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1. Introduction. Multigrid methods have been shown to be very e�cient solvers

for elliptic partial di�erential equations (PDE). In this paper we are concerned with the

so-called � -extrapolation multigrid method, see Brandt [5] and Hackbusch [6], which

is an extension of conventional multigrid that can improve the accuracy of the numerical

result by implicitly using higher order approximations.

In contrast to conventional extrapolation methods for partial di�erential equations, as de-

scribed inMarchuk/Shaidurov [13] and Blum/Lin/Rannacher [3], the � -extrapola-

tion algorithm is based on an implicit application of Richardson's deferred approach to the

limit. We do not take linear combinations of computed approximations, but extrapolate

the residuals of di�erent levels. This is equivalent to forming a linear combination of the

sti�ness matrices. The precise meaning of this will be explained in detail later.

We show that one step of multigrid � -extrapolation for piecewise linear C

0

�nite ele-

ment (FE) methods is equivalent to using quadratic elements. This can be derived as

a consequence of asymptotic error expansions for the numerical integration of the FE

sti�ness matrices, as shown in R

�

ude [18]. Here we will follow a di�erent approach and

show that the quadratic sti�ness matrix and the sti�ness matrix which is implicitly con-

structed by � -extrapolation for linear elements coincide. Therefore the system solved

by � -extrapolation is equivalent to using quadratic elements. Furthermore, we show the

asymptotically optimal convergence of a multigrid solution of the extrapolated system.

Our experimental framework is the Finite Element Multi-Grid Package (FEMGP) (see

Steidten and Jung [20]) developed at the Technische Universit�at Chemnitz-Zwickau

for the solution of elliptic and parabolic problems arising in the computation of magnetic

and thermomechanical �elds. We focus on self-adjoint second order linear elliptic partial

di�erential equations, using the heat conduction equation and the equations of elasticity

as typical model problems. The equivalence of � -extrapolation to higher order �nite

elements justi�es to use it even for unstructured meshes as produced with FEMGP, see

also the results on � -extrapolation based higher order adaptive methods byMcCormick

and R

�

ude [14].

2. Finite element discretizations of the boundary value problem. We con-

sider two{dimensional second order elliptic boundary value problems:

Find u 2 V

0

such that a(u; v) = hF; vi for all v 2 V

0

;(1)

with a symmetric, V

0

{elliptic, and V

0

{bounded bilinear form a(:; :); h:; :i : V

�

0

�V

0

! R

1

is the duality pairing, V

�

0

denotes the space which is dual to V

0

, and F 2 V

�

0

is a linear

and bounded functional on V

0

. Later we will describe more precisely which bilinear forms

we want to investigate.

Let us �rst describe some �nite element discretizations of problem (1). The starting point

of the discretization process is a coarse triangular mesh T

1

. Then we generate a sequence

of nested triangular meshes T

k

= f�

(r)

k

; r 2 J

k

g, k = 1; 2; : : : ; l, J

k

= f1; 2; : : : ; R

k

g,

where R

k

denotes the number of triangles of the triangulation T

k

. We suppose that

we obtain the triangulation T

l

by dividing all triangles �

(r)

l�1

, r 2 J

l�1

, into four con-

gruent subtriangles �

(r)

l

. The nodes of the triangulations are numbered hierarchically,

i.e. P

(1)

; P

(2)

; : : : ; P

(N

1

)

; P

(N

1

+1)

; : : : ; P

(N

2

)

; : : : ; P

(N

k�1

+1)

; : : : ; P

(N

k

)

; : : : ; P

(N

l�1

+1)

; : : : ;

P

(N

l

)

, where P

(N

k�1

+1)

; : : : ; P

(N

k

)

are the nodes of T

k

that do not belong to T

k�1

(but are

naturally also nodes of T

k+1

; : : : ;T

l

).
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Corresponding to each triangulation T

k

, k = 1; 2; : : : ; l � 1, we de�ne the �nite element

subspaces V

k

� V

0

as

V

k

= spanfp

(i)

k

: i = 1; 2; : : : ; N

k

g;(2)

where the trial functions p

(i)

k

are piecewise linear functions such that p

(i)

k

is linear in

all triangles of T

k

, continuous, and satisfy the relations p

(i)

k

(x

(j)

1

; x

(j)

2

) = 1 for i = j,

p

(i)

k

(x

(j)

1

; x

(j)

2

) = 0 for i 6= j, i; j = 1; 2; : : : ; N

k

. Here (x

(j)

1

; x

(j)

2

) denotes the coordinates of

the node P

(j)

and N

k

is the number of nodes belonging to 
 [ �

N

, where �

N

is the part

of the boundary @
 on which natural boundary conditions are given.

The �nite element subspace corresponding to the �nest triangulation T

l

we de�ne for a

moment only formally by

V

l

= spanf~p

(i)

l

; i = 1; 2; : : : ; N

l

g:(3)

For the speci�c choice of the functions ~p

(i)

l

we consider four possibilities. The �rst one is

the usual nodal basis, i.e. we set ~p

(i)

l

= p

(i)

l

, where the functions p

(i)

l

are de�ned in the same

way as the functions p

(i)

k

, k = 1; 2; : : : ; l� 1. Consequently, we obtain the FE subspace

V

l

= V

l

l

= spanfp

(i)

l

; i = 1; 2; : : : ; N

l

g:(4)

As second possibility we use the two{level h{hierarchical basis, i.e.

V

l

=

^

V

l

l

= spanfp

(i)

l�1

; i = 1; : : : ; N

l�1

g [ spanfp

(i)

l

; i = N

l�1

+ 1; : : : ; N

l

g:(5)

Additionally, to these two approaches we introduce also FE subspaces spanned by piece-

wise quadratic functions q

(i)

l�1

. These functions are polynomials of degree 2 in all triangles

of T

l�1

, continuous, and satisfy the relations q

(i)

l�1

(x

(j)

1

; x

(j)

2

) = 1 for i = j, q

(i)

l�1

(x

(j)

1

; x

(j)

2

) = 0

for i 6= j, i; j = 1; 2; : : : ; N

l

. Using these functions we can de�ne the usual quadratic nodal

basis

V

l

= V

q

l

= spanfq

(i)

l�1

; i = 1; 2; : : : ; N

l

g:(6)

and the two{level p{hierarchical basis

V

l

=

^

V

q

l

= spanfp

(i)

l�1

; i = 1; : : : ; N

l�1

g [ spanfq

(i)

l�1

; i = N

l�1

+ 1; : : : ; N

l

g:(7)

The sequence of FE subspaces V

k

, k = 1; 2; : : : ; l, where V

l

stands for V

l

l

,

^

V

l

l

, V

q

l

, or

^

V

q

l

,

respectively, results in a sequence of �nite element schemes:

Find u

k

2 V

k

such that a(u

k

; v

k

) = hF; v

k

i for all v

k

2 V

k

.(8)

The determination of the unknown function u

k

is equivalent to the solution of the system

K

k

u

k

= f

k

(9)

of the algebraic �nite element equations, where for k = 1; 2; : : : ; l � 1

u

k

= [u

(i)

k

]

i=1;2;:::;N

k

$ u

k

=

N

k

X

i=1

u

(i)

k

p

(i)

k

;(10)

K

k

= [K

(ij)

k

]

i;j=1;2;:::;N

k

; K

(ij)

k

= a(p

(j)

k

; p

(i)

k

); and(11)

f

k

= [f

(i)

k

]

i=1;2;:::;N

k

; f

(i)

k

= hF; p

(i)

k

i:(12)
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For k = l the sti�ness matrix K

l

and the load vector f

l

are de�ned in the same way, we

set only the functions ~p

(i)

l

instead the functions p

(i)

l

. Depending on the concrete choice of

the functions ~p

(i)

l

, see the possibilities (4) { (7), we get the sti�ness matricesK

l

= K

l

l

,

^

K

l

l

,

K

q

l

, or

^

K

q

l

and the load vectors f

l

l

,

^

f

l

l

, f

q

l

, or

^

f

q

l

, respectively.

Next we specify the bilinear form a(:; :). In the following we will consider bilinear forms

which are de�ned by

a(u; v) =

Z




(Ar

x

u;r

x

v) dx(13)

where A is a symmetric, positive de�nite (2 � 2){matrix,

r

x

=

 

@

@x

1

@

@x

2

!

T

;(14)

and (:; :) denotes the Euclidian scalar product in the space R

2

. Such bilinear forms arise

from the derivation of the weak formulation of heat conduction problems. Let us suppose

that the entries of the matrix A are piecewise constant functions, i.e. constant in each

triangle �

(r)

l�1

, r 2 J

l�1

. In this paper we will not discuss the variable coe�cient case.

Next we prove an interesting relation between the matrices K

l�1

,

^

K

l

l

, and

^

K

q

l

, which is

useful for the investigation of the convergence properties of a multigrid algorithm with

extrapolation.

Lemma 2.1. Let K

l�1

^

K

l

l

, and

^

K

q

l

be de�ned by the bilinear form (13) as described above.

Then the relation

^

K

q

l

=

4

3

^

K

l

l

�

1

3

~

K

l�1

(15)

holds, where

~

K

l�1

=

 

K

l�1

0

0 0

!

.

Proof: Recall the de�nition of the sti�ness matrices

K

l�1

= [K

(ij)

l�1

]

i;j=1;2;:::;N

l�1

; K

(ij)

l�1

= a(p

(j)

l�1

; p

(i)

l�1

) ;(16)

^

K

l

l

= [

^

K

l;(ij)

l

]

i;j=1;2;:::;N

l

;(17)

^

K

l;(ij)

l

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

a(p

(j)

l�1

; p

(i)

l�1

) for i; j = 1; 2; : : : ; N

l�1

a(p

(j)

l

; p

(i)

l�1

) for j = N

l�1

+ 1; N

l�1

+ 2; : : : ; N

l

; i = 1; 2; : : : ; N

l�1

a(p

(j)

l�1

; p

(i)

l

) for j = 1; 2; : : : ; N

l�1

; i = N

l�1

+ 1; N

l�1

+ 2; : : : ; N

l

a(p

(j)

l

; p

(i)

l

) for i; j = N

l�1

+ 1; N

l�1

+ 2; : : : ; N

l

;

^

K

q

l

= [

^

K

q;(ij)

l

]

i;j=1;2;:::;N

l

;(18)

^

K

q;(ij)

l

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

a(p

(j)

l�1

; p

(i)

l�1

) for i; j = 1; 2; : : : ; N

l�1

a(q

(j)

l�1

; p

(i)

l�1

) for j = N

l�1

+ 1; N

l�1

+ 2; : : : ; N

l

; i = 1; 2; : : : ; N

l�1

a(p

(j)

l�1

; q

(i)

l�1

) for j = 1; 2; : : : ; N

l�1

; i = N

l�1

+ 1; N

l�1

+ 2; : : : ; N

l

a(q

(j)

l�1

; q

(i)

l�1

) for i; j = N

l�1

+ 1; N

l�1

+ 2; : : : ; N

l

:
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All these sti�ness matrices have the structure

K

l

=

 

K

l;vv

K

l;vm

K

l;mv

K

l;mm

!

