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Abstract

We consider the problem of characterizing whether a Coons map is a diffeomor-
phism from the unit square onto a planar domain delineated by four given curves.
We aim primarily at having not only theoretically correct conditions but also prac-
tically efficient methods. Throughout the chapter we suppose that the given four
boundary curves are presented in Bézier forms. We will prove three sufficient condi-
tions: the first one is based upon the tangents of the boundary curves, the second one
exploits the representation of the Jacobian in Bézier surface with a degree elevation
when relevant, and the last one invokes the subdivision and polar forms techniques.
Further, we will prove that the last condition is also necessary for sufficiently many
subdivisions. We present a way of adaptive subdivision so as to make it efficient.
Numerical results are reported in order to illustrate the approaches.

1 Introduction

Determining whether a Coons map is a diffeomorphism is not just an interesting problem
but it could have interesting applications. We would like to mention the numerical solution
of integral equations on CAD objects [1, 2]. If the wavelet Galerkin scheme [13, 9] is used to
solve the integral equation then the surface of the CAD object has to be split into patches,
each having four sides, and we need a diffeomorphism from the unit square onto each
patch. In an earlier work [12], we utilized transfinite interpolation in order to generate a
parametric mapping from the unit square to a four-sided domain. It is on that account that
we need to have an efficient method to characterize if a Coons map is a diffeomorphism.
For given four curves α, β, γ, δ which enclose a planar domain (Fig. 1), the purpose of
this paper is to recognize if the corresponding Coons map is a diffeomorphism. We will
suppose throughout that the boundary curves are Bézier curves.

In fact, we will prove three sufficient conditions which are mainly expressed with the help
of the control points of the boundary curves and the blending functions. This paper
is organized as follows. In the next section, we will make some excursus on transfinite
interpolation and state our problem more clearly. The first sufficient condition which is
based on the tangents of the boundary curves will be described in section 3. We will discuss
there also some interesting case in which the blending functions take only positive values.
In section 4, we will propose and prove a sufficient condition based on the control points of
the Jacobian of the Coons patch. We do not present any necessary condition until section
5 where we use subdivision methods to express our condition and where we have both low
computational cost and effectivity as objective . We will propose an adaptive strategy
to accomplish adaptive subdivision. Based on that, we will present an alogrithm whose
termination is ensured by a theorem which will also investigate. Finally numerical results
are presented in the last section to test the performance of the proposed approaches in
practice.
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2 Transfinite interpolation and problem setting

Let us consider four continuously differentiable parametric curves α, β, γ, δ defined on
the interval [0, 1] and taking values in R2. They are supposed to fulfill the compatibility
condition (see Fig. 1) at the corners:

α(0) = δ(0) , α(1) = β(0) , γ(0) = δ(1) , γ(1) = β(1). (1)

Since our method of generating a mapping from the unit square to the four-sided domain
bounded by the four curves is based on transfinite interpolation, we would like now to
briefly recall some basic facts about this technique. For a more in-depth understanding
regarding transfinite interpolation in general we direct the readers to [5, 6, 7, 8, 14].
We are interested in generating a parametric surface x(u, v) defined on the unit square
[0, 1]2 such that the boundary of the image of x coincides with the given four curves:

x(u, 0) = α(u) x(u, 1) = γ(u) ∀u ∈ [0, 1]
x(0, v) = δ(v) x(1, v) = β(v) ∀ v ∈ [0, 1] .

