
Realization and comparison

of various mesh re�nement strategies near edges

Thomas Apel

�

Frank Milde

y

August 1, 1994

Abstract

This paper is concerned with mesh re�nement techniques for treating elliptic bound-

ary value problems in domains with re-entrant edges and corners, and focuses on numer-

ical experiments. After a section about the model problem and discretization strategies,

their realization in the experimental code FEMPS3D is described. For two representa-

tive examples the numerically determined error norms are recorded, and various mesh

re�nement strategies are compared.
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1 Introduction

This paper is concerned with mesh re�nement techniques for treating elliptic boundary

value problems in domains with re-entrant edges and corners. It is well known that a

non-smooth boundary of the domain causes the regularity of the solutions of the problems

to be low in comparison with that of the solution of smooth problems. As a result the

approximation of the standard �nite element solution of the problem deteriorates, and many

specially adapted numerical methods have been developed in recent years, see for example

[1, 2, 3, 5, 6, 10, 17, 19, 22, 23, 24]. In this paper we shall focus on mesh re�nement strategies.

In Section 2 we give a short introduction into the �eld. For simplicity we study the Pois-

son equation with Dirichlet boundary conditions. In Subsection 2.1 the analytical behaviour

of the exact solution is characterized. Then we give some basic information on the �nite

element discretization. In the last two subsections we review a-priori grading and an adap-

tive algorithm together with some results from the numerical analysis of these strategies.

We remark that the analytical behaviour of the solution is similar for a large class of prob-

lems including the Lam�e equation systems, the biharmonic equation and general boundary

conditions. Mesh re�nement strategies were also studied for more general problems, see for

example [5].

Some variants of the algorithms were realized by the authors in the experimental code

FEMPS3D at the Technische Universit�at Chemnitz-Zwickau. The aim of this paper is to

describe the computational realization in more detail than in the more theoretical papers of

the �rst author. This is done in Section 3 where we also discuss some di�culties connected

with our realization. But we remark that most of the programming was done in order to

investigate whether and how di�erent mesh re�nement stategies work. In order to derive

approximation orders we are interested in the calculation of problems with as many degrees

of freedom as possible, so we often compromised on memory and computation time in the

sense of saving memory. We do not claim that our realization is optimal in any sense.

Another aim of this paper is to compare various strategies and realizations for the treat-

ment of elliptic boundary value problems with boundary singularities. For this purpose we

computed the corresponding approximation errors in the energy norm for two typical exam-

ples. The results are given in Sections 4 and 5. We can conclude that any of the proposed

mesh re�nement algorithms is better than computing without paying attention to the large

error near concave edges and corners. It has been underlined that the proposed a-priori

mesh grading algorithms have the optimal convergence order already on coarse meshes. For

incorporating this knowledge into adaptive procedures, di�erent proposals were investigated.

We get the best results when an anisotropic grading is realized in each re�nement step using

a coordinate transformation. But the problem is to �nd the optimal transformation for the

domain under consideration.

2 Treatment of elliptic problems with boundary singulari-

ties via the �nite element method with mesh re�nement

2.1 The model problem

Consider the Dirichlet problem for the Poisson equation

��u = f in 


u = g on @


(2.1)

in its weak formulation: Find u 2 V

�

such that

a(u; v) = (f; v) for all v 2 V

0

: (2.2)
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Here, we de�ne V

0

:= fv 2 H

1

(
) : vj

@


= 0g, V

�

:= fv 2 H

1

(
) : vj

@


= gg, and

a(u; v) =

R




ru � rv dx : We assume that f 2 L

2

(
), that g is trace of a H

2

(
)-function,

and that the boundary @
 is at least piecewise smooth.

The regularity of the solution u of (2.2) is determined by the properties of the domain


 2 IR

d

, d = 2; 3. If 
 is a smooth or a convex domain then u 2 H

2

(
). But this is no

longer true, when the domain 
 contains re-entrant corners or edges.

Consider �rst the two-dimensional case and let x

0

2 @
 be a boundary point and ! 2

(�; 2�) the internal angle at this point. For simplicity assume that @
 is polygonal near x

0

.

Introduce polar coordinates (r; ') in the neighbourhood U := fx 2 IR

2

: jx � x

0

j � R

0

g:

Then the solution can be represented by

u = �(r)  r

�

sin�' + u

r

; (2.3)

where �(:) is a smooth cut-o� function,  and � =

�

!

