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Abstract

Singularly perturbed reaction-diffusion problems exhibit in gen-
eral solutions with anisotropic features, e.g. strong boundary and/or
interior layers. This anisotropy is reflected in the discretization by
using meshes with anisotropic elements. The quality of the numeri-
cal solution rests on the robustness of the a posteriori error estima-
tor with respect to both the perturbation parameters of the problem
and the anisotropy of the mesh.

The simplest local error estimator from the implementation
point of view is the so-called hierarchical error estimator. The re-
liability proof is usually based on two prerequisites: the saturation
assumption and the strengthened Cauchy-Schwarz inequality. The
proofs of these facts are extended in the present work for the case
of the singularly perturbed reaction-diffusion equation and of the
meshes with anisotropic elements. It is shown that the constants
in the corresponding estimates do neither depend on the aspect ra-
tio of the elements, nor on the perturbation parameters. Utilizing
the above arguments the concluding reliability proof is provided as
well as the efficiency proof of the estimator, both independent of the
aspect ratio and perturbation parameters. A numerical example
confirms the theory.
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1 Introduction
Let Ω ⊂ R

2 be an open domain with polygonal boundary ∂Ω. Consider the reaction-
diffusion problem with homogeneous Dirichlet boundary conditions

−ε2∆u + κ2u = f in Ω, u = 0 on ∂Ω, (1.1)

where κ is a nonnegative constant.
If ε/κ � 1, then we have a singularly perturbed problem. Many physical phe-

nomena lead to singularly perturbed problems, for instance, boundary value prob-
lems formulated on thin domains [16], where ε/κ is proportional to the domain
thickness. They also arise in mathematical models of physical problems, where
diffusion is small compared with reaction and convection.

Such problems yield solutions with local anisotropic behavior, e.g. boundary
and/or interior layers. In these cases special mesh adaptivity is desirable. Tri-
angles should not only adapt in size but also in shape, to better fit the function to be
approximated. While standard finite element meshes consist of isotropic elements,
in the current work so-called anisotropic elements are investigated. They are char-
acterized by a large aspect ratio (the ratio of the diameters of the circumscribed and
inscribed spheres). The singularly perturbed reaction diffusion problem typically
requires triangles stretched along the boundary or in the direction of the interior
layer [3, 4, 5].

Local error estimators have found much use in finite element computations. This
paper is concerned with the error in the energy norm, which was shown to be ap-
propriate in adaptive procedures [13]. One of the easiest techniques for a posteriori
error estimation is the hierarchical approach [6, 7]. The purpose of the current work
is to consider this approach on anisotropic meshes and to construct upper and lower
error bounds that are uniform with respect to both the large aspect ratio and the
perturbation parameters κ and ε.

The paper is organized as follows. After describing the model problem and its
discretization in Section 2, and after introducing the special functions for the space
enrichment in Section 3, we state in Section 4 an a posteriori residual error estima-
tor that is shown to be robust by Kunert [11].

In Section 5 we give a proof for a saturation assumption. The saturation as-
sumption signifies that using the quadratic finite element basis we achieve strictly
higher accuracy than with linear ones. Namely, in some norm ‖ · ‖:

‖u − u2‖ ≤ α‖u − u1‖, where α < 1,

u1 is the usual linear finite element solution, u2 is the solution using the enriched
finite element space. However, as it was shown in the paper by Dörfler and Nochetto
[9], there are examples that the saturation assumption fails in this form (the equa-
tion f = −∆u was set under consideration). The modification done there concerns
on additional term – the so-called data oscillation appeares in the right hand side.
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For more details on data oscillation see [9]. Their proof of the saturation assumption
was based on the residual a posteriori error estimator. More recently Agouzal [1]
has given a proof for the saturation assumption for the reaction-diffusion equation
(1.1). The proof in this case does not involve any theory of residual a posteriori error
estimators. The proof of the current work mainly follows the lines of the work [9],
but appears to be much more technical. The estimate obtained (Theorem 5.2) is not
only uniform with respect to the mesh size, but also with respect to the aspect ratio
and the perturbation parameters κ and ε. As in the forementioned works the satu-
ration assumption makes sense if the data oscillation is comparatively small. The
main difference with the isotropic case is in the matching function m1(·, ·) which nat-
urally appears in the right hand side of the saturation assumption. The moderate
size of the matching function together with the small data oscillation guarantees
the saturation assumption.

In Section 6 the validity of the strengthened Cauchy-Schwarz inequality is con-
firmed. Namely, it is shown that

(x, y) ≤ γ‖x‖ ‖y‖, ∀x ∈ V1, y ∈ Ṽ2,

where V1 is the original piecewise linear finite element space, Ṽ2 is the enrichment
space, described in section 5. We emphasize that the constant γ in the strengthened
Cauchy-Schwarz inequality for the chosen pair of spaces is always strictly smaller
then 1 independently of aspect ratio.

Furthermore, in Section 7 the saturation assumption and the strengthened Cauchy-
Schwarz inequality are utilized in order to show the reliability and the efficiency of
the proposed estimator. The final estimates are in accordance with Kunert [12]
and Grosman [10]. The numerical experiments presented in Section 8 confirm our
formulas for the robustness of the error estimator and show the validity of the sat-
uration assumption.

2 The model problem, its discretization and some
notation

Assume f ∈ L2(Ω). The Sobolev space of functions from H1(Ω) that vanish on ∂Ω
is denoted by H1

0 (Ω) as usual. The corresponding variational formulation for (1.1)
becomes:

Find u ∈ H1
0 (Ω) : B(u, v) = (f, v) ∀v ∈ H1

0 (Ω), (2.1)

where

B(u, v) :=

∫

Ω

(
ε2∇>u∇v + κ2uv

)
dx,

(f, v) :=

∫

Ω

fv dx.
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We utilize a family F = {T } of triangulations T of Ω. Let V1 ⊂ H1
0(Ω) be the space

of continuous, piecewise linear functions over T that vanish on ∂Ω. Then the finite
element solution u1 ∈ V1 is uniquely defined by

B(u1, v) = (f, v) ∀v ∈ V1. (2.2)

Due to the Lax-Milgram Lemma both problems (2.1) and (2.2) admit unique solu-
tions.

We also will use some notation (for any ω ⊂ Ω)

L2-norm: ‖v‖ :=
(∫

Ω
v2 dx

)1/2
,

Energy norm: |‖v|‖ := (ε2‖∇u‖2 + κ2‖u‖2)
1/2

,
Local energy scalar product: Bω(u, v) :=

∫
ω

(
ε2∇>u∇v + κ2uv

)
dx,

Local L2-norm: ‖v‖L2(ω) :=
∫

ω
v2 dx,

Local energy norm: |‖v|‖ω :=
(
ε2‖∇u‖2

L2(ω) + κ2‖u‖2
L2(ω)

)1/2

,

Length of an edge γ |γ| := meas1(γ),
Area of subdomain ω |ω| := meas2(ω),
Patch of an edge γ γ̃ := int {∪closure(K), K ∈ T : γ ∈ ∂K} .

