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Abstract

We discuss numerical methods for the stabilization

of large linear multi-input control systems of the

form _x = Ax + Bu via a feedback of the form

u = Fx. The method discussed in this paper is

a stabilization algorithm that is based on a sub-

space splitting. This splitting is done via the matrix

sign-function method. Then a projection into the

unstable subspace is performed followed by a stabi-

lization technique via the solution of an appropriate

algebraic Riccati equation. There are several pos-

sibilities to deal with the freedom in the choice of

the feedback as well as in the cost functional used in

the Riccati equation. We discuss several optimality

criteria and show that in special cases the feedback

matrix F of minimal spectral norm is obtained via

the Riccati equation with the zero constant term. A

theoretical analysis about the distance to instability

of the closed loop system is given and furthermore

numerical examples are presented that support the

practical experience with this method.

1. Introduction

Consider a linear control system

_x = Ax+ Bu; x(0) = x

0

; (1)

where A is a real n� n matrix and B a real n�m

matrix. We discuss the problem of chosing a real

m � n feedback matrix F such that the feedback

u = Fx stabilizes the system, i.e. A + BF has

all eigenvalues in the open left half plane. Stabi-

lization is an important task in many applications.

Apart from the obvious applications in control a

similar problem also arises in the construction of

methods for the solution of parabolic partial di�er-

ential equations [1].

Stabilizing feedback matrices can be chosen in sev-

eral di�erent ways. A method that is often used is

pole placement, see [2] and the references therein.

This method observes a lot of di�culties in the nu-

merical solution.

To illustrate the di�culties consider the following

example which, like all other examples in this pa-

1

a t�at �r at e ati , e itz- ic a ,

, - e itz. esearc s ort - ra t

a - , ro e s etrisc e eic ss ste e i

orsc er r e c c , e itz

per, were performed in MATLAB version 4.1 on

an HP 715-33 workstation, with machine epsilon

2:22 � 10

�1

.

Example 1 Let A = diag(:1; :2; :3; :4; :5; :6), B =

�

1 2 3 4 5 6

�

T

Suppose that we wish to

assign the eigenvalues �6;�5;�4;�3;�1:1;�1.

Consider the well-known pole-placement methods

suggested in [3] and [4]. When computing the eigen-

values of A + BF one �nds that in both cases the

assigned eigenvalues have only one correct digit.

One reason for this bad result is that the spec-

tral norm of the feedback matrix is very large,

kFk

2

= 3:7879 � 10 .

In a multi-input system, the situation becomes

somewhat better.

Example 2 Let A = diag(:1; :2; :3; :4; :5; :6; :7; :8)

and B =

2

4

1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 7

3 4 5 6 7 8 7 6

3

5

T

. Sup-

pose we wish to obtain the eigenvalues �8, �7, �6,

�5, �4, �3, �1:1, �1. The pole-placement method

of [3] produces eigenvalues with one correct digit

and kFk

2

= 8:0802 � 10 and the method in [4]

yields three correct digits and kFk

2

= 3:3004� 10

5

.

The above examples are not exceptional. When

the dimension of the system is larger than 10, then

most closed loop systems obtained via pole assign-

ment have eigenvalues which are very sensitive to

perturbations.

In an extensive test we took A as a 10�10 random

matrix, B as a 10� 1 random matrix in MATLAB

and �1;�2; : : : ;�10 as eigenvalues to be assigned.

In 100 testruns we found that in 86 cases the norm

of feedback matrix was larger than 10

7

and in the

other 14 examples the norm of feedback matrix was

larger than 10 .

This suggests that the pole placement problem is

probably intrinsically ill-conditioned, see also [2]

and for large scale control problems, the situation

becomes even more unsatisfactory.

The biggest di�culty with pole placement is that

it is not known how the eigenvalues should be cho-

sen to guarantee that the feedback matrix has a



small norm. In multi-input systems, where there is

freedom in the choice of the matrix F , this freedom

can be used to minimize the norm of F [5]. Another

approach in the multi-input case is to minimize the

condition number of the eigenvector matrix of the

closed loop system over all possible feedback ma-

trices that assign the required eigenvalues [6]. This

choice minimizes a bound for the distance to insta-

bility [6]. Also here it is not known how one should

choose the eigenvalues so that the optimal condi-

tion number is small. Despite these di culties, for

small dimensions pole placement is often used suc-

cessfully in practice.