(19)

where K

l;vv

corresponds to the nodes of the triangulation T

l�1

, K

l;mm

corresponds to the

new nodes in the triangulation T

l

, and K

l;mv

, K

l;vm

are the coupling blocks.

From the de�nitions (16) { (18) of the matrix elements we see that

4

3

^

K

l

l

�

1

3

~

K

l�1

=

0

@

K

l�1

4

3

^

K

l

l;vm

4

3

^

K

l

l;mv

4

3

^

K

l

l;mm

1

A

(20)

and

^

K

q

l

=

 

K

l�1

^

K

q

l;vm

^

K

q

l;mv

^

K

q

l;mm

!

:(21)

Taking into account that these matrices are symmetric, we have to prove that

4

3

^

K

l

l;vm

=

^

K

q

l;vm

and

4

3

^

K

l

l;mm

=

^

K

q

l;mm

:

To do this we introduce some notations.

The transformation x = x(�)

0

@

x

1

x

2

1

A

=

0

@

x

(r;2)

1

� x

(r;1)

1

x

(r;3)

1

� x

(r;1)

1

x

(r;2)

2

� x

(r;1)

2

x

(r;3)

2

� x

(r;1)

2

1

A

0

@

�

1

�

2

1

A

+

0

@

x

(r;1)

1

x

(r;1)

2

1

A

= J

(r)

l�1

0

@

�

1

�

2

1

A

+

0

@

x

(r;1)

1

x

(r;1)

2

1

A

(22)

realizes the mapping of the reference element � = f(�

1

; �

2

) : 0 � �

1

� 1; 0 � �

2

� 1;

�

1

+ �

2

�1g onto an element �

(r)

l�1

of the triangulation T

l�1

.

arbitrary triangle �

(r)

l�1

2 T

l�1

reference element �

6

x

2

-

x

1

H

H

H

H

H

H�

�

�

�

�

�

�

�

"

"

"

"

"

"

"

"

H

H

H

�

�

�

�

"

"

"

"

s

P

(r;1)

s

P

(r;2)

s

P

(r;3)

s

P

(r;6)

s

P

(r;5)

s

P

(r;4)

-

� = �(x)

�

x = x(�)

P

(r;1)

= P

(r;1)

(x

(r;1)

1

; x

(r;1)

2

),

P

(r;2)

= P

(r;2)

(x

(r;2)

1

; x

(r;2)

2

),

P

(r;3)

= P

(r;3)

(x

(r;3)

1

; x

(r;3)

2

)

6

�

2

-

�

1

@

@

@

@

@

@

@

@

@

@

@

@

�

(1)

�

(2)

�

(3)

�

(4)

s

P

(1)

s

P

(2)

s

P

(3)

s

P

(6)

s

P

(4)

s

P

(5)

P

(1)

= P

(1)

(0; 0),

P

(2)

= P

(2)

(1; 0),

P

(3)

= P

(3)

(0; 1)

Fig. 1. The mapping between the reference element � and an arbitrary element �

(r)

l�1
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On the reference element � we de�ne six shape functions ~'

�

, � = 1; 2; : : : ; 6. In the case

of the h-hierarchical basis we have

~'

1

(�

1

; �

2

) = '

1

(�

1

; �

2

) = 1� �

1

� �

2

~'

2

(�

1

; �

2

) = '

2

(�

1

; �

2

) = �

1

~'

3

(�

1

; �

2

) = '

3

(�

1

; �

2

) = �

2

~'

4

(�

1

; �

2

) = '

4

(�

1

; �

2

) =

8

>

>

>

>

<

>

>

>

>

:

2�

1

in �

(1)

2 � 2�

1

� 2�

2

in �

(2)

0 in �

(3)

1 � 2�

2

in �

(4)

~'

5

(�

1

; �

2

) = '

5

(�

1

; �

2

) =

8

>

>

>

>

<

>

>

>

>

:

0 in �

(1)

2�

2

in �

(2)

2�

1

in �

(3)

2�

1

+ 2�

2

� 1 in �

(4)

~'

6

(�

1

; �

2

) = '

6

(�

1

; �

2

) =

8

>

>

>

>

<

>

>

>

>

:

2�

2

in �

(1)

0 in �

(2)

2 � 2�

1

� 2�

2

in �

(3)

1 � 2�

1

in �

(4)

(23)

and in the case of the p{hierarchical basis

~'

1

(�

1

; �

2

) = '

1

(�

1

; �

2

); ~'

2

(�

1

; �

2

) = '

2

(�

1

; �

2

); ~'

3

(�

1

; �

2

) = '

3

(�

1

; �

2

)

~'

4

(�

1

; �

2

) =  

4

(�

1

; �

2

) = 4�

1

(1� �

1

� �

2

)

~'

5

(�

1

; �

2

) =  

5

(�

1

; �

2

) = 4�

1

�

2

~'

6

(�

1

; �

2

) =  

6

(�

1

; �

2

) = 4�

2

(1� �

1

� �

2

) :

(24)

In order to calculate the elements of the sti�ness matrices we need the derivatives of the

shape functions. For the h{hierarchical functions we get the partial derivatives given in

Table 1.

Table 1

The partial derivatives of the piecewise linear shape functions

@'

1

@�

1

@'

1

@�

2

@'

2

@�

1

@'

2

@�

2

@'

3

@�

1

@'

3

@�

2

@'

4

@�

1

@'

4

@�

2

@'

5

@�

1

@'

5

@�

2

@'

6

@�

1

@'

6

@�

2

�

(1)

-1 -1 1 0 0 1 2 0 0 0 0 2

�

(2)

-1 -1 1 0 0 1 -2 -2 0 2 0 0

�

(3)

-1 -1 1 0 0 1 0 0 2 0 -2 -2

�

(4)

-1 -1 1 0 0 1 0 -2 2 2 -2 0

For the computation of the matrix elements in the case of the p-hierarchical basis we use

the following quadrature rule

Z

�

 (�

1

; �

2

) d� �

3

X

k=1

1

6

 (�

(k)

) =

1

6

( (0:5; 0) +  (0; 0:5) +  (0:5; 0:5)) ;(25)
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which is exact for quadratic polynomials on �. Therefore we present in the Table 2 the

values of the partial derivatives of the functions  

4

,  

5

, and  

6

in the quadrature points

(0:5; 0), (0; 0:5), and (0:5; 0:5).

Table 2

The partial derivatives of the quadratic shape functions

@ 

4

@�

1

@ 

4

@�

2

@ 

5

@�

1

@ 

5

@�

2

@ 

6

@�

1

@ 

6

@�

2

(0:5; 0) 0 -2 0 2 0 2

(0; 0:5) 2 0 2 0 -2 0

(0:5; 0:5) -2 -2 2 2 -2 -2

First we now prove

4

3

^

K

l

l;mm

=

^

K

q

l;mm

. We have

a(~p

(j)

l

; ~p

(i)

l

) =

Z




�

Ar

x

~p

(j)

l

;r

x

~p

(i)

l

)

�

dx(26)

=

X

r2!

(ij)

Z

�

(r)

l�1

�

Ar

x

~p

(j)

l

;r

x

~p

(i)

l

)

�

dx;

where

!

(ij)

=

n

r 2 J

l�1

: ~p

(i)

l

6� 0 and ~p

(j)

l

6� 0 on �

(r)

l�1

o

:

Obviously, the index sets !

(ij)

are the same for both the h-hierarchical functions ~p

(i)

l

= p

(i)

l

and the p{hierarchical functions ~p

(i)

l

= q

(i)

l�1

, i = N

l�1

+ 1; : : : ; N

l

. Using the mapping to

the reference element it follows

a(~p

(j)

l

; ~p

(i)

l

)=

X

r2!

(ij)

Z

�

�

A(J

(r)

l�1

)

�T

r

�

~p

(j)

l

(x(�)); (J

(r)

l�1

)

�T

r

�

~p

(i)

l

(x(�))

�

jdet J

(r)

l�1

j d�

=

X

r2!

(ij)

Z

�

�

Br

�

~p

(j)

l

(x(�));r

�

~p

(i)

l

(x(�))

�

d�;

with B = (J

(r)

l�1

)

�1

A(J

(r)

l�1

)

�T

jdetJ

(r)

l�1

j. Note that the entries of A, J

(r)

l�1

, and jdet J

(r)

l�1

j are

constants.

For j = i and ~p

(i)

l

= p

(i)

l

, that is for the h-hierarchical basis, we have

a(p

(i)

l

; p

(i)

l

) =

X

r2!

(ii)

X

k2I(�

(r)

)

Z

�

(k)

(Br

�

'

�

(r)
;r

�

'

�

(r)
) d�(27)

=

X

r2!

(ii)

X

k2I(�

(r)

)

1

8

�

Br

�

'

�

(r)

j

�

(k)

;r

�

'

�

(r)

j

�

(k)

�

;

where �

(r)

is the local number of node P

(i)

(x

(i)

1

; x

(i)

2

) in the triangle �

(r)

l�1

, i.e.

a

(r)

= 4; 5; or 6; and I(�

(r)

) =

n

k 2 f1; 2; 3; 4g : '

�

(r)

6� 0 on �

(k)

o

:

7



Obviously, I(4) = f1; 2; 4g, I(5) = f2; 3; 4g, and I(6) = f1; 3; 4g. Therefore, in all the

cases, we have exactly three terms.

If we use quadrature rule (25), we obtain for the case of the p-hierarchical basis

a(q

(i)

l�1

; q

(i)

l�1

) =

X

r2!

(ii)

Z

�

(Br

�

 

�

(r)
;r

�

 

�

(r)
) d�(28)

=

X

r2!

(ii)

3

X

k=1

1

6

�

Br

�

 

�

(r)

(�

(k)

);r

�

 

�

(r)

(�

(k)

)

�

;

where �

(k)

are the quadrature nodes of formula (25).

Now we compare the summands in the sums over k in (27) and (28). If we examine the

values of the partial derivatives @'

�

(r)

=@�

1

, @'

�

(r)

=@�

2

in the triangles �

(k)

and the values

of the derivatives @ 

�

(r)

=@�

1

, @ 

�

(r)

=@�

2

in the quadrature nodes (see Tables 1 and 2)

then we can see that these summands di�er only by the factor

4

3

. Therefore, we have

4

3

a(p

(i)

l

; p

(i)

l

) = a(q

(i)

l�1

; q

(i)

l�1

) for i = N

l�1

+ 1; : : : ; N

l

:

For i 6= j, i; j = N

l�1

+ 1; : : : ; N

l

, we obtain

a(q

(j)

l�1

; q

(i)

l�1

) =

X

r2!

(ij)

Z

�

�

Br

�

'

�

(r)

;r

�

'

�

(r)

�

d�;(29)

where �

(r)

and �

(r)

are the local numbers of the nodes P

(j)

and P

(i)

in the triangle �

(r)

l�1

,

respectively. Using again the quadrature formula (25) and the results from Table 2 we

have

a(q

(j)

l�1

; q

(i)

l�1

) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

X

r2!