We will require the trivial extension operator Fext : P
0(γ) 7→ P

0(K) defined by

Fext(ϕ)(x) := ϕ|γ ≡ const.

Now we introduce so-called bubble functions which are defined as usual, cf. [14].
Denote by λK,1, λK,2, λK,3 the barycentric coordinates of an arbitrary triangle K. The
element bubble function bK is defined by

bK := 27λK,1 · λK,2 · λK,3 on K

Let γ = int(K1 ∩K2) be an inner face (edge) of Th. Enumerate the vertices of K1 and
K2 such that the vertices of γ are numbered first. Define the face bubble function bγ

by
bγ := 4λKi,1 · λKi,2 on Ki, i = 1, 2,

with the obvious modification for a boundary face γ ⊂ ∂Ω. For simplicity assume
that bK and bγ are extended by zero outside their original domain of definition. There
holds 0 ≤ bK(x), bγ(x) ≤ 1 and ‖bK‖∞ = ‖bγ‖∞ = 1.

We will also use the following notation

a � b ⇔ a ≥ Cb,

a � b ⇔ a ≤ Cb,

a ∼ b ⇔ a � b & a � b,

where C does not depend on κ and triangulation T .
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3 Special bubble functions

3.1 Special edge bubble functions
Following Kunert [11] we define special edge bubble functions, and state the cor-
responding inverse inequalities. They play a crucial role in the enrichment of the
linear finite element space as well as in the proof of the saturation assumption and
a posteriori error estimation before (see [11] and [12]). The definition is given first
for the standard triangle K and then for the actual triangle K.

Consider the standard triangle K and the face γ thereof (by γ we denote the
corresponding face on the boundary of actual triangle K). Without loss of generality
we assume that γ lies on the axis Oy. For a real number δ ∈ (0, 1] define a linear
mapping Fδ : R

2 → R
2 by

Fδ(x, y) := (δ · x,
1 − δ

2
· y)>

or,

Fδ(x) := Bδ · x with Bδ = diag{δ, 1 − δ

2
} ∈ R

2×2.

Set Kδ := Fδ(K), i.e Kδ is the triangle with the face γ and a vertex at δ · e1.
Let bγ be the usual face bubble function of γ on K. Define the special bubble

function bγ,δ by
bγ,δ := bγ ◦ F−1

δ

i.e. bγ,δ is the usual face bubble function of γ on the triangle Kδ. For clarity we recall
that bγ,δ = 0 on K \ Kδ.

Consider now an actual triangle K. The special edge bubble function bγ,δ ∈ H1(K)
of a face γ of K is defined by

bγ,δ := bγ,δ ◦ F−1
A

The actual value of parameter δ will be specified later.

Lemma 3.1. (Inverse inequalities for bubble functions and special edge bub-
ble functions). Let γ be an arbitrary face of K. Assume that ϕK ∈ P

0(K) and
ϕγ ∈ P

0(γ). Then the following inverse inequalities hold:

‖∇(bK · ϕK)‖L2(K) ∼ h−1
min,K · ‖ϕK‖L2(K) (3.1)

‖Fext(ϕγ) · bγ,δ‖L2(K) ∼
( |K|

|γ|

)1/2

· δ1/2 · ‖ϕγ‖L2(γ) (3.2)

‖∇(Fext(ϕγ) · bγ,δ)‖L2(K) ∼
( |K|

|γ|

)1/2

· δ1/2 · min

{
δ
|K|
|γ| , hmin,K

}−1

· ‖ϕγ‖L2(γ).(3.3)

Proof. See [11].

4



We are in a position to specify our parameter δ = δ(γ). From now on we use

δγ :=
1

3

|γ|
|γ̃|ε min(ε−1hmin,γ, κ

−1). (3.4)

Note that if γ = ∂K
⋂

∂K ′, then

δγ ∼ |γ|
|K|ε min(ε−1hmin,K , κ−1) ∼ |γ|

|K ′|ε min(ε−1hmin,K′, κ−1).

We should mention that the definition (3.4) differs from the original definition in
Kunert [11] by a factor of 1

3
, which however does not disturb the estimates. This

modification is done in order to avoid overlapping supports of special edge bubble
functions.

3.2 Notation of the triangle
Let a triangulation T be given which satisfies the usual conformity condition (see
[8], Chapter 2). Following Kunert [11] we introduce the following notation. The
three vertices of an arbitrary triangle K ∈ Th are denoted by P0, P1, P2 such that
P0P1 is the longest edge of K. Additionally define two orthogonal vectors pi with
lengths hi,K := |pi|, see Figure 2. Observe that h1,K > h2,K and set hmax,K := h1,K,
hmin,K := h2,K.

P0 P1

P2

p1

p2

Figure 1: Notation of a triangle K.

In addition to the usual conformity conditions of the mesh we demand the fol-
lowing two assumptions.

1. The number of triangles containing a node xn is bounded uniformly.
2. The dimensions of adjacent triangles must not change rapidly, i.e.

hi,K′ ∼ hi,K ∀K, K ′ with K ∩ K ′ 6= ∅, i = 1, 2.

Define the matrices AK and CK ∈ R
2×2 by

AK := (
−−→
P0P1,

−−→
P0P2) and CK := (p1, p2)
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and introduce affine linear mappings

FA(µ) := AK · µ +
−→
P 0 and FC(µ) := CK · µ +

−→
P 0, µ ∈ R

2.

These mappings implicitly define the so-called standard triangle K := F−1
A (K)

and the reference triangle K̂ := F−1
C (K). Variables that are related to the standard

triangle K and reference triangle K̂ are referred to with a bar and hat, respectively
(e.g. ∇, v̂). The determinants of both mappings are |det(AK)| = |det(CK)| = 6|K|, and
the transformed derivatives satisfy ∇v = A>

K∇v and ∇̂v̂ = C>
K∇v.

Furthermore, for any interior face γ = K
⋂

K ′ define the quantity hmin,γ by

hmin,γ :=
hmin,K + hmin,K′

2
.

The advantage of this notation is clear, we need a value that relates to the edge, in
contrast with others related to triangles. Note that hmin,γ ∼ hmin,K ∼ hmin,K′ due to
the mesh assumptions.