Another stabilization method, that has often bet-

ter numerical properties is the solution of an ap-

propriately chosen linear quadratic optimal control

problem:

J = min

u

1

0

(x

T

Qx+ u

T

Ru) dt (2)

subject to (1) with appropriately chosen nonega-

tive de�nite matrix Q = C

T

C and positive de�nite

matrix R.

The standard theory for such optimal control prob-

lems, e.g. [7, 8], shows that if (A;B) is stabilizable

and (A;C) is detectable, then the linear quadratic

optimal problem (2), (1) has the unique solution

u = Fx = �R

�1

B

T

Xx; (3)

where X is the unique nonnegative de�nite solution

of the algebraic Riccati equation

A

T

X +XA �XBR

�1

B

T

X +C

T

C = 0 (4)

and the corresponding closed loop system

_x = (A +BF )x = (A �BR

�1

B

T

X)x (5)

is stable. (The pair of matrices (A;B) is said to be

stabilizable if Rank (�I � A;B) = n for all � 2 C

with nonnegative real part. (A;C) is said to be

detectable if (A

T

; C

T

) is stabilizable.)

Thus, by �nding the nonnegative de�nite solution

of the Riccati equation, the system can be stabi-

lized. But one still has the choice of the cost matri-

ces R;Q = C

T

C and clearly these should be chosen,

so that the closed loop system is insensitive to per-

turbations. At least it should be guaranteed that

small perturbations do not make the system un-

stable again. Typically for this approach the cost

matrix Q = 0 is chosen in which case the Riccati

equation reduces to a Lyapunov equation for the

inverse of X [9]. This choice of Q can be motivated

from the fact, that this choice leads to a minimum

norm feedback. We will discuss this in Section 4.

This approach was already used in the classical sta-

bilization algorithms which were based on the re-

duction to Schur form [10, 11, 4]. These methods

work e�ciently for small and medium sized prob-

lems (n � 500).

For large scale control problems (n > 500) none

of the approaches discussed previously is feasible.

The pole placement problem for such systems is ex-

tremely ill-conditioned and for the Riccati approach

we essentially have to compute an n-dimensional in-

variant subspace of a 2n� 2n Hamiltonian matrix,

plus a matrix inversion [12]. Furthermore even if

the system matrices are sparse, the solution X will

be a full matrix.

For such large problems, therefore, other methods

have to be considered. One suggestion that has

been made is to use partial pole placement [13], but

the di�culty of this approach is the same as that for

the standard pole placement problem. Other sug-

gestion are the use of iterative methods in the solu-

tion of the algebraic Riccati equation, or the Lya-

punov equation which occurs in Newton's method

applied to the Riccati equation, [14, 15, 16, 17].

None of these approaches is satisfactory so far, since

it is di�cult to guarantee that the stabilizing solu-

tion of the Riccati equation is obtained and also to

guarantee the convergence of the iterative method.

We can summarize our previous discussion as fol-

lows: Given the problem to stabilize system (1) via

feedback, we can do this via pole placement or the

solution of a linear quadratic control problem. In

both cases there is a lot freedom in the design of

the problem. In the pole placement approach the

eigenvalues can be chosen freely, in the optimal con-

trol approach the cost function is still free of choice.

Currently for both approaches an optimal method

is not known. On the other hand several measures

of optimality can be considered. Whichever mea-

sure we choose, we should head for a closed loop

system which is insensitive to perturbations in the

feedback matrix F in order to guarantee that the

computed closed loop system is really stable.

In order to achieve this we should try to maximize

the distance to instability [18], i.e. the smallest

perturbation which makes the system unstable

�(A) := min

�

�

n

(A� �iI); (6)

where �

n

denotes the smallest singular value. If A+

BF is diagonalizable and A+BF = W�W

�1

is the

spectral decomposition of the closed loop matrix,

then a lower bound for the distance to instability

for the closed loop system is given by

1

cond

2

(W )

�(�) � �(A+ BF ): (7)

Thus minimizing cond

2

(W ) will maximize a lower

bound for the distance to instability. A pole place-

ment method that minimizes cond(W ) among all



possible choices of feedback that assign the correct

poles was introduced in [6]. This method, however,

is very costly and unfeasible for large control prob-

lems.

In view of all these di�culties we suggest a new sta-

bilization approach which is feasible for large sized

problems n < 5000, where A has only few (less than

100) unstable poles.