(2)

α

β

γ

δ

Figure 1: A four sided domain for Coons patch

This transfinite interpolation problem can be solved by a first order Coons patch whose
construction involves the operators

(Px)(u, v) := F0(v)x(u, 0) + F1(v)x(u, 1) (3)

(Qx)(u, v) := F0(u)x(0, v) + F1(u)x(1, v) (4)

where F0 and F1 denote two arbitrary smooth functions satisfying

Fi(j) = δij i, j = 0, 1 and F0(t) + F1(t) = 1 ∀ t ∈ [0, 1]. (5)

Now, a Coons patch x can be defined by the relation

P ⊕Q(x) = x, where (6)

P ⊕Q := P + Q−PQ. (7)
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Figure 2: Diffeomorph Coons patches

The functions F0, F1 which are better known as blending functions can be chosen in several
ways (see [3, 5, 10, 14]). On account of the fact that we need to verify diffeomorphisms, we
choose in the sequel blending functions which are sufficiently smooth. The simplest case
that one can take as bilinear blending function is

F0(t) = 1 − t, F1(t) = t. (8)

We will see in our following discussion that the theoretical results that we derive are valid
for a large range of blending functions. According to (7) we can express the solution to (2)
in matrix form as:

x(u, v) =
[

F0(u) F1(u)
]

[

δ(v)
β(v)

]

+

[

α(u) γ(u)
]

[

F0(v)
F1(v)

]

−

[

F0(u) F1(u)
]

[

α(0) γ(0)
α(1) γ(1)

] [

F0(v)
F1(v)

]

.

(9)

From (6) it follows that x is of the form

x(u, v) = −







−1
F0(u)
F1(u)







T 





0 x(u, 0) x(u, 1)
x(0, v) x(0, 0) x(0, 1)
x(1, v) x(1, 0) x(1, 1)













−1
F0(v)
F1(v)





 . (10)

This construction is due to S. M. Coons and it has been developed for free form surface
modeling. The Boolean sum character of a Coons patch has been discovered by W. Gordon.
The differentiability of a Coons map is guaranteed if all curves and blending functions
involved are themselves differentiable. In Figs. 2(a) and 2(b), we illustrate that for most
practical cases a Coons patch is already a diffeomorphism. However, when the boundary
curves become too wavy, like in Fig. 3, we observe overlapping isolines indicating that the
mapping is not invertible.
The purpose of this paper is to analyse under which conditions the Coons map (10) is a
diffeomorphism . For that we need sufficient and necessary conditions which characterize

3



the diffeomorphisms. Our fundamental aim is not only conditions which are theoretically
valid. We aim also at having conditions which we can check in a fast and efficient way
practically. Throughout the paper we wuppose that the boundary curves α, β, γ, δ for the
Coons map are Bézier curves of degree n and that their Bézier points are αi, βi, γi, δi with
i = 0, ..., n respectively. That is,

α(t) =
n

∑

i=0

αiB
n
i (t), β(t) =

n
∑

i=0

βiB
n
i (t), (11)

γ(t) =
n

∑

i=0

γiB
n
i (t), δ(t) =

n
∑

i=0

δiB
n
i (t). (12)

The blending function is supposed also to be a polynomial which is represented in its Bézier
form as

F1(t) = 1 − F0(t) =
n

∑

i=0

φiB
n
i (t). (13)

Further we introduce the following constants.

q := inf{F1(t) : t ∈ [0, 1]},
Q := sup{F1(t) : t ∈ [0, 1]},
ρ := sup{|F ′

1(t)| : t ∈ [0, 1]}.
(14)

3 First sufficient condition

Before we introduce our first result, let us adopt some more notations. First, for u, v ∈ [0, 1]
and ζ, χ ∈ [q, Q], we will denote the combination of opposite tangents by

Ku,ζ := (1 − ζ)α′(u) + ζγ′(u) (15)

Lv,χ := (1 − χ)δ′(v) + χβ ′(v). (16)

Then we introduce

M := max

{

sup
(u,ζ)∈[0,1]×[q,Q]

‖Ku,ζ‖ , sup
(v,χ)∈[0,1]×[q,Q]

‖Kv,χ‖

}

. (17)

Besides, we have the following maxima

S1 := max
i=0,...,n

{ρ‖(βi − δi) + φi(γ0 − γn + αn − α0) + (α0 − αn)‖}

S2 := max
i=0,...,n

{ρ‖(γi − αi) + φi(αn − γn + γ0 − α0) + (α0 − γ0)‖}.