4 A posteriori residual error estimator
After some additional notation and definition of the matching function we formu-
late an upper error bound for the error measured in the energy norm. The jump
discontinuity in the approximation of the normal flux at an interelement boundary
is defined by [

∂u1

∂n

]
= nK · (∇u1)K + nK′ · (∇u1)K′,

and the usual interior and boundary residuals r and R are given by

r = f + ε2∆u1 − κ2u1

and
R =

{
ε2
[

∂u1

∂n

]
on ∂K ∩ ∂K ′

0 on ∂K ∩ ∂Ω

which are defined as usually (see [2]). Define by rK := 1
|K|
∫

K
r dx the mean value of

r over an element K.
In addition we introduce the following notation:

αK := min(ε−1hmin,K , κ−1),

αγ := min(ε−1hmin,γ, κ
−1).

Definition 4.1. (Matching function m1). Let v ∈ H1(Ω) be any arbitrary non-
constant function, and F be a family of triangulations of Ω. Define the matching
function m1(·, ·) : H1(Ω) × F 7→ R by

m1(v, T ) :=

( ∑
K∈T

h−2
min,K · ‖C>

K∇v‖2
L2(K)

)1/2

‖∇v‖ (4.1)
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The matching function satisfies the following property:

1 ≤ m1(v, T ) � max
K∈T

hmax,K

hmin,K

The definition means that small value of m1(v, T ) is reached for the meshes T well
aligned with an anisotropic function v.

Theorem 4.2.

|‖u − u1|‖ � m1(u − u1, T )

{
∑

K∈T
α2

K‖rK‖2
L2(K)

+
∑

γ∈∂T
ε−1αγ‖R‖2

L2(γ) +
∑

K∈T
α2

K‖r − rK‖2
L2(K)

}1/2

,

where ∂T denote the collection of all edges in the triangulation T .

Proof. See the proof for the anisotropic case in Kunert [11]. For the isotropic case it
appeared first in Verfürth [15].

5 Saturation assumption
In the case of a singularly perturbed problem the choice of space enrichment is
crucial. First, recall the definition of the space V1:

V1 := {vh ∈ H1
0 (Ω) : ∀K ∈ T , vh|K ∈ P1(K)}.

We enrich the space V1 by the squeezed bubble functions for all edges and the inte-
rior bubbles. Namely,

V2 :=
{
vh ∈ H1

0 (Ω) : ∀K ∈ T , vh|K ∈ P1(K) + span{bK , bγ,δγ
: γ ∈ ∂K \ ∂Ω}

}
.

Then the finite element solution u2 ∈ V2 is uniquely defined by

B(u2, v) = (f, v) ∀v ∈ V2. (5.1)

It is not clear at the moment wether we get the estimate similar to the estimate
of Theorem 5.2 using the usual bubbles as it was done for example in [9] for the
Laplace problem.

The proof of the saturation assumption is based on the following lemma.

Lemma 5.1.

|‖u − u1|‖2 ≤ Cm1(u − u1, T )2

(
|‖u1 − u2|‖2 +

∑

K∈T
α2

K‖r − rK‖2
L2(K)

)
.
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Proof. Using the Theorem 4.2 we estimate the terms involving boundary and inte-
rior residual subsequently.
1. Boundary residual. Due to the fact that R is constant over each edge γ applying
partial integration we get:

2

3
|γ|R =

∫

γ

Rbγ,δγ
ds = −

∫

eγ

∇u1 · ∇bγ,δγ
dx

= ε2

∫

eγ

∇(u2 − u1) · ∇bγ,δγ
dx + κ2

∫

eγ

(u2 − u1) · bγ,δγ
dx −

∫

eγ

f · bγ,δγ
dx + κ2

∫

eγ

u1 · bγ,δγ
dx

= Beγ(u2 − u1, bγ,δγ
) −

∫

eγ

rbγ,δγ
dx,

where γ̃ is the union of two triangles sharing the edge γ (see Section 2). Squaring
and integrating over γ we get

|γ|‖R‖2
L2(γ) � Beγ(u2 − u1, bγ,δγ

)2 +

(∫

eγ

rbγ,δγ
dx

)2

≤ |‖u2 − u1|‖2
eγ|‖bγ,δγ

|‖2
eγ + ‖r‖2

L2(eγ)‖bγ,δγ
‖2

L2(eγ)

Estimate the first term using the inequalities for the special bubble functions
(3.2), (3.3) and the definition of δγ (3.4) as follows:

|‖bγ,δγ
|‖2

eγ = ε2‖∇bγ,δγ
‖2

L2(eγ) + κ2‖bγ,δγ
‖2

L2(eγ)

�
∑

K⊂eγ

(
ε2 |K|

|γ| δγ min

{
δγ ·

|K|
|γ| , hmin,K

}−2

|γ| + κ2 |K|
|γ| δγ |γ|

)

∼
∑

K⊂eγ

(
ε3αK min {εαK, hmin,K}−2 |γ| + κ2εαK|γ|

)

� ε|γ|α−1
γ

Estimate the second term using (3.2):

‖bγ,δγ
‖2

L2(eγ) �
|K|
|γ| δγ |γ| ∼ |γ|εαγ

Combining three previous estimates we come to the following:

ε−1αγ‖R‖2
L2(γ) � |‖u2 − u1|‖2

eγ + α2
γ‖r‖2

L2(eγ)

� |‖u2 − u1|‖2
eγ +

∑

K⊂eγ

α2
K‖rK‖2

L2(K) +
∑

K⊂eγ

α2
K‖r − rK‖2

L2(K).
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2. Interior residual. It remains to estimate the term α2
K‖rK‖2

L2(eγ). We have

rK
|K|
5!

=

∫

K

rKbK dx

=

∫

K

fbK dx − κ2

∫

K

u1bK dx −
∫

K

rbK dx +

∫

K

rKbK dx

= BK(u2, bK) − BK(u1, bK) −
∫

K

(r − rK)bK dx

= BK(u2 − u1, bK) −
∫

K

(r − rK)bK dx,

because
∫

K
∇u1 · ∇bK dx = −

∫
K

∆u1 · bK dx = 0. Squaring and integrating over an
element K we get:

|K|‖rK‖2
L2(K) � BK(u2 − u1, bK)2 +

(∫

K

(r − rK)bK dx

)2

≤ |‖u2 − u1|‖2
K|‖bK|‖2

K + ‖r − rK‖2
L2(K)‖bK‖2

L2(K)

Now we use (3.1) for |‖bK |‖K as follows

|‖bK|‖2
K = ε2‖∇(bK)‖2

L2(K) + κ2‖bK‖2
L2(K)

�
(
ε2h−2

min,K + κ2
)
‖bK‖2

L2(K)

�
(
ε2h−2

min,K + κ2
)
|K|

or,
|‖bK|‖2

K � α−2
K |K|.

