � 2g. Note that for problems with

more than one edge (with interior angle greater than �) an adequate number of singular

terms has to be included in (1.10) and weights corresponding to each edge have to be

introduced in the space V

2;p

�

(
).

The anisotropic structure of the edge is reected by the factor r

�

in (1.10) and the

weights in the de�nition of the spaces W

2;2

�

(
) and V

2;2

�

(
), because r is the distance to

the edge and is independent of the tangential coordinate of the edge. Using these results

it has been possible to justify a mesh re�nement strategy near edges [2, 6, 17] in order to

improve the approximation order (which is in general low because of the low regularity of

the solution) of the standard �nite element method. In this strategy, isotropic elements

(that are elements whose ratio of the diameters of the smallest circumscribed and the

largest inscribed balls is bounded independently of the mesh size h) are used, and the

size of the elements is determined by their distance to the edge. We remark that isotropic

strategies near corners in two dimensions are widely investigated [7, 10, 11, 21, 23, 25].

This result is not really satisfactory because it seems to be natural to treat anisotro-

pic structures like edges with anisotropic �nite elements. According to [1] an element

is called anisotropic when its diameter in di�erent directions has di�erent asymptotics

and, consequently, the ratio of the outer and the inner ball is growing to in�nity for

h! 0. As shown in that paper for problems with smoother data than we assume here,

these elements can be applied successfully in the �nite element method with graded

meshes near edges.

It was an open problem to justify this anisotropic strategy also for problems with

f 2 L

p

(
) (p � 2). But the analytic results (1.10) and (1.11) have been insu�cient,

because the weighted Sobolev spaces used have the disadvantage that all derivatives of

the same order have the same weight. This drawback is removed in Section 2 by using

more appropriate, anisotropically weighted Sobolev spaces. It is proved that for the

solution u from (1.6) or (1.7) the inclusion

u 2 A

2;p

�

(
) with

(

� > 2�

2

p

�

�

!

A

for 2�

2

p

�

�

!

A

>  (p)

� = 0 for 2�

2

p

<

�

!

A

(1.12)

3



holds, where  (p) := 1 �

2

p

in the case if Dirichlet or Neumann boundary conditions,

and  (p) :=

3

2

�

3

p

in the case of Newton boundary conditions. The space A

2;p

�

(
) is

de�ned by A

2;p

�

(
) := fv 2 D

0

(
) : kv;A

2;p

�

(
)k <1g,

jv;A

2;p

�

(
)j

p

:=

Z




8

<

:

r

�p

2

X

i;j=1

j@

ij

uj

p

+

3

X

i=1

j@

3i

uj

p

9

=

;

dx;

kv;A

2;p

�

(
)k

p

:= jv;A

2;p

�

(
)j

p

+

Z




(

r

(��1)p

2

X

i=1

j@

i

uj

p

+ r

�p

j@

3

uj

p

+ r

(��2)p

juj

p

)

dx;

and x

3

is the direction of the edge. Particularly, that means @

3

u 2 V

1;p

0

(
) ,! W

1;p

(
).

For

�

!

A

� 1�

2

p

(that means p � 2=(1�

�

!

A

)) we do not have @

3

u 2 W

1;p

(
).

Remark 1.1 For general polyhedral domains we have to distinguish between corner

and edge singularities. The behaviour of the edge singularities is not di�erent from that

described above. The corner singularities are not a problem of anisotropy; they can

be treated with isotropic, graded meshes as introduced for example in [6]. The main

problem is to construct meshes which are both anisotropic near edges and isotropic near

those corners which cause singularities. We will discuss this in a forthcoming paper. |

Note that the domain introduced by (1.1) has corners, too. But they do not introduce

additional corner singularities [26].

Remark 1.2 It is conjectured that each component of the solution of the Lam�e system

of linear elasticity has similar properties as described above for the scalar equation, and

that our forthcoming approximation results apply also in that case. Indeed, we were

able to prove this in the case p = 2. The case p > 2 has still to be investigated.

1.2 The class of �nite element meshes

Assume that we are given a family T of �nite element partitions T

h

with the usual

regularity properties:

(a) 
 =

S

m

i=1




i

, where 


i

are tetrahedra,

(b) 


i

\ 


j

= ; for i 6= j (i; j = 1; : : : ; m),

(c) any edge or face of 


i

is either a subset of @
 or an edge or face of another 


j

(i; j = 1; : : : ; m).

Then we introduce the �nite element space V

h

of all continuous functions whose

restriction to any 


i

(i = 1; : : : ; m) is a polynomial of �rst degree. Furthermore, we let

V

0h

be de�ned by V

0h

:= fv

h

2 V

h

: v

h

j

@


= 0g. Note that V

h

� V and V

0h

� V

0

.

The �nite element solutions of problems (1.6) and (1.7) are de�ned by:

�nd u

h

2 V

0h

such that a(u

h

; v

h

) = (f; v

h

) for all v

h

2 V

0h

; (1.13)

and

�nd u

h

2 V

h

such that a(u

h

; v

h

) = (f; v

h

) for all v

h

2 V

h

; (1.14)

respectively. The assumptions of the Lax{Milgram lemma are ful�lled; thus these prob-

lems have a unique solution.

The investigation of the �nite element error u�u

h

in the energy norm (here equiva-

lent to theW

1;2

(
)-norm) is usually reduced via C�ea's lemma to a general approximation

problem. If we want to take advantage of anisotropic �nite element meshes (and this

4



kind of mesh seems to be natural near edges, see above), we need an approximation

operator for which error estimates are available that take these di�erent asymptotic

mesh sizes of the elements into account. As far as we know, such estimates are only

available for the interpolation operator [1], see also (3.16). But in order to use these

local estimates and to extend them to weighted Sobolev spaces, the mesh must satisfy

two more conditions (d) and (e). Moreover, another assumption (f) is necessary for

the extension of these estimates to weighted Sobolev spaces. This extension is done in

Subsection 3.1 because it is necessary for our global estimate in Subsection 3.2.

For the explanation and for further use we introduce the following notation: Assume

we are given a �nite element 


i

. Let e

i

be the longest edge of 


i

and f

i

the larger of

the two faces of 


i

with e

i

� f

i

. Then we denote by h

3;i

:= meas

1

(e

i

) the length of

e

i

, by h

2;i

:= 2meas

2

(f

i

)=h

3;i

the diameter of f

i

perpendicularly to e

i

and by h

1;i

:=

6meas

3

(


i

)=(h

2;i

h

3;i

) the diameter of 


i

perpendicularly to f

i

. Note that h

3;i

� h

2;i

�

h

1;i

.

Introduce further local Cartesian coordinate systems (x

1;i

; x

2;i

; x

3;i

) such that (0; 0; 0)

is a vertex of 


i

, e

i

is part of the x

3;i

-axis, and f

i

is part of the x

2;i

; x

3;i

-plane. Note that

each coordinate system can be transformed via a translation and three rotations around

the x

j;i

-axes by an angle  

j;i

(j = 1; 2; 3) into the original coordinate system (x

1

; x

2

; x

3

).

(The angles  

j;i

depend on the order of the three rotations but this inuence is of lower

order.)

Let the following assumptions be also ful�lled:

(d) all elements 


i

have to ful�ll the maximal angle condition: let 

e;i

be the maximal

angle between faces of 


i

and 

f;i

be the maximal interior angle of the four trian-

gular faces of 


i

(i = 1; : : : ; m), then the relations 

e;i

� 

0

< � and 

f;i

� 

0

< �

have to be ful�lled with 

0

independent of the element counter i and the mesh

size parameter h,

(e) the elements are located such that the angles  

j;i

ful�ll the following relations:

j tan 

1;i

j � C

h

2;i

h

3;i

; j tan 

2;i

j � C

h

1;i

h

3;i

; j tan 

3;i

j � C

h

1;i

h

2;i

; (i = 1; : : : ; m);

with the exception that the �rst (respectively the third) inequality is not necessary

if h

2;i

is of order h

3;i

(respectively h

1;i

is of order h

2;i

),

(f) all elements 


i

with distance r

i

= 0 to the edge (x

3

-axis) have two vertices such

that the straight line through them is parallel to the x

3

-axis.