Finally F is defined to be S1 or S2, whichever has the largest value.
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Figure 3: Undesired overspill phenomena

Theorem 1 If there exists some κ > 0 such that

det(Ku,ζ, Lv,χ) ≥ κ (18)

and
2MF + F 2 < κ, (19)

then the Coons patch with respect to α, β, γ, δ is a diffeomorphism.

Proof

Some few computations reveal that the partial derivatives of the Coons patch are

xu(u, v) = F ′

1(u)Su + Cu , xv(u, v) = F ′

1(v)Sv + Cv where (20)

Su := β(v) − δ(v) + [F0(v)α(0) + F1(v)γ(0)] − [F0(v)α(1) + F1(v)γ(1)]

Sv := γ(u) − α(u) + [F0(u)α(0) + F1(u)α(1)] − [F0(u)γ(0) + F1(u)γ(1)]

Cu := F0(v)α′(u) + F1(v)γ′(u)

Cv := F0(u)δ′(v) + F1(u)β ′(v) .

Therefore we obtain

Su =
n

∑

i=0

(βi − δi)B
n
i (v) + F1(v)(γ0 − γn + αn − α0) + (α0 − αn) (21)

Sv =
n

∑

i=0

(γi − αi)B
n
i (u) + F1(u)(αn − γn + γ0 − α0) + (α0 − γ0) (22)

After a few rearrangements

Su =
n

∑

i=0

[(βi − δi) + φi(γ0 − γn + αn − α0) + (α0 − αn)]Bn
i (v) (23)

Sv =
n

∑

i=0

[(γi − αi) + φi(αn − γn + γ0 − α0) + (α0 − γ0)]B
n
i (u) (24)
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By using (C1) one obtains

|F ′

1(u)|.‖Su‖ ≤ F and |F ′

1(v)|.‖Sv‖ ≤ F. (25)

Because of multilinearity of the determinant function we have

det(xu,xv) = F ′

1(u)F ′

1(v)det(Su, Sv) + F ′

1(u)det(Su, Cv)+
+F ′

1(v)det(Cu, Sv) + det(Cu, Cv).
≥ det(Cu, Cv) − {|F ′

1(u)F ′

1(v)det(Su, Sv)|+
+|F ′

1(u)det(Su, Cv)| + |F ′

1(v)det(Cu, Sv)|}
≥ κ − (F 2 + 2FM) > 0 due to (25) (C2) and (C3).

That means the Jacobian is nowhere zero. The inverse function theorem ensures therefore
that the Coons patch is a diffeomorphism.

Remark 1 Condition (18) has some geometric interpretation. Suppose the bounds q and
Q from relation (14) are 0 and 1 respectively. So, if ones consider any convex combination
K of the tangent vectors α′(u) and γ′(u) and L of δ′(v) and β ′(v), then K and L are
bounded away from being collinear and they are never zero in norm. Observe in Figure 4
the angle θ which represents with some respect the scaled determinant. If (q, Q) 6= (0, 1)
one can draw a similar figure after some rescalings.

α(u)

β(v)

γ(u)

δ(v)

α′(u)

β ′(v)

γ′(u)

δ′(v) Ku,ζLv,χ

θ

Figure 4: A four sided domain for Coons patch

Remark 2 A direct computation of M from relation (17) could be expensive or inaccurate
in practice because it involves non-discrete information. In fact, the constant M could just
as well be replaced by another constant that verifies for all i = 0, ..., n − 1 and j = 0, ..., n

n‖φj(γi+1 − γi + αi − αi+1) + (αi+1 − αi)‖ ≤ M
n‖φj(βi+1 − βi + δi − δi+1) + (δi+1 − δi)‖ ≤ M,

(26)
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which is easier to check. The idea of the proof remains fundamentally unchanged. Indeed,
relation (26) implies in particular the following bounds

‖Cu‖ ≤ M ‖Cv‖ ≤ M,

where
Cu := F0(v)α′(u) + F1(v)γ′(u)
Cv := F0(u)δ′(v) + F1(u)β ′(v).