Thus, it follows that

α2
K‖rK‖2

L2(K) � |‖u2 − u1|‖2
K + α2

K‖r − rK‖2
L2(K) (5.2)

Now, applying the inequalities (5.2) and (5.2) to the estimate of the Theorem 4.2 we
get the result claimed.

Theorem 5.2 (Saturation assumption on anisotropic meshes). The following
inequality takes place:

|‖u − u2|‖ ≤
√

1 − 1

Cm1(u − u1, T )2
|‖u − u1|‖ +

(
∑

K∈T
α2

K‖r − rK‖2
K

)1/2

. (5.3)

Proof. Using the identity

|‖u − u1|‖2 = |‖u − u2|‖2 + |‖u1 − u2|‖2
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we get

|‖u − u2|‖2 ≤
(

1 − 1

Cm1(u − u1, T )2

)
|‖u − u1|‖2 +

∑

K∈T
α2

K‖r − rK‖2
L2(K).

Taking the square root we finish the proof.

The estimate (5.3) we call the saturation assumption on anisotropic meshes. As
it could be mentioned the constant in (5.3) depends strongly on the value of the
matching function m1, and only bounding m1 one can claim that the error reduces
its value significantly while using refined finite element space.

6 The strengthened Cauchy-Schwarz Inequality

6.1 Theoretical background
Definition 6.1. Let X, Y be two subspaces of a Hilbert space equipped with a scalar
product (·, ·) and induced norm ‖ · ‖. A saturation assumption is said to hold for this
couple of spaces if there exist a non-negative constant γ < 1 such that:

(x, y) ≤ γ‖x‖ ‖y‖, ∀x ∈ X, y ∈ Y. (6.1)

Let X, Y be finite dimensional spaces. Consider a stiffness matrix B correspond-
ing to the space X∗ = X ⊕ Y ,

B =

[
BXX BXY

BY X BY Y

]
.

We state here without a proof the following theorem from [2].

Theorem 6.2. The constant γ in the Cauchy-Schwarz inequality 6.1 may be ex-
pressed in the following way:

γ2 = max
x∈Rdim(X)

x
T
BXY B

−1
Y Y BY Xx

xTBXXx

Now come back to our problem. Suppose that for each element K of triangulation
the constant γK is known:

BK(u, v) ≤ γK|‖u|‖K|‖v|‖K, ∀u ∈ XK , v ∈ YK,

where XK and YK are restrictions of corresponding spaces to the element K. Now,
prescribing γ = maxK γK, we obtain the constant γ for the whole mesh:

B(u, v) =
∑

K

BK(u, v) ≤ γ
∑

K

|‖u|‖K|‖v|‖K ≤ γ|‖u|‖ · |‖v|‖, (6.2)

where we utilized the discrete Cauchy-Schwarz inequality.
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6.2 Pure Laplace problem κ = 0

We state this result here because it could be used in other applications. In the case
of a pure Laplace problem the Cauchy-Schwarz constant has a nice structure and
may be expressed explicitly (see below). We assume here that δγ = 1, for all edges γ

in triangulation. In other words Ṽ2 is the space consisting of three usual edge bubble
functions together with interior bubble function. The following decomposition holds
V2 = V1 ⊕ Ṽ2.

Let a triangle have angles φ1, φ2, φ3. After straight forward maple calculations
we get the matrices needed to obtain the strengthened Cauchy-Schwarz constant
for H1 semi-norm:

BV1V1 =
1

2




sin φ1

sin φ2 sin φ3
− cot φ3 − cot φ2

− cot φ3
sin φ2

sin φ3 sin φ1
− cot φ1

− cot φ2 − cot φ1
sin φ3

sin φ1 sin φ2




,

BeV2
eV2

=
1

2




D − cot φ3 − cot φ2
cot φ1

5

− cot φ3 D − cot φ1
cot φ2

5

− cot φ2 − cot φ1 D
cot φ3

5
cot φ1

5

cot φ2

5

cot φ3

5

D

15




,

where D =
cos φ1 cos φ2 cos φ3 + 1

sin φ1 sin φ2 sin φ3
.

BeV2V1
= −1

6




sin φ1

sin φ2 sin φ3

− cotφ3 − cot φ2

− cot φ3
sin φ2

sin φ3 sin φ1
− cot φ1

− cot φ2 − cotφ1
sin φ3

sin φ1 sin φ2

0 0 0




,

BV1
eV2

= BT
eV2V1

.

Compute the matrix L = BV1
eV2

B−1
eV2

eV2
BeV2V1

∈ R
3×3:




A1,2,3 B3,1,2 B2,3,1

B3,1,2 A2,3,1 B1,2,3

B2,3,1 B1,2,3 A3,1,2


 ,
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where we used the notation:

Ai,j,k :=
(2 − cos2 φi − 2 cos φi cos φj cos φk) sin φi

sin φj sin φk
,

Bi,j,k :=
cos φj cos φk − 2 cosφi

sin φi
.

What remains is to find
γ2 = max

x∈R3

x
T Lx

xT BV1V1x
.

If BV1V1 was a non-singular matrix then we would solve an eigenvalue problem
Lx = λBV1V1x and maximal eigenvalue λmax would be our wanted constant γ2. How-
ever, it is not possible in this case since BV1V1 has a vector e = [1, 1, 1]T in its kernel.
It turns out that e lies in the kernel of the matrix L as well. There exist two vectors
e1 and e2 such that {e, e1, e2} is the basis in R

3. We have

γ2 = max
α,β1,β2∈R

(αe + β1e1 + β2e2)
T L(αe + β1e1 + β2e2)

(αe + β1e1 + β2e2)T BV1V1(αe + β1e1 + β2e2)

= max
α,β1,β2∈R

(β1e1 + β2e2)
T L(β1e1 + β2e2)

(β1e1 + β2e2)T BV1V1(β1e1 + β2e2)

= max
β∈R2

βT ET LEβ

βT ET BV1V1Eβ
,

where the matrix E = (e1, e2) ∈ R
3×2 can be chosen in such a way that {e, e1, e2} is

the basis in R
3. Choosing for simplicity

E :=




1 0
0 1
0 0


 ,

and solving eigenvalue problem ET LEβ = λET BV1V1Eβ we get two eigenvalues

β1,2 =
1

2
± 1

6

√
1 − 8 cos φ1 cos φ2 cos φ3.

Choosing the maximal of these two numbers we formulate the following lemma.

Theorem 6.3. The constant γ in the strengthened Cauchy-Schwarz inequality for
the spaces V1 and Ṽ2 is expressed by

γ2 =
1

2
+

1

6

√
1 − 8 cos φ1 cos φ2 cos φ3.

Proof. For the proof see above arguments.