(ij)

�

1

3

 

B

 

0

2

!

;

 

2

2

!!

for

�

(r)

= 4; �

(r)

= 5

�

(r)

= 5; �

(r)

= 4

X

r2!

(ij)

1

3

 

B

 

0

2

!

;

 

2

0

!!

for

�

(r)

= 4; �

(r)

= 6

�

(r)

= 6; �

(r)

= 4

X

r2!

(ij)

�

1

3

 

B

 

2

2

!

;

 

2

0

!!

for

�

(r)

= 5; �

(r)

= 6

�

(r)

= 6; �

(r)

= 5

(30)

For the h-hierarchical basis we get with I(�

(r)

; �

(r)

) = I(�

(r)

) \ I(�

(r)

)

a(p

(j)

l

; p

(i)

l

) =

X

r2!

(ij)

X

k2I(�

(r)

;�

(r)

)

Z

�

(k)

�

Br

�

'

�

(r)
;r

�

'

�

(r)

�

d�

=

X

r2!

(ij)

X

k2I(�

(r)

;�

(r)

)

1

8

�

Br

�

'

�

(r)

j

�

(k)

;r

�

'

�

(r)

j

�

(k)

�

(31)

=

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

X

r2!

(ij)

�

1

4

 

B

 

0

2

!

;

 

2

2

!!

for

�

(r)

= 4; �

(r)

= 5

�

(r)

= 5; �

(r)

= 4

X

r2!

(ij)

1

4

 

B

 

0

2

!

;

 

2

0

!!

for

�

(r)

= 4; �

(r)

= 6

�

(r)

= 6; �

(r)

= 4

X

r2!

(ij)

�

1

4

 

B

 

2

2

!

;

 

2

0

!!

for

�

(r)

= 5; �

(r)

= 6

�

(r)

= 6; �

(r)

= 5 :

8



Comparing (30) and (31) we see that

4

3

a(p

(j)

l

; p

(i)

l

) = a(q

(j)

l�1

; q

(i)

l�1

). Consequently, we have

shown

4

3

^

K

l

l;mm

=

^

K

q

l;mm

:(32)

It remains to prove

4

3

^

K

l

l;vm

=

^

K

q

l;vm

. For j = N

l�1

+ 1; N

l�1

+ 2 : : : ; N

l

, i = 1; 2; : : : ; N

l�1

we have

a(p

(j)

l

; p

(i)

l�1

) =

X

r2!

(ij)

Z

�

(Br

�

'

�

(r)
;r

�

'

�

(r)
) d�(33)

=

X

r2!

(ij)

X

k2I(�

(r)

)

1

8

�

Br

�

'

�

(r)

j

�

(k)

;r

�

'

�

(r)

j

�

(k)

�

and

a(q

(j)

l�1

; p

(i)

l�1

) =

X

r2!

(ij)

Z

�

(Br

�

 

�

(r)
;r

�

'

�

(r)
) d�(34)

=

X

r2!

(ij)

3

X

k=1

1

6

�

Br

�

 

�

(r)

(�

(k)

);r

�

'

�

(r)

(�

(k)

)

�

:

From the Tables 1 and 2 we see again that the summands in the sums over k di�er only

by the factor

4

3

. Hence,

4

3

a(p

(j)

l

; p

(i)

l�1

) = a(q

(j)

l�1

; p

(i)

l�1

), i.e.

4

3

^

K

l

l;vm

=

^

K

q

l;vm

(35)

and in an analogous way

4

3

^

K

l

l;mv

=

^

K

q

l;mv

:(36)

Combining the relations (20),(21),(32),(35), and (36) we obtain the statement of the

Lemma.

In Lemma 2.2 we formulate the corresponding property for the right{hand side.

Lemma 2.2. Let

hF; vi =

Z




fv dx+

Z

�

N

g

2

v ds ;

where f is a piecewise constant function, i.e. constant over all triangles �

(r)

l�1

, and g

2

a

piecewise constant function, i.e. constant over @�

(r)

l�1

\ @
. Then the following relation

holds

^

f

q

l

=

4

3

^

f

l

l

�

1

3

~

f

l�1

;

~

f

l�1

=

 

f

l�1

0

!

:(37)
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Proof: We have de�ned

f

l�1

= [f

(i)

l�1

]

i=1;2;:::;N

l�1

; f

(i)

l�1

= hF; p

(i)

l�1

i

^

f

l

l

= [

^

f

l;(i)

l

]

i=1;2;:::;N

l

;

^

f

l;(i)

l

=

(

hF; p

(i)

l�1

i for i = 1; : : : ; N

l�1

hF; p

(i)

l

i for i = N

l�1

+ 1; : : : ; N

l

^

f

q

l

= [

^

f

q;(i)

l

]

i=1;2;:::;N

l

;

^

f

q;(i)

l

=

(

hF; p

(i)

l�1

i for i = 1; 2; : : : ; N

l�1

hF; q

(i)

l�1

i for i = N

l�1

+ 1; : : : ; N

l

Consequently,

4

3

^

f

l

l

�

1

3

~

f

l�1

=

0

@

f

l�1

4

3

^

f

l

l;m

1

A

and

^

f

q

l

=

0

@

f

l�1

^

f

q

l;m

1

A

(38)

First we prove

4

3

Z




fp

(i)

l

dx =

Z




fq

(i)

l�1

dx(39)

for i = N

l�1

+ 1; : : : ; N

l

. Using the notation from the proof of Lemma 2.1 we have

Z




fp

(i)

l

dx =

X

r2!

(i)

Z

�

(r)

l�1

fp

(i)

l

dx =

X

r2!

(i)

Z

�

fp

(i)

l

(x(�))jdetJ

(r)

l�1

j d�

=

X

r2!

(i)

X

k2I(�

(r)

)

Z

�

(k)

f'

�

(r)
(�)jdetJ

(r)

l�1

j d� ;

where

!

(i)

= fr 2 J

l�1

: p

(i)

l

6� 0 on �

(r)

l�1

g; I(�

(r)

) = fk 2 1; 2; 3; 4 : '

�

(r)

6� 0 on �

(k)

g;

and �

(r)

is the local number of the node P

(i)

in the triangle �

(r)

l�1

. Computing the integrals

over �

(k)

we obtain

Z




fp

(i)

l

dx =

X

r2!

(i)

X

k2I(�

(r)

)

1

24

f jdetJ

(r)

l�1

j =

X

r2!

(i)

1

8

f jdetJ

(r)

l�1

j ;(40)

and using the quadrature formula (25) it follows

Z




fq

(i)

l�1

dx =

X

r2!

(i)

3

X

k=1

1

6

f 

�

(r)
(�

(k)

)jdetJ

(r)

l�1

j =

X

r2!

(i)

1

6

f jdetJ

(r)

l�1

j ;(41)

i.e. the integrals in (40) and (41) di�er by the factor

4

3

. Next we show

4

3

Z

�

N

g

2

p

(i)

l

ds =

Z

�

N

g

2

q

(i)

l�1

ds ;(42)

for i = N

l�1

+ 1; : : : ; N

l

. We have

Z

�

N

g

2

p

(i)

l

ds =

X

e2E

l�1

Z

�

(e)

N;l�1

g

2

p

(i)

l

ds ;

10



where �

(e)

N;l�1

is an edge of a triangle �

(r)

l�1

, r 2 J

l�1

, which is a part of the boundary

�

N

. The last integral we transform into an integral over the reference interval [0; 1]. This

transformation is described by

0

@

x

1

x

2

1

A

=

0

@

x

(e;2)

1

� x

(e;1)

1

x

(e;2)

2

� x

(e;1)

2

1

A

�

1

+

0

@

x

(e;1)

1

x

(e;1)

2

1

A

:

edge of a triangle �

(r)

l�1

reference interval [0; 1]

6

x

2

-

x

1

H

H

H

H

H

H�

�

�

�

�

�

�

�

"

"

"

"

"

"

"

"

H

H

H

�

�

�

�

"

"

"

"

s

(x

(e;1)

1

; x

(e;1)

2

)

s

(x

(e;2)

1

; x

(e;2)

2

)

s

(x

(e;3)

1

; x

(e;3)

2

)

-

6

�

2

-

�

1

s

0

P

(1)

s

1

P

(2)

s

0:5

P

(3)

Fig. 2. The mapping between an edge of a triangle and the reference interval [0; 1]

On the reference interval the piecewise linear shape function '

3

(�

1

) is de�ned as follows

'

3

(�

1

) =

8

<

:

2�

1

in [0;

1

2

)

2� 2�

1

in [

1

2

; 1]

and for the quadratic shape function  

3

(�

1

) we have  

3

(�

1

) = �4�

2

1

+ 4�

1

.

With � = [(x

(e;2)

1

� x

(e;1)

1

)

2

+ (x

(e;2)

2

� x

(e;1)

2

)

2

]

0.5

we obtain

Z

�

N

g

2

p

(i)

l

ds =

X

e2E

l�1

Z

�

(e)

N;l�1

g

2

p

(i)

l

ds

=

X

e2E

l�1

8

<

:

0:5

Z

0

g

2

2�

1

� d�

1

+

1

Z

0:5

g

2

(2 � 2�

1

)� d�

1

9

=

;

(43)

=

X

e2E

l�1

g

2

�

�

1

4

+

1

4

�

=

X

e2E

l�1

1

2

g

2

�

and

Z

�

N

g

2

q

(i)

l�1

ds =

X

e2E

l�1

Z

�

(e)

N;l�1

g

2

q

(i)

l�1

ds(44)

=

X

e2E

l�1

1

Z

0

g

2

(�4�

2

1

+ 4�

1

)� ds =

X

e2E

l�1

2

3

g

2

� :
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Again both integrals di�er only by the factor

4

3

. Combining the relations (38),(39), and

(42) we get the statement of the Lemma.

Theorem 2.3. The FE systems of algebraic equations

�

4

3

^

K

l

l

�

1

3

~

K

l�1

�

û

l

=

�

4

3

^

f

l

l

�

1

3

~

f

l�1

�

and

^

K

q

l

û

l

=

^

f

q

l

have the same solution.

Proof: The proof follows immediately from Lemma 2.1 and Lemma 2.2.

An analogous result can be proved for the FE systems in the nodal basis. Before we show

this property, we state a lemma.