(27)

Remark 3 In the previous theorem we have treated the very general case in which the
blending functions F0 and F1 could take any sign. Still, more can be stated if they are to
take only positive values as we will see in the next remark. That is for example the case if
we choose the following blending functions:

F0(t) := 2t3 − 3t2 + 1 = B3
0(t) + B3

1(t)

F1(t) := −2t3 − 3t2 = B3
2(t) + B3

3(t).

Interestingly, we will see that condition (18) could be replaced by another one that takes
a discrete form which is of course of practical concern.

Remark 4 Suppose that the blending functions are positive:

F0(t) ≥ 0, F1(t) ≥ 0 ∀ t ∈ [0, 1]. (28)

If we replace condition (18) of the previous theorem by

n2 det[αi+1 − αi, δj+1 − δj ] > 0 ,
n2 det[αi+1 − αi, βj+1 − βj ] > 0 ,
n2 det[γi+1 − γi, δj+1 − δj ] > 0 ,
n2 det[γi+1 − γi, βj+1 − βj ] > 0 ,

(29)

for all i, j = 0, ..., n− 1 and define κ > 0 to be the minimum of them , then we can deduce
the same claim.

Proof

According to the multilinearity of the determinant again, we have (see also definitions from
relation (27))

det[Cu, Cv] = F0(v)F0(u) det[α′(u), δ′(v)] + F0(v)F1(u) det[α′(u), β ′(v)]+
F1(v)F0(u) det[γ′(u), δ′(v)] + F1(v)F1(u) det[γ′(u), β ′(v)].

On account of the fact that

α′(u) =
n−1
∑

i=0

n(αi+1 − αi)B
n−1
i (u)

and similar relations for β, γ, δ, we deduce from (29) that

det[Cu, Cv] ≥
n−1
∑

i=0

n−1
∑

j=0

κBn−1
i (u)Bn−1

j (v).

Since the Bernstein polynomials form a partition of unity, we deduce the result.
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Lemma 1 Suppose the boundary curves α, β, γ, δ and the blending function are given as
before. Then the Coons patch is a Bezier surface

x(u, v) =
n

∑

i=0

n
∑

j=0

EijB
n
i (u)Bn

j (v) (30)

where the control points are

Eij := δj − α0 + αi + φj(γi − αi + α0 − γ0)
φi[α0 − αn + βj − δj + φj(αn − γn + γ0 − α0)]

(31)

Proof

Obvious. See also ([4]) for a similar discussion.

4 Second sufficient condition

Theorem 2 Consider the assumption above and define

D(i, j, k, l) := n2det[Ei+1,j −Eij,Ek,l+1 − Ekl] (32)

C(i, j, k, l) := l
n

[

i
n
D(i − 1, j, k, l − 1) + (1 − i

n
)D(i, j, k, l − 1)

]

+

(1 − l
n
)
[

i
n
D(i − 1, j, k, l) + (1 − i

n
)D(i, j, k, l)

] (33)

If for all p, q = 0, ..., 2n

Jpq :=
∑

i+k=p

j+l=q

C(i, j, k, l)

(

n

i

)(

n

k

)

(

2n

i+k

)

(

n

j

)(

n

l

)

(

2n

j+l

) > 0 (34)

then the Coons patch is a diffeomorphism.