In the inequality of Theorem 6.3 maximum angle condition naturally appears in
the sense that, if one angle of a triangle goes to π then the strengthened Cauchy-
Schwarz constant goes to 1. It leads to the fact that induced hierarchical error
estimator will fail in general on meshes where the maximum angle condition is not
satisfied.
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6.3 Squeezed case
Divide a triangle K into three parts K 1

3
, where the central point is the center of

mass. Mention that support of each special edge bubble function lies inside exactly
one part K 1

3
. Evaluate (estimate from above) the Cauchy-Schwarz constant for each

part independently assuming that the squeezing parameter δ of the special edge
bubble function can be any number from 0 to 1/3. The constant for the whole triangle
and subsequently for the whole mesh may be chosen as the maximum value of three
corresponding constants as we did in (6.2).

A B

C

D

K 1
3

Figure 2: Notation of a trangle, the vertices have the following coordinates: A =
(0, 0), B = (a, 0), C = ((a + ε)/2, b), D = (A + B + C)/3.

Lemma 6.4.

(u, v)H1(K 1
3
) ≤

2
√

2

3
|u|H1(K 1

3
)|v|H1(K 1

3
), ∀u ∈ V1, v ∈ Ṽ2.

Proof. Write down matrices in notation from Figure 2.

BV1V1 =




4b2 + (1 − ε)2

24b
−4b2 − 1 + ε2

24b
−1 − ε

12b

−4b2 − 1 + ε2

24b

4b2 + (1 − ε)2

24b
−1 + ε

12b

−1 − ε

12b
−1 + ε

12b

1

6b




,

BeV2
eV2

=




δ2ε2 + 4δ2b2 + 3

48bδ

δ2ε2 − 3δ2 + 4δ2b2 + 10δ − 8

240b
δ2ε2 − 3δ2 + 4δ2b2 + 10δ − 8

240b

ε2 + 4b2 + 51

19440b


 ,

BeV2V1
=




1 − ε

12b

1 + ε

12b
− 1

6b

−1 − ε

108b
−1 + ε

108b

1

54b


 .

Compute the matrix L = BV1
eV2

B−1
eV2

eV2
BeV2V1

∈ R
3×3 and using the same trick as in

the proof of Theorem 6.3 we solve eigenvalue problem ET LEβ = λET BV1V1Eβ. One
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of two eigenvalues of this problem equals zero, the second one is the constant of
interest:

γ2 =
8

9
− 8

9
[−90 − 4860δ4 + 9558δ3 + 729δ5 − 4860δ2 + 999δ

+ (−5δ2 + 81δ5)ε4

+ (−1944δ3 + 6480δ4 + 180δ − 60 − 1944δ5 − 120δ2)b2

+ (−30δ2 + 1620δ4 − 15 + 45δ − 486δ5 − 486δ3)ε2

+ (1296δ5 − 80δ2)b4 + (648δ5 − 40δ2)ε2b2]

/ [5184δ − 12960δ2 − 4860δ4 − 765 + 729δ5 + 11988δ3

+ (−5δ2 + 81δ5)ε4 + (6480δ4 − 60 − 1020δ2 − 5184δ3 − 1944δ5)b2

+ (−1296δ3 − 255δ2 + 1620δ4 − 486δ5 − 15)ε2 + (1296δ5 − 80δ2)b4 + (648δ5 − 40δ2)ε2b2]

Observing that for δ ∈ [0, 1
3
]

−90 − 4860δ4 + 9558δ3 + 729δ5 − 4860δ2 + 999δ

= 9(3δ − 1)

(
243

(
δ − 1

6

)2

+
13

4
+ 9δ2(3δ − 1)(δ − 6)

)
≤ 0

−5δ2 + 81δ5 = δ2(81δ3 − 5) ≤ −2δ2 ≤ 0

−1944δ3 + 6480δ4 + 180δ − 60 − 1944δ5 − 120δ2

= −40

3
− 4

3
(3δ − 1)

(
5(15δ + 7)(3δ − 1) + 9δ2

(
54

(
3

2
− δ

)2

− 293

2

))

≤ −40

3
− 4

3
(3δ − 1)

(
5(15δ + 7)(3δ − 1) − 25 · 9δ2

)
≤ 0

−30δ2 + 1620δ4 − 15 + 45δ − 486δ5 − 486δ3

= −10

3
− 1

3
(3δ − 1)

(
5(15δ + 7)(3δ − 1) + 9δ2

(
54

(
3

2
− δ

)2

− 293

2

))
≤ 0

1296δ5 − 80δ2 = 16δ2(81δ3 − 5) ≤ 0

648δ5 − 40δ2 = 8δ2(81δ3 − 5) ≤ 0

5184δ − 12960δ2 − 4860δ4 − 765 + 729δ5 + 11988δ3

= 9(3δ − 1)

(
477

(
δ − 107

318

)2

+
6571

212

)
+ 81δ3

(
9

(
10

3
− δ

)2

− 111

)
≤ 0

−5δ2 + 81δ5 ≤ 0

14



6480δ4 − 60 − 1020δ2 − 5184δ3 − 1944δ5

= −60 − 12δ2

(
85 + δ

(
162

(
5

3
− δ

)2

− 18

))
≤ 0

−1296δ3 − 255δ2 + 1620δ4 − 486δ5 − 15

= −15 − 3δ2

(
85 + δ

(
162

(
5

3
− δ

)2

− 18

))
≤ 0

1296δ5 − 80δ2 ≤ 0

648δ5 − 40δ2 ≤ 0

we finish the proof.
Lemma 6.5.

(u, v)L2(K 1
3
) ≤

√
31927

35680
+

7
√

193953

35680
‖u‖L2(K 1

3
)‖v‖L2(K 1

3
), ∀u ∈ V1, v ∈ Ṽ2.

31927

35680
+

7
√

193953

35680
≈ 0.9812165548 < 1.

Proof. The matrices in the L2 case has the following form:

BV1V1 = a2b




13

324

17

648

5

648
17

648

13

324

5

648
5

648

5

648

1

324




,

BeV2
eV2

= a2b




δ

180

δ2(3δ2 − 14δ + 19)

10080
δ2(3δ2 − 14δ + 19)

10080

1

15120


 ,

BeV2V1
= a2b




δ(5 − δ)

240

δ(5 − δ)

240

δ2

120
17

14580

17

14580

13

29160


 .

Computing the matrix L and then solving the eigenvalue problem Lx = λBV1V1x

we get three eigenvalues, from which one is zero and the maximal is

γ2 =
1

2
(−1876770δ4 + 408240δ5 + 3241350δ2 − 302400δ3 − 221480 − 1275750δ

− 70(612301545δ2 − 114647400δ + 120105666δ10 − 1254436956δ9

+ 4978952631δ8 − 9594124056δ7 + 10853696088δ6 − 8279204886δ5

+ 4695055083δ4 − 2017608642δ3 + 10010896)1/2)

/ (54675δ7 − 510300δ6 + 1883250δ5 − 3231900δ4 + 2193075δ3 − 226800).
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In Figure 3 we can see dependence of the strengthened Cauchy-Schwarz constant

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.976

0.977

0.978

0.979

0.98

0.981

0.982

Figure 3: dependence of the strengthened Cauchy-Schwarz constant on the param-
eter δ.