2 (0; 1) are real numbers, and u

r

2

H

2

(
) is the regular part of the solution.

In three dimensions, the irregular boundary points are classi�ed as conical corners, edges

and polyhedral corners. Near edges we have the same representation formula (2.3). However,

r is the distance to the edge, and the coe�cient  is no longer constant. In general the

function  is dependent on all three spatial variables. But under the assumption that not

only the right hand side f , but also its derivatives

@f

@z

and

@

2

f

@z

2

are contained in L

2

(
), then

 is just a function of z. Here, we denoted by z the coordinate in direction of the edge.

In the case of polyhedral corners we have a superposition of corner and edge singularities.

The additional terms arising from the corners have also a representation in analogy to (2.3).

The coe�cient  is constant, r is the distance to the corner, but the function of the spherical

angles is more complicated; it can even have singularities itself. Most important for our

purposes is that the smoothness properties of this term is again characterized by a real

number �, which is here the smallest eigenvalue of the Laplace-Beltrami-Operator on the

intersection of 
 and the unit-sphere centered at the corner.

For more general problems and for a more detailed study of the regularity of the solutions

we refer the reader to the books of Grisvard [14] and Kufner/S�andig [15] or to the review in

[5, Section 2].

2.2 The �nite element discretization

Assume for the moment that the domain 
 is a polygon in IR

2

or a polyhedron in IR

3

.

Then we consider a family of partitions T

h

of 
 with the usual regularity properties; see for

example [11]:

(a) 
 =

S

m

i=1




i

, where 


i

are simplices in IR

d

(triangles or tetrahedra),

(b) 


i

\ 


j

= ; for i 6= j,

(c) any edge (for d = 2; 3) or face (for d = 3) of 


i

is either a subset of @
 or an edge or

face of another 


j

.

In the standard �nite element method there are two additional assumptions. First it is

acquired that the aspect ratio h

i

=%

i

, which is de�ned as the quotient of the diameter h

i

of




i

and the diameter %

i

of the largest inner ball of 


i

, is bounded: There exists a constant �

independent of T

h

with

(d)

h

i

%

i

< � for all 


i

2 T

h

.

The second assumption is that all elements are approximately of the same size: There exist

constants C and C such that

(e) Ch � h

i

� Ch for all 


i

2 T

h

.
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Note that condition (e) yields that the number m of elements and the number n of vertices

are of the order h

�d

.

Using this partition we introduce a �nite-dimensional space V

0h

� V

0

and a manifold

V

�h

� V

�

of continuous functions such that the restriction of any function from V

0h

or V

�h

to

an element 


i

is a polynomial of �rst degree. In analogy to (2.2) the �nite element solution

u

h

� V

�h

is now de�ned by

a(u

h

; v

h

) = (f; v

h

) for all v

h

2 V

0h

: (2.4)

It has been proved that the approximation error u� u

h

can be estimated by

ku� u

h

;H

1

(
)k � Ch

�

kf ;L

2

(
)k; (2.5)

where � = 1 for a convex domain, � = � for a two-dimensional domain with a re-entrant

corner and � = �� " (" is an arbitrarily small positive real number) for a three-dimensional

domain with corners and/or edges, for � see Subsection 2.1 [2, 5, 17].

If the boundary is not polygonal/polyhedral, the domain 
 is in general approximated

by a polyhedral domain 


h

. This can be done in di�erent ways; the crucial point is that the

domain error (
 n


h

)[ (


h

n
) has to be contained in a boundary strip with a diameter of

order h

2

. The consequences are that additional terms have to be estimated in order to get

the approximation result (2.5), see [2, 17, 28] for details from di�erent points of view.

Note further that in general the assembly of the system of equations for determining the

�nite element solution requires numerical integration, at least for the right hand side. The

solution of this system introduces another error. In order to get the error estimate (2.5) it is

necessary that these error contributions are of lower order, see for example [11] for the error

analysis.

2.3 A-priori mesh grading

Because of the practical importance of problems with boundary singularities it has been

necessary to develop adapted numerical methods which yield error estimates of the same

quality as for problems with a regular solution. Here, we shall focus on �nite element

methods involving a-priori local mesh grading. The idea is to use the knowledge about the

singular solution to determine a relation between the size of the elements and their distance

to the corner or edge.