Proof

The partial derivatives are

xu(u, v) =
n−1
∑

i=0

n
∑

j=0

n(Ei+1,j −Eij)B
n−1
i (u)Bn

j (v) (35)

xv(u, v) =
n

∑

k=0

n−1
∑

l=0

n(Ek,l+1 − Ekl)B
n
k (u)Bn−1

l (v) (36)

Therefore we obtain the determinant

det(xu,xv) =
n−1
∑

i=0

n
∑

j=0

n
∑

k=0

n−1
∑

l=0

D(i, j, k, l)Bn−1
i (u)Bn

j (v)Bn
k (u)Bn−1

l (v) (37)
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After application of degree elevation with respect to the indices i and l we obtain

det(xu,xv) =
n

∑

i=0

n
∑

j=0

n
∑

k=0

n
∑

l=0

C(i, j, k, l)Bn
i (u)Bn

j (v)Bn
k (u)Bn

l (v) (38)

By using the product formula

Bn
i (t)Bn

k (t) =

(

n

i

)(

n

k

)

(

2n

i+k

) B2n
i+k(t) (39)

the Jacobian can be written as

J(u, v) := det(xu,xv) =
2n
∑

p=0

2n
∑

q=0

JpqB
2n
p (u)B2n

q (v) (40)

Therefore the Coons patch x is a diffeomorphism.

5 Sufficient and necessary condition

In the previous theorems we have presented two methods for verifying whether a Coons
patch describes a diffeomorphism. In fact, they give only sufficient conditions. Let us
describe a short contrast between those two approaches. As far as computational cost is
concerned, the second approach is more computationally intensive than the first one as
it will be observed in the numerical experiments from section 6. On the other hand, the
second approach is also more sensitive. That is, it can provide some response whereas the
first one fails. Additionally, as we degree-elevate the boundary Bezier curves, the second
approach becomes more and more sensitive. Computational cost is of course a trade-off to
consider if one chooses n large during the degree elevation of the second test. In the next
discussion, we will propose a method to achieve at the same time low computational cost
and effective results. We will demonstrate a condition, based upon subdivision methods,
which is both necessary and sufficient.

5.1 Subdivision

Before we see a necessary condition, let us see the following fact. A Bezier surface F
defined on [a, b] × [c, d] can be subdivided into four Bezier surfaces A, B, C, D which are
respectively defined on

IA = [a, 0.5(a + b)] × [c, 0.5(c + d)] (41)

IB = [a, 0.5(a + b)] × [0.5(c + d), d] (42)

IC = [0.5(a + b), b] × [c, 0.5(c + d)] (43)

ID = [0.5(a + b), b] × [0.5(c + d), d] (44)
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by using the following recursions. Suppose the control points of F are Fij i, j = 0, ..., n.
We define

{

F
[0]
ij := Fij and

F
[k]
ij := 0.5(F

[k−1]
i−1,j + F

[k−1]
ij )

(45)

{

P
[0]
ij := F

[i]
ij and

P
[k]
ij := 0.5(P

[k−1]
i,j−1 + P

[k−1]
ij )

{

Q
[0]
ij := F

[n−i]
nj and

Q
[k]
ij := 0.5(Q

[k−1]
i,j−1 + Q

[k−1]
ij )

(46)

The control points of A, B, C and D are respectively Aij := P
[j]
ij , Bij := P

[n−j]
in , Cij := Q

[j]
ij ,

Dij := Q
[n−j]
in . We have in particular

F (u, v) = Q(u, v) if (u, v) ∈ IQ,

where Q = A, B, C, or D.

Theorem 3 Let us adopt the same notations as in the previous statement. Suppose that
the Coons patch x defined with α, β, γ, δ is a diffeomorphism. Suppose further that we
have subdivided J into σ2 Bezier surfaces J ij which are defined on

I ij := [(i − 1)/σ, i/σ] × [(j − 1)/σ, j/σ] i, j = 1, ..., σ. (47)

Denote by J ij
pq, p, q = 0, ..., 2n the control points of the Bezier surface J ij .

We claim that if σ is sufficiently large then J ij
pq is of constant sign uniformly on i, j = 1, ..., σ

and on p, q = 0, ..., 2n.