γ on the parameter δ. The maximum is reached for δ = 1/3 and is equal to the
forementioned constant.

Theorem 6.6.

BK 1
3

(u, v) ≤

√
31927

35680
+

7
√

193953

35680
|‖u|‖K 1

3

|‖v|‖K 1
3

, ∀u ∈ V1, v ∈ Ṽ2.

Proof. This is an immediate consequence of the previous two lemmas.

Corollary 6.7.

B(u, v) ≤

√
31927

35680
+

7
√

193953

35680
|‖u|‖ · |‖v|‖, ∀u ∈ V1, v ∈ Ṽ2.

Proof. For the proof see (6.2).

We will also need the Cauchy-Schwarz constant between the space of edge bub-
ble functions and the space of interior bubble functions. Introduce the following
notation:

Veb =
⊕

γ∈∂T
span{bγ,δγ

},

Vib =
⊕

K∈T
span{bK}.

We express the resulting strengthened Cauchy-Schwarz inequality in the follow-
ing theorem.
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Theorem 6.8.
BK(u, v) ≤ 2

√
2

3
|‖u|‖K|‖v|‖K, ∀u ∈ Veb, v ∈ Vib.

Proof. Prove this inequality for K 1
3
. The statement of the lemma will be a direct

consequence.

1. Verify first the inequality for H1 semi-norm and corresponding scalar product.
The matrices for computing the strengthened Cauchy-Schwarz constant are
now reduced to scalars. Therefore we simply state the constant and estimate
it from above.

γ2 =
8

9
− 1

45
[(40δ2 − 729δ5)(ε2 + 4b2)2

+ (4374δ5 − 14580δ4 + 120 + 11664δ3 + 2040δ2)(ε2 + 4b2)

− 6561δ5 + 6120 − 107892δ3 + 43740δ4 + 116640δ2 − 46656δ]

/ (3 + δ2(ε2 + 4b2))(ε2 + 4b2 + 51)

Observing that for δ ∈ [0, 1
3
]

40δ2 − 729δ5 = δ2(40 − 729δ3) ≥ 13δ2 ≥ 0

4374δ5 − 14580δ4 + 120 + 11664δ3 + 2040δ2

= (120 + 7290δ3 + 2040δ2) + 1458δ3(3δ − 1)(δ − 3) ≥ 0

−6561δ5 + 6120 − 107892δ3 + 43740δ4 + 116640δ2 − 46656δ
27

625

{
5
[
213 + 18

√
105 + (1 − 3δ)(60 + 2

√
105 − 15δ)

]
(1 − 3δ) + 1755 + 204

√
105
}

×(15δ − 15 +
√

105)2 +
15048

5
− 36288

125

√
105 ≥ 15048

5
− 36288

125

√
105 ≈ 34.87 ≥ 0

we conclude

(u, v)H1(K 1
3
) ≤

2
√

2

3
|u|H1(K 1

3
)|v|H1(K 1

3
), ∀u ∈ Veb, v ∈ Vib. (6.3)

2. It remains to verify the inequality for L2 scalar product. In this case the con-
stant of interest has the following structure:

γ2 =
3

112
δ3(3δ2 − 14δ + 19)2.

It is easy to verify that the maximum is reached for δ = 1/3 and is equal to
121/567. Thus,

(u, v)L2(K 1
3
) ≤

√
121

567
‖u‖L2(K 1

3
)‖v‖L2(K 1

3
), ∀u ∈ Veb, v ∈ Vib. (6.4)

Combining (6.3) and (6.4) and choosing the maximal constant among two we get
the result claimed.
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7 Hierarchical a posteriori error estimator
Let V2 = V1 ⊕ Ṽ2. The true error e satisfies the following variational formulation:

B(e, v) = (f, v) − B(u1, v) ∀v ∈ V.

Now let us try to reduce the space V to the space V2, namely consider e2 satisfying

B(e2, v) = (f, v) − B(u1, v) ∀v ∈ V2.

It is clear that e2 = u2 − u1.
Now by means of the saturation assumption we prove that the approximation of

the error e2 is equivalent in the energy norm to the true error e.

Theorem 7.1.

|‖e2|‖ ≤ |‖e|‖ ≤ Cm1(e, T )

(
|‖e2|‖2 +

∑

K∈T
α2

K‖r − rK‖2
L2(K)2

)1/2

Proof. Let us verify the first inequality:

e = u − u1 = u − u2 + e2,

and due to orthogonal property we get

|‖e|‖2 = |‖u − u2|‖2 + |‖e2|‖2,

which leads to the first inequality |‖e|‖ ≥ |‖e2|‖.
The second inequality is nothing else, but Lemma 5.1.

Represent error in the form e2 = e21 + e22, where e21 ∈ V1, e22 ∈ Ṽ2, where e21, e22

satisfy {
B(e21, v1) + B(e22, v1) = (f, v1) − B(u1, v1) ∀v1 ∈ V1

B(e21, v2) + B(e22, v2) = (f, v2) − B(u1, v2) ∀v2 ∈ Ṽ2,

or,
{

B(e21, v1) + B(e22, v1) = 0 ∀v1 ∈ V1

B(e21, v2) + B(e22, v2) = (f, v2) − B(u1, v2) ∀v2 ∈ Ṽ2.

Ignoring the coupling terms we get
{

B(e21, v1) = 0 ∀v1 ∈ V1

B(e22, v2) = (f, v2) − B(u1, v2) ∀v2 ∈ Ṽ2.

From the first equation we immediately get e21 = 0. Denote e := e22. For e we have
the following equation:

B(e, v2) = (f, v2) − B(u1, v2) ∀v2 ∈ Ṽ2.
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It is useful to know that
{

B(e21, v1) + B(e22, v1) = 0 ∀v1 ∈ V1

B(e21, v2) + B(e22, v2) = B(e, v2) ∀v2 ∈ Ṽ2,

or, {
B(e2, v1) = 0 ∀v1 ∈ V1

B(e2, v2) = B(e, v2) ∀v2 ∈ Ṽ2.
(7.1)

Now by means of strengthened Cauchy-Schwarz inequality we prove that the
approximation of the error e is equivalent in the energy norm to the approximation
e2.

Theorem 7.2.
|‖e|‖ ≤ |‖e2|‖ ≤ 1√

1 − γ2
|‖e|‖,

where γ =
√

31927
35680

+ 7
√

193953
35680

is the constant from Corollary 6.7.