So we introduce a graded mesh by conditions (a){(f) and the following choice of the

element sizes:

(g) With h being the mesh size parameter, � 2 ]0; 1] being the grading parameter, r

i

being the distance of 


i

to the edge (r

i

:= min

(x

1

;x

2

;x

3

)2


i

(x

2

1

+ x

2

2

)

1=2

) and some

constant R > 0 we de�ne real numbers h

i

(i = 1; : : : ; m)

h

i

:=

8

>

<

>

:

h

1=�

for r

i

= 0;

hr

1��

i

for 0 < r

i

� R;

h for r

i

> R;

(1.15)

and assume that there are positive constants C

1

and C

2

such that for the element

sizes h

1;i

, h

2;i

, h

3;i

the relations

C

1

h

i

� h

j;i

� C

2

h

i

; j = 1; 2;

C

1

h � h

3;i

� C

2

h;

(1.16)

are ful�lled for i = 1; : : : ; m.

5



Corollary 1.3 For such meshes the following relation holds:

kv

h

;W

1;2

(


i

)k � Ch

�1

i

kv

h

;L

2

(


i

)k; i = 1; : : : ; m; (1.17)

which is a special case of the inverse inequality, see [8, Theorem 3.2.6]. Note that the

diameter of the largest ball inscribed in 


i

has a diameter of order h

i

� Ch.

Note that we use the symbol C for a generic positive constant, that means, C may

be of di�erent value at each occurrence. But C is always independent of the function

under consideration and of the �nite element mesh.

Corollary 1.4 The volume of any element 


i

is of order h

2

i

h (i = 1; : : : ; m).

Because we consider up to now only a domain 
 with the special structure (1.1) it

is easy to construct such a mesh:

1. Find a quasiuniform mesh for G with a conventional mesh generator (inner and

outer circle shall be of the same order h for all elements).

2. Reproduce this two-dimensional mesh in each plane x

3

= j~ (j = 0; : : : ; J ;

J := int(z

0

=h); ~ := z

0

=J ; int(w) is the integer part of the real number w),

and form a partition of pentahedra (prismatic elements with a triangular basis)

using corresponding triangles of two adjacent planes x

3

= (j � 1)h and x

3

= jh

(j = 1; : : : ; J). Divide each pentahedron into three tetrahedra (observing condi-

tion (c)).

3. Apply the coordinate transformation

r := (x

2

1;old

+ x

2

2;old

)

1=2

x

1;new

:= r

�1+1=�

x

1;old

x

2;new

:= r

�1+1=�

x

2;old

(1.18)

to all nodes of the triangulation (at least in a neighbourhood of the edge).

This approach of constructing a graded partition using a coordinate transformation goes

back to [20] where it was used in the two-dimensional case. It is explained in detail in

[5].

1.3 Outline of the paper

In Section 2 we prove the anisotropic regularity (1.12) of the solution u from (1.6) or

(1.7). This is �rst done for the Laplace operator with Dirichlet boundary conditions in

Subsection 2.1, using a representation formula for u from [14]. Furthermore, we prove

that the assumption p < 2=(1�

�

!

A

) in (1.12) is necessary. In Subsections 2.2{2.4 we

extend this result to more general boundary conditions, to a general elliptic second order

operator with constant coe�cients, and partially (only for p = 2) to the Lam�e system.

These results are then applied in the investigation of the �nite element error for the

problems introduced above.

In Section 3 we use the standard way, namely the estimation of the interpolation

error. One di�culty is that the anisotropic local interpolation error estimate

jv � Iv;W

1;p

(


i

)j � C

3

X

j=1

h

j;i

j@

j

u;W

1;p

(


i

)j (1.19)

does not hold for p = 2, but only for p > 2. That is why we restrict our consideration

to problems with a right hand side f 2 L

p

(
) with p > 2. Another task is to prove an

6



approximation result for elements 


i

touching the edge, because the solution does not

belong to W

2;p

(


i

) (p > 2) there, even if we would assume smooth data. Under the

conditions (d){(f) and certain assumptions on p and � (see Theorem 3.11), we get

jv � Iv;W

1;p

(


i

)j � C (h

1��

1;i

+ h

3;i

)jv;A

2;p

�

(


i

)j; (1.20)

kv � Iv;L

p

(


i

)k � C (h

2��

1;i

+ h

2

3;i

)jv;A

2;p

�

(


i

)j: (1.21)

The global result is then formulated in Theorem 3.13 and we get for p 2 ]2; p

+

[

ku� u

h

;W

1;2

(
)k � Ch

s

kf ;L

p

(
)k (1.22)

with

s =

(

1 for � <

�

!

A

�

p

2p�2

;

2

p

� 1 +

1

�

�

!

A

� " for � �

�

!

A

�

p

2p�2

;

(1.23)

p

+

:=

8

<

:

(1�

�

!

A

)

�1

for Dirichlet or Neumann b.c.,

min

n

(1�

�

!

A

)

�1

; (

1

2

�

�

3!

A

)

�1

o

for Newton boundary cond.

(1.24)

A similar estimate holds for mixed boundary conditions with some restrictions to

!

A

.

In Section 4 we investigate the condition number of the sti�ness matrix. We show

that it is of the optimal order h

�2

for the full range of � 2 ]0; 1]. Note that in the

isotropic case the condition � >

1

3

is required [2, 6].

For test calculations we can refer to another paper. In [4] we documented a test,

where one problem was calculated with isotropic as well as with anisotropic graded

meshes. We derived approximation orders from the �nite element errors for di�erent

mesh size parameters h. We observed a good agreement of the calculated approximation

orders with the expected ones (see (1.23)). Moreover, it turned out that the same error

level can be achieved with less computational e�ort (smaller number of elements, of

nodes, of degrees of freedom) with anisotropic meshes in comparison with isotropic

ones.

Another test is documented in the last section. There, the exact solution has a jump

in the second derivative in edge direction.

2 Anisotropic regularity near the edge

2.1 The Laplace operator with Dirichlet boundary conditions

Let D := C�R be a dihedral cone of R

3

, where C is an in�nite cone of R

2

of opening !.

As before, we denote by x = (x

1

; x

2

; x

3

) the Cartesian coordinates in D, where x

3

2 R

and (x

1

; x

2

) 2 C and by (r; ') the polar coordinates in C. We are concerned with the

edge regularity of the variational solution v 2

o

H

1

(D) of the Dirichlet problem

��v = g 2 L

p

(D); (2.1)

for p � 2. Since we are only interested in the local behaviour of the solution, we suppose

that v exists and has a compact support.

For studying the regularity of v, we shall employ some weighted Sobolev spaces of

Kondrat'ev type, introduced for instance in [18]. For l 2 N; � 2 R; p 2 ]1;+1[, we recall

that

V

l;p

�

(D) := fv 2 D

0

(D) : r

��l+j�j

D

�

v 2 L

p

(D); 8j�j � lg

7



is a Banach space for the norm

kv;V

l;p

�

(D)k :=

0

@

X

j�j�l

Z

D

r

(��l+j�j)p

jD

�

vj

p

dx

1

A

1=p

:

We start with a weak isotropic regularity result:

Lemma 2.1 For any " > 0, we have

v 2 V

2;2

1+"

(D): (2.2)

Proof Using Hardy's inequalities, we �nd that v 2 V

0;2

�1+"

(D): This inclusion and

Theorem 4.1 of [18] lead to (2.2). 2

This allows to use comparison theorems in weighted Sobolev spaces in order to get

anisotropic regularity:

Theorem 2.2 Let � � 0 be such that

(

2�

2

p

� � <

�

!

if 2�

2

p

�

�

!

;

� = 0 if 2�

2

p

<

�

!

:

(2.3)

Then

v 2 V

2;p

�

(D): (2.4)

If moreover

1�

2

p

<

�

!

; (2.5)

then

@

3

v 2 V

1;p

0

(D): (2.6)

Proof The inclusion (2.4) is a direct consequence of Theorem 7.2 of [18], using Lemma

2.1 and since g 2 V

0;2

1+"

(D) \ V

0;p

�

(D):

The inclusion (2.6) follows now from Theorem 3.1 of [19] (see also Theorem 30.1 of

[16]), since the assumption of that theorem is equivalent to (2.5). 2

We shall now improve this theorem using recent results of Grisvard [14]. The ob-

tained inclusions will sometimes recover the above ones, but due to the convenient form

of the Laplace operator, their proofs are simpler. Let us �rst recall Theorem 6.6 of [14]:

Theorem 2.3 Suppose that

j�

!

6= 2 �

2

p

for all j 2 Z, then the solution v 2

o

H

1

(D) of

problem (2.1) admits the decomposition

v = v

r

+

X

0<

j�

!