This new approach is very closely related to the

classical method suggested by Varga [9]. But in-

stead of computing the Schur form which is infea-

sible for large matrices we computed the subspace

splitting via the matrix sign-function method, (see

[19] and the references therein), which has recently

received quite a lot of interest due to its inherent

parallelizability. We use the sign function method

to split the complete space R

n

into two subspaces

which are the real invariant subspaces of A with re-

spect to the stable eigenvalues and unstable eigen-

values, respectively. Using a projection method

similar to that suggested in [13], the problem is re-

duced to a subsystem problem for the stabilization

in the invariant subspace corresponding to the un-

stable eigenvalues. Based on the Schurmethod such

an approach was previously suggested in [9]. For

the subproblem we show that the optimal choice of

a cost functional in the Riccati approach is obtained

with Q = 0 so that this stabilization problem can

be obtained via the solution of a Lyapunov equation

for Y = X

�1

:

~

A
Y + Y

~

A

T

�

~

R
= 0: (8)

Lifting the solution of (8) into the complete space

we obtain a stabilizing feedback for the original

problem.

The paper is organized as follows: In Section 2, we

discuss the relationship between the cost function-

als for the complete problem and the stabilization

problem.

In the Section 3 we discuss the choice of the cost

functional that leads to minimal norm of the feed-

back gain matrix.

The distance to instability is discussed in Section 4

to show that reducing kFk

2

is a crucial point in the

stabilization problem.

In Section 5 some numerical examples are given to

support the theoretical results.

Throughout the paper �(A) denotes the spectrum

of A, I the identity matrix of suitable size, and we

write A � B (A < B) if B � A is nonnegative

de�nite (positive de�nite). We also assume that

(A;B) is stabilizable. We denote the open left half

plane by C

�

.

2. Subspace Splitting and Stabilization

In this section we discuss the use of the matrix sign-

function to split the complete space into two invari-

ant subspaces of A with respect to its stable and

unstable eigenvalues.

The matrix sign function was �rst introduced by

Roberts in a technical report (which appeared only

signi�cantly later [20]) as

sign(A) :=

1

�i



(zI �A)

�1

dz � I; (9)

where  is any closed connected set in the complex

plane containing all eigenvalues of A with positive

real part. An alternative de�nition in matrix termi-

nology was given by Beavers and Denman [21, 22]

using the Jordan canonical form.

We will use the following de�nition via the Schur-

form, see [23]:

Suppose that A has the real Schur form, e.g. [24],

W

T

AW =

�

A

11

A

12

0 A

22

�

; (10)

where we assume that all eigenvalues of A

11

are in

the left half plane and all eigenvalues of A

22

are

in the right half plane. Let Y be a solution of the

Sylvester equation Y A

22

� A

11

Y = 2A

12

, then the

sign function is given by

sign(A) := W

�

�I

p

Y

0 I

n�p

�

W

T

: (11)

Soon after the introduction of the sign function it

was recognized that it can be useful method for the

computation of eigenvalues and invariant subspaces

[21, 25, 22, 26, 19, 27, 28, 29, 20] and for the solution

of Riccati and Sylvester equations [25, 30, 31].

The di�culty with the matrix sign function is that

it is not de�ned for matrices with eigenvalues on

the imaginary axis and that the evaluation of the

sign function is an ill-conditioned problem for ma-

trices with eigenvalues close to this axis, due to the

discontinuouity of the sign-function in the matrix

elements. This is one reason why for quite some

time the matrix sign function method has been as-

sociated with being an unstable method. But as

recent results show [27, 23] for the computation of

invariant subspaces it can be considered as accu-

rate as for the example the transformation to Schur

form. For matrices with eigenvalues on or near the

imaginary axis, however, special activities have to

be devised.