This approach was �rst investigated in the two-dimensional case [6, 17, 19] and it turned

out that the condition (e) from Subsection 2.2 should be replaced in a re�nement neighbour-

hood U := fx 2 IR

2

: jx� x

0

j � R

0

g around the corner x

0

= (x

0

; y

0

) by the condition

(e')

C

1

h

1=�

� h

i

� C

1

h

1=�

if x

0

2 


i

;

C

2

hr

1��

i

� h

i

� C

2

hr

1��

i

if x

0

62 


i

:

By r

i

:= dist(


i

; x

0

) := sup

x2


i

jx � x

0

j we denoted the distance of the element 


i

to the

point x

0

.

For � < � it has been proved that the error estimate (2.5) holds with � = 1. The easiest

way to construct such a mesh is to generate a standard (ungraded) mesh and to move the

nodes from U via the coordinate transformation

r :=

p

(x� x

0

)

2

+ (y � y

0

)

2

;

x := x

0

+ (

r

R

0

)

�1+1=�

;

y := y

0

+ (

r

R

0

)

�1+1=�

:

(2.6)

Meshes of this type are used in [17] and with a slight modi�cation in [19]. Note that the

number of elements and nodes remains unchanged and that condition (d) is still ful�lled

after the transformation.
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The extension of this approach to three-dimensional domains with edges is natural. How-

ever we have to distinguish between two types of meshes which can be generated.

When we consider a neighbourhood of an edge and employ the transformation (2.6)

to the nodes of a certain quasiuniform mesh, we get an anisotropic mesh. According to

[1], an element is called anisotropic if its diameters in di�erent directions have di�erent

asymptotics. Though it turns out that such meshes do not ful�l condition (d), they can be

applied successfully. Under some smoothness assumptions on the data, estimate (2.5) has

been proved with � = 1 and � < � [1, 4].

On the other hand, by describing the mesh via condition (e') it is possible to investigate

meshes which ful�l condition (d) and to prove the same error estimate (2.5) (with � = 1

for � < �, f 2 L

2

(
)). The disadvantage of such meshes is that for � �

1

3

the asymptotic

number of elements as well as the asymptotic condition number increase [2, 5]. We suggest

to construct these isotropic meshes with the method of dyadic partition [13]: Starting with

a coarse mesh the elements are divided until condition (e') is ful�lled with suitable constants

C

1

; C

1

; C

2

and C

2

, see also Subsection 3.3.

2.4 Adaptive algorithms

For a detailed knowledge of the errors in a particular �nite element approximation and for

assessing its acceptability, an a-posteriori error estimator has to be provided. Usually the

a-posteriori error estimate is calculated locally and can thus serve as an indicator for re-

gions with large or small errors, respectively, as the quality of a �nite element approximation

in general varies over the computational domain. Thus it is natural to use so-called auto-

matic mesh adapting �nite element strategies for problems with boundary singularities. The

process consists in repeating the three steps

� calculating an approximate solution,

� estimating the error locally,

� generating an improved mesh,

until the error is within a desired tolerance ". For a review of error estimators and re�nement

strategies see for example [16] or [25, 26].

We use a residual type error estimator based on the one introduced in [7]. Consider a

tetrahedron 


i

with the faces �

ij

and the outer normal vectors n

ij

, (j = 1; : : : ; 4). Then the

local error contributions �

i

are calculated by

�

2

i

= C

4

X

j=1

(meas(�

ij

))

3=2

�

2

ij

; (2.7)

�

ij

=

(

1

2

(ru

h

j




i

� ru

h

j




ij

) � n

ij

if �

ij

= 


i

\ 


ij

;

0 if �

ij

� @


i

;

and added to the global estimate

�

2

=

m

X

i=1

�

2

i

: (2.8)

The constant C must be taken from experience. For problems with homogeneous Dirichlet

boundary conditions (Neumann or Newton boundary conditions can be inhomogeneous) the

constant can be extrapolated from two calculations with di�erent meshes: From

kuk

2

E

� ku

h

1

k

2

E

= C

2

�

2

C=1;h=h

1

kuk

2

E

� ku

h

2

k

2

E

= C

2

�

2

C=1;h=h

2
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we can eliminate the unknown energy kuk

2

E

:

C

2

=

ku

h

1

k

2

E

� ku

h

2

k

2

E

�

2

C=1;h=h

2

� �

2

C=1;h=h

1

(2.9)

When the estimated error � is not within a given tolerance ", all elements 


i

with

�

2

i

�

"

2

m

are marked for re�nement (m is the number of elements). Our implementation of the re�ne-

ment procedure is described in Subsection 3.2.