Lemma 2.4. Between the p-hierarchical and the quadratic nodal shape functions on the

reference element it holds

^

�

�

= �

�

S

�

;(45)

where

S

�

= [S

(��)

�

]

�;�=1;:::;6

; S

(��)

�

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 for � = �

1

2

for (�; �) = (4; 1); (4; 2)

(�; �) = (5; 2); (5; 3)

(�; �) = (6; 3); (6; 1)

0 otherwise :

^

�

�

= ('

1

(�

1

; �

2

); '

2

(�

1

; �

2

); '

3

(�

1

; �

2

);  

4

(�

1

; �

2

);  

5

(�

1

; �

2

);  

6

(�

1

; �

2

))

�

�

= ( 

1

(�

1

; �

2

);  

2

(�

1

; �

2

);  

3

(�

1

; �

2

);  

4

(�

1

; �

2

);  

5

(�

1

; �

2

);  

6

(�

1

; �

2

))

with

'

1

(�

1

; �

2

) = 1 � �

1

� �

2

; '

2

(�

1

; �

2

) = �

1

; '

3

(�

1

; �

2

) = �

2

;

 

1

(�

1

; �

2

) = 2�

2

1

+ 2�

2

2

� 3�

1

� 3�

2

+ 4�

1

�

2

+ 1 ;

 

2

(�

1

; �

2

) = 2�

2

1

� �

1

;  

3

(�

1

; �

2

) = 2�

2

2

� �

2

;

 

4

(�

1

; �

2

) = 4�

1

(1� �

1

� �

2

) ;  

5

(�

1

; �

2

) = 4�

1

�

2

;

 

6

(�

1

; �

2

) = 4�

2

(1� �

1

� �

2

) :

(46)

Proof: A simple calculation leads to

'

1

(�

1

; �

2

) =  

1

(�

1

; �

2

) + 0:5 ( 

4

(�

1

; �

2

) +  

6

(�

1

; �

2

))

'

2

(�

1

; �

2

) =  

2

(�

1

; �

2

) + 0:5 ( 

4

(�

1

; �

2

) +  

5

(�

1

; �

2

))

'

3

(�

1

; �

2

) =  

3

(�

1

; �

2

) + 0:5 ( 

5

(�

1

; �

2

) +  

6

(�

1

; �

2

))

and therefore (45) holds.
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Lemma 2.5. For the p{hierarchical and the quadratic nodal basis the relation

^

� = �S

l

(47)

holds, where

^

� = (p

(1)

l�1

; p

(2)

l�1

; : : : ; p

(N

l�1

)

l�1

; q

(N

l�1

+1)

l�1

; : : : ; q

(N

l

)

l�1

)(48)

� = (q

(1)

l�1

; q

(2)

l�1

; : : : ; q

(N

l

)

l�1

)(49)

S

l

= [S

(ij)

l

]

i;j=1;2;:::;N

l

(50)

S

(ij)

l

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

1 for i = j; i; j = 1; 2; : : : ; N

l

1

2

for j = i

1

and j = i

2

; N

l�1

< i � N

l

; where P

(i)

is the

midpoint of that edge which is given by the vertices

P

(i

1

)

and P

(i

2

)

of a triangle of T

l�1

0 otherwise:

(51)

Proof: The FE functions are de�ned element by element, i.e.

~p

(i)

l

(x) =

8

<

:

~p

(r)

�

(x) = ~'

�

(r)

(�(x)) x 2 �

(r)

l�1

; r 2 B

i

0 otherwise,

where ~p

(i)

l

stands for one function from (48) or (49), ~'

�

(r)
stands for the corresponding

shape function on the reference element �, i.e. for the corresponding function of (46), and

B

i

= fr 2 J

l�1

: P

(i)

2

�

�

(r)

l�1

g. Thus the statement of the Lemma follows from Lemma 2.4

immediately.

Theorem 2.6. The FE systems of algebraic equations

�

4

3

K

l

l

�

1

3

~

K

l�1

�

u

l

=

�

4

3

f

l

l

�

1

3

~

f

l�1

�

and K

q

l

u

l

= f

q

l

have the same solution.

Proof: Using Lemma 2.5 we get for arbitrary vectors u

l

; v

l

2 R

N

l

(

^

K

q

l

u

l

; v

l

) = a(

^

�u

l

;

^

�v

l

) = a(�S

l

u

l

;�S

l

v

l

) = (S

T

l

K

q

l

S

l

u

l

; v

l

)

and

(

^

f

q

l

; v

l

) = hF;

^

�v

l

i = hF;�S

l

v

l

i = (S

T

l

f

q

l

; v

l

):

Therefore we have

^

K

q

l

= S

T

l

K

q

l

S

l

; K

q

l

= S

�T

l

^

K

q

l

S

�1

l

(52)

^

f

q

l

= S

T

l

f

q

l

; f

q

l

= S

�T

l

^

f

q

l

:(53)

Furthermore, from Yserentant [22] we know that

^

K

l

l

= S

T

l

K

l

l

S

l

and

^

f

l

l

= S

T

l

f

l

l

:(54)
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From (52), (54), Lemma 2.1, and Lemma 2.2 it follows that

K

q

l

= S

�T

l

^

K

q

l

S

�1

l

= S

�T

l

�

4

3

^

K

l

l

�

1

3

~

K

l�1

�

S

�1

l

=

4

3

S

�T

l

(S

T

l

K

l

l

S

l

)S

�1

l

�

1

3

S

�T

l

~

K

l�1

S

�1

l

=

4

3

K

l

l

�

1

3

~

K

l�1

(55)

and

f

q

l

= S

�T

l

^

f

q

l

= S

�T

l

�

4

3

^

f

l

l

�

1

3

~

f

l�1

�

=

4

3

S

�T

l

(S

T

l

f

l

l

)�

1

3

S

�T

l

~

f

l�1

=

4

3

f

l

l

�

1

3

~

f

l�1

:(56)

3. Multilevel algorithmswith extrapolation. In this Section we analyse a multi-

grid algorithm using FE discretizations with piecewise linear functions and an implicit

extrapolation step. This algorithm converges to a FE solution which has the same dis-

cretization error as a FE solution obtained by a discretization with piecewise quadratic

functions. Additionally, we will use this algorithm as a preconditioner in the precondi-

tioned conjugate gradient (PCCG) method.

First we introduce some notations.

� Smoothing procedure

pre{smoothing G

V

l

(u

(j)

l

;K

l

l

; f

l

l

) :

Let the initial guess u

(j)

l

= (u

(j)

l;v

; u

(j)

l;m

)

T

be given.

Set u

(j+1)

l;v

= u

(j)

l;v

and compute an approximate solution ~z

l;m

of the system

K

l

l;mm

z

l;m

= f

l

l;m

�K

l

l;mv

u

(j+1)

l;v

�K

l

l;mm

u

(j)

l;m

(57)

by means of an iterative method, starting with the zero{vector. We suppose that the

error transmission operator of the method is of the typeM

l;m

= (I

l;m

�B

�1

l;mm

K

l

l;mm

).

Set u

(j+1)

l

= (u

(j+1)

l;v

; u

(j)

l;m

+ ~z

l;m

)

T

.

post{smoothing G

N

l

(u

(j)

l

;K

l

l

; f

l

l

) :

We want to use the same algorithm, however we suppose that the error transmission

operator of the iterative method for solving the system (57) is of the type M

l;m

=

(I

l;m

�B

�T

l;mm

K

l

l;mm

) so that the overall multigrid operator becomes symmetric.

� Interpolation

I

l

l�1

: R

N

l�1

! R

N

l

; I

l

l�1

=

 

I

l;v

S

l;mv

!

;(58)

where

(I

l

l�1

)

(ij)

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

1 for i = j; i; j = 1; 2; : : : ; N

l�1

1

2

for j = i

1

and j = i

2

; N

l�1

< i � N

l

; where P

(i)

is the

midpoint of that edge which is given by the vertices

P

(i

1

)

and P

(i

2

)

of a triangle from T

l�1

0 otherwise:

(59)
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� Restrictions

I

l�1

l

: R

N

l

! R

N

l�1

; I

l�1

l

= (I

l

l�1

)

T

= (I

l;v

S

T

l;mv

)(60)

I

l�1;inj

l

: R

N

l

! R

N

l�1

; I

l�1;inj

l

= (I

l;v

0)(61)

Now we formulate the multigrid algorithm.

Algorithm 1

Let an initial guess u

(k;0)

l

be given.

1. pre{smoothing

u

(k;1)

l

= G

V

l

(u

(k;0)

l

;K

l

l

; f

l

l

)(62)

2. coarse{grid correction

(a) Computation of the defect

d

(k)

l�1

=

4

3

I

l�1

l

(f

l

l

�K

l

l

u

(k;1)

l

) �

1

3

(f

l�1

�K

l�1

I

l�1;inj

l

u

(k;1)

l

)(63)

(b) Solution of the system

K

l�1

w

(k)

l�1

= d

(k)

l�1

(64)

by means of � iterations steps of an usual multigrid ((l�1){grid) algorithm (see,

e.g. [6]) which starts with the zero{vector and returns an approximate solution

~w

(k)

l�1

.

(c) Computation of the correction

u

(k;2)

l

= u

(k;1)

l

+ I

l

l�1

~w

(k)

l�1

(65)

3. post{smoothing

u

(k;3)

l

= G

N

l

(u

(k;2)

l

;K

l

l

; f

l

l

)(66)

Set u

(k+1;0)

l

= u

(k;3)

l

.

Before we present an alternative formulation of this algorithm, we analyse the smoothing

step and the computation of the defect.

� The essential operation in the smoothing step is the approximate solution of sys-

tem (57). Obviously, we can replace equation (57) by

4

3

K

l

l;mm

z

l;m

=

4

3

f

l

l;m

�

4

3

K

l

l;mv

u

(j+1)

l;v

�

4

3

K

l

l;mm

u

(j)

l;m

:(67)

Using the relations (55) and (56) in the proof of the Theorem 2.6 we get the equiv-

alence of relation (67) to

K

q

l;mm

z

l;m

= f

q

l;m

�K

q

l;mv

u

(j+1)

l;v

�K

q

l;mm

u

(j)

l;m

:(68)
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� Step 2(a) in Algorithm 1 can be formulated in terms of the quadratic nodal basis.

We have

4

3

I

l�1

l

(f

l

l

�K

l

l

u

(k;1)

l

)�

1

3

(f

l�1

�K

l�1

I

l�1;inj

l

u

(k;1)

l

)

=

4

3

�

I

l;v

S

T

l;mv

�

0

@

0

@

f

l

l;v

f

l

l;m

1

A

�

 

K

l

l;vv

K

l

l;vm

K

l

l;mv

K

l

l;mm

!

0

@

u

(k;1)

l;v

u

(k;1)

l;m

1

A

1

A

�

1

3

  

f

l�1

0

!

�

 

K

l�1

0

0 0

! 

(I

l;v

0)u

(k;1)

l

0

!!

(69)

= (I

l;v

S

T

l;mv

)

2

4

0

@

4

3

0

@

f

l

l;v

f

l

l;m

1

A

�

1

3

 

f

l�1

0

!