As in the Schur form, the calculation of the unsta-

ble invariant subspace via the matrix sign function



leads to an orthogonal matrixW such that the sys-

tem matrix is transformed as in (10) and

W

T

B =

�

B

1

B

2

�

: (12)

Let W = (W

1

;W

2

) be partitioned analogous to the

partitioning in W

T

AW . Since A

22

is unstable, the

problem of stabilizing the system given by A;B is

then reduced to the stabilization of the smaller sys-

tem

_x

2

= A

22

x

2

+ B

2

u: (13)

Suppose that there is a feedback matrix F

2

such

that Re(�) < 0 for all � 2 �(A

22

+ B

2

F

2

), then

the closed loop system obtained with the feedback

matrix F =

�

0 F

2

�

W

T

= F

2

W

T

2

is stable. This

is seen immediately from

�

A

11

A

12

0 A

22

�

+

�

B

1

B

2

�

�

0 F

2

�

=

�

A

11

A

12

+B

1

F

2

0 A

22

+B

2

F

2

�

:

The di�culty with this approach, as well as with

most of the pole placement approaches, is that

the closed loop system may be much more ill-

conditioned than the original system. Here ill-

conditioning means that the eigenvalues of the

closed loop system can change drastically if they are

subject to small perturbations. This could mean

that small perturbations may move the eigenvalues

back into the right half plane. And such a situa-

tion is certainly not acceptable in practice. Thus

we must be careful in the choice of the feedback

matrix F . But since there is a lot of freedom in the

choice of F , we may use this freedom to make the

closed loop system as well-conditioned as possible.

To analyze the freedom we use the following results

on the stabilization properties of the nonnegative

de�nite solution of the Riccati equation. The �rst

result is essentially due to Willems [32].

Lemma 1 Let X

i

; i = 1; 2 be real symmetric non-

negative de�nite solutions of the algebraic Riccati

equations

A

T

X +XA �XBR

�1

B

T

X + Q

i

= 0; i = 1; 2;

respectively, such that

�(A� BR

�1

B

T

X

i

) � C

�

; i = 1; 2:

Then 0 � Q

2

� Q

1

implies J(Q

2

) � J(Q

1

), where

the cost functional J(Q) as a function of Q is de-

�ned as in (2).

Proof: Inserting the optimal feedback (3) for the

equation with Q

1

into the cost functional with cost

matrix Q

2

we obtain

J(Q

2

) = min

u

R

1

0

(x

T

Q

2

x+ u

T

Ru)dt

�

R

1

0

(x

T

Q

2

x+ x

T

X

1

BR

�1

B

T

X

1

x)dt:

Then, since Q

2

� Q

1

, we have

J(Q

2

)

�

R

1

0

(x

T

Q

1

x+ x

T

X

1

BR

�1

B

T

X

1

x) dt = J(Q

1

);

which completes the proof.

Using this lemma, we can show how in some spe-

cial cases the value of the cost functional J(Q) is

decreased.

It is clear that the optimal value of the cost func-

tional decreases if the column dimension of the ma-

trix B is increased by adding columns. This follows,

since

min

u

1

;u

2

1

0

(x

T

Qx+

�

u

1

u

2

�

T

�

R

11

R

12

R

21

R

22

� �

u

1

u

2

�

)dt

� min

u

1

1

0

(x

T

Qx+ u

T

1

R

11

u

1

)dt;

where the minima are taken subject to _x = Ax +

[B

1

; B

2

]

�

u

1

u

2

�

or _x = Ax + B

1

u

1

, respectively.

This is obtained directly by chosing u

2

= 0.

Furthermore we have the following theorem:

Theorem 2 Let

A =

�

A

11

A

12

0 A

22

�

; B =

�

B

1

B

2

�

;

with A in Schur form. Let Q = diag(Q

1

; Q

2

), where

Q

1

is positive semide�nite of appropriate dimension

and let J(Q) be the minimum of the cost functional.

Furthermore let that

J

2

:=

1

0

(x

T

2

Q

2

x

2

+ x

T

2

X

2

B

2

R

�1

B

T

2

X

2

x

2

)dt

be the value of the cost functional obtained by in-

serting the optimal control u

2

= �R

�1

B

T

2

X

2

x

2

ob-

tained via the algebraic Riccati equation

A

T

22

X

2

+X

2

A

22

�X

2

B

2

R

�1

B

T

2

X

2

+Q

2

= 0

for the subsystem _x

2

= A

22

x

2

+B

2

u(t). Then J

2

�

J(Q):

Proof: The appended matrix

~

X
= diag(0; X

2

)

satis�es the Riccati equation

A

T

~

X
+

~

X
A�

~

X
BR

�1

B

~

X
+ diag(0; Q

2

) = 0:



As diag(0; Q

2

) � Q, Lemma 1 implies that J

2

=

J(diag(0; Q

2

)) � J(diag(Q

1

; Q

2

)).