3 Realization of the algorithms in the experimental code

FEMPS3D

3.1 Basic properties of FEMPS3D

FEMPS3D is a �nite element code for solving Poisson's equation with (in general inhomoge-

neous, mixed) boundary conditions of Dirichlet, Neumann or Newton type. The �rst version

was developed in 1987-1989 at a VAX workstation, and in 1993 it was ported to the UNIX

operating system. The main features are the following:

� The mesh can consist of tetrahedra, hexahedra (cubes) and pentahedra (triangular

prisms). Linear and quadratic shape functions can be used.

� The code does not contain a general mesh generator. It is possible to read mesh

data from a �le generated by any code, eventually after adapting the data structure.

Recently we developed some special routines to triangulate our test domains.

� The problem data are given in general by function subroutines. For Dirichlet data we

developed the additional feature to interpolate some pointwise values along the surface.

� For the assembly of the equation system many di�erent integration rules are pro-

grammed. Only the non zero elements of the upper right triangle of the matrix are

stored. The system is solved with a conjugate gradient method, preconditioned with

di�erent types of incomplete Cholesky factorization (IC(0), IC(1), MIC), see [21].

� The resulting solution can be interpreted with tables of values in subdomains and with

a representation of isolines. When the exact solution is known in academic examples,

the table of values and the isolines can be given for the error as well. Additionally the

error norms in H

1

(
), L

2

(
) and in a discrete maximum norm are calculated.

� In general real values are stored in double precision, the exception is the array of the

coordinates of the nodes, which is single precision for memory reasons. The versions

1 and 2 of FEMPS3D are restricted to a maximum of 32767 nodes. This restriction

is removed in version 3 by using 4-byte-integers (optionally) for the storage of the

topology.

In 1993/94 the code was extended, but only for linear tetrahedral elements:

� In version 2 we included an error estimator of residual type and an adaptive mesh

re�nement procedure, see details in [3] and Subsection 3.2.

� In version 3 the restriction to 32767 nodes was removed and some subroutines were

reprogrammed with the aim of saving memory. The isotropic a-priori mesh grading by

dyadic partition (see Subsection 2.3) was included.
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� In the expectation of an optimization of the meshes two nodal relaxation procedures

were included: the standard Laplace smoothing and the improved version introduced

in [18] for graded meshes, see Subsections 3.4 and 4.4.

� An interface to the visualization package GRAPE [27] was developed.

3.2 The mesh re�nement algorithm

Consider the following situation: Given a �nite element mesh with some (eventually all)

elements marked for re�nement due to the result of an error estimation or within the process

of dyadic partitioning (see Subsections 2.3 and 3.3). The task is to construct a re�ned mesh.

One method is the bisection of the elements as described in [8, 20]. But we follow the

stronger strategy and divide all marked tetrahedra into 8 smaller ones of equal volume and

programmed the stable version of Bey [9]: A tetrahedron with the nodes 1; 2; 3; 4 and the

midpoints 12; 13; 14; 23; 24; 34 of the edges is split into the following ones:

t

1

: P

1

P

12

P

13

P

14

t

2

: P

12

P

2

P

23

P

24

t

3

: P

13

P

23

P

3

P

34

t

4

: P

14

P

24

P

34

P

4

t

5

: P

12

P

13

P

14

P

24

t

6

: P

12

P

13

P

23

P

24

t

7

: P

13

P

14

P

24

P

34

t

8

: P

13

P

23

P

24

P

34

Note that the enumeration is important to avoid degenerating angles. We will call this

procedure red re�nement of a tetrahedron.

The consequence of a local red re�nement is the existence of tetrahedra with irregular

nodes, that are tetrahedra which were not re�ned theirselves but at least one of their neigh-

bours with at least one common edge. For these elements we follow with one exception the

green re�nement strategy in [12]; see Figures 3.1 { 3.3 for the three main cases. In the

cases of more than three irregular nodes or three irregular nodes which do not belong to one

single face, the element is red re�ned. In opposite to [12] we did not treat the remaining

case of two irregular nodes at adjacent edges in a separate way, compare Figure 3.4, but we

introduced an additional node and attributed this case to the one in Figure 3.3.

In order to avoid distorted angles, in each re�nement step the green re�nement of the

previous level is removed. Consequently, at a deeper re�nement level it is possible that after

the red re�nement some tetrahedra have edges with more than one irregular node. These

elements are treated with red re�nement.