1

A

�

0

@

4

3

0

@

K

l

l;vv

K

l

l;vm

K

l

l;mv

K

l

l;mm

1

A

�

1

3

0

@

K

l�1

0

0 0

1

A

1

A

0

@

u

(k;1)

l;v

u

(k;1)

l;m

1

A

3

5

= (I

l;v

S

T

l;mv

)(f

q

l

�K

q

l

u

(k;1)

l

) = I

l�1

l

(f

q

l

�K

q

l

u

(k;1)

l

):

Because of the equivalence of the relations (57) and (68) we can replace in Algorithm 1

the smoothing steps (62) and (66) by the equivalent steps

u

(k;1)

l

= G

V

l

(u

(k;0)

l

;K

q

l

; f

q

l

) and u

(k;3)

l

= G

N

l

(u

(k;2)

l

;K

q

l

; f

q

l

):

Furthermore, we can see from equation (69) that the computation of the defect (63) is

equivalent to

d

(k)

l�1

= I

l�1

l

(f

q

l

�K

q

l

u

(k;1)

l

):

Therefore Algorithm 1 can be interpreted as an usual multigrid algorithm for solving the

system K

q

l

u

l

= f

q

l

of algebraic �nite element equations resulting from a discretization

with piecewise quadratic functions. According to this interpretation we can formulate

Algorithm 1 in a more abstract form. If we use a decomposition of the FE space V

q

l

, i.e.

V

q

l

=

^

V

q

l

= V

l�1

+ T

l

; T

l

= spanfq

(i)

l�1

; i = N

l�1

+ 1; : : : ; N

l

g(70)

we get the following equivalent algorithm

Algorithm 1

0

Let an initial guess u

(k;0)

l

2 V

l

be given.

1. pre{smoothing

Determine u

(k;1)

l

2 u

(k;0)

l

+ T

l

: ku

(k;1)

l

� u

(k;1)

l;�

k � �

1

ku

(k;0)

l

� u

(k;1)

l;�

k(71)

where u

(k;1)

l;�

2 u

(k;0)

l

+ T

l

: a(u

(k;1)

l;�

; v) = hF; vi for all v 2 T

l

2. coarse{grid correction

Determine u

(k;2)

l

2 u

(k;1)

l

+ V

l�1

: ku

(k;2)

l

� u

(k;2)

l;�

k � �

2

ku

(k;1)

l

� u

(k;2)

l;�

k(72)

where u

(k;2)

l;�

2 u

(k;1)

l

+ V

l�1

: a(u

(k;2)

l;�

; v) = hF; vi for all v 2 V

l�1
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3. post{smoothing

Determine u

(k;3)

l

2 u

(k;2)

l

+ T

l

: ku

(k;3)

l

� u

(k;3)

l;�

k � �

3

ku

(k;2)

l

� u

(k;3)

l;�

k(73)

where u

(k;3)

l;�

2 u

(k;2)

l

+ T

l

: a(u

(k;3)

l;�

; v) = hF; vi for all v 2 T

l

Set u

(k+1;0)

l

= u

(k;3)

l

.

In [19] Schieweck has proved the following convergence result for this type of multigrid

algorithm

ku

(k+1;0)

l

� u

l

k � � ku

(k;0)

l

� u

l

k ;(74)

where

� = �

2

+ (1� �

2

)[�

1

+ (1 � �

1

)
][�

3

+ (1 � �

3

)
] ;(75)

k:k

2

= a(:; :), and u

l

is the solution of the problem:

Find u

l

2 V

l

: a(u

l

; v

l

) = hF; v

l

i for all v

l

2 V

l

;

and 
 is the constant in the strengthened Cauchy inequality

ja(v

l

; w

l�1

)j � 
kv

l

k kw

l�1

k for all v

l

2 T

l

; for all w

l�1

2 V

l�1

:(76)

Using this result we can prove the following convergence theorem for Algorithm 1.

Theorem 3.1. Let the smoothing procedures, the restriction, and the interpolation oper-

ators be de�ned as at the beginning of this Section. Then

(i) Algorithm 1 converges to an approximate solution of problem (1) which has the same

discretization error as a piecewise quadratic FE solution.

(ii) The convergence estimate

ku

(k+1;0)

l

� u

l

k

�

� �ku

(k;0)

l

� u

l

k

�

(77)

holds, where k:k

2

�

= ((

4

3

K

l

l

�

1

3

~

K

l�1

) : ; : ) and u

l

is the solution of the system of

algebraic FE equations

�

4

3

K

l

l

�

1

3

~

K

l�1

�

u

l

=

�

4

3

f

l

l

�

1

3

~

f

l�1

�

:

The convergence rate � depends on the number of iteration steps for solving the

systems (57), on the convergence rate of the (l�1){grid algorithm used in step 2(b),

and on the constant in the strengthened Cauchy inequality (76).

Proof:

(i) This follows from the interpretation of Algorithm 1 as an usual multigrid algorithm

for solving the FE system K

q

l

u

l

= f

q

l

, immediately.

(ii) The convergence estimate (77) follows from estimate (75), because Algorithm 1 is

equivalent to Algorithm 1

0

.

From [1] we know that the matricesK

l

l;mm

and K

q

l;mm

have a condition number which

is independent of the discretization parameter. Therefore �

1

and �

3

in (71) and

(73), respectively, do not depend on the discretization parameter. If additionally

the convergence rate of the (l � 1){grid algorithm for solving the system (64) is

independent of the discretization parameter h

l�1

, then we get a h

l

{independent

convergence rate � of the Algorithm 1.
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Remark 3.1. The strengthened Cauchy inequality (76) for various bilinear forms a(:; :)

was analysed by many authors [1, 2, 4, 8, 11, 12, 19, 21]. Maitre and Musy [12]

calculated the constant 
 for bilinear forms corresponding to scalar partial di�erential

equations of second order. Jung [8] and Jung/Langer/Semmler [11] studied the

dependence of 
 on the Poisson ratio for linear elasticity problems in two- and three

dimension.

Remark 3.2. For di�erent bilinear forms the dependence of �

1

and �

3

on problem speci�c

parameters is studied in [8, 11, 19].

Remark 3.3. The statements of Theorem 3.1 can also be proved for Algorithm 1 applied

to FE equations resulting from the discretization of plane linear elasticity problems. To get

these results we must prove the statements of Lemma 2.1 and Lemma 2.2 for the related

matrices

^

K

l

l

, K

l�1

, and

^

K

q

l

. These proofs are similar to the proofs given in Section 2. In

Section 5 we will show some numerical experiments for plane linear elasticity problems.

Remark 3.4. We can also use Algorithm 1 as preconditioner. The starting point is the

PCCG method for solving the system of algebraic equations

�

4

3

K

l

l

�

1

3

~

K

l�1

�

u

l

=

�

4

3

f

l

l

�

1

3

~

f

l�1

�

:(78)

Since the matrix of the system of equations (78) is only used for matrix by vector

multiplications within the PCCG method it is not necessary to assemble the matrix

�

4

3

K

l

l

�

1

3

~

K

l�1

�

. Also the right{hand side is needed for the computation of the defect in

the initial step of the PCCG method only. Therefore, we can perform all operations of

the PCCG method using the matrices K

l

l

, K

l�1

and the right{hand sides f

l

l

and f

l�1

. A

priori we choose the matrix

~

C

l

=

�

4

3

K

l

l

�

1

3

~

K

l�1

�

as preconditioner and solve the precon-

ditioning systems

~

C

l

w

l

= r

l

within the PCCG algorithm by means of the Algorithm 1.

This approach we can interpret as a preconditioning with the matrix

C

l

=

�

4

3

K

l

l

�

1

3

~

K

l�1

�

(I

l

�M

m

l

)

�1

;(79)

where M

m

l

is the error transmission operator of the Algorithm 1. We have to check

whether the matrix C

l

is symmetric and positive de�nite. In [10] some conditions for the

smoothing procedures, the restriction, and the interpolation operators are given, which

guarantee these properties. If the conditions

~

C

l

G

V

l

= (G

N

l

)

T

~

C

l

;(80)

where G

V

l

and G

N

l

are the error transmission operators of the smoothing procedures,

I

l

l�1

= (I

l�1

l

)

T

; and(81)

K

l�1

M

l�1

= (M

l�1

)

T

K

l�1

;(82)

where M

l�1

is the error transmission operator of the (l � 1){grid algorithm for solving

system (64), are ful�lled then the matrix C

l

is a symmetric, positive de�nite one.
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The pre{smoothing procedure introduced at the begin of this Section can be written in

the following matrix form

0

@

u

(j+1)

l;v

u

(j+1)

l;m

1

A

=

0

@

I

l;v

0

�(I

l;m

�M

l;m

)K

�1

l;mm

K

l;mv

I

l;m

� (I

l;m

�M

l;m

)K

�1

l;mm

K

l;mm

1

A

0

@

u

(j)

l;v

u

(j)

l;m

1

A

+

0

@

0 0

0 (I

l;m

�M

l;m

)K

�1

l;mm

1

A

0

@

f

l;v

f

l;m

1

A

=

8

<

:

2

4

0

@

I

l;v

0

0 I

l;m

1

A

�

0

@

0 0

�B

�1

l;mm

K

l;mv

�B

�1

l;mm

K

l;mm

1

A

3

5

0

@

u

(j)

l;v

u

(j)

l;v

1

A

(83)

+

0

@

0 0

0 B

�1

l;mm

1

A

0

@

f

l;v

f

l;m

1

A

9

=

;

= (I

l

�B

�1

l

K

l

)u

(j)

l

+ B

�1

l

f

l

= G

V

l

u

(j)

l

+B

�1

l

f

l

;

where

B

�1

l

=

 

0 0

0 B

�1

l;mm

!

In an analog way we get for the post{smoothing

u

(j+1)

l

= (I

l

�B

�T

l

K

l

)u

(j)

l

+B

�T

l

f

l

= G

N

l

u

(j)

l

+B

�T

l

f

l

;(84)

where

B

�T

l

=

 

0 0

0 B

�T

l;mm

!

:

Now we have

~

C

l

G

V

l

=

~

C

l

�

~

C

l

B

�1

l

K

l

l

=

~

C

l

�

4

3

K

l

l

B

�1

l

K

l

l

=

~

C

l

�K

l

l

B

�1

l

~

C

l

= (I

l

�K

l

l

B

�1

l

)

~

C

l

= (G

N

l

)

T

~

C

l

;

i.e. the condition (80) is ful�lled. The interpolation and restriction operators I

l

l�1

and

I

l�1

l

we have de�ned in (58) { (60) such that condition (81) holds immediately. Condition

(82) is ful�lled if the smoothing iterations, the interpolation and the restriction operators

within the (l � 1){grid algorithm satisfy conditions analogous to (80) and (81) (see, also

[10]).

Hence we know that the matrix C

l

is symmetric and positive de�nite. Furthermore, the

spectral equivalence inequality

(1 � �

m

)(C

l

v

l

; v

l

) � (

~

C

l

v

l

; v

l

) � (C

l

v

l

; v

l

) for all v

l

2 R

N

l

(85)

holds. Therefore the number of iterations of the PCCG method needed to get an ap-

proximate solution with an relative accuracy " depends on the convergence factor of

Algorithm 1. If the convergence factor of the (l � 1)-grid method for solving the coarse

19



grid system (64) is independent of the discretization parameter h then the number of

iterations of this PCCG method is independent of h.