From these results we see that by increasing the

dimension of B and by appropriately decreasing the

matrix Q in the cost functional, we can decrease

the minimum of the cost functional. Increasing the

column dimension m of B is usually not an option,

but the cost functional can still be chosen freely.

In the next section we discuss how to choose the

cost functional in order to minimize the norm of

the feedback matrix.

3. The Minimum Norm Feedback

In this section, we consider the stabilization prob-

lem for a problem where the system matrix is com-

pletely unstable as is the case for our projected sub-

problem (13).

The following Theorem is probably well-known, but

we do not know a reference.

Theorem 3 If we consider the cost functional as

a function of Q then

min

Q�0

J(Q) = J(0):

Furthermore suppose that Re(�) > 0 for all � 2

�(A) and suppose that

A

T

X +XA �XBR

�1

B

T

X = 0; (14)

has a nonsingular solution X. If F = �R

�1

B

T

X

is the corresponding feedback, then the eigenvalues

A+BF are the negatives of the eigenvalues A.

Proof: The �rst part of the theorem follows triv-

ially from Lemma 1. For the second part observe

that we can rewrite the Riccati equation (14) as

X(A +BF ) = �A

T

X:

Since all eigenvalues of A have negative real part,

X is assumed nonsingular, it follows that the eigen-

values of A+BF are those of �A

T

.

As we are looking for a nonsingular solution of

the degenerate Riccati equation we can equivalently

solve the Lyapunov equation

AY + Y A

T

= BR

�1

B

T

; (15)

where X = Y

�1

, [10].

For relatively small sized Lyapunov equations there

are e�cient algorithms available [33, 34]. For large

problems there is recently a lot of interest in itera-

tive methods, see [16] and the references therein.

Remark 1 We have assumed that Re(�) > 0 for

all eigenvalues of A. Without this restriction the

minimum of the function J(Q) still occurs for Q =

0. The nonnegative de�nite solution X of the Ric-

cati equation (4) with Q = 0 has rank equal to the

number of eigenvalues of A with positive real parts,

see [35]. The eigenvalues of A + BF are a combi-

nation of eigenvalues with negative real part of A

and negatives of eigenvalues of A with positive real

parts. However we still have to assume that A has

no pure imaginary eigenvalues, since otherwise the

sign-function approach is not feasible.

Although the value of the cost functional J(Q)

partly reects the size of kFk

2

, we are merely inter-

ested in minimal values for kFk

2

. This is, however,

still an open problem and we only present the re-

sult in the case that B is a nonsingular matrix. We

begin with another Lemma of Willems [32].

Lemma 4 Let X

i

; i = 1; 2 be real symmetric solu-

tions of the algebraic Riccati equations

A

T

X

i

+X

i

A�X

i

BR

�1

B

T

X

i

+ Q

i

= 0; i = 1; 2

respectively and assume that all eigenvalues of A�

BR

�1

B

T

X

1

have negative real part. Then 0 �

Q

2

� Q

1

implies X

2

� X

1

.

Using this Lemma we can prove the following the-

orem:

Theorem 5 Suppose that all eigenvalues of A have

positive real part. Let B be square nonsingular and

let R = (B

T

B)

1=2

be the positive square root of

B

T

B (cf. [24]). Let X be the nonnegative de�nite

solution of the algebraic Riccati equation

A

T

X +XA �XBR

�1

B

T

X +Q = 0;

so that all eigenvalues of A�BR

�1

B

T

X have neg-

ative real part. Then the minimum norm feed-

back matrix F taken over all positive semide�n-

ite matrices Q occurs for Q = 0. It is given by

F = �R

�1

B

T

X, where X is the positive de�nite

solution of the degenerate Riccati equation (14).

Furthermore the eigenvalues of A+BF are the neg-

atives of those of A.

Proof: Let X

1

andX

2

be the nonnegative de�nite

solutions of the Riccati equations

A

T

X +XA �XBR

�1

B

T

X +Q

i

= 0; i = 1; 2

for 0 � Q

2

� Q

1

. Let F

i

= �R

�1

B

T

X

i

; i =

1; 2. Then Lemma 4 implies X

2

� X

1

. Thus

kX

2

k

2

� kX

1

k

2

. Observe that R

�1

B

T

is an or-

thogonal matrix and therefore kF

1

k

2

= kX

1

k

2

and

kF

2

k

2

= kX

2

k

2

. Thus kF

2

k

2

� kF

1

k

2

and the min-

imum of kFk

2

occurs at Q = 0.