During the production of this so-called regular closure of the mesh it can happen that

new nodes are introduced, eventually even at edges of green tetrahedra. Thus it must be

considered as an iterative process. The entire mesh re�nement algorithm can shortly be

described in the following way:

1. Remove all green elements of the given mesh.

2. Divide all marked elements by red re�nement.

3. Go through the list of elements and treat all elements with irregular points correspond-

ing to the cases discussed above.

4. Go through the list of elements and remove green tetrahedra with irregular points.

5. If there were any actions in step 3 or 4 then go to 3 else stop.
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1

2

3

4

12

t

1

: 1 3 4 12

t

2

: 2 4 3 12

Figure 3.1: Division of a tetrahedron with one irregular node into two subtetrahedra.

1

2

3

4

12

34

t

1

: 1 3 12 34

t

2

: 2 4 12 34

t

3

: 3 2 12 34

t

4

: 4 1 12 34

Figure 3.2: Division of a tetrahedron with two irregular nodes at opposite edges into four

subtetrahedra.

1

2

3

4

12

13

23

t

1

: 3 23 13 4

t

2

: 2 12 23 4

t

3

: 1 13 12 4

t

4

: 4 23 12 13

Figure 3.3: Division of a tetrahedron with three irregular nodes at one face into four subte-

trahedra.

or

Figure 3.4: Treatment of two irregular nodes at adjacent edges without introducing an

additional node.
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3.3 The a-priori grading algorithm

As discussed in Subsection 2.3, a mesh can be graded using a coordinate transformation.

This type of grading leads near edges to anisotropic meshes. An alternative is the method

of dyadic partitioning [13]: Given a start mesh proceed as follows:

1. Mark all elements which do not ful�l condition (e').

2. If no element is marked then stop.

3. Run the mesh re�nement algorithm from Subsection 3.2 an go to 1.

The main di�culty of this algorithm is the appropriate de�nition of the constants in

condition (e'). We took the following points into consideration.

� Condition (e') can be reformulated in the following way:

(e") CH(r

i

) � h

i

� CH(r

i

)

H(r) :=

8

<

:

R

1�1=�

0

h

1=�

for r � r

0

1

�

R

��1

0

hr

1��

for r > r

0

r

0

:= �

1=(1��)

R

1�1=�

0

h

1=�

(� < 1)

As before R

0

is the radius of the re�nement region, in our tests R

0

= 1. | Thus we

have a continuous function H(r) which is also useful for the node relaxation procedure

described in Subsection 3.4.

� It is not possible with the algorithm of dyadic partitioning to produce elements of an

exactly given size. The elements will have a diameter which is the start mesh size

divided by 2

k

with k being the re�nement level.

Thus we used condition (e") with C = 0:7 and C = 1:4 but tested only the upper bound

of (e") to mark elements. Here, we want to remark that there are always elements which do

not ful�ll the lower bound for several reasons:

� The initial mesh size is to small. This can be observed for elements 


i

with r

i

close

to R

0

; note that H(R

0

) =

1

�

h. The factor

1

�

was introduced for compatibility reasons

with the construction of the mesh via a coordinate transformation.

� After the subdivision of an element some of the child elements have a larger distance

to the edge/corner than their father had. This a�ects particularly the elements close

to the edge/corner.

� The regularization of the mesh splits elements which were not marked. Here, especially

the case of red re�nement introduces elements with smaller mesh size.

In our tests we observed another e�ect, which should be remarked here. In condition (e')

there appears also the parameter h, which characterizes the mesh size outside the re�nement

region. In our realization, h is also the mesh size of the start mesh of the dyadic partitioning

algorithm and chosen to be

1

k

; k = 1; 2; 3; : : : The smaller h is, the more re�nement steps

are necessary to generate the smallest elements (those at the edge). The resulting number

of nodes n(k + 1) changes slightly in comparison to n(k) when for h =

1

k

and h =

1

k+1

the

same number of re�nement steps are necessary and it changes very rapidly when one more

step must be executed. This e�ect leads to the exceptional points in the error diagram in

Figure 5.2.