<2�

2

p

(K

j

x

3

? q

j

) 

j

; (2.7)

where v

r

2 W

2;p

(D) is the regular part of v, q

j

2 B

2�

2

p

�

j�

!

;p

(R) (that means in the

classical Sobolev space W

2�

2

p

�

j�

!

;p

(R), if 2 �

2

p

�

j�

!

62 Z, otherwise in the Besov space

B

2�

2

p

�

j�

!

;p

(R), see [27]),  

j

are the 2D-singular functions of the Laplace operator in C:

 

j

(r; ') := �(r)r

j�=!

sin

�

j�'

!

�

; (2.8)

8



and �nally K

j

are kernels de�ned by

K

j

(r; x

3

) :=

r

�(r

2

+ x

2

3

)

if

j�

!

> 1�

2

p

;

K

j

(r; x

3

) :=

2r

3

�(r

2

+ x

2

3

)

2

if

j�

!

� 1�

2

p

:

There exists a positive constant C independent of g, such that

kv

r

;W

2;p

(D)k+

X

0<

j�

!

<2�

2

p

kq

j

;B

2�

2

p

�

j�

!

;p

(R)k � C kg;L

p

(R)k:

Here and in the sequel, K

x

3

? q means the convolution with respect to the edge parameter

x

3

:

(K

x

3

? q)(r; x

3

) :=

Z

R

K(r; s)q(x

3

� s) ds:

In view of that Theorem, if we want to prove inclusions of type (2.4) or (2.6), it

su�ces to show that the 3D-singularity function

v

j

:= (K

j

x

3

? q

j

) 

j

(2.9)

satis�es such inclusions. Their proofs are based on the next general result concerning

convolution with arbitrary kernels, which is inspired from Theorem 6.5 of [14] (notice

that this theorem had a di�erent goal).

Theorem 2.4 Let K(r; x

3

) be a kernel satisfying

jK(r; x

3

)j � C

r

�

(r

2

+ x

2

3

)



; 8r > 0; x

3

2 R; (2.10)

with some C > 0 and  >

1

2

(in order that K would be integrable with respect to x

3

) and

Z

R

K(r; x

3

) dx

3

= 0: (2.11)

For q 2 B

�;p

(R), with � 2 ]0; 1], we set

h(r; x

3

) := (K

x

3

? q)(r; x

3

): (2.12)

If � < 2�1 and � � �1�

2

p

��+2, then there exists a constant C

1

> 0 (independent

of q) such that

�

Z

1

0

Z

R

jh(r; x

3

)j

p

rdrdx

3

�

1=p

� C

1

kq;B

�;p

(R)k: (2.13)

Proof From assumption (2.11), we may write

h(r; x

3

) =

Z

R

K(r; s)fq(x

3

� s)� q(x

3

)g ds;

and taking the L

p

-norm with respect to x

3

, we obtain

kh(r; x

3

);L

p

x

3

(R)k �

Z

R

jK(r; s)j � kq(x

3

� s)� q(x

3

);L

p

x

3

(R)k ds: (2.14)

Let us introduce the functions

�(s) := jsj

���1=p

kq(x

3

� s)� q(x

3

);L

p

x

3

(R)k;

k(t) :=

jtj

2���1

(1 + t

2

)



;

9



and the multiplicative convolution I of k with the function s

1=p

�,

I(r) :=

Z

R

k(r=s)s

1=p

�(s)

ds

jsj

:

Inserting (2.10) into (2.14) we obtain

kh(r; x

3

);L

p

x

3

(R)k � Cr

�+1+��2

I(r): (2.15)

The assumption q 2 B

�;p

(R) implies that � belongs to L

p

(R) and

k�;L

p

(R)k � C

2

kq;B

�;p

(R)k;

for some C

2

> 0 independent of q. For � < 1 this is a direct implication, otherwise

we use Theorem 2.5.1 of [27]. Moreover, we readily check that k 2 L

1

(R

+

;

dt

t

) (this is

the space of integrable functions with respect to the measure

dt

t

) i� �1 < � < 2 � 1;

therefore Young's theorem leads to

�

Z

+1

0

jI(r)j

p

dr

r

�

1=p

� Ck�;L

p

(R)k � CC

2

kq;B

�;p

(R)k: (2.16)

Integrating the p-th power of the estimate (2.15) with respect to r on ]0; 1[ and using

(2.16), we arrive at (2.13). 2

We are now able to prove some anisotropic regularities:

Theorem 2.5 If 0 <

j�

!

< 2�

2

p

, then

@

33

v

j

2 L

p

(D); (2.17)

and there exists a positive constant C such that

k@

33

v

j

;L

p

(D)k � C kg;L

p

(R)k: (2.18)

Proof If

1�

2

p

<

j�

!

< 2�

2

p

; (2.19)

we use Theorem 2.4, with K(r; x

3

) = r

j�=!

@

33

K

j

(r; x

3

), since

@

33

v

j

= (K

x

3

? q

j

)(r; x

3

) �(r) sin

�

j�'

!

�

:

This kernel satis�es jK(r; x

3

)j � Cr

1+j�=!

(r

2

+ x

2

3

)

�2

for all r > 0; x

3

2 R: Therefore,

we can apply Theorem 2.4 with � = 1 +

j�

!

,  = 2 and � = 2 �

2

p

�

j�

!

(� < 1 due to

assumption (2.19)). Since the hypotheses of that theorem are satis�ed, estimate (2.13)

can be rephrased as

Z

1

0

Z

R

j@

33

v

j

j

p

rdrdx

3

� C kq

j

;B

�;p

(R)k

p

:

An integration with respect to ' leads to (2.17) and (2.18).

Conversely, if

0 <

j�

!

� 1�

2

p

; (2.20)

then we know that q

j

2 B

�

0

;p

(R), with �

0

= 2 �

2

p

�

j�

!

� 1. If �

0

= 1, we use

Theorem 2.4 as above withK(r; x

3

) = r

j�=!

@

33

K

j

(r; x

3

), q = q

j

2 B

�;p

(R), when � = �

0

.

On the contrary, if �

0

> 1, we apply Theorem 2.4 with K(r; x

3

) = r

j�=!

@

3

K

j

(r; x

3

),

q = @

3

q

j

2 B

�;p

(R), when � = �

0

� 1. 2

Analogously, we can consider other derivatives:

10



Theorem 2.6 If 0 <

j�

!

< 2�

2

p

, then

@

3

v

j

2 L

p

(D); (2.21)

v

j

2 L

p

(D); (2.22)

with norms depending continuously on the L

p

-norm of g. If moreover, 1�

2

p

<

j�

!

, then

@

13

v

j

; @

23

v

j

2 L

p

(D); (2.23)

r

�1

@

1

v

j

; r

�1

@

2

v

j

2 L

p

(D); (2.24)

r

�2

v

j

2 L

p

(D); (2.25)

r

�1

@

3

v

j

2 L

p

(D); (2.26)

with  > 2�

2

p

�

j�

!

, the norms depending continuously on the L

p

-norm of g.

Proof Property (2.21) follows from Theorem 2.4 with K(r; x

3

) = r

j�=!

@

3

K

j

and q = q

j

;

in the same way, we get (2.26) by multiplying this kernel by r

�1

. The proof of (2.23) is

identical. Indeed, we have

@

r3

v

j

= fK

1j

x

3

? q

j

g 

j

+ fK

2j

x

3

? q

j

g@

r

 

j

;

where K

2j

= @

3

K

j

, K

1j

= @

r

K

2j

. For the �rst term (respectively the second term),

we apply Theorem 2.4 with K(r; x

3

) = r

j�=!

K

1j

(respectively K(r; x

3

) = r

�1+j�=!

K

2j

)

and q = q

j

. The derivative

1

r

@

'3

v

j

is treated similarly.

To establish the other inclusions, we can no more apply Theorem 2.4 because the

corresponding kernels do not satisfy (2.11). Therefore, we proceed as follows: for the

derivative @

r

v

j

, for instance, we must consider a term of the form

h(r; x

3

) := (@

r

K

j

)

x

3

? q

j

 

j

:

As j@

r

K

j

j = O(

1

r

2

+x

2

3

), we get

kh(r; x

3

);L

p

x

3

(R)k � Cr

j�=!