Remark 2 It is hard to prove that Theorem 5

is true for general B. In order to prove

kR

�1

B

T

X

2

k

2

� kR

�1

B

T

X

1

k

2

, we would need to

prove that

max

y

(y

T

R

�1

B

T

X

2

2

BR

�1

y)

� max

y

(y

T

R

�1

B

T

X

2

1

BR

�1

y):

This inequality, however, does not hold in general

as the following example demostrates. Take

B =

�

1

0

�

; R = I; X

1

=

�

6 �4

�4 20

�

;

X

2

=

�

5 �6

�6 8

�

:

Then X

1

�X

2

=

�

1 2

2 12

�

is positive de�nite but

kR

�1

B

T

X

2

k

2

=

p

61
>

p

52
= kR

�1

B

T

X

1

k

2

. On

the other handX

1

; X

2

andB are not independent of

each other so we may expect that Theorem 5 holds

for a much wider class of problems with m < n.

On the other hand we apply Theorem 5 only for the

(usually) small subsystem (13), for which we may

even havemore inputs than states. In this sense our

result is appropriate in quite general situations.

It is natural to ask what happens when the mini-

mization problem includes R. The answer is, that

minimizing the norm of feedback matrices among

all 0 � Q is usually su�cient, since we can always

scale the problem so that kRk

2

= 1 (see [36]). In

fact, let � = kRk

2

, then

~

X
= X=� satis�es the

Riccati equation

A

T

X

�

+

X

�

A�

X

�

B

~

R

�1

B

T

X

�

+

Q

�

= 0;

where

~

R
= R=�. Observe that the feedback matri-

ces produced by both Riccati equations are same,

i.e.

~

F
= �

~

R

�1

B

T

~

X
= �R

�1

B

T

X = F:

Example 3 Consider the system given by

A =

2

6

6

6

6

4

0:1 1 10 0 0

�1 0:1 0 10 0

2 1 10

�1 2 0

5

3

7

7

7

7

5

; B =

2

6

6

6

6

4

5 4 3

4 5 4

3 4 5

1 3 4

1 1 3

3

7

7

7

7

5

;

and let R = �I and Q = �I. The following table

shows the optimal stabilizing feedback kFk

2

as a

function of � and �.

� n �
10

�4

10

�2

1 10

2

10

4

10

�4

9.80 6.41 6.01 5.98 5.98

10

�2

23.7 9.80 6.41 6.01 5.98

1
147 23.7 9.80 6.41 6.01

10

2

1397 147 23.7 9.80 6.41

10

4

10

4

1397 147 23.7 9.80

The Toeplitz structure of the above table is in ac-

cordance with our theoretical analysis, only one pa-

rameter plays a role. The minimum norm feed-

back matrix F with kFk

2

= 5:9833 occurs at

� = 0; � = 1 and �(A+BF ) = f�5:0000;�0:1000�

1:0000i;�2:0000� 1:0000ig.

In this section we have discussed the minimization

of the feedback F in two di�erent measures, the

value of the cost functional J(Q) and kFk

2

. In the

�rst case and in special situations also in the second

case the optimal F is obtained for the choice Q = 0

in the cost functional.

In the next question we discuss as a di�erent mea-

sure of optimality the distance to instabilty.

4. Distance to Instability

We have already discussed in the introduction that

the goal in using the freedom in the choice of the

stabilizing feedback matrix is to make the closed

loop system insensitive to perturbations. In the

previous section we have attempted to minimize the

norm of the feedback matrix to achieve this goal. In

this section we try to maximize the distance to in-

stability. If we could solve this problem, we would

certainly obtain the best choice in terms of robust-

ness.

Let A be stable, then the distance of A to the near-

est matrix in the set of unstable matrices is mea-

sured as follows [18]:

�(A) = min

�

�

n

(A� �iI);

where �

n

is the smallest singular value of A � �iI

and i =

p

�1
. For small sized problems e�cient

algorithms are available for computing this distance

[37, 38]. We wish to solve the optimization problem

max

F

�(A+ BF );

among all feedback matrices F that stabilize the

system. Suppose that A+BF is diagonalizable and

A+ BF =W�W

�1

is the spectral decomposition.

