
Technical University of Chemnitz{Zwickau

Department of Mathematics

Joerg Weickert � Torsten Steidten

E�cient Time Step Parallelization

of Full-Multigrid Techniques

Preprint-Reihe der Chemnitzer DFG-Forschergruppe

\Scienti�c Parallel Computing" SPC 94 1

January, 1994



2 1 INTRODUCTION

Summary

This paper deals with parallelization methods for time{dependent problems where the time

steps are shared out among the processors. A Full Multigrid technique serves as solution

algorithm, hence information of the preceding time step and of the coarser grid is necessary

to compute the solution at each new grid level. Applying the usual extrapolation formula to

process this information, the parallelization will not be very e�cient. We developed another

extrapolation technique which causes a much higher parallelization e�ect. Test examples

show that no essential loss of exactness appears, such that the method presented here shall

be well{applicable.

1 Introduction

A lot of parallelization methods to achieve a faster computation of problems of mathema-

tical physics have been introduced within the last few years. Most of them, the so{called

Domain Decomposition (DD) methods, make use of a splitting of the calculation domain.

To improve the computation of time-dependent calculations like parabolic initial boundary

value problems another idea for parallelization was charging each processor with the com-

putation of one certain time step. Applying multigrid techniques, the amount of work to be

done at each processor will be considerable.

The proceeding is the following: Computation starts at the coarsest grid (1), that means,

we employ a full{multigrid algorithm. Processor number one calculates the �rst time step

now. When it has �nished the �rst grid level, it can go on with grid number two, while

processor two (for time step two) starts at the coarsest grid, making use of information of

grid one, time step one:

~u

2

1

:= u

1

1

:

Here u

j

q

represents the solution and ~u

j

q

an approximate solution at grid level q, time step j.

For grid number two, processor two needs results of grid two, time step one:

~u

2

2

:= u

1

2

+ � � � :

Besides, processor three is able to start with grid number one, getting results of processor

two relative to this grid level:

~u

3

1

:= u

2

1

;

and so on.

A generalized extrapolation formula for the approximate solution may be written in the

form

~u

j+1

q+1

:= u

j

q+1

+ I

q+1

q

(u

j+1

q

� u

j

q

) (1)

j = 1; � � � ; k � 1 (time step)

q = 1; � � � ; l� 1 (grid level)

I

q+1

q

is an interpolation operator from grid level q to the next �ner one.

Figure 1 illustrates this formula.

The whole process might be represented as a gradual one: Processor number one is

computing the �nest grid (l), processor number two is employed with the second �nest

(l � 1), � � � ; processor number l is calculating the coarsest one (1), see �gure 2.



3

b

b b

s-

�

�

�

�

�

�� 6

grid

level

q + 1

q

j j + 1

time

step

Figure 1: Usual extrapolation scheme

e

ee

e e

e e

u

u

u

u

u

6

-

�

�� 6

�

�� 6

-

-

�

�� 6

-

�

�� 6

- - - - -

GRID

LEVEL

L

L-1

2

1

1 2
J

J + 1

TIME

STEP

(PROCESSOR)

Figure 2: Multigrid process according to extrapolation (1)

That means, that the computations at the �nest grid must be carried out successively.

At this grid level no computation time can be saved by parallelization. This becomes clear

by a comparision of computation times of the parallel and the sequential method:

� for parallel computing: k � t

l

+ t

l�1

+ � � �+ t

1

� for successive computing: k � (t

l

+ t

l�1

+ � � �+ t

1

)

Pro�t of parallel computing: (k � 1) � (t

l�1

+ � � �+ t

1

)

k - number of time steps

l - number of grid levels

t

q

- computation time at grid number q

But just at the �nest grid the expense of computation time is much higher than at the

coarser ones. For a two{dimensional model it is about four times as high as at the second

�nest grid. Consequently, it does not make sense to calculate at the coarser grids faster than

at �ner ones by choosing the number of processors greater than the number of grid levels to

be considered, because the process has to wait for the solution at the �nest grid. It is easy to

be seen that no e�cient parallelization is possible using this algorithm. Therefore a method



4 2 A MORE SUITABLE EXTRAPOLATION FORMULA

towards a more e�cient parallel computing of time{dependent full{multigrid techniques

shall be developed.