Z

R

j@

r

K

j

(r; s)j kq

j

(x

3

� s);L

p

x

3

(R)k ds

� Cr

�1+j�=!

kq

j

;L

p

(R)k:

Multiplying this estimate by r

�1

and integrating with respect to r on ]0; 1[ and to ',

we obtain the inclusion r

�1

h 2 L

p

(D). Other terms are treated analogously. 2

Corollary 2.7 Let u 2

o

H

1

(
) be the solution of ��u = f , with f 2 L

p

(
), then

u 2 A

2;p

�

(
) with

(

� > 2�

2

p

�

�

!

for 2�

2

p

�

�

!

> 1�

2

p

� = 0 for 2�

2

p

<

�

!

and

ku;A

2;p

�

(
)k � Ckf ;L

p

(
)k:

For the de�nition of A

2;p

�

(
), see Subsection 1.1.

Proof Let

v :=

(

u in 
;

0 in R

3

n 
;

and g :=

(

f in 
;

0 in D n 
;

then v is the variational solution of ��v = g 2 L

p

(D). Using Theorem 2.6 we get

v 2 A

2;p

�

(D). The restriction to 
 yields the assertion. 2

Let us remark that we cannot improve the conclusions of Theorems 2.5 and 2.6.

Indeed, when we apply Theorem 2.4, we get an equality in the condition � � �1�

2

p

�

11



� + 2, in other words we cannot decrease the value of �. This means that, in general,

we cannot decrease the power in r in front of the considered derivatives.

Let us also show that the condition 1�

2

p

<

j�

!

in the second part of Theorem 2.6 is

necessary, in the sense that without this condition, the conclusion could fail.

Lemma 2.8 If 0 <

j�

!

� 1 �

2

p

and q

j

2 B

2�

2

p

�

j�

!

;p

(R) is a continuous function such

that q

j

� 0, q

j

6� 0. Then v

j

given by (2.9) satis�es

1

r

@

'

v

j

62 L

p

(D): (2.27)

Proof By a direct computation, we show that

1

r

@

'

v

j

=

2j

!

h(r; x

3

)�(r)r

�1+j�=!

cos(

j�'

!

); (2.28)

where we have set

h(r; x

3

) :=

Z

R

q

j

(x

3

� rt)

(1 + t

2

)

2

dt:

Since q

j

6� 0, there exist z

0

2 R, " > 0, � > 0 such that q

j

(x

3

) > � for all x

3

2

]z

0

� "; z

0

+ "[. This implies that for all x

3

2 ]z

0

� "=2; z

0

+ "=2[, we have h(r; x

3

) � ��

for all r < 1, with � =

R

"=2

�"=2

(1+ t

2

)

�2

dt > 0. Inserting this estimate into (2.28), we get

�

�

�

�

1

r

@

'

v

j

�

�

�

�

� �

0

�(r)r

�1+j�=!

�

�

�

�

cos

�

j�'

!

�

�

�

�

�

;

with some positive constant �

0

. This leads to the conclusion (2.27) because r

�1+j�=!

does not belong to L

p

with respect to the measure rdr near 0. 2

2.2 Extension to general boundary conditions

All the results of this section can be extended in a straightforward manner to Neumann

boundary conditions and mixed boundary conditions. This can be seen by replacing

sin(

j�'

!

) by cos(

j�'

!

) (or sin(

(j�

1

2

)�'

!

), respectively) everywhere.

Newton boundary conditions need more explanation:

Theorem 2.9 Let u 2 V be the solution of (1.7), then

u 2 A

2;p

�

(
) with

(

� > 2�

2

p

�

�

!

for 2�

2

p

�

�

!

>

3

2

�

3

p

� = 0 for 2�

2

p

<

�

!

and

ku;A

2;p

�

(
)k � Ckf ;L

p

(
)k:

Proof First we transform the boundary conditions (1.4) into

@u

@n

= ��u on @
;

and use a lifting trace theorem in order to come back to homogeneous Neumann bound-

ary conditions. Indeed, since there exists s > 3 such that � 2 W

1�1=s;s

(@
), there exists

~� 2 W

1;s

(
) such that ~� = � on @
. Using Theorem 1.4.4.2 of [12] we get ~�u 2 H

1

(
),

because u 2 H

1

(
). Consequently, �u 2 H

1=2

(@
), and because of the classical trace

theorem, there exists w 2 H

2

(
) such that

@w

@n

= ��u on @
:

12



This means that u

1

:= u� w 2 V is the solution of

Z




ru

1

� rv dx =

Z




f

1

v dx for all v 2 V;

where f

1

:= f + �w. Since f

1

2 L

2

(
) and owing to Theorem 23.3 of [9], we conclude

that

u 2 H

1+�=!�"

(
) for all " > 0:

Using again Theorem 1.4.4.2 of [12] to u 2 H

1+�=!�"

(
) and some �̂ 2 W

1;p

(
) such

that �̂ = � on @
, we obtain that

�̂u 2 W

1;p

(
); if

�

!

>

3

2

�

3

p

:

Note that the condition

�

!

>

3

2

�

3

p

is necessary to have the embedding H

1+�=!�"

(
) ,!

W

1;p

(
). With the help of the classical trace theorem, there exists w

1

2 W

2;p

(
) such

that

@w

1

@n

= ��u on @
:

Finally, setting u

2

= u� w

1

, we see that u

2

2 V and that it is a solution of

Z




ru

2

� rv dx =

Z




f

2

v dx for all v 2 V;

with f

2

:= f +�w

1

2 L

p

(
). Applying Corollary 2.7 to u

2

(in the case of homogeneous

Neumann boundary conditions), we conclude that u

2

2 A

2;p

�

(
) with � satisfying the

conditions of that corollary. Since w

1

2 W

2;p

(
), we get the assertion. 2

2.3 General second order operators with constant coe�cients

In this subsection, we briey consider an elliptic operator L of second order with constant

coe�cients in a dihedral cone D

0

:

L := �

3

X

i;j=1

a

ij

@

ij

;

where a

ij

= a

ji

is such that (1.5) is ful�lled.

Since this hypothesis implies that the matrix A = (a

ij

)

3

i;j=1

is symmetric and positive

de�nite, there exists a matrix B such that

B

T

AB = I:

By the change of variables x = Bx

0

, the operator �L is transformed into the Laplace

operator, while the dihedral cone D

0

is mapped to another dihedral cone D. We notice

that the transformation matrix B is unique only up to an orthogonal matrix, thus we

can choose B = (b

ij

)

3

i;j=1

such that b

13

= b

23

= 0 and the dihedral cone D = C � R,

where C is a in�nite cone of R

2

of opening !

A

. Moreover, we easily check that the

distance to the edge in D

0

is equivalent to the distance to the edge in D, more precisely,

with r

0

(x

0

) being the distance from x

0

to the edge of D

0

, we have

r

0

(x

0

) � kBk r(x);

r(x) � kB

�1

k r

0

(x

0

) 8x

0

2 D

0

:

Therefore, the variational solution v

0

2 H

1

(D

0

) of

Lv

0

= g

0

in D

0

; g

0

2 L

p

(D

0

);

v

0

= 0 or

3

X

i;j=1

a

ij

@

i

u n

j

+ �u = 0 on @D

0

;

13



is mapped by the above change of variables to the solution v 2 H

1

(D) of

��v = g in D; g 2 L

p

(D);

v = 0 or

@u

@n

+ �u = 0 on @D:

Applying the results of the previous subsections to v and mapping back to D

0

, we get

analogous results by replacing ! by !

A

.

2.4 Extension to the Lam�e system

As shown in Lemma 4.1 of [13], the variational solution v = (v

1

; v

2

; v

3

)

�

(with a compact

support) of the Lam�e system

�

~

��v � (

~

�+ ~�) grad div v = f in D; (2.29)

where f

i

2 L

2

(D), i = 1; 2; 3, with Dirichlet boundary conditions has the tangential

regularities

@

13

v; @

23

v; @

33

v 2 L

2

(D)

3

:

As in Section 4 of [13], this allows to split up the Lam�e system into a system involving

the �rst two components and an elliptic equation for the third one. Therefore the

techniques developed above lead to the inclusion

v

i

2 A

2;2

�

(D); i = 1; 2; 3; (2.30)

with � > �

0

, and �

0

>

1

2

depends on the Lam�e coe�cients

~

�; ~�. Other boundary

conditions can also be treated based on further results of [13]. Unfortunately, at present,

no result in L

p

-spaces is available for the Lam�e system.