Then it is clear that a lower bound for �(A + BF )

is given by

1

cond

2

(W )

�(�) � �(A+ BF ):

In [6] a robust pole assignment algorithms is based

on minimizing the lower bound cond

2

(W ) for �(A+

BF ). However, if eigenvalues are close, then this

bound can be arbitrary small, even though the

�(A + BF ) is not [39]. Also the method that opti-

mizes cond

2

(W ) is not feasible for large scale prob-

lems.



In the following theorem the above lower bound is

improved. To do this, the matrix A + BF is as-

sumed to be in block Schur form (10). Then the

separation of A

11

and A

22

, sep(A

11

; A

22

), is de-

�ned as the smallest singular value of Y , where

A

11

Y � Y A

22

= A

12

[40].

Theorem 6 Let F be a feedback matrix derived

from the stabilization algorithm such that all eigen-

values of A + BF have negative real part. Suppose

that A +BF has the Schur form

A = W

�

A

11

A

12

+B

1

F

2

0 A

22

+B

2

F

2

�

W

T

:

Then

�

2

(� + kA

12

+B

1

F

2

k

2

)

2

minf�(A

11

); �(A

22

+B

2

F

2

)g

� �(A +BF );

where

� := min

�

sep(A

11

� �iI; A

22

+B

2

F

2

� �iI):

Proof: The result is true for � = 0. So we may

assume that � 6= 0 and hence there exists a matrix

Y satisfying

(A

11

� �iI)Y � Y (A

22

+B

2

F

2

� �iI)

+(A

12

+ B

1

F

2

) = 0;

(16)

such that

�

I �Y

0 I

� �

A

11

� �iI A

12

+B

1

F

2

0 A

22

+B

2

F

2

� �iI

�

�

�

I Y

0 I

�

=

�

A

11

� �iI 0

0 A

22

+B

2

F

2

� �iI

�

:

It follows that

�

n

(

�

A

11

� �iI 0

0 A

22

+B

2

F

2

� �iI

�

)

� cond(

�

I �Y

0 I

�

)�

�

n

(

�

A

11

� �iI A

12

+B

1

F

2

0 A

22

+B

2

F

2

� �iI

�

)

� (1 +max

�

kY k

2

)

2

�

�

n

(

�

A

11

� �iI A

12

+B

1

F

2

0 A

22

+B

2

F

2

� �iI

�

):

(17)

Then by (16) we obtain that

kY k

2

�

kA

12

+B

1

F

2

k

2

sep(A

11

� �iI; A

22

+ B

2

F

2

� �iI)

�

kA

12

+ B

1

F

2

k

2

�

:

Substituting the upper bound into (17) completes

the proof.

If the norm of A

12

+ B

1

F

2

is large or if there are

close eigenvalues of A

11

and A

22

+ B

2

F

2

then the

lower bound may be very small. It is often the case

that close eigenvalues make only the lower bound

small but not �(A + BF ) [39]. Since the norm of

F is minimized via the solution of the Lyapunov

equation (14), the stabilization method in general

does not make �(A+BF ) much smaller than �(A

11

).

This observation is demonstrated in our numerical

examples in the next section.

5. Numerical Examples

Based on the previous discussion we suggest the

following stabilization method for a large control

system with only few unstable poles:

Algorithm 1 Stabilization

Input: System matrices A 2 R

n�n

; B 2 R

n�m

.

Output: Feedback matrix F 2 R

m�n

such that

A +BF is stable.

1. Newton iteration for the matrix sign

function

Iterate

X

0

= A; X

k+1

= (X

k

+X

�1

k

)=2; k = 1; 2; : : :

until kX

k+1

�X

k

k

1

� 1000 �NkX

k+1

k

2

1

eps,

where eps is the machine precision. Set

sign(A) := X

k+1

.

2. Computation of an orthogonal basis for

the unstable invariant subspace.

Compute the QR decomposition with column

pivoting (see [24])

W

T

(sign(A) � I)� =

�

S

11

S

12

0 0

�

;

and partition W = (W

1

;W

2

) analogously.

3. Set A

22

= W

T

2

AW

2

; B

2

= W

T

2

B.

4. Solve the Lyapunov equation

A

22

Y + Y A

T

22

= B

2

B

T

2

using for example the Bartels/Stewart algo-

rithm (cf. [24]).

5. Set F

2

= �B

T

2

Y

�1

and set F =

�

0 F

2

�

W

T

.