Proof. We have

|‖e2|‖2 = B(e21 + e22, e21 + e22) = |‖e21|‖2 + 2B(e21, e22) + |‖e21|‖2

≥ |‖e21|‖2 − 2γ|‖e21|‖ |‖e22|‖ + |‖e22|‖2.

Utilizing the inequality

2γ|‖e21|‖ |‖e22|‖ ≤ |‖e21|‖2 + γ|‖e22|‖2,

we get
|‖e2|‖2 ≥ (1 − γ2)|‖e22|‖2.

Applying the first inequality of (7.1) we get

|‖e2|‖2 = B(e2, e21) + B(e2, e22) = B(e2, e22).

Applying the second inequality of (7.1) we get

|‖e2|‖2 = (e, e22) ≤ |‖e|‖ |‖e22|‖ ≤ 1√
1 − γ2

|‖e|‖ |‖e2|‖.

So we get

|‖e2|‖ ≤ 1√
1 − γ2

|‖e|‖.

Second inequality of the theorem is shown as follows:

|‖e|‖2 = B(e, e) = B(e2, e) ≤ |‖e|‖ |‖e2|‖,
and thus,

|‖e|‖ ≤ |‖e2|‖,
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Definition 7.3 (Error estimator). For all triangles K and edges γ define the fol-
lowing terms

aγ :=

B(u1, bγ,δγ
) −

∫

Ω

fbγ,δγ
dx

|‖bγ,δγ
|‖2

= −

∫

γ

Rbγ,δγ
ds +

∫

eγ

rbγ,δγ
dx

|‖bγ,δγ
|‖2

,

cK :=

B(u1, bK) −
∫

Ω

fbK dx

|‖bK |‖2
= −

∫

K

rbK dx

|‖bK|‖2
.

By means of these terms we define approximation function to the error:

ẽ :=
∑

γ∈∂T
aγbγ,δγ

+
∑

K∈T
cKbK ,

|‖ẽ|‖ is then the hierarchical a posteriori error estimator.

Let v, w ∈ Ṽ2.

v =
∑

γ∈∂T
vγbγ,δγ

+
∑

K∈T
vKbK

w =
∑

γ∈∂T
wγbγ,δγ

+
∑

K∈T
wKbK .

Define a bilinear form d(·, ·) : Ṽ 2
2 → R as follows:

d(v, w) :=
∑

γ∈∂T
vγwγ|‖bγ,δγ

|‖2 +
∑

K∈T
vKwK|‖bK|‖2

We need also a local analogue of this bilinear form for any triangle K:

dK(v, w) :=
∑

γ⊂∂K

vγwγ|‖bγ,δγ
|‖2

K + vKwK|‖bK |‖2
K

This bilinear form has the following properties:

d(v, w) =
∑

K∈T
dK(v, w) (7.2)

d(ẽ, v) = −B(e, v) ∀v ∈ Ṽ2. (7.3)

The first relation is clear, let us prove the second one. Indeed,

d(ẽ, v) =
∑

γ∈∂T

[
B(u1, bγ,δγ

) −
∫

eγ

fbγ,δγ
dx

]
vγ +

∑

K∈T

[
B(u1, bK) −

∫

K

fbK dx

]
vK

= B(u1, v) −
∫

Ω

fv dx = −B(e, v).

In subsequent analysis we need a kind of stability property for the bilinear form
d(·, ·) which we formulate in the following lemma.
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Lemma 7.4.
d(v, v) ≤ C|‖v|‖2 ∀v ∈ Ṽ2. (7.4)

Proof.
d(v, v) ≤ C|‖v|‖2 ∀v ∈ Ṽ2.

First we prove the claimed result locally, namely that for any triangle K the follow-
ing inequality holds:

dK(v, v) ≤ C|‖v|‖2
K ∀v ∈ Ṽ2,

from which the inequality (7.4) evidently follows. Let v ∈ Ṽ2, then v|K can be repre-
sented in the following way:

v|K =
∑

γ⊂∂K

vγbγ,δγ
+ vKbK .

We have

|‖v|‖2
K = BK

(
∑

γ⊂∂K

vγbγ,δγ
+ vKbK ,

∑

γ⊂∂K

vγbγ,δγ
+ vKbK

)

=
∑

γ⊂∂K

v2
γ |‖bγ,δγ

|‖2
K + v2

K|‖bK |‖2
K + 2BK

(
vKbK ,

∑

γ⊂∂K

vγbγ,δγ

)

≥
∑

γ⊂∂K

v2
γ |‖bγ,δγ

|‖2
K + v2

K|‖bK |‖2
K − 2 γ|‖vKbK |‖K · |‖

∑

γ⊂∂K

vγbγ,δγ
|‖K

≥ (1 − γ)

(
∑

γ⊂∂K

v2
γ |‖bγ,δγ

|‖2
K + v2

K|‖bK |‖2
K

)
= (1 − γ)dK(v, v),

where γ is the strengthened Cauchy-Schwarz constant from Theorem 6.8. Dividing
both sides by 1 − γ we get the result claimed.

We need also the estimates from above for interior and edge residuals. The fol-
lowing lemma is taken from [10].

Lemma 7.5 (Interior residual). Let K ∈ T . Then

‖r‖L2(K) � εh−1
min,K|‖e|‖K + ‖r − r‖L2(K)

Proof. For the proof see Grosman [10].

The following lemma is an improved version of the one from [10].

Lemma 7.6 (Face residual). Let γ be any interior interface. Then,

‖R‖L2(γ) �
∑

K′∈eγ

{
ε1/2α

−1/2
K′ |‖e|‖K′ +

( |K ′|
|γ|

)1/2

δ1/2
γ ‖r − r‖L2(K′)

}
.
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Proof. Let v ∈ H1
0 (Ω). Integrating by parts on each element yields

B(e, v) =
∑

K∈T

∫

K

rv dx −
∑

γ∈∂T

∫

γ

Rv ds, (7.5)

where ∂T denotes the collection of interelement faces.
Let γ ∈ ∂T . Suppose that γ = K1 ∩ K2. Then

γ̃ = int(K1 ∪ K2). Choosing v := Fext(R)bγ,δγ
∈ H1

0 (Ω) in (7.5) implies
∫

γ

bγ,δγ
R2 ds =

∑

K⊂eγ

∫

K

rFext(R)bγ,δγ
dx − Beγ(e, Fext(R)bγ,δγ

).

Furthermore, applying the Cauchy-Schwarz inequality, one obtains

|BK(e, Fext(R)bγ,δγ
)| ≤ |‖e|‖K|‖Fext(R)bγ,δγ

|‖K.