2 A more suitable extrapolation formula

Formula (1) is obtained by a Taylor development which is presented here for the one{

dimensional case (for more spatial dimensions it may be done analogously). The upper

index represents the time step, the lower one the grid point. h is the step size of the current

grid level, which we assume to be constant. Then the approximate value at a new grid level

is calculated as follows:

u

j+1

x

0

+h

= u

j

x

0

+

@u

j

x

0

@x

� h+

@u

j

x

0

@t

� � +O(h

2

+ �

2

)

� u

j

x

0

+

u

j

x

0

+h

� u

j

x

0

h

� h+

u

j+1

x

0

� u

j

x

0

�

� � +O(h

2

+ �

2

)

= u

j

x

0

+h

+ u

j+1

x

0

� u

j

x

0

+O(h

2

+ �

2

)

If x

0

+ h is a point of the current grid q + 1, a point x

0

(distance h) will be a point of the

next coarser grid q, such that we can consider values u

�

x

0

as solutions of this grid level, which

leads to

~u

j+1

q+1

= u

j

q+1

+ I

q+1

q

(u

j+1

q

� u

j

q

) ;

i.e. formula (1) of chapter 1. (The lower index now denotes the grid level).

What prevents an e�cient parallelization is the fact that the process has to wait for the

solution of the preceding time step at the current grid, u

j

q+1

. The corresponding term in

the formula can be excluded by replacing the forward{di�erence{approximation of @u

j

x

0

=@x

by a backward{di�erence{approximation. Since we reach a grid (q � 1) then which is two

levels coarser than the current one (q + 1), we have to move a distance 2 � h away from a

point x

0

of grid q to meet a point of this grid q � 1.

Then the backward{di�erence{approximation is

@u

j

x

0

@x

�

u

j

x

0

� u

j

x

0

�2h

2h

;

such that we have

u

j+1

x

0

+h

� u

j

x

0

+

u

j

x

0

� u

j

x

0

�2h

2h

� h+

u

j+1

x

0

� u

j

x

0

�

� � +O(h

2

+ �

2

)

=

1

2

u

j

x

0

+ u

j+1

x

0

�

1

2

u

j

x

0

�2h

+O(h

2

+ �

2

)

This corresponds to the new extrapolation formula

~u

j+1

q+1

:= I

q+1

q

(u

j+1

q

+

1

2

u

j

q

)�

1

2

II

q+1

q�1

u

j

q�1

; (2)

where II

q+1

q�1

stands for an interpolation operator from grid q� 1 to another one which is two

levels �ner.

The scheme of this extrapolation variant is shown by means of �gure 3.



5

c

c

c

s

�

��

�

�

�

�

�

��

6

grid level

q+1

q

q-1

j j+1 time step

Figure 3: Extrapolation scheme without information of current grid level

3 The full parallel algorithm

Using the extrapolation formula of section 2, the proceeding does not make use of any

information of former time steps concerning the current grid level, since u

j

q+1

is replaced by

information of coarser grids. In this way we get a \full parallel" algorithm, that means each

processor is able to compute the same grid level. Information of other processors is needed

from coarser grid levels only. The multigrid process for k time steps is shown by means of

�gure 4.

The processors work simultaneously from grid 3 onwards. At the two coarsest grids, the

proposition of section 2 will not be applicable, because information of two coarser grid levels

is necessary there. That's why the usual extrapolation (1) is employed here.

Towards a faster computation at the �nest grid, the time step parallelization should be

combined with methods like Domain Decomposition.

The advantage of a proceeding like this is that the multigrid algorithm of each time step

is �nished (almost) at the same time. However, the solution obtained in this way may be

less exact than in the case of usual extrapolation. Therefore it is proposed to carry out one

more multigrid step at the �nest grid.

The entire process can be characterized as follows:

{ At �rst computation with approximate values

(less information, higher velocity);

{ �nally one more multigrid step at the �nest grid

for all time steps to receive the \exact" solution.

4 Numerical results

The numerical tests for the given results were carried out using the software package

FEMGPM (Finite Element Multi{Grid Package) that originates in the program package

implemented by M. Jung on an ESER 1040 computer under OS/ES in 1985 (cf. [1]) and

further improved on an ESER 1056 under OS/VMS. This program was also installed on a

VAX computer under UNIX/VMX in 1987. Since 1990 the FEMGPM software has been

implemented on personal computers under MS{DOS or DR{DOS, respectively. FEMGPM



6 4 NUMERICAL RESULTS

h h h

h

h

h

h h h

h h h

h

h

h hh

h

hh

h hh

h

h h h

x

x

x

x

x

DD

GRID

LEVEL

L

L-1

2

1

PROCESSOR

(TIME STEP)