Because of these observations for the standard algorithm we modi�ed our algorithm by

including two node relaxation procedures.
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3.4 Node relaxation

The idea of the standard Laplace smoothing is that each node should be located in the

center of gravity of its neighbours. Let x

(i)

(i = 1; : : : ; n) be the coordinates of the nodes,

and denote by I(i) the set of the numbers of those nodes which have a common edge with

x

(i)

. Then the equations

x

(i)

=

1

card I(i)

X

j2I(i)

x

(j)

(3.1)

should be ful�lled for all inner nodes. Boundary nodes must remain at the boundary; for

simplicity we let them �xed.

This algorithm does not include information about the desired mesh sizes. Thus it was

modi�ed in [18] in the following way:

x

(i)

=

0

@

X

j2I(i)

e

ij

h

ij

1

A

�1

0

@

X

j2I(i)

e

ij

h

ij

x

(j)

1

A

(3.2)

with e

ij

:= jx

(i)

� x

(j)

j, h

ij

:=

1

2

�

h(x

(i)

) + h(x

(j)

)

�

. The mesh density function h(x) has

already been described in (e"), r(x) := dist(x;M) := min

y2M

jx � yj; M is the set of edges

with interior angle ! > �.

The equation systems (3.1) and (3.2) are already in iterative form and approximately

solved by maximal 20 iterations with an Underrelaxation Method (relaxation parameter

0.5).

4 Comparison of isotropic and anisotropic mesh re�nement

near an edge

4.1 Description of the test example

In [3] we treated the example given below by di�erent mesh re�nement strategies:

� anisotropic a-priori grading (with di�erent parameters �),

� adaptive mesh re�nement,

� adaptive mesh re�nement starting with an anisotropic, graded initial mesh,

� adaptive mesh re�nement with grading for all meshes.

In this section we want to compare these strategies with the following additional strategies:

� isotropic a-priori grading,

� adaptive mesh re�nement starting with an isotropic, graded initial mesh,

� adaptive mesh re�nement starting with an isotropic, graded initial mesh and using a

coordinate transformation in each re�nement step.

Additionally, we present some experiences with node relaxation and error estimation. As

the example we considered Laplace's equation with essential boundary conditions

��u = 0 in 


u = g on @


)

(4.1)

in the three-dimensional domain 
 = f(x

1

; x

2

; x

3

) = (r cos'; r sin'; z) 2 IR

3

: r < 1; 0 <

' <

3

2

�; 0 < z < 1g. The right hand side g is taken such that

u = (10 + z) r

2=3

sin

2

3

'

is the exact solution of the problem. It has the typical singular behaviour at the edge,

compare (2.3).
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Figure 4.1: Triangulation of the basis (M = 4).

Figure 4.2: Ungraded initial mesh for the sector of a cylinder (M = 4).

The initially ungraded meshes are characterized by an integer parameter M and con-

structed in the following way:

1. Triangulation of the two-dimensional basis of the domain: in each circular arc with

radius r

i

=

i

M

(i = 0; : : : ;M) we place 4i+ 1 equidistant nodes. Then the topology is

created in a regular way such that each layer between r

i

and r

i+1

(i = 0; : : : ;M � 1)

contains 4(2i+ 1) triangles, that means the sector of the disc is subdivided into 4M

2

elements, see Figure 4.1 for M = 4.

2. The two-dimensional triangulation is then used at each plane z =

i

M

(i = 0; : : : ;M) to

form in each slice

i�1

M

< z <

i

M

(i = 1; : : : ;M) 4M

2

triangular prisms which are divided

into 3 tetrahedra each, see Figure 4.2 forM = 4. That means the triangulation consists

of m = 12M

3

tetrahedra, n = (2M + 1)(M + 1)

2

nodes, and N = (2M � 1)(M � 1)

2

unknowns.

4.2 A-priori mesh grading

In this subsection we want to investigate the inuence of the isotropic a-priori mesh grading

on the behaviour of the �nite element error, especially on the convergence order of the

error. Then we compare the results with those for the anisotropic mesh grading in [3]. We

constructed the mesh by dyadic partitioning (see Subsection 3.3) and varied the parameters

M (3; 6; 9; : : :) and � (1:0; 0:9; : : :), for M see Subsection 4.1 and for � see condition (e') in

2.3. From the numerical solution and the known exact solution, the energy norm kek

E

of

the �nite element error e = u� u

h

was computed by numerical integration with a 14-point-

formula. The relative norms kek

%

:= kek

E

=ku

h

k

E

are arranged for some values of � in a

double logarithmic scale in Figure 4.3.