Using (3.2) and (3.3) one estimates the second factor as follows:

|‖Fext(R)bγ,δγ
|‖2

K = ε2‖∇(Fext(R)bγ,δγ
)‖2

L2(K) + κ2‖Fext(R)bγ,δγ
‖2

L2(K)

�
(

ε2 min

{
δγ ·

|K|
|γ| , hmin,K

}−2

δγ
|K|
|γ| + κ2δγ

|K|
|γ|

)
‖R‖2

L2(γ).

Thus, we have

|BK(e, Fext(R)bγ,δγ
)| �

( |K|
|γ|

)1/2

|‖e|‖K‖R‖L2(γ)

∗
(

ε min

{
δγ ·

|K|
|γ| , hmin,K

}−1

δ1/2
γ + κδ1/2

γ

)
.

Applying the Cauchy-Schwarz inequality, Lemma 7.5 and (3.2) to the second term
we have

∣∣∣∣
∫

K

rFext(R)bγ,δγ
dx

∣∣∣∣ ≤ ‖r‖L2(K)‖Fext(R)bγ,δγ
‖L2(K)

�
[(

εh−1
min,K + κ

)
|‖e|‖K + ‖r − r‖L2(K)

]
δ1/2
γ

( |K|
|γ|

)1/2

‖R‖L2(γ).

Combining two previous estimates we get

‖R‖L2(γ) �
∑

K′∈eγ

{( |K ′|
|γ|

)1/2

δ1/2
γ ‖r − r‖L2(K′) +

( |K ′|
|γ|

)1/2

|‖e|‖K′

∗
(

ε min

{
δγ ·

|K|
|γ| , hmin,K

}−1

δ1/2
γ + h−1

min,Kδ1/2
γ + κδ1/2

γ

)}
.
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By simple manipulations we get (with δγ from (3.4)),

ε min

{
δγ ·

|K|
|γ| , hmin,K

}−1

δ1/2
γ + h−1

min,Kδ1/2
γ + κδ1/2

γ ≤ 4δ1/2
γ α−1

K ,

which finishes the proof.

We are now in a position to formulate a main result of the present paper, namely
the robustness of the error estimator.

Theorem 7.7. In foregoing notation and assumptions the following inequalities hold

|‖e|‖ � m1(e, T )

(
|‖ẽ|‖2 +

∑

K∈T
α2

K‖r − rK‖2
L2(K)

)1/2

,

|‖ẽ|‖K �


|‖e|‖2

eK
+
∑

K∈ eK

α2
K‖r − rK‖2

L2(K)




1/2

,

where K̃ is a unit of four triangles including K itself and three triangles sharing
with K its edges.

Proof. 1. First inequality.

|‖e|‖ � m1(e, T )

(
|‖e2|‖2 +

∑

K∈T
α2

K‖r − rK‖2
L2(K)

)1/2

� m1(e, T )

(
1√

1 − γ2
|‖e|‖2 +

∑

K∈T
α2

K‖r − rK‖2
L2(K)

)1/2

It remains to show that |‖e|‖ ≤ |‖ẽ|‖. Indeed,

|‖e|‖2 = d(ẽ, e) ≤
√

d(ẽ, ẽ) ·
√

d(e, e) � |‖ẽ|‖ |‖e|‖

2. Second inequality is obtained more or less straight forward as it is shown be-
low.

|‖ẽ|‖K ≤
∑

γ⊂∂K

|aγ| |‖bγ,δγ
|‖K + |cK| |‖bK|‖K
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Estimate first and second term subsequently. Utilize (3.2), (3.3), Lemma 7.5
and Lemma 7.6 subsequently.

|aγ | |‖bγ,δγ
|‖K ≤ ‖R‖L2(γ)‖bγ,δγ

‖L2(γ) + ‖r‖L2(eγ)‖bγ,δγ
‖L2(eγ)

|‖bγ,δγ
|‖K

� ‖R‖L2(γ)

κα
1/2
γ + εα

−1/2
γ

+ αγ‖r‖L2(eγ)

� ε−1/2α1/2
γ ‖R‖L2(γ) + αγ‖r‖L2(eγ)

� |‖e|‖eγ +
∑

K∈eγ

αγ‖r − rK‖L2(K).

Similarly estimating the second term we get the result claimed.

|cK| |‖bK|‖K ≤ ‖r‖L2(K)‖bK‖L2(K)

|‖bK|‖K

� αK‖r‖L2(K)

� |‖e|‖K + αK‖r − rK‖L2(K).

Combining two previous estimates we finish the proof.

8 Numerical experiments
Let us consider the 2D model problem

−∆u + κ2u = 0 in Ω := [0, 1]2, u = u0 on ∂Ω.

Prescribe the exact solution
u = e−κx + e−κy

which displays typical boundary layers along the sides x = 0 and y = 0. The Dirich-
let boundary data u0 are chosen accordingly.

In the first table we use a sequence of Shishkin meshes with transition parame-
ter τ = 2 ln(κ)/κ.

The second table has the results for the various transition parameters τ = 2γ ln(κ)/κ,
perturbed from the original value by additional factor γ. γ ∼ 1 corresponds to the
appropriate transition parameter τ . γ � 1 means that the mesh is unnecessarily
course, while γ � 1 produces an overrefinement leading to the large values of the
matching function m1. We can observe the influence of the matching function to the
error estimator and the constant in the saturation assumption. It could be argued
that moderate values of the matching function yield the constant in the saturation
assumption actually smaller than 1, while the large values destroy the error reduc-
tion for enlarged finite element space. Thus it demonstrates that the estimate (5.3)
is sharp.
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Mesh Elements |‖ee|‖
|‖u−u1|‖

|‖u−u2|‖
|‖u−u1|‖ m1(u − u1, T ) |‖u−u1|‖

|‖u|‖
1 8 0.80 0.60 1.42 1.92
2 32 0.73 0.64 1.41 1.14
3 128 0.64 0.69 1.42 0.65
4 512 0.56 0.65 1.42 0.34
5 2048 0.50 0.55 1.42 0.17
6 8192 0.50 0.55 1.42 0.09
7 32768 0.51 0.54 1.42 0.04
8 131072 0.51 0.54 1.43 0.02

Table 1: Results for κ = 1000 with transition parameter τ = 2 ln(κ)/κ.

γ Mesh Elements |‖ee|‖
|‖u−u1|‖

|‖u−u2|‖
|‖u−u1|‖ m1(u − u1, T ) |‖u−u1|‖

|‖u|‖
1 4 512 0.56 0.65 1.42 0.34

0.1 4 512 0.41 0.91 16.6 0.45
0.01 4 512 0.40 0.97 24.8 2.56
10 4 512 0.72 0.65 1.44 2.05

Table 2: Results for κ = 1000 with various transition parameters τ = 2γ ln(κ)/κ.
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