3 Interpolation error estimates

3.1 Local error estimates in weighted Sobolev spaces

As introduced in Subsection 1.2, we are interested in local approximation error estimates

for anisotropic elements. In [1], interpolation error estimates in classical Sobolev spaces

were derived. These are useful far from the edge, but unfortunately, we can not apply

them for tetrahedrons along the edge. In this subsection, we shall extend these results of

[1] to weighted Sobolev spaces and consider particularly the three-dimensional case. We

remark that interpolation error estimates for functions from weighted Sobolev spaces

were already proved in [22] for the two-dimensional isotropic case.

We consider �rst estimates on a reference element 


0

2 R where R is the set of

reference elements discussed later, see Figures 3.1 and 3.2. We notice here that the

elements of R have the following essential property (P):

(P) For each axis x

i

(i = 1; : : : ; 3) of the coordinate system there exists one edge E

i

of

the reference element, which is parallel to this axis and, for normalization, which

has length meas

1

(E

i

) = 1.

Using a similar notation as in [1, x2] we denote by P a space of polynomials, and

since each monomial x

�

= x

�

1

1

x

�

2

2

x

�

3

3

can be identi�ed with the multi-index � 2 N

3

, we

also identify P with the corresponding set of multi-indices. The hull P of P is the set

P := P [ f� + e

i

: � 2 P; i = 1; 2; 3g (fe

i

g

3

i=1

denotes the canonical basis of R

3

) and

the boundary @P of P is the set P n P . Note that max

�2P

j�j = 1 +max

�2P

j�j.
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We introduce now anisotropic weighted Sobolev spaces on 


0

: For a �nite set P � N

3

with 0 2 P and for � 2 Rwe set

V

P;p

�

(


0

) := fv 2 D

0

(


0

) : kv;V

P;p

�

(


0

)k <1g;

where

kv;V

P;p

�

(


0

)k

p

:=

X

�2P

Z




0

jr

��k+j�j

D

�

vj

p

dx;

k := max

�2P

j�j, D

�

:= @

�

1

1

@

�

2

2

@

�

3

3

, and r(x) := (x

2

1

+ x

2

2

)

1=2

. For v 2 V

P ;p

�

(


0

) we also

introduce the seminorm

jv;V

P ;p

�

(


0

)j

p

:=

X

�2@P

Z




0

jr

��k+j�j

D

�

vj

p

dx:

The space W

P;p

(


0

) is introduced in analogy to V

P;p

�

(


0

) by omitting the weight.

Lemma 3.1 Let P 2 N

3

, P �nite with 0 2 P . Then we have the compact embedding

V

P ;p

�

(


0

)

c

,! V

P;p

�

(


0

):

Proof For any v 2 V

P ;p

�

(


0

) and any �xed � 2 P , we have

r

��k�1+j�j

D

�

v 2 L

p

(


0

);

r

��k+j�j

D

�+e

i

v 2 L

p

(


0

); i = 1; 2; 3:

This implies r

��k+j�j

D

�

v 2 W

1;p

(


0

); since jr

��k+j�j

D

�

vj � Cjr

��k+j�j�1

D

�

vj almost

everywhere in 


0

. Thus there is a constant C > 0 such that

kr

��k+j�j

D

�

v;W

1;p

(


0

)k � Ckv;V

P ;p

�

(


0

)k: (3.1)

Let fv

m

g

m2N

be a sequence in V

P ;p

�

(


0

) such that for some K > 0 and for all m 2 N

the relation kv

m

;V

P ;p

�

(


0

)k < K holds. From (3.1) we obtain for all m 2 N and

� 2 P the bound kr

��k+j�j

D

�

v

m

;W

1;p

(


0

)k � C. Owing to the compact embedding

W

1;p

(


0

)

c

,! L

p

(


0

) (Rellich{Kondra�sov theorem), there is a subsequence fv

m

k

g such

that for all � 2 P

r

��k+j�j

D

�

v

m

k

! w

�

in L

p

(


0

): (3.2)

(Since P is �nite we can use card(P ) times this theorem.) Because 0 2 P we obtain in

particular

r

��k

v

m

k

! w

0

:= r

��k

v 2 L

p

(


0

);

which implies v

m

k

! v in D

0

(


0

), and D

�

v

m

k

! D

�

v in D

0

(


0

) for all � 2 P . With

(3.2), we deduce that w

�

= r

��k+j�j

D

�

v 2 L

p

(


0

) and therefore v

m

k

! v in V

P;p

�

(


0

).

Thus the embedding is proved. 2

We show now that, under some condition on �, elements of V

P;p

�

(


0

) are in L

1

(


0

),

as well as all derivatives with respect to P .

Lemma 3.2 Let P � N

3

, P �nite, such that 0 2 P . If � < 2 �

2

p

then for all v 2

V

P;p

�

(


0

) the following relation holds:

D

�

v 2 L

1

(


0

) for all � 2 P: (3.3)
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Proof If � � 0 the assertion is obvious since V

P;p

�

(


0

) ,! W

P;p

(


0

). If � > 0,

then we have r

��k+j�j

D

�

v 2 L

p

(


0

) for any � 2 P . Since j�j � k we deduce that

r

�

D

�

v 2 L

p

(


0

). Using H�older's inequality, we show that this implies (3.3): Indeed, we

have for

1

p

+

1

q

= 1

Z




0

jD

�

vj dx =

Z




0

r

��

jr

�

D

�

vj dx � kr

��

;L

q

(


0

)k kr

�

D

�

v;L

p

(


0

)k:

The L

q

(


0

)-norm of r

��

is �nite if and only if �q < 2 (by using cylindrical coordinates

(r; '; z)). But this is equivalent to � < 2�

2

p

. 2

From Lemmas 3.1 and 3.2 and using the same arguments as in [1, Lemma 2], we

obtain the following lemma.

Lemma 3.3 Let P 2 N

3

be a �nite set of multi-indices with 0 2 P . If � < 2�

2

p

then

there is a constant C > 0 such that

kv;V

P ;p

�

(


0

)k � Cjv;V

P ;p

�

(


0

)j (3.4)

for all v 2 V

P ;p

�

(


0

) satisfying

R




0

D

�

v dx = 0 for � 2 P .

We are now ready to give the interpolation estimate, �rst in a very general form,

then especially for our purposes.

Lemma 3.4 Let � < 2�

2

p

be a real number, and let P;Q � N

3

and  2 N

3

be such that

0 2 Q and Q+  � P . Further introduce a linear operator I : C

�

(


0

)! P , � 2 N, and

assume that there are linear functionals F

i

2

�

V

Q;p

�

(


0

)

�

0

, i = 1; : : : ; j, j = dimD



P ,

satisfying

F

i

(D



Iv) = F

i

(D



v) (i = 1; : : : ; j) for all v 2 C

�

(


0

) \ V

Q+;p

�

(


0

);

F

i

(D



q) = 0 for all i = 1; : : : ; j =) D



q = 0 for all q 2 P:

(3.5)

Then there is a constant C > 0 such that

kD



(v � Iv);V

Q;p

�

(


0

)k � CjD



v;V

Q;p

�

(


0

)j

for all v 2 C

�

(


0

) \ V

Q+;p

�

(


0

).

Proof We follow the proof of Lemma 3 of [1], since Lemma 1 of [1] can be extended to

the spaces V

P;p

�

(


0

) (owing to Lemma 3.2), while Lemma 2 of [1] is replaced by Lemma

3.3. 2

Theorem 3.5 Suppose that 0 � � < 1 �

1

p

, p > 2, and let Iv be the linear Lagrange

interpolant of v with respect to the vertices. Then for all v 2 A

2;p

�

(


0

) \ C(


0

) we have






r

��1

@

i

(v � Iv);L

p

(


0

)






�

� C

�

Z




0

h

r

p�

(j@

1i

vj

p

+ j@

2i

vj

p

) + j@

3i

vj

p

i

dx

�

1=p

; i = 1; 2;

(3.6)

and






r

�1

@

3

(v � Iv);L

p

(


0

)






� C

�

Z




0

(j@

13

vj

p

+ j@

23

vj

p

+ j@

33

vj

p

) dx

�

1=p

: (3.7)
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Proof We setQ := f(0; 0; 0)g;Q := f(0; 0; 0)g[fe

i

g

i=1;2;3

and remark that v 2 A

2;p

�

(


0

)

implies @

i

v 2 V

1;p

�

(


0

) = V

Q;p

�

(


0

) (i = 1; 2) and @

3

v 2 V

1;p

0

(


0

) = V

Q;p

0

(


0

). To prove

the assertion we apply Lemma 3.4 with P = Q,  := e

i

and F

1

(v) :=

R

E

i

v dx

i

, where

E

i

is that edge of 


0

which is parallel to the x

i

-axis, see Property (P) on page 14. It

remains to prove the continuity of F

1

.

