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1 Introduction

Let 2 C R? be an open domain with polygonal boundary df). Consider the reaction-
diffusion problem with homogeneous Dirichlet boundary conditions

—?Au+k*u=finQ, u=0o0n0Q, (1.1)

where k is a nonnegative constant.

If ¢/k < 1, then we have a singularly perturbed problem. Many physical phe-
nomena lead to singularly perturbed problems, for instance, boundary value prob-
lems formulated on thin domains [16], where ¢/k is proportional to the domain
thickness. They also arise in mathematical models of physical problems, where
diffusion is small compared with reaction and convection.

Such problems yield solutions with local anisotropic behavior, e.g. boundary
and/or interior layers. In these cases special mesh adaptivity is desirable. Tri-
angles should not only adapt in size but also in shape, to better fit the function to be
approximated. While standard finite element meshes consist of isotropic elements,
in the current work so-called anisotropic elements are investigated. They are char-
acterized by a large aspect ratio (the ratio of the diameters of the circumscribed and
inscribed spheres). The singularly perturbed reaction diffusion problem typically
requires triangles stretched along the boundary or in the direction of the interior
layer [3, 4, 5].

Local error estimators have found much use in finite element computations. This
paper is concerned with the error in the energy norm, which was shown to be ap-
propriate in adaptive procedures [13]. One of the easiest techniques for a posteriori
error estimation is the hierarchical approach [6, 7]. The purpose of the current work
is to consider this approach on anisotropic meshes and to construct upper and lower
error bounds that are uniform with respect to both the large aspect ratio and the
perturbation parameters  and ¢.

The paper is organized as follows. After describing the model problem and its
discretization in Section 2, and after introducing the special functions for the space
enrichment in Section 3, we state in Section 4 an a posteriori residual error estima-
tor that is shown to be robust