Remark 3.5. Using Theorem 2.3 and 2.6, we can also prove the convergence of an

algorithm similar to Yserentant's PCCG method with an hierarchical preconditioner

for FE schemes with piecewise linear elements. First, let us consider the system

�

4

3

^

K

l

l

�

1

3

~

K

l�1

�

û

l

=

�

4

3

^

f

l

l

�

1

3

~

f

l�1

�

(86)

or the equivalent system

^

K

q

l

û

l

=

^

f

q

l

:(87)

We solve system (86) or (87) by means of the PCCG method with the preconditioner

^

C

l

=

 

Q

�T

l�1

C

l�1

Q

�1

l�1

0

0 diag(K

l;mm

)

!

;(88)

where diag(K

l;mm

) = diag

^

K

q

l;mm

or diag(K

l;mm

) =

4

3

diag

^

K

l

l;mm

,

C

l�1

=

 

K

1

0

0 I

!

; Q

l�1

=

^

Q

l�1

^

Q

l�2

� � �

^

Q

2

:

The matrices

^

Q

k

; k = l � 1; : : : ; 2 are de�ned in an analogous way as the matrix S

l

in

(47). Yserentant [22] has shown the spectral equivalence inequality

cl

�2

(Q

�T

l�1

C

l�1

Q

�1

l�1

v

l�1

; v

l�1

) � (K

l�1

v

l�1

; v

l�1

)(89)

� c(Q

�T

l�1

C

l�1

Q

�1

l�1

v

l�1

; v

l�1

) for all v

l�1

2 R

N

l�1

;

with constants c and c which do not depend on the discretization parameter. Furthermore,

it can be shown (see [11])




m

(diag(K

l;mm

)v

l;m

; v

l;m

) � (K

l;mm

v

l;m

; v

l;m

)(90)

� 


m

(diag(K

l;mm

)v

l;m

; v

l;m

) for all v

l;m

2 R

N

l

�N

l�1

:

From (89), (90), and the strengthened Cauchy inequality (76) follows immediately

(1� 
)minf


m

; cl

�2

g(

^

C

l

v

l

; v

l

) � (

^

K

q

l

v

l

; v

l

)(91)

� (1 + 
)maxf


m

; cg(

^

C

l

v

l

; v

l

) for all v

l

2 R

N

l

:

Instead of solving the systems (86), (87) we can also solve the systems in the nodal basis

�

4

3

K

l

l

�

1

3

~

K

l�1

�

u

l

=

�

4

3

f

l

l

�

1

3

~

f

l�1

�

(92)

or, equivalently

K

q

l

u

l

= f

q

l

;(93)

by means of a PCCG method with the preconditioner

C

l

= S

�T

l

^

C

l

S

�1

l

:(94)
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In this case we get the spectral equivalence inequality

(1� 
)minf


m

; cl

�2

g(C

l

v

l

; v

l

) � (K

q

l

v

l

; v

l

)(95)

� (1 + 
)maxf


m

; cg(C

l

v

l

; v

l

) for all v

l

2 R

N

l

;

i.e. the number of PCCG iterations needed for solving the systems (92) or (93) is of the

order O(log(h

�1

l�1

) log(�

�1

)).

4. An analysis of the number of arithmetical operations needed for the

generation of the FE systems and the matrix{vector multiplication. In the pre-

vious Section we have seen that Algorithm 1 can be interpreted as an usual multigrid

algorithm for solving the system K

q

l

u

l

= f

q

l

. Furthermore, we can formulate Algorithm 1

in terms of the h{ or p{hierarchical basis, i.e. we have four possibilities for an imple-

mentation of this algorithm. To give an answer which implementation of the algorithm

will be the most e�cient with respect to the arithmetical work we analyse the number of

arithmetical operations needed for the generation of the FE systems

�

4

3

K

l

l

�

1

3

~

K

l�1

�

u

l

=

�

4

3

f

l

l

�

1

3

~

f

l�1

�

;

�

4

3

^

K

l

l

�

1

3

~

K

l�1

�

û

l

=

�

4

3

^

f

l

l

�

1

3

~

f

l�1

�

;

K

q

l

u

l

= f

q

l

; and

^

K

q

l

û

l

=

^

f

q

l

:

Additionally, we compare the number of operations needed for a matrix by vector multi-

plication.

The sti�ness matrices and load vectors are computed element by element. Therefore, �rst

we analyse the arithmetical work for the generation of an element sti�ness matrix and an

element load vector. The entries of the element sti�ness matrices are de�ned by

K

(r);(��)

q

=

Z

�

�

A(J

(r)

q

)

�T

r

�

~'

�

(�); (J

(r)

q

)

�T

r

�

~'

�

(�)

�

jdetJ

(r)

q

j d� :

For simplicity we consider the �rst boundary value problem, i.e. �

N

= ;, such that the

entries of the element load vectors are given by

f

(r);(�)

q

=

Z

�

f(x(�)) ~'

�

(�)jdetJ

(r)

q

j d� ;

where ~'

�

, ~'

�

stand for the shape functions corresponding to the piecewise linear nodal

basis, the h{hierarchical basis, the piecewise quadratic nodal basis, or the p{hierarchical

basis and q = l� 1 or q = l. Using the representation

(J

(r)

q

)

�T

=

1

detJ

(r)

q

0

@

x

(r;3)

2

� x

(r;1)

2

x

(r;1)

2

� x

(r;2)

2

x

(r;1)

1

� x

(r;3)

1

x

(r;2)

1

� x

(r;1)

1

1

A

=

1

detJ

(r)

q

(

�

J

(r)

q

)

�T

(see also (22)) we get

K

(r);(��)

q

=

1

jdetJ

(r)

q

j

Z

�

�

A(

�

J

(r)

q

)

�T

r

�

~'

�

(�); (

�

J

(r)

q

)

�T

r

�

~'

�

(�)

�

d� :
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For the computation of (

�

J

(r)

q

)

�T

r

�

~'

�

and detJ

(r)

q

we have to calculate the di�erences of

the coordinates

x

(32)

1

= x

(r;3)

1

� x

(r;2)

1

; x

(13)

1

= x

(r;1)

1

� x

(r;3)

1

; x

(21)

1

= x

(r;2)

1

� x

(r;1)

1

;

x

(23)

2

= x

(r;2)

2

� x

(r;3)

2

; x

(31)

2

= x

(r;3)

2

� x

(r;1)

2

; x

(12)

2

= x

(r;1)

2

� x

(r;2)

2

;

(96)

which requires Q

+

diff

= 6 additions and for the computation of detJ

(r)

q

we need addi-

tionally Q

�

J

= 2 multiplications and Q

+

J

= 1 addition.

Next we discuss the arithmetical work for the generation of the matrix

�

4

3

K

l

l

�

1

3

~

K

l�1

�

.

In this case we have to compute the element sti�ness matrices

K

l;(r)

q

=

2

4

1

jdetJ

(r)

q

j

Z

�

�

A(

�

J

(r)

q

)

�T

r

�

'

�

(�); (

�

J

(r)

q

)

�T

r

�

'

�

(�)

�

d�

3

5

3

�;�=1

;

where the functions '

�

, '

�

are de�ned by the relations (23) and q = l; l� 1, respectively.

A simple calculation leads to

(

�

J

(r)

q

)

�T

r

�

'

1

= (x

(23)

2

x

(32)

1

)

T

;

(

�

J

(r)

q

)

�T

r

�

'

2

= (x

(31)

2

x

(13)

1

)

T

;

(

�

J

(r)

q

)

�T

r

�

'

3

= (x

(12)

2

x

(21)

1

)

T

:

(97)

Because the element sti�ness matricesK

l;(r)

q

are symmetric we have to calculate six entries

per element sti�ness matrix. We need Q

�

f1

= 1 multiplication for the computation of

2jdetJ

(r)

q

j. The element K

l;(r);(11)

q

of the element sti�ness matrix is equal to

1

2jdetJ

(r)

q

j

h

a

11

x

(23)

2

x

(23)

2

+ 2a

12

x

(23)

2

x

(32)

1

+ a

22

x

(32)

1

x

(32)

1

i

;

where a

ij

are the entries of the symmetric matrix A. The elementsK

l;(r);(22)

q

and K

l;(r);(33)

q

can be computed in the same way. If we suppose that 2a

12

is computed at the begin of

the generation process, then we need for the computation of such an element

Q

+

e;1

= 2 additions and Q

�

e;1

= 7 multiplications :(98)

For the element K

l;(r);(12)

q

we have

K

l;(r);(12)

q

=

1

2jdetJ

(r)

q

j

h

a

11

x

(31)

2

x

(23)

2

+ a

12

[x

(13)

1

x

(23)

2

+ x

(31)

2

x

(32)

1

] + a

22

x

(13)

1

x

(32)

1

i

:

The elements K

l;(r);(13)

q

and K

l;(r);(23)

q

are de�ned in the same way. Therefore we need for

the computation of each element K

l;(r);(��)

q

, (��) 2 f(12); (13); (23)g,

Q

+

e;2

= 3 additions and Q

�

e;2

= 8 multiplications :(99)

To add an element sti�ness matrix to the global sti�ness matrix we need Q

+

e;add

= 6

additions. Consequently, the total work for the generation of an element sti�ness matrix

are

Q

+

e

= Q

+

diff

+ Q

+

J

+ 3Q

+

e;1

+ 3Q

+

e;2

+ Q

+

e;add

= 28

Q

�

e

= Q

�

J

+ 3Q

�

e;1

+ 3Q

�

e;2

+ Q

�

f1

= 48 :

(100)
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Because we assumed that f is constant over triangles �

(r)

l�1

2 T

l�1

(see Section 2) we get

for the entries of the element load vectors

f

l;(r);(�)

q

=

1

6

f

j

�

(r)

q

jdetJ

(r)

q

j � = 1; 2; 3;

i.e. we have to perform Q

�

f

= 2 multiplications to get all entries of the element load

vector and for the addition of the element load vector to the global load vector we need

Q

+

f;add

= 3 additions. The element sti�ness matrices corresponding to the elements �

(r)

l�1

and �

(k)

l

with

�

�

l;(r)

l�1

= [

k

�

�

l;(k)

l

are the same and the entries of the element load vectors f

l;(r)

l�1

,

f

l;(k)

l

di�er only by the factor

1

4

. Therefore, the total arithmetical work for the generation

of the sti�ness matrices K

l�1

, K

l

l

and the load vectors f

l�1

, f

l

l

are

31R

l�1

+ 4(Q

+

e;add

+Q

+

f;add

)R

l�1

additions and 50R

l�1

+R

l�1

multiplications;

i.e.

67R

l�1

additions and 51R

l�1

multiplications;(101)

where R

l�1

denotes the number of triangles of T

l�1

.