Remark 3 We have the following comments on

this algorithm:

1. A detailed analysis of the numerical proper-

ties of methods for the compution of the matrix sign

function is given in [19, 27, 23]. In particular it is

shown in [23] that the matrix sign function method



is as good as the Schur method for computing in-

variant subspaces.

2. Other methods for the computation of the ma-

trix sign-function can be used to replace Newton's

method in Step 1., see [19, 27]. Also other methods

for the solution of the Lyapunov equation can be

employed, see [24].

3. In our algorithm, we have chosen R = I in the

cost functional that leads to the Lyapunov equa-

tion. There are of course other choices, for example

R = (B

T

B)

1=2

, but numerical examples indicate

that the choice R = I is better.

Example 4 For Example 1 Algorithm 1 yields a

feedback with kFk

2

= 463:2583 and for Example 2

the norm of the feedback is kFk

2

= 204:7319. A

comparison of the pole assignmentmethods and the

stabilizationmethod via the Riccati equation shows

that the norm kFk

2

is drastically reduced.

Example 5 This example demonstrates that when

the dimension of the input matrix becomes larger,

the norm of the optimal feedback matrix F goes

down. Let

A =

2

6

6

6

6

4

0:1 10

0:3 10

2 10

4 10

5

3

7

7

7

7

5

;

B =

2

6

6

6

6

4

5 4 3 1 1

4 5 4 3 1

3 4 5 4 3

1 3 4 5 4

1 1 3 4 5

3

7

7

7

7

5

:

By adding in successively more columns in B, we

have the following norms of optimal feedback ma-

trices .

m
1 2 3 4 5

kFk

2

16.10 11.55 3.99 2.28 1.80

Example 6 This example is taken from [19]. It

was originally suggested by Chatelin. It has the

form

A = Q(D +N )Q

T

;

where Q is a random orthogonal matrix and N is a

matrix

with n

ij

=

�

�; if j = i + 30;

0; otherwise

and � = 10. D

has the formD = diag(D

1

; : : : ; D

350

; 1; 2; 3; : : : ; 10)

withD

k

=

�

x

k

y

k

�y

k

x

k

�

, where x

k

= �y

2

k

=10; y

k

=

�0:1k; k = 1; 2; : : : ; 350 and B is a random n � 15

matrix. The stable eigenvalues of A lie on the curve

x = �y

2

=10.

Due to the large size of the matrix, we were not

able to compute the distance to instability. The

sign-function method produced a factorization of

the form

�

A

11

A

12

E

21

A

22

�

;

where the perturbation E

21

is very small,

kE

21

k

1

kAk

1

= 3:027 � 10

�14

:

The stabilization procedure produced a feedback

matrix F with kFk

2

= 43:662.

If we take the 105� 105 matrix constructed in a

similar way with � = 10

3

, �ve unstable eigenvalues

1; 2; 3; 4; 5 and a 105�3 matrixB with rows [k; 200�

k;

p

k]; k = 1; 2 : : : ; 105 we obtained an analogous

result. In this case we computed �(A

11

) = 6:3145�

10

�5

, where the minimum occurs for the parameter

� = 1:0002. Our computation yields �(A + BF ) =

9:4497 � 10

�7

and � = 0:9961.

Example 7 We ran 100 tests with a random 100�

100 system matrix A with less than 7 unstable

eigenvalues and a random 100� 6 matrix B. None

of the norms of the feedback matrices was larger

than 45.

6. Conclusions and Future Work

A new algorithm is presented to do stabilization

for a large linear control system with only a few

unstable eigenvalues. The method is based on the

matrix sign function method and the solution of a

small Lyapunov equation. Both theoretical results

and numerical examples are presented to analyze

the properties of this new algorithm.

An argument that is often used in favor of pole

placement algorithms is that pole placemnt allows

to place the poles in speci�ed regions for example

angular sectors in the left half plane. The approach

that we discussed in this paper, i.e. using the sign-

function method to split the stable from the unsta-

ble subspace, is not limited to this situation. Since

the sign-function can be used to locate the eigen-

values in any rectangular or parallelogram domain

in the complex plane [19], we can use the described

method also to identify the poles which are not in

the region we wish them to be in, and use a similar

approach to move the poles that are not into the

speci�ed region. A detailed analysis of this method

is currently under investigation.

We thank Dr. V. Sima for many helpful com-

ments and discussions.
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