In the simpler case i = 3 we can use the embeddings

V

1;p

0

(


0

) ,! W

1;p

(


0

) ,! W

1�2=p;p

(E

3

) ,! L

1

(E

3

)

which holds for 1�

2

p

> 0, that means p > 2.

For i = 1; 2 we use that v 2 V

1;p

�

(


0

) implies

r

�

v 2 W

1;p

(


0

) ,! W

1�2=p;p

(E

i

) ,! L

p

(E

i

); i = 1; 2:

Using H�older's inequality we conclude for

1

p

+

1

q

= 1 that

Z

E

i

jvj dx

i

� kr

��

;L

q

(E

i

)k kr

�

v;L

p

(E

i

)k

� kr

��

;L

q

(E

i

)k kv;V

1;p

�

(


0

)k:

Using that r

��

2 L

q

(E

i

) for � <

1

q

= 1�

1

p

the proof is complete. 2

Remark 3.6 In applications with the same type of boundary conditions on both faces

of the edge, we have � = 2�

2

p

�

�

!

A

+ " with an arbitrarily small positive real ". That

means � < 1 �

1

p

is equivalent to 1 �

1

p

<

�

!

A

, so that for p close to 2 this condition

always holds.

For mixed boundary conditions we have to replace

�

!

A

by

�

2!

A

, that means we are

restricted to !

A

< �. This restriction is known from the isotropic case (see [6]); it is

equivalent to the condition that u must be contained in W

3=2+";2

,! C(
) in order to

have well-de�ned pointwise values of u. Only in that case interpolation makes sense.

Lemma 3.4 can also be applied to prove an L

p

-estimate:

Theorem 3.7 Suppose that 0 � � < 2 �

3

p

, p � 1, and let Iv be the linear Lagrange

interpolant of v with respect to the vertices. Then for all v 2 A

2;p

�

(


0

) we have

kr

��2

(v � Iv);L

p

(


0

)k � C jv;V

2;p

�

(


0

)j: (3.8)

Proof We set Q := f� 2 N

3

: j�j � 1g, Q := f� 2 N

3

: j�j � 2g, and remark that

v 2 A

2;p

�

(


0

) ,! V

2;p

�

(


0

) = V

Q;p

�

(


0

). We apply Lemma 3.4 with  = (0; 0; 0) and

F

i

(v) := v(x

(i)

), i = 1; : : : ; 4, where x

(i)

are the vertices of 


0

. To prove the continuity

of F

i

we use the embedding [24]

V

2;p

�

(


0

) ,! V

2��;p

0

(


0

) ,! W

2��;p

(


0

) ,! C(


0

)

which is valid just for 0 � � < 2�

3

p

. 2

Remark 3.8 The restriction � < 2 �

3

p

does not imply di�culties because for p � 2

this condition is weaker than that of Theorem 3.5.
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Figure 3.1: Basic reference elements for anisotropic interpolation error estimates in the

three-dimensional case.

Corollary 3.9 For p � 1, 0 � � < 2�

3

p

, and v 2 A

2;p

�

(


0

) we have

kv � Iv;L

p

(


0

)k � C jv;A

2;p

�

(


0

)j; (3.9)

and for p > 2, 0 � � < 1�

1

p

, we have for v 2 A

2;p

�

(


0

) and i = 1; 2 the estimates

k@

i

(v � Iv);L

p

(


0

)k � C

�

Z




0

h

r

p�

(j@

1i

vj

p

+ j@

2i

vj

p

) + j@

3i

vj

p

i

dx

�

1=p

; (3.10)

k@

3

(v � Iv);L

p

(


0

)k � C

�

Z




0

(j@

13

vj

p

+ j@

23

vj

p

+ j@

33

vj

p

) dx

�

1=p

: (3.11)

Proof Estimate (3.9) follows from (3.8) since r

��2

is bounded from below and r

�

is

bounded from above by some constant C > 0. The estimates (3.10) and (3.11) follow

with the same arguments from (3.6) and (3.7). 2

Now we are going to transform these estimates to the actual �nite elements 


i

. We

recall from [8] that for two tetrahedra 


i

and 


0

there is an a�ne linear transformation

x = F (y) = By + b (3.12)

with B = (b

jk

)

3

j;k=1

2 R

3�3

, b = (b

j

)

3

j=1

2 R

3

, such that 


i

= F (


0

). We consider two

reference elements 


a

and 


b

as given in Figure 3.1. Note that anisotropic elements

can have three or four edges with length of order h

3

, they are mapped to 


a

and 


b

,

respectively. In Appendix A of [3] it is shown that then conditions (d) and (e) lead to

the following relations for the matrix elements b

jk

and b

(�1)

jk

of B and B

�1

, respectively:

jb

jk

j � C minfh

j;i

; h

k;i

g; jb

(�1)

jk

j � C minfh

�1

j;i

; h

�1

k;i

g: (3.13)

Using Corollary 3.9 for the special case � = 0 we get with (3.13) the estimates

kv � Iv;L

p

(


i

)k � C

3

X

j;k=1

h

j;i

h

k;i

k@

jk

v;L

p

(


i

)k for p � 1; (3.14)

k@

j

(v � Iv);L

p

(


i

)k � C

3

X

k=1

h

k;i

k@

jk

v;L

p

(


i

)k ; j = 1; 2; 3; for p > 2; (3.15)

where (3.15) can be formulated in the following equivalent way:

jv � Iv;W

1;p

(


i

)j � C

3

X

k=1

h

k;i

j@

k

v;W

1;p

(


i

)j for p > 2: (3.16)

18



-

6

H

H

H

H

H

HY

�

�

�

�

�

�

�

�

�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

0 1

1

1

y

1

y

2

y

3




0

a

-

6

H

H

H

H

H

HY

@

@

@

@

@

@

@

@

@

J

J

J

J

J

J

J

H

H

H

H

H

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

0 1

1

1

y

1

y

2

y

3




0

b

Figure 3.2: Additional reference elements for interpolation error estimates in weighted

Sobolev spaces.

This estimate was �rst proved in [1].

To transform the estimates (3.9){(3.11) for � > 0 we can assume that h

1

and h

2

are

of the same order, but we need additionally that

y

2

1

+ y

2

2

� Ch

�2

1

(x

2

1

+ x

2

2

) for all x 2 


i

; (3.17)

which can be concluded from

b

13

= b

23

= 0 and b

1

= b

2

= 0: (3.18)

The geometrical meaning of this condition is investigated in the following lemma.

Lemma 3.10 Assume that we are given an element 


i

satisfying the following condi-

tion.

(i) At least one vertex of 


i

is contained in the z-axis.

Consider a set R = f


a

;


0

a

;


b

;


0

b

g of four reference elements, where 


0

a

and 


0

b

are

obtained from 


a

and 


b

, respectively, by a reection at the plane x

1

=

1

2

, see Figure 3.2.

Then we can choose one element 


0

2 R such that the corresponding transformation

(3.12) satis�es (3.18) if and only if

(ii) there are two vertices of 


i

such that the straight line through them is parallel to

the z-axis.

Proof Observe that a translation parallel to the x

1

; x

2

-plane a�ects property (3.17);

therefore we consider four reference elements. One can choose the appropriate reference

element by the number of edges with length of order h

3

(three or four) and the number

of vertices of 


i

that are contained in the x

3

-axis (one or two).

To realize the necessity of condition (ii) let y

(i)

and y

(j)

(i; j 2 f0; 1; 2; 3g) be those

vertices of 


0

such that y

(i)

� y

(j)

= (0; 0; 1)

T

, and let x

(i)

:= By

(i)

+ b and x

(j)

:=

By

(j)

+ b. Then B

�1

(x

(i)

� x

(j)

) = (0; 0; 1)

T

, and in particular

 

b

(�1)

11

b

(�1)

12

b

(�1)

21

b

(�1)

22

! 

x

(i)

1

� x

(j)

1

x

(i)

2

� x

(j)

2

!

=

 

0

0

!

:

Observing that b

13

= b

23

= 0 leads to b

(�1)

13

= b

(�1)

23

= 0, we conclude b

(�1)

11

b

(�1)

22

�

b

(�1)

12

b

(�1)

21

= detB

(�1)

=b

(�1)

33

6= 0 and follow (ii).