The element sti�ness matrices corresponding to the h{hierarchical basis are

^

K

l;(r)

l

=

2

4

1

jdetJ

(r)

l�1

j

Z

�

�

A(

�

J

(r)

l�1

)

�T

r

�

'

�

(�); (

�

J

(r)

l�1

)

�T

r

�

'

�

(�)

�

d�

3

5

6

�;�=1

;

where '

�

, '

�

are de�ned by the relations (23). For the computation of the matrix elements

^

K

l;(r);(��)

l

, (��) 2 f(11); (12); (13); (21); (22); (23); (31); (32); (33)g the arithmetical work is

given by (100). For the matrix elements

^

K

l;(r);(��)

l

, (��) 2 f(14); (15); (16); (24); (25); (26);

(34); (35); (36)g we have

^

K

l;(r);(��)

l

=

X

k2I(�)

1

jdetJ

(r)

l�1

j

Z

�

(k)

�

A(

�

J

(r)

l�1

)

�T

r

�

'

�

(�); (

�

J

(r)

l�1

)

�T

r

�

'

�

(�)

�

d�

=

1

8jdetJ

(r)

l�1

j

X

k2I(�)

�

A(

�

J

(r)

l�1

)

�T

r

�

'

�

(�)

j

�

(k)

; (

�

J

(r)

l�1

)

�T

r

�

'

�

(�)

j

�

(k)

�

;

where I(4) = f1; 2; 4g, I(5) = f2; 3; 4g, and I(6) = f1; 3; 4g (see also Section 2). Using the

special structure of (J

(r)

l�1

)

�T

r

�

'

�

, � = 1; 2; 3, (see (97)) and (J

(r)

l�1

)

�T

r

�

'

�

, � = 4; 5; 6,

from Table 3 we see that

^

K

l;(r);(14)

l

=

^

K

l;(r);(35)

l

,

^

K

l;(r);(16)

l

=

^

K

l;(r);(25)

l

, and

^

K

l;(r);(24)

l

=

^

K

l;(r);(36)

l

. Consequently, the additional arithmetical work for the calculation of these 9

elements are

9Q

+

e;2

+ 6Q

+

s2

additions and 9Q

�

e;2

+Q

�

f2

multiplications;(102)

where Q

+

s2

= 2 is the arithmetical work for the summation over k 2 I(�) and Q

�

f2

= 1

is the multiplication 4jdetJ

(r)

l�1

j.

Using again the vectors (J

(r)

l�1

)

�T

r

�

'

�

, � = 4; 5; 6 from Table 3, it follows that

^

K

l;(r);(44)

l

=

^

K

l;(r);(55)

l

=

^

K

l;(r);(66)

l

:
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Table 3

(

�

J

(r)

l�1

)

�T

r

�

'

�

, � = 4; 5; 6

(

�

J

(r)

l�1

)

�T

r

�

'

4

(

�

J

(r)

l�1

)

�T

r

�

'
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)

T
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2

x
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1

)

T

�2(x
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2

x
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1

)

T

Therefore, the arithmetical operations needed for the computation of these elements are

3Q

+

e;1

+Q

+

s2

additions and 3Q

�

e;1

multiplications:(103)

For the matrix elements

^

K

l;(r);(��)

l

, (��) 2 f(45); (46); (56)g, we have

^

K

l;(r);(��)

l

=

1

jdetJ

(r)

l�1

j

X

k2I(�)\I(�)

Z

�

(k)

�

A(

�

J

(r)

l�1

)

�T

r

�

'

�

(�)

j

�

(k)

; (

�

J

(r)

l�1

)

�T

r

�

'

�

(�)

j

�

(k)

�

d�;

where each sum consists of two identical summands. Therefore, we need for the compu-

tation of these elements

3Q

+

e;2

additions and 3Q

�

e;2

multiplications :(104)

The addition of the element sti�ness matrix into the global sti�ness matrix requires

Q

+

e;add

= 21(105)

Consequently, we see from (100),(102),(103),(104), and (105) that the total arithmetical

work for the generation of the element sti�ness matrix in the h{hierarchical basis are

Q

+

e

= Q

+

diff

+ Q

+

J

+ 6Q

+

e;1

+ 15Q

+

e;2

+ 7Q

s2

+ Q

+

e;add

= 99

Q

�

e

= Q

�

J

+ 6Q

�

e;1

+ 15Q

�

e;2

+ Q

�

f1

+ Q

�

f2

= 166 :

(106)

For the element load vector we have

^

f

l; (r); (�)

l

=

1

6

f

j

�

(r)

l�1

jdetJ

(r)

l�1

j for � = 1; 2; 3 and

^

f

l; (r); (�)

l

=

1

8

f

j

�

(r)

l�1

jdetJ

(r)

l�1

j for � = 4; 5; 6

(see also (40)), i.e. we need Q

�

f

= 3 multiplications and for the addition of an element

load vector to the global load vector Q

+

f;add

= 6 additions. Consequently, the total work

for the generation of the global sti�ness matrix

^

K

l

l

and the load vector

^

f

l

l

is

105R

l�1

additions and 169R

l�1

multiplications:(107)
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In the case of the quadratic nodal basis the element sti�ness matrices are de�ned by

K

q;(r)

l

=

2

4

1

jdetJ

(r)

l�1

j

Z

�

�

A(

�

J

(r)

l�1

)

�T

r

�

 

�

(�); (

�

J

(r)

l�1

)

�T

r

�

 

�

(�)

�

d�

3

5

6

�;�=1

;

where the functions  

�

(�) and  

�

(�) are given by the formula (46). Because the integrands

in these integrals are quadratic functions we will use the quadrature rule (25) for the

computation of the matrix elements, i.e.

K

q;(r)

l

=

2

4

1

6jdetJ

(r)

l�1

j

3

X

k=1

�

A(

�

J

(r)

l�1

)

�T

r

�

 

�

(�

(k)

); (

�

J

(r)

l�1

)

�T

r

�

 

�

(�

(k)

)

�

3

5

6

�;�=1

:(108)

The values of (J

(r)

l�1

)

�T

r

�

 

�

, � = 1; 2; : : : ; 6, in the quadrature points �

(k)

are given in

Table 4.

Table 4
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For the matrix elements K

q;(r);(��)

l

, � = 1; 2; 3, the three summands in the sum over k in

(108) are the same such that we have

K

q;(r);(��)

l

=

1

2jdetJ

(r)

l�1

j

�

A(

�

J

(r)

l�1

)

�T

r

�

 

�

(�

(1)

); (

�

J

(r)

l�1

)

�T

r

�

 

�

(�

(1)

)

�

:

Consequently, we need

3Q

+

e;1

additions and 3Q

�

e;1

+Q

�

f3

multiplications(109)

with Q

�

f3

= 1 for the computation of 2jdetJ

(r)

l�1

j.

From the special structure of (J

(r)

l�1

)

�T

r

�

 

�

we see that the computation of the matrix

elements K

q;(r);(��)

l

, (��) 2 f(12); (13); (23)g requires

3Q

+

e;2

additions and 3Q

�

e;2

+Q

�

f4

multiplications(110)

where Q

�

f4

= 1 is the arithmetical work for the computation of 6jdetJ

(r)

l�1

j.
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From Table Tables 4 we see that the amount of arithmetical work for the computation of

the matrix elements K

q;(r);(��)

l

, (��) 2 f(14); (15); (16); (24); (25); (26); (34); (35); (36)g is

9Q

+

e;2

+ 9Q

+

s2

additions and 9Q

�

e;2

+Q

�

f5

multiplications(111)

with Q

�

f5

= 1 for the computation of 3jdetJ

(r)

l�1

j.

Furthermore, we see that the arithmetical work for the computation of the elements

K

q;(r);(��)

l

, � = 4; 5; 6, is the same as in the case of the h{hierarchical basis, i.e

3Q

+

e;1

+Q

+

s2

additions and 3Q

�

e;1

+Q

�

f6

multiplications(112)

with Q

�

f6

= 1 for the computation of

3

2

jdetJ

(r)

l�1

j.

The computation of the elements K

q;(r);(��)

l

, (��) 2 f(45); (46); (56)g, requires addition-

ally

3Q

+

s2

additions(113)

With (109),(110),(111),(112),(113), the amount of arithmetical work Q

+

e;add

= 21 , for

the addition of the element sti�ness matrix to the global matrix, the arithmetical work

for the computation of the di�erences of the coordinates (96) (Q

+

diff

= 6) and the work

for the computation of detJ

(r)

l�1

(Q

+

J

= 1,Q

�

J

= 2) leads to the total arithmetical work

Q

+

e

= Q

+

diff

+ Q

+

J

+ 6Q

+

e;1

+ 12Q

+

e;2

+ 13Q

+

s2

+ Q

+

e;add
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Q

�
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�
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�
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�
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�
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�
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�
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+ Q

�
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(114)

For the element load vector we have
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4

Z

�
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j d�
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:

Using again quadrature rule (25) we get
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jdetJ
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j
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jdetJ
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j

!

T

;

i.e. we need Q

�

f

= 2 multiplications for the computation of

1

6

f

j

�

(r)

l�1

jdetJ

(r)

l�1

j and Q

+

f;add

=3

additions for the addition of the element load vector to the global load vector. Conse-

quently, the total amount of arithmetical work for the computation of the sti�ness matrix

K

q

l

and the load vector f

q

l

is

105R

l�1

additions and 146R

l�1

multiplications:(115)

In the case of the p{hierarchical basis we have to compute the matrix elements

^

K

q;(r);(��)

l

=

1

jdetJ

(r)

l�1

j

�

A(

�

J
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l�1
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�
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(116)

�; � = 1; 2; 3
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^
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l
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1

jdetJ
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�
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(117)

� = 1; 2; 3; � = 4; 5; 6

^
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1

jdetJ
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j

�
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�T
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�
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l�1
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�

 

�

(�)

�

(118)

�; � = 4; 5; 6 :

The arithmetical work for the computation of the matrix elements in (116) is given by

(100) and for the matrix elements in (118) by (112) and (113).

The integrands in the formula (117) are linear functions such that we use the midpoint

rule for the computation of this integrals, i.e.
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;

1
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�

:
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�
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x
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T
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�

 

5

(
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3

;

1

3
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4

3

�

x

(23)

2

x

(32)

1

�

T

(J
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l�1

)

�T
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�

 

4

(
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3
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1

3

) = �

4

3

�

x

(31)

2

x

(13)

1

�

T

:

(119)

Using the special structure of (97) and (119) we see that we need for the computation of

the 9 matrix elements de�ned in (117)

6Q

+

e;2

additions and 6Q

�

e;2

multiplications :(120)

From (100),(112),(113), (120) and the arithmetical work Q

e;add

= 21 for the addition of

the element sti�ness matrix to the global sti�ness matrix we obtain the total arithmetical

work

Q

+

e

= Q

+

diff

+ Q

+

J

+ 6Q

+

e;1

+ 9Q

e;2

+ 4Q

+

s2

+ Q

+

e;add

= 75

Q

�

e

= Q

�

J

+ 6Q

�

e;1

+ 9Q

�

e;2

+ Q

�

f1

+ Q

�

f6

= 118 :

(121)

For the element load vector we have

^

f

q; (r)

l

=

"

1

6

f

j

�

(r)

l�1

jdetJ

(r)

l�1

j

#

6

�=1

;

i.e. we need Q

�

f

= 2 multiplications and Q

+

f;add

= 6 additions for the assembling

process. Consequently, we need for the computation of the global sti�ness matrix

^

K

q

l

and

the global load vector

^

f

q

l

81R

l�1

additions and 120R

l�1

multiplications:(122)

From (101),(107),(115), and (122) it follows that the generation of the sti�ness matrix

and the load vector in the piecewise linear nodal basis is the cheapest. Furthermore, we
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see that the application of the p{hierarchical basis is more e�cient with respect to the

arithmetical work than the quadratic nodal basis.