Proof

On the one hand, the Jacobian J(u, v) must be of constant sign because it is never zero.
Without loss of generality we suppose that it is positive:

J(u, v) > 0 ∀(u, v) ∈ [0, 1] × [0, 1]. (48)

Since the function J is continuous on the compact [0, 1] × [0, 1], there must exist some
ρ > 0 such that

J(u, v) ≥ ρ ∀ (u, v) ∈ [0, 1] × [0, 1]. (49)

On the other hand, let us fix i, j and let us denote by [a, b]× [c, d] the interval I ij in order
to simplify the notation. We are going to use the notation s, ..[m].., s in order to stress
that s is to be repeated m times. Further let us introduce the blossom [16, 11] function
P ij(u1, ..., u2n; v1, ..., v2n) corresponding to the polynomial J ij :

J ij(u, v) = P ij(u, ..[2n].., u; v, ..[2n].., v) (50)

Define h := 1/(2nσ) and ap := a + ph, cq := c + qh for p = 0, ..., 2n and q = 0, ..., 2n. Now
we would like to apply multivariate Taylor development of the first order to the blossom
P ij at (ap, ..[2n].., ap; cq, ..[2n].., cq).

10



P ij(a, ..[2n − p].., a, b, ..[p].., b; c, ..[2n − q].., c, d, ..[q].., d) =

P ij(ap, ..[2n].., ap; cq, ..[2n].., cq) +
2n−p
∑

r=1

(a − ap)
∂

∂ur

P ij(ap, ..[2n].., ap; cq, ..[2n].., cq) +

2n
∑

r=2n−p+1

(b − ap)
∂

∂ur

P ij(ap, ..[2n].., ap; cq, ..[2n].., cq) +

2n−q
∑

r=1

(c − cq)
∂

∂vr

P ij(ap, ..[2n].., ap; cq, ..[2n].., cq) +

2n
∑

r=2n−q+1

(d − cq)
∂

∂vr

P ij(ap, ..[2n].., ap; cq, ..[2n].., cq) + O(h2)

Due to the symmetry [11, 15] of the blossom function we obtain

P ij(a, ..[2n − p].., a, b, ..[p].., b; c, ..[2n − q].., c, d, ..[q]..d) =
P ij(ap, ..[2n].., ap; cq, ..[2n].., cq) + O(h2)

(51)

In other words, we have the following relation regarding the control points

J ij
pq = J ij(ap, cq) + O(h2) (52)

Combining (49) and (52), there must exist some constant C > 0 such that we have the
following relations

J ij
pq = J ij(ap, cq) + J ij

pq − J ij(ap, cq) (53)

≥ J(ap, cq) − Ch2 (54)

≥ ρ − Ch2 (55)

Since Ch2 = C
(2nσ)2

tends to 0 as σ tends to infinity, we deduce that J ij
pq > 0 for σ sufficiently

large and it concludes the proof.

5.2 Adaptivity

So far, we have always described something which should work if the Coons patch x is
a diffeomorphism. What happens if it is not? On that account, we want to state the
following result.

Theorem 4 Adopt the same notations as in the previous theorem but suppose now that
the Coons patch is not a diffeomorphism.
There must exist (i1, j1) and (i2, j2) such that
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Figure 5: Multiple subdivision:(a)uniform (b)adaptive

{

J i1,j1
pq > 0 ∀ p, q = 0, ..., 2n

J i2,j2
pq < 0 ∀ p, q = 0, ..., 2n.

(56)

Proof

This theorem is demonstrated in a very similar way as the preceding one. Therefore we
omit the proof.

Remark 5 The condition that is seen in (56) can of course be used in the next algorithm
as an abortion criterion. That is, once the condition (56) occurs in the loop (see step 1),
we terminate the algorithm and conclude at the same time that the Coons patch is not a
diffeomorphism.