1 2
K-1 KJ

Q

x

h

CURRENT CALCULATION

CALCULATIONS BEING ALREADY PERFORMED

COARSE GRID CALCULATION

CURRENT COARSE GRID CALCULATION

Figure 4: Proceeding of the full parallel algorithm

is implemented in FORTRAN. To overcome the existing limit of 640 kBytes under DOS

systems the LAHEY FORTRAN compiler is used that allows to use the extended memory

of the computers. That's why problems with a relatively high number of unknowns can

be solved on personal computers. Nowadays also implementations on a transputer under

PARIX and for SUN workstations under UNIX are available. FEMGPM is used as a test

program for numerical algorithms as well as for solving practical problems. The user is able

to deal with linear elliptic problems (e. g. heat equations or elasticity problems), with linear

parabolic problems and with thermic{mechanically coupled problems. For more detailed

information about FEMGPM the reader should study [2].

The new extrapolation method has been tested on some examples of the two{dimensional

heat equation, and the results were compared with the ones of the usual extrapolation

method (1). The calculation domain was a rectangle with a basic triangularization for the

FEM-discretization as shown in �gure 5. We considered the parabolic problem

@u

@t

�4u =

@u

@t

�

@

2

u

@x

2

�

@

2

u

@y

2

= f(t; x; y)

with various right hand sides f(t; x; y) which were chosen such that the exact solution is

given analytically. So we were able to consider the di�erence between the exact (u) and the

numerical solution (~u) in theW

1

2

{, L

2

{, and C� norms, respectively. The analytic solutions

of our test examples were the following:



7

Figure 5: Calculation domain

Example 1: u(t; x; y) = x(1� x)y(1� y)t

2

Example 2: u(t; x; y) = x(1 � x) sin �y cos 2k�t

Example 3: u(t; x; y) = sin �x sin�y cos 2k�t

In examples 2 and 3 the parameter k controls how much the solution oscillates during the

process. By this way we wanted to examine if higher oscillations have a stronger inuence

on the new (less exact) extrapolation formula.

The computations of the test examples were not carried out parallel but sequential, because

we just wanted to consider the degree of exactness of our extrapolation method and not

the e�ect on computation times. For all examples a Full Multigrid algorithm with �ve grid

levels was employed, and 50 time steps were computed. The �nal multigrid step over all

time steps (as proposed in section 3) was left out, it is not relevant for a comparison of the

exactness of the two extrapolation variants.

As result we got the following error norms

k u� ~u k

�

; � 2 fW

1

2

; L

2

; Cg :

Example Norm Usual extrapolation (1) New extrapolation (2)

W

1

2

4:4213 � 10

�3

4:4213 � 10

�3

1 L

2

3:7532 � 10

�5

3:7803 � 10

�5

C 9:9596 � 10

�5

1:0078 � 10

�4

W

1

2

2:2316 � 10

�2

2:2312 � 10

�2

2 (k=5) L

2

3:2347 � 10

�3

3:2336 � 10

�3

C 6:0517 � 10

�3

6:0489 � 10

�3

W

1

2

4:2243 � 10

�2

4:2236 � 10

�2

2 (k=9) L

2

8:5027 � 10

�3

8:5016 � 10

�3

C 1:5784 � 10

�2

1:5780 � 10

�2

W

1

2

1:0388 � 10

�1

1:0388 � 10

�1

2 (k=15) L

2

2:2593 � 10

�2

2:2593 � 10

�2

C 4:2555 � 10

�2

4:2558 � 10

�2

W

1

2

0:1599 0:1599

3 (k=9) L

2

3:2846 � 10

�2

3:2842 � 10

�2

C 6:5403 � 10

�2

6:5382 � 10

�2

The examples show that there is almost no di�erence between the error norms of both



8 REFERENCES

extrapolation techniques. Even higher oscillations are well assimilated by the new extra-

polation method. The correspondence of the W

1

2

{norms shows that also derivatives do

not cause a deviation. So we can state that the technique developed in this paper may

be used without any considerable loss of exactness. Applying parallel computing, a lot of

computation time can therefore be saved at a reasonable price.

References

[1] M. Jung. Finite Element Multi{Grid Package FEMGP (November 1985 version). In

G. Telschow, editor, Second Multigrid Seminar, Garzau 1985, pages 103{107, Berlin,

1986. Karl{Weierstrass{Institut. Report R{MATH{08/86.

[2] T. Steidten and M. Jung. Das Multigrid{Programmsystem FEMGPM zur L�osung el-

liptischer und parabolischer Di�erentialgleichungen einschlie�lich mechanisch{thermisch

gekoppelter Probleme (Version 06.90). Programmdokumentation, Technische Univer-

sit�at Karl{Marx{Stadt, Sektion Mathematik, 1990.