With similar arguments we examine that (i) and (ii) are su�cient for (3.18): Assume

we are given an element 


i

satisfying (i) and (ii). The use of four reference elements

19



allows to �nd one reference element such that (1) each vertex contained in the x

3

-axis

is mapped to a vertex at the y

3

-axis, thus b

1

= b

2

= 0, and (2) two vertices x

(i)

and x

(j)

with x

(i)

k

= x

(j)

k

, k = 1; 2, are mapped to y

(i)

and y

(j)

with y

(i)

k

= y

(j)

k

, k = 1; 2, thus from

the �rst two equations of the system x

(i)

�x

(j)

= B(y

(i)

� y

(j)

) we get b

13

= b

23

= 0. 2

If we apply the estimates with � > 0 only for the elements close to the edge, then

the conditions (i) and (ii) are satis�ed via assumption (f) from page 5.

We remark that it is desirable for treating curved edges that the assumption (ii) is

weakened to a condition similar to (e) from page 5. This seems to be possible for special

cases but not in general. We will discuss this in a subsequent paper.

Theorem 3.11 Let I

h

v be the linear Lagrange interpolant of v 2 A

2;p

�

(


i

) with respect

to the vertices. Assume further that for the element 


i

with h

2;i

� h

1;i

the conditions

(d), (e), (i), and (ii) are satis�ed. Then for 0 � � < 2�

3

p

, p � 1, the following local

interpolation error estimate holds:

kv � I

h

v;L

p

(


i

)k � C

8

>

>

<

>

>

:

Z




i

2

6

6

4

h

2��

1;i

X

j�j=2

�

3

=0

r

�p

jD

�

vj

p

+ Ch

2

3;i

X

j�j=2

�

3

>0

jD

�

vj

p

3

7

7

5

dx

9

>

>

=

>

>

;

1=p

: (3.19)

Moreover, if 0 � � < 1�

1

p

, p > 2, then for all v 2 A

2;p

�

(


i

) the norm of the derivatives

of the interpolation error can be estimated by

k@

j

(v � Iv);L

p

(


i

)k

� C

�

Z




i

h

h

p(1��)

1;i

r

p�

(j@

1j

vj

p

+ j@

2j

vj

p

) + h

p

3;i

j@

3j

vj

p

i

dx

�

1=p

; i = 1; 2; (3.20)

k@

3

(v � Iv);L

p

(


i

)k � C

(

Z




i

3

X

k=1

h

p

k;i

j@

k3

vj

p

dx

)

1=p

: (3.21)

Proof The assertion is a direct consequence from Corollary 3.9 using the transformation

(3.12) with (3.13) and (3.17). 2

Corollary 3.12 Under the assumptions of Theorem 3.11 the following estimates hold:

kv � I

h

v;L

p

(


i

)k � C (h

2��

1;i

+ h

2

3;i

)jv;A

2;p

�

(


i

)j; (3.22)

jv � I

h

v;W

1;p

(


i

)j � C (h

1��

1;i

+ h

3;i

)jv;A

2;p

�

(


i

)j: (3.23)

3.2 Global error estimates

In this section, we investigate the global interpolation error, that is the di�erence be-

tween the solution u of our boundary value problem (1.6) or (1.7) and its piecewise

linear interpolant I

h

u on the family of anisotropic graded meshes introduced in Sub-

section 1.2. The di�culty is that we are interested on one hand in an estimate in the

energy norm which is equivalent to k : ;W

1;2

(
)k, in order to apply C�ea's lemma for

the �nite element error. But on the other hand the local interpolation error estimates

(3.16) and (3.23) are valid for k : ;W

1;p

(


i

)k with p > 2 only.

Theorem 3.13 Let u be the solution of the boundary value problem (1.6) or (1.7), and

2 < p < p

+

(p

+

is de�ned in (1.24)). Then for the interpolation error u � I

h

u, I

h

de�ned on the family of meshes in Subsection 1.2, the following estimate holds:

ku� I

h

u;W

1;2

(
)k � Ch

s

kf ;L

p

(
)k;

s =

(

1 for � <

�

!

A

�

p

2p�2

;

2

p

� 1 +

1

�

�

�

!

A

� " for � �

�

!

A

�

p

2p�2

:

(3.24)
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Proof We reduce the estimation of the global error to the evaluation of the local errors

and distinguish between the m

0

= O(h

�1

) elements whose closure has at least one

common point with the edge, and the m�m

0

= O(h

�3

) elements away from the edge:

ju� I

h

u;W

1;2

(
)j

2

=

m

0

X

i=1

ju� I

h

u;W

1;2

(


i

)j

2

+

m

X

i=m

0

+1

ju� I

h

u;W

1;2

(


i

)j

2

: (3.25)

For the elements in the �rst sum we apply the local estimate (3.23). Using H�older's

inequality, we have for i = 1; : : : ; m

0

ju� I

h

u;W

1;2

(


i

)j

p

� (meas


i

)

�1+p=2

ju� I

h

u;W

1;p

(


i

)j

p

� C(hh

2

i

)

�1+p=2

(h

1��

i

+ h)

p

ju;A

2;p

�

(


i

)j

p

:

Summing up these estimates for all i = 1; : : : ; m

0

, and using again H�older's inequality,

we can conclude

m

0

X

i=1

ju� I

h

u;W

1;2

(


i

)j

2

� m

1�2=p

0

 

m

0

X

i=1

ju� I

h

u;W

1;p

(


i

)j

p

!

2=p

� C

m

0

X

i=1

h

�1+2=p

(hh

2

i

)

1�2=p

(h

1��

i

+ h)

2

ju;A

2;p

�

(


i

)j

2

� C

�

h

(2���2=p)=�

+ h

1+(1�2=p)=�

�

2

kf ;L

p

(
)k

2

:

Since for � = maxf0; 2�

2

p

�

�

!

A

+"

0

g there holds

1

�

(2�

2

p

��) > s, and we have directly

1 +

1

�

(1�

2

p

) > 1 � s (with s from (3.24)), we get

m

0

X

i=1

ju� I

h

u;W

1;2

(


i

)j

2

� Ch

2s

kf ;L

p

(
)k

2

: (3.26)

For the elements in the second sum of (3.25) we can use that u 2 W

2;p

(


i

), i =

m

0

+1; : : : ; m, and thus apply the local estimate (3.16). Again with H�older's inequality,

we have for i = m

0

+ 1; : : : ; m:

ju� I

h

u;W

1;2
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i

)j

p
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i

)

�1+p=2
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�
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p
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(3.27)

For � <

�

!

A

�

p

2p�2

we can estimate h

2p�2

i

� Ch

2p�2

r

(2p�2)(1��)

i

= Ch

2p�2

r

p�

i

with

� =

1

p

(2p� 2)(1� �) > 2�

2

p

�

�

!

A

.

For � �

�

!

A

�

p

2p�2

we have to use part of h

2p�2

i

via h

i

< Cr

i

to get also the power

p� of r

i

on the right hand side:

h

2p�2

i

= h

p

�

�

�

!

A

�p"

i
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2p�2�

p

�

�

�

!

A

+p"
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�

�
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(
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A

�p"

r
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with � =

1

p
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p

�

�

�

!

A

� p"

�

(1� �) + 2p� 2�

p

�

�

�

!

A

+ p"

i

= 2�

2

p

�

�

!

A

+

"

�

> 2�

2

p

�

�

!

A

for " > 0. Note that h

2p�2�

p

�

�

�

!

A

+p"

i

< Cr

2p�2�

p

�

�

�

!

A

+p"

i

because 2p� 2�

p

�

�

�

!

A

+ p" >

2p� 2�

p

�

�

�

!

A

� 0 due to the assumption on �.
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Thus we get with (3.27)

ju� I

h

u;W

1;2
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i

)j

p

� Ch

ps+3(p�2)=2

ku;A

2;p

�

(


i

)k

p

with s from (3.24). Summing up these estimates for all i = m

0

+ 1; : : : ; m, and using

again H�older's inequality, we can conclude with Corollary 2.7

m

X
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ju� I

h

u;W

1;2

(


i
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� (m�m

0

)

1�

2

p
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p
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3

2
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�

(
)k

2
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kf ;L

p

(
)k

2

: (3.28)

From (3.26) and (3.28) we get

ju� I

h

u;W

1;2

(
)j � Ch

s

kf ;L

p

(
)k: (3.29)

The estimation is much simpler in the case of the L

2

-error because the local estimates

hold for all p � 1: For i = 1; : : : ; m

0

we have by (3.22) with p = 2

m

0

X

i=1

ku� I

h

u;L

2

(


i

)k

2

� C

�

h

(2��)=�

+ h

2

�

2

ku;A

2;2

�

(
)k

2

� Ch

2s

kf ;L

p

(
)k;

because

1

�

(2� �) >

1

�

(1 +

�

!