In the preceding theorems, we have subdivided the unit square uniformly (see Fig. 5(a))
which is not always essential in practice. It is advisable to apply the former Bézier subdi-
visions only to those patches which do not give responses (affirmative or negative) as it can
be seen in Fig. 5(b). Before we give our algorithm of adaptive subdivision, let us observe
the following simple fact. If the Bézier coefficients of the surface F from remark 5.1 are
all positive then so are those of the resulting surfaces A, B, C, D. The theoretical results
that we derived earlier give rise to the following algorithm.
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Algorithm: Adaptive regularity

step 0 : Initialize the grid G to have only one cell [0, 1]× [0, 1] and compute
the Bezier coefficients Jpq according to (34).

step 1 : Traverse the cells I = [a, b] × [c, d] of the grid G

• Check if all coefficients JI
pq have fixed sign irrespective of the

indices p, q = 0, ..., 2n

• If not, split I into four cells I1, I2, I3, I4 and subdivide the
Bezier surface JI into four Bezier surfaces JI1, JI2, JI3, JI4

as in Remark 5.1.

• If there was some cell Ĩ 6= I for which J Ĩ
pq was always pos-

itive (resp. negative) for all p, q = 0, ..., 2n and the current
JI

pq is always negative (resp. positive), then abort the whole
algorithm and conclude that the Coons map is NOT a diffeo-
morphism as discussed in Theorem 4.

step 2 : If in step 1, all JI
pq have fixed sign irrespective of the cell I and the

indices p, q = 0, 1, ..., 2n then terminate the algorithm and conclude
that the Coons map is a diffeomorphism otherwise go to step 1.

6 Numerical results

This section will be occupied by numerical results which support the formerly described
theories as well as algorithm. As a first test, we consider a Coons map whose boundary
curves can be controlled by a parameter σ. More precisely, let us consider the control
polygons which are seen in Fig. 6(a). A special case of such a map for σ = 0.216 is
portrayed in Fig. 6(b). If the parameter σ is zero then we retrieve the unit square. The
purpose of this first test is to investigate numerically the theoretical conditions that we
discussed earlier. On that account, we want to see the performance of the three sufficient
conditions to verify diffeomorphism. For σ > 0.36, the Coons map does not present any
diffeomorphism any more. We want therefore to vary the value of σ which will then range
from 0 to 0.35.
The numerical data that are in Table 1 have been collected from an Intel Pentium 4
processor 2.66 GHz running Windows XP. For any given σ in the first column, we find the
corresponding results of Theorems 1, 2 and 3 in the three last columns respectively.

If the conditions in the theorems are successful then we provide the time needed to run
the test. If the map is a diffeomorphism but our condition could not detect that, then
we report a failure information in the table (’fails’). For the results of the second test,
additional information about the required degree n of the boundary curves is provided in
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Figure 6: (a)Control polygons of the boundary curves (b)Coons map for σ = 0.216.

parentheses. In other words, we degree-elevate the curves until the second test gives some
response. The same remark applies to the third test with the number of required cells in
parenthesis.

σ first test second test adaptive subdivision
0.000 1.1 E-07 sec 1.2 E-05 sec (n=4) 1.2 E-05 sec (nb cells=1)
0.036 1.1 E-07 sec 1.2 E-05 sec (n=4) 1.2 E-05 sec (nb cells=1)
0.072 1.1 E-07 sec 1.2 E-05 sec (n=4) 1.2 E-05 sec (nb cells=1)
0.216 1.1 E-07 sec 1.2 E-05 sec (n=4) 1.2 E-05 sec (nb cells=1)
0.252 fails 1.2 E-05 sec (n=4) 1.2 E-05 sec (nb cells=1)
0.280 fails 1.2 E-05 sec (n=4) 1.2 E-05 sec (nb cells=1)
0.324 fails 7.8 E-002 sec (n=9) 1.5 E-002 sec(nb cells=4)
0.350 fails 5.6 E+010 sec (n=40) 1.5 E-002 sec(nb cells=4)