The calculations here and in [3] demonstrate that isotropic as well as anisotropic, graded

meshes are useful for treating edge singularities, for diminishing the error and achieving the
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Figure 4.3: Behaviour of the error for di�erent grading parameters �, isotropic case.

optimal approximation order. In order to compare both strategies we arranged the values of

both strategies in Figure 4.4.

The curves for � = 0:5 are nearly parallel, but the anisotropic strategy gives a slightly

smaller error. This can be taken as an indication that the large amount of nodes near the

edge in the neighbourhood of the edge is not necessary, and that anisotropic meshes are

the more appropriate way for treating edge singularities. On the other hand, the di�erence

between both strategies is very small (factor 0.9), thus the result from one test should not

be overrated.

4.3 Adaptive mesh re�nement with grading

In extension of the computations in [3] we carried out tests with two variants of the adaptive

mesh re�nement strategy starting with an isotropic, graded initial mesh. The variants di�er

in the way new nodes are introduced. While they are located in the middle of an edge in

the �rst variant, we carried out a coordinate transformation in each re�nement step of the

second variant, thus the new nodes were introduced not necessarily in the center of the edge.

The parametersM (3; 4; 5) and � (0:4; 0:5; 0:6) for the initial mesh, as well as the tolerance

" (0:05ku

h

k

E

; 0:03ku

h

k

E

) for the relative error were varied and the results were compared

with the other adaptive strategies (without mesh grading; with anisotropic, graded initial

mesh; with anisotropic, graded mesh in each re�nement step).

The qualitative behaviour of the strategies is similar for each choice of the parameters.

We present the results for M = 3; � = 0:6; " = 0:03 in Figure 4.5. It can be observed that

the error in the �rst variant is larger than in the anisotropic strategies, again an indication

for the superiority of anisotropic mesh grading. In comparison with the standard strategy

without mesh grading we see, that the �nal error level is received with a about the same

number of unknowns, but with one re�nement step minus. | The second strategy can be

considered as an amalgamation of isotropic and anisotropic strategies, and it behaves like

this.
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Figure 4.4: Comparison of isotropic and anisotropic mesh grading.

4.4 Node relaxation

The construction of isotropic meshes via the method of dyadic partitioning has the disad-

vantage that the ratio of the diameters of adjacent elements is more or less exactly 1 or 2.

Moreover, there is the problem of a suitable choice of the constants in (e') from Subsection

2.3, see also the explanation in Subsection 3.3. Thus one could suppose that these meshes

cannot �t the singular functions as good as meshes which are constructed via a coordinate

transformation. We hoped that a node relaxation procedure would improve the meshes.

Our tests with the standard Laplace smoothing and with the smoothing introduced in

[18] (see also Subsection 3.4) produced only minimal di�erences to the meshes used before,

see Figure 4.6. It seems that the meshes are without smoothing good enough, or that the

smoothing procedure has to be tuned for our purposes. We did not make further investiga-

tions.

Note that anisotropic meshes are not compatible with these smoothing procedures; an

algorithm that takes into account the di�erent mesh sizes in the di�erent directions, has not

been programmed.

4.5 Reliability of the error estimator

All the previous results in this section were achieved with an elementwise integration of the

exact error u�u

h

; it was possible because the solution u of (4.1) is known. For studying the

reliability of the error estimator programmed, we always estimated the error (using C = 1,

confer Subsection 2.4) and computed the e�ciency index

� :=

�

ku� u

h

k

E

;

for � see (2.8). If this value is nearly independent of M and �, then we can try to estimate

the constant C and get � � 1. (Note that (2.9) is not applicable for inhomogeneous Dirichlet

boundary conditions.)
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Figure 4.6: Error in the energy norm for isotropic, graded meshes (� = 0:6): inuence of

node relaxation.
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� M=3 M=12 M=24 M=36

1.0 4.530 4.523 4.512 4.507

0.9 4.645 4.800 4.875 4.922

0.8 4.781 5.125 5.306 5.419

0.7 4.939 5.488 5.782 5.964

0.6 5.118 5.854 6.233 6.459

0.5 5.327 6.178 6.571 6.785

0.4 5.612 6.452 6.779 6.931

0.3 6.125 6.730 6.956 7.043

Table 4.1: Dependence of the e�ectivity index � on the mesh parameters M and �:

anisotropic grading.