Next, we will estimate the number of arithmetical operations required for the matrix-

vector multiplications

�

4

3

K

l

l

�

1

3

~

K

l�1

�

u

l

(123)

or

^

K

q

l

u

l

:(124)

For the sake of simplicity we suppose that the domain 
 is a rectangle and the triangula-

tion consists of isosceles rectangular triangles. If we neglect the in
uence of the boundary,

each row in the matrices K

l

l

and K

l�1

, respectively, have 7 nonzero elements. Therefore,

a matrix{vector multiplication with (123) requires approximately

7N

l

+N

l

+ 7N

l�1

+N

l�1

= 8(N

l

+N

l�1

) � 10N

l

multiplications, and

6N

l

+ 6N

l�1

+N

l�1

= 6N

l

+ 7N

l�1

� 31=4N

l

additions. The matrix (124) has 1=4N

l

rows with 19 non{zero elements and 3=4N

l

rows

with 9 non{zero elements, i.e. the matrix{vector multiplication with the matrix

^

K

q

l

re-

quires

19=4N

l

+ 27=4N

l

= 23=2 multiplications

and

18=4N

l

+ 24=4N

l

= 21=2 additions:

Thus the equivalent multiplication with the extrapolated matrix in (123) is slightly

cheaper than the multiplication with the hierarchical quadratic matrix of (124). In total,

for the generation of the matrices, as well as for performing Algorithm 1, the computa-

tional work for the extrapolated system based on (K

l

l

;K

l�1

; f

l

l

; f

l�1

) is smaller than for

the quadratic system with (

^

K

q

l

;

^

f

q

l

).
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5. Numerical results. In this Section we want to demonstrate that the Algorithm 1

converges to a FE solution with a discretization error in the same order as we obtain by

a discretization with quadratic elements. Furthermore, we show that the convergence

rate of Algorithm 1 is independent of the discretization parameter. We compare our

results with a multigrid algorithm applied to FE equations resulting from a discretization

with quadratic elements. All algorithms are implemented within the multigrid package

FEMGP [9, 20]. The computations were performed on a PC 80486 (33 MHz) using the

LAHEY{Fortran compiler.

Let us �rst consider the problem:

Find u 2 H

1

0

(
) such that

Z




(Ar

x

u;r

x

v) dx =

Z




fv dx(125)

for all v 2 H

1

0

(
) holds,

where 
 = (0; 1) � (0; 1), A =

 

4 4

4 5

!

, and f = �

2

(9 sin �x sin�y � 8 cos �x cos�y).

The exact solution of this problem is u = sin�x sin�y.

Because we want to compare Algorithm 1 with an algorithm for solving the FE equations

obtained by using quadratic elements, we discretize problem (125) by means of the usual

nodal basis of piecewise linear functions and by means of the p{hierarchical basis. An

analysis of the arithmetical work for the generation of the FE systems shows that it is

almost the same in both cases. Table 5 demonstrates this fact.

Table 5

Comparison of the CPU{time needed for the generation of the FE systems

number of degrees number of CPU{time for the generation of

level l

of freedom triangles of T

l�1

K

l�1

, K

l

l

, f

l�1

, f

l

l

^

K

q

l

,

^

f

q

l

3 49 32 0.007 sec 0.011 sec

4 225 128 0.029 sec 0.044 sec

5 961 512 0.118 sec 0.178 sec

6 3969 2048 0.473 sec 0.713 sec

7 16129 8192 1.892 sec 2.851 sec

In the Table 6 the number of iterations and the CPU{time needed by the application of

Algorithm 1 are given. Within the Algorithm 1 we used for the pre{smoothing (62) two

iteration steps of the lexicographically forward Gauss{Seidel method, one iteration step

of a (l�1){grid algorithm for solving the coarse{grid system (64), and two iteration steps

of the lexicographically backward Gauss{Seidel method for the post{smoothing (66). The

results show that the number of iterations is independent of the discretization parameter.

If we use one iteration step of Algorithm 1 as preconditioner in the PCCG method for

solving the system

�

4

3

K

l

l

�

1

3

~

K

l�1

�

u

l

=

�

4

3

f

l

l

�

1

3

~

f

l�1

�

;(126)
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we get an algorithm with better convergence, the so{called MG(1){PCCG method (see

also Remark 3.4). For comparison we use Algorithm 1

0

as preconditioner in the PCCG

method for solving the system

^

K

q

l

û

q

l

=

^

f

q

l

(127)

The results are presented in Table 6.

Table 6

Comparison of the Algorithm 1, of the PCCG method (Algorithm 1 as preconditioner), and the PCCG

method (Algorithm 1

0

as preconditioner). The algorithms are terminated, when the relative defect becomes

smaller than 10

�4

.

MG(1){PCCG method for solving the systems

Algorithm 1

(126) (127)

l

number of number of number of

iterations

CPU{time

iterations

CPU{time

iterations

CPU{time

3 13 0.11 sec 5 0.06 sec 5 0.05 sec

4 14 0.54 sec 6 0.28 sec 6 0.28 sec

5 14 2.36 sec 6 1.15 sec 6 1.10 sec

6 14 9.83 sec 6 4.83 sec 6 4.66 sec

7 14 41.58 sec 6 19.83 sec 6 19.49 sec

Finally, we compare the discretization errors u�u

l

l

and u�u

q

l

in the H

1

{ and L

2

{norm,

respectively. Here u

l

denotes the FE solution obtained by means of Algorithm 1 and u

q

l

the FE solution by a discretization with piecewise quadratic functions. We remark that in

our example the right{hand side f is not constant on triangles �

(r)

l�1

, which we had assumed

in the proofs of the Theorems 2.3 and 2.6. Therefore, in our example the right{hand sides

�

4

3

f

l

l

�

1

3

~

f

l�1

�

and

^

f

q

l

are not identical. But the system (126) gives also a FE solution

with almost the same discretization error as the system (127).

Table 7

Comparison of the discretization errors

Level l ku� u

l

l

k

H

1
ku� u

q

l

k

H

1
ku� u

l

l

k

L

2

ku� u

q

l

k

L

2

3 0.1306 0.1426 0.4074-02 0.4226-02

4 0.3347-01 0.3481-01 0.5404-03 0.5440-03

5 0.8426-02 0.8539-02 0.6850-04 0.6864-04

6 0.2110-02 0.2118-02 0.8577-05 0.8582-05

7 0.5278-03 0.5283-03 0.9328-06 0.9331-06

As second example we consider a linear elasticity problem, i.e.:

Find the displacement �eld u = (u

1

; u

2

)

T

2 V

0

, such that

E

1 + �

Z
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1

@v

1
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1

+

@u

2

@x

2

@v

2

@x

2

+

�

1 � �

divudivv(128)
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1
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�
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2

@x

1

��

@v

1

@x

2

+

@v

2

@x

1

��

dx =

Z

�

N

g

2;1

v

1

+ g

2;2

v

2

ds

holds for all test functions v 2 V

0

.
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Here g

2

= (g

2;1

; g

2;2

)

T

denotes the surface tractions, E is Young's elasticity modulus, and

� is the Poisson ratio. The space V

0

is de�ned by V

0

= fv 2 [H

1

(
)]
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:

F = 1000 N on the upper part

of the boundary

0 otherwise

Fig. 3. Shape of the domain and data for the test problem

Again we compare the CPU{time needed for the generation of the FE systems in the

nodal basis of piecewise linear functions and in the p{hierarchical basis.

Table 8

Comparison of the CPU{time needed for the generation of the FE systems

number of degrees number of CPU{time for the generation of

level l

of freedom triangles of T

l�1

K

l�1

, K

l

l

, f

l�1

, f

l

l

^

K

q

l

,

^

f

q

l

,

3 586 128 0.27 sec 0.24 sec

4 2194 512 0.99 sec 0.96 sec

5 8492 2048 4.01 sec 3.89 sec

Furthermore, we give results concerning the application of the Algorithm 1 and its use

as preconditioner in the PCCG method. We mention here, that the constant in the

strengthened Cauchy inequality (76) is relatively large, namely 
 = 0:94 (see [11]), and

therefore the convergence of the Algorithm 1 is poor. In Table 9 we summarise some

results for Algorithm 1 and we compare the MG(1){PCCG method for the systems (126)

and (127). Additionally, we compare these algorithms with the PCCG method discussed

in Remark 3.5, i.e. the HB{PCCG method.

Finally, we compare the energy of the FE solutions obtained by solving the systems (126)

and (127), respectively. From Table 10 we see that we have in both cases the same

FE solution.
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Table 9

Comparison of the Algorithm 1, of the MG(1){PCCG method (Algorithm 1 as preconditioner), the

MG(1){PCCG method (Algorithm 1

0

as preconditioner), and the HB{PCCG method. The algorithms

are terminated, when the relative defect becomes smaller than 10

�4

.

MG(1){PCCG method HB{PCCG method

Algorithm 1 for solving the system for solving the system

(126) (127) (126)

l

number of number of number of number of

iterations iterations iterations iterations

CPU{time CPU{time CPU{time CPU{time

25 9 9 37

3

3.51 sec 1.32 sec 1.32 sec 1.43 sec

26 9 9 46

4

15.37 sec 5.87 sec 5.66 sec 6.87 sec

25 9 9 54

5

63.11 sec 23.40 sec 23.67 sec 32.63 sec

Table 10

Comparison of the energy norms of the solutions

energy norm of the solution of the system

Level l

(126) (127)

3 6.34388 6.34386

4 6.41933 6.41931

5 6.45374 6.45378

Fig. 4. The triangulation (level 4) and the contour of the domain with its deformation
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6. Conclusions. We have shown that multigrid � -extrapolation can be interpreted

as an implicit method to form higher order FE sti�ness matrices. This is not only of

theoretical interest, but leads to an e�cient higher order multilevel solution technique for

PDE. In particular, this extrapolation technique can be used on unstructured meshes.

The resulting algorithm is competitive with multilevel methods that use higher order

elements directly. The convergence rate and numerical work per iteration are comparable,

but the algorithm has the advantage of a possibly simpler structure. In particular, the

� -extrapolation method is easy to incorporate into existing low order methods, because

it di�ers from the basic algorithm for linear elements only by a slight modi�cation of the

�ne-to-coarse restriction process.

The alternative analysis for � -extrapolation given in R�ude [18] is based on asymptotic

expansions for quadrature rules over the triangle, and shows that the method can be

generalized when the coe�cients are not piecewise constant. In this case the linear com-

bination of the sti�ness matrices constitute an appropriate numerical quadrature formula

for the quadratic sti�ness matrix. This analysis also opens the possibility to generalize

this technique to higher order. Some preliminary results for these extensions are contained

in R�ude [15], [16], and [17].
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