Table 1: Performance of the three conditions

From the figures in the table, we see that the first test is only successful till the value of
σ is 0.216, a case which corresponds to the map in Fig. 6(b). On the other hand, it is
also to be noticed that the first test is comparatively less computationally intensive than
the other two tests. A closer look at Table 1 reveals that the second test is not any longer
efficient when the degree n is too large because one single test lasts approx. one minute.
Our next experiment is to consider some Coons maps and to investigate in which case
they present diffeomorphisms. Let us consider the Coons map whose control polygons are
seen in Fig. 7(a). Observe that the boundary curve δ is specified by some parameter µ1

which could be positive or negative. For examples we see in Fig. 7(b) the result if the
parameter takes the value µ1 = 0.7. We have used the former theorems to characterize
whether the resulting Coons map is a diffeomorphism: if µ1 is negative then we have always
a diffeomorphism. If µ1 ∈ [0, 0.88] then we still have a diffeomorphism. For µ1 = 0.89, we
do not have any more diffeomorphism.
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Figure 7: Examples of diffeomorphisms
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Now we want to do a similiar test but this time we want to apply it to a control polygon
where the boundary curve α is parallel to the boundary curve γ and the other curves are
straight lines. As illustrated in Fig. 7(c), the control points of the curved boundaries α
and γ are determined by some constant µ2. In Fig. 7(d), we can see the Coons map in
which we chose µ2 = 1. After applying the former theory in which we let µ2 vary inside
the interval [−10, 10] we have concluded that the resulting Coons map is consistently a
diffeomorphism irrespective of the value of µ2.
Another example is depicted in Fig. 7(e) where the parameter µ3 > 0 controls the distance
of one corner to the origin. Our former theorems allow us to conclude that the correspoding
Coons map is a diffeomorphism for µ3 > 0.5 and it is not a diffeomorphism for µ3 ∈ [0, 0.5].
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Berlin, 2002.

[12] M. Randrianarivony, G. Brunnett, R. Schneider, Constructing a diffeomorphism be-
tween a trimmed domain and the unit square, Sonderforschungsbereich 393, Preprint
SFB393/03-20, 2003.

[13] R. Schneider, Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Meth-
oden zur Lösung grosser vollbesetzter Gleichungssysteme, B.G. Teubner, Stuttgart,
1998.

[14] G. Schulze, Blending-Function-Methoden im CAGD, Diplomarbeit, Universität Dort-
mund, 1986.

[15] H. Seidel, Computing B-spline control points using polar forms, Comput.-Aided Des.
23, No.9 (1991) 634–640.

[16] H. Seidel, Polar forms for geometrically continuous spline curves of arbitrary degree,
ACM Trans. Graph. 12, No.1 (1993) 1–34.

17



Other titles in the SFB393 series:

02-01 M. Pester. Bibliotheken zur Entwicklung paralleler Algorithmen - Basisroutinen für Kom-
munikation und Grafik. Januar 2002.

02-02 M. Pester. Visualization Tools for 2D and 3D Finite Element Programs - User’s Manual.
January 2002.

02-03 H. Harbrecht, M. Konik, R. Schneider. Fully Discrete Wavelet Galerkin Schemes. January
2002.

02-04 G. Kunert. A posteriori error estimation for convection dominated problems on anisotropic
meshes. March 2002.

02-05 H. Harbrecht, R. Schneider. Wavelet Galerkin Schemes for 3D-BEM. February 2002.

02-06 W. Dahmen, H. Harbrecht, R. Schneider. Compression Techniques for Boundary Integral
Equations - Optimal Complexity Estimates. April 2002.

02-07 S. Grosman. Robust local problem error estimation for a singularly perturbed reaction-
diffusion problem on anisotropic finite element meshes. May 2002.

02-08 M. Springmann, M. Kuna. Identifikation schädigungsmechanischer Materialparameter mit
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03-01 E. Creusé, G. Kunert, S. Nicaise. A posteriory error estimation for the Stokes problem:
Anisotropic and isotropic discretizations. January 2003.
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