A

� ") > 1 + s. For the second term we have via (3.14)

m
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:

With the same ideas as above we get

h

4
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�
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:

h
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)
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and thus

m
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ku� I
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0

= 2 for � <

1

2

(1+

�

!

A

), s

0

= 1+

1

�

�

�

!

A

�" for � �

1

2

(1+

�

!

A

), that means s

0

> 1+s

for all �, so that (3.29) holds not only for the seminorm j : ;W

1;2

(
)j but also for the

norm k : ;W

1;2

(
)k. 2

Corollary 3.14 Let u be the solution of the boundary value problem (1.6) or (1.7),

2 < p < p

+

(p

+

is de�ned in (1.24)), and let u

h

be the �nite element solution of (1.13)

or (1.14), respectively, using a family of meshes as de�ned in Subsection 1.2. Then the

error estimate

ku� u

h

;W

1;2

(
)k � Ch

s

kf ;L

p

(
)k

holds, with s from (3.24).

This assertion remains true for mixed boundary conditions and ! < �, see Subsection

2.2 and Remark 3.6. However, we have to replace the condition on p by 2 < p <

(1�

�

!

A

)

�1

and

�

!

A

by

�

2!

A

in (3.24).
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Remark 3.15 Note that the restriction p < p

+

is not essential for this estimate, be-

cause f 2 L

p

(
) yields f 2 L

q

(
) for q � p and kf ;L

q

(
)k � Ckf ;L

p

(
)k. We can

always �nd some q < p

+

and apply Theorem 3.13 for q. Nevertheless, we have to replace

p in (3.24) by minfp; p

+

� �g, � > 0 arbitrary.

Remark 3.16 In order to use meshes which are not too much re�ned, the estimates

are most favourable for p close to 2. For p = 2+� (� is an arbitrarily small real number)

we have

s =

8

<

:

1 for � <

�

!

A

�

1�

�

2+2�

�

;

1

�

�

�

!

A

� "�

�

2+�

for � �

�

!

A

�

1�

�

2+2�

�

;

so that one can conclude that the approximation order s is

s =

(

1 for � <

�

!

A

;

1

�

�

�

!

A

� " for � �

�

!

A

;

(3.30)

(even when f is smoother). On the other hand it is not clear in which way the constant

C depends on p; we suspect that C !1 for p! 2.

4 Condition number of the sti�ness matrix

Consider the basis f�

i

(x)g

k

i=1

with �

i

(x

(j)

) = �

ij

in V

h

(or V

0h

, respectively), with k

being the number of degrees of freedom. Thus each function v

h

2 V

h

(or V

0h

) can be

represented by v

h

(x) =

P

k

i=1

v

i

�

i

(x), with v

i

= v

h

(x

(i)

).

The sti�ness matrix A := (a

ij

)

k

i;j=1

has the entries a

ij

= a(�

i

; �

j

). We want to

estimate the condition number � of this matrix:

� :=

�

max

�

min

(4.1)

where �

max

and �

min

are the maximal and minimal eigenvalues of A.

Using the Rayleigh quotient and the boundedness and coercivity of the bilinear form

Ckv
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1;2

(
)k

2

� a(v

h

; v

h

) � Ckv
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;W

1;2

(
)k

2

8v

h

2 V

h

(V

0h

);

as well as the identity a(v

h

; v

h

) = hAv; vi (h : ; : i is the Euclidean scalar product in R

k

,

v := (v

i

)

k

i=1

is the grid function related to v

h

), we get

�

max

� Cmax

v2R

k

kv

h

;W

1;2

(
)k

2

hv; vi

; (4.2)

�

min

� C min

v2R

k

kv

h

;W

1;2

(
)k

2

hv; vi

: (4.3)

We are now looking for an upper and a lower bound of kv

h

;W

1;2

(
)k

2

in terms of hv; vi.

Using the inverse inequality (Lemma 1.3) we have

kv

h
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1;2

(
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2

=

m

X
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i
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m
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: (4.4)

On the reference element 


0

we have

�

min

X

j2I

i

v

2

j

� kv

h

;L

2

(


0

)k

2

� �
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X

j2I

i

v

2

j

; (4.5)
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where �

min

and �

max

are the minimal and the maximal eigenvalues of the element mass

matrix

�

R




0

�

i

�

j

dx

�

4

i;j=1

and I

i

is the set of numbers of the nodes belonging to 


i

.

Transforming (4.5) to 


i

we get

C

1

meas(


i

)

X

j2I

i

v

2

j

� kv
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;L
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(


i

)k

2

� C

2

meas(


i

)

X

j2I

i

v

2

j

: (4.6)

Inserting (4.6) into (4.4) and using meas(


i

) � Ch

2

i

h and that each node belongs only

to a bounded number of elements we get

kv

h

;W

1;2

(
)k

2

� Chhv; vi

and with (4.2)

�

max

� Ch (4.7)

For the lower estimate of kv

h

;W

1;2

(
)k

2

we use the embedding

W

1;2

(
) ,! W

1;2

1��

(
) ,! W

0;2

��

(
)

which holds for 0 � � < 1 [16]. (The weighted W -spaces were introduced in Subsection

1.1.) Consequently, we have

kv

h

;W
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(
)k

2

� Ckr

��

v

h

;L

2

(
)k

2

: (4.8)

Denoting R

i

:= max

x2


i

r(x), and using (4.6) we get from (4.8)
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(
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2

� C

m
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�2�

i

kv

h
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(4.9)
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h

X
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i

v

2
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(4.10)

Using h

i

� ChR

1��

i

(note that this estimate holds for all i = 1; : : : ; m) and choosing

� = 1� �, we obtain

kv

h

;W

1;2

(
)k

2

� Ch

3

hv; vi

and with (4.3)

�

min

� Ch

3

(4.11)

independent of the choice of �. In contrast to this we get �

min

� Ch

3

for isotropic

elements only in the case � >

1

3

, see for example [6].

From (4.7) and (4.11) we get the estimate

� � Ch

�2

; (4.12)

that means, the order of the condition number has the same order as in the case of

smooth solutions and isotropic meshes.
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Figure 5.1: Example for an anisotropic mesh.

5 Numerical tests

As an example we consider the Poisson problem

��u = f in 


u = g on @


(1)

@u

@n

= 0 on @


(2)

in the three-dimensional domain 
 = f(x

1

; x

2

; x

3

) = (r cos'; r sin'; z) 2 R

3

: r <

1; 0 < ' <

3

2

�; 0 < z < 1g with the boundary @
 = @


(1)

[ @


(2)

, @


(1)

= fx 2 @
 :

r = 1g. The right hand sides f and g are taken such that

u = r

2=3

cos

2

3

'

 =

(

z

2

+ 1 for z 2 [0;

1

2

]

�z

2

+ 2z +

1

2

for z 2 (

1

2

; 1]

is the exact solution of the problem. It has the typical behaviour in the neighbourhood of

the edge for a Neumann problem. We remark that u 2 A

2;p

�

(
) if and only if � > 2�

2

p

�

2

3

,

that f = ��u 2 L

p

(
) for all p 2 [1;1], and that f has a jump at z =

1

2

.

The meshes used were constructed as described at the end of Subsection 1.2, see

also Figure 5.1. In order to investigate the inuence of anisotropic mesh grading on

the approximation order we varied the mesh size h (

1

6

,

1

12

,

1

18

,: : : ,

1

42

) and computed

numerical solutions for � = 1:0 and � = 0:5. From them we calculated the energy norm

kek of the �nite element error e = u � u

h

by numerical integration with an 11-point

formula. The relative norms kek

%

:= kek=ku

h

k are plotted against the number N of

unknowns using a double logarithmic scale in Figure 5.2.

The computations show that the use of anisotropic meshes leads to the optimal

approximation order and diminishes the error even for rather coarse meshes.
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Figure 5.2: Behaviour of the �nite element error for ungraded (� = 1:0) and anisotrop-

ically graded meshes (� = 0:5).
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