� M=3 M=6 M=12 M=18 M=24 M=30 M=36

1.0 4.530 4.538 4.523 4.516 4.512 4.509 4.507

0.8 4.530 4.611 4.656 4.641 4.642 4.635 4.631

0.7 4.525 4.611 4.780 4.790 4.789 4.795

0.6 4.525 4.724 4.780 4.902 4.909 4.892

0.5 4.598 4.795 4.928 4.943 5.010 5.021

0.4 4.598 4.830 4.950 4.982 5.031

0.3 4.685 4.852 4.965

Table 4.2: Dependence of the e�ectivity index � on the mesh parameters M and �: isotropic

grading. (There are some values missing for memory reasons.)

In Tables 4.1 and 4.2 we give the values for �, and we can underline the observation in

[3] that the error estimator under consideration is sensitive with respect to M and � if the

mesh is anisotropically graded. A better estimator is desired.

5 The Fichera corner: a test example with both a corner

and several edges

As a second test example we consider the Poisson equation with a speci�c right hand side

f 2 L

2

(
) (f 62 L

p

(
) for p > 2), together with homogeneous Dirichlet boundary conditions:

��u = r

�3=2

�

ln

r

1000

�

�1

in 
;

u = 0 on @
:

)

(5.1)

The domain 
 := (�1; 1)

3

n [0; 1]

3

(see Figure 5.1) has three edges with interior angle ! =

3

2

�

which meet in the center of coordinates; we denote by r the distance to this point. Sometimes

such a corner is called Fichera corner. The edge singularities are described by � =

2

3

(for �

see (2.3)), the corner singularity is weaker, see [5, Subsection 4.2].

The domain 
 can be split naturally into 7 cubes. The triangulation of 
 is generated by

dividing each cube into M

3

(M = 2; 3; : : :) congruent smaller cubes, which are then divided

into 6 tetrahedra of the same volume each (m = 42M

3

tetrahedra, n = (2M + 1)

3

�M

3

nodes, N = (2M � 1)

3

�M

3

unknowns). Re�ned meshes with various grading parameters

� < 1 were constructed using the method of dyadic partitioning, see Subsection 3.3. An

example with M = 3 and � = 0:5 is shown in Figure 5.1. We were not able to �nd a suitable
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Figure 5.1: Fichera corner with re�ned mesh (M = 3, � = 0:5)

coordinate transformation to construct an anisotropic re�nement near the three concave

edges, which becomes isotropic near the concave vertex.

The �nite element error in the energy norm is measured with the error estimator described

in Subsection 2.4. Note that, in contrast to the example in Section 4, we do not know

the exact solution of Problem (5.1). | For uniform mesh grading the results are already

published in [5] and shall not be repeated here. But we will compare these results with

� adaptive mesh re�nement and

� adaptive mesh re�nement starting with an isotropically graded initial mesh.

The memory resources of the computer we used allowed only to work with an error bound

of at least " = 0:15ku

h

k

E

. We varied the initial mesh size by starting with M = 3; 4; 5; 6,

and the grading parameter � = 0:4; 0:5; 0:6. In Figure 5.2 we present the results for M = 4

and � = 0:6 for the two stategies mentioned above, for comparison together with the curves

for uniform re�nement (� = 1:0 and � = 0:6). The results in the other cases are similar, for

M = 3; 4 sometimes the stopping criterion � < " (for � see (2.8)) has not been achieved for

memory reasons.

The behaviour of the error is similar to the tests in Subsection 4.3, that means, a second

test has shown that starting with a graded mesh is favourable in the sense that a smaller

error is achieved with less re�nement steps.

The following observations shall be remarked:

� We got a slightly di�erent error in the two cases

{ N = 6, � = 1,

{ N = 3, � = 1 plus one global re�nement step.

The reason is the di�erent topology of the meshes because of the di�erent algorithms

for their construction.

� For the choice of an appropriate constant C in (2.7) we need two calculations with two

di�erent meshes, see (2.9). In the uniform mesh grading we used the results from the

previous mesh, and omitted the �rst error norm (M = 1, which was calculated with

C = 1) in the presentation.

But for adaptive algorithms we need reliable error indicators �

i

already for the �rst

mesh. Here, we used the constants from the calculations with uniform mesh grading.
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. (For comparison the curves for uniform mesh re�nement are included.)

It is clear that this information is not available in practical calculations; then one has

to use a start value C from experience or C = 1.

� As in the tests in Section 4, node relaxation either did not work or did not inuence the

results markedly. In some cases we had even problems, that near the concave corner

some inner points moved out of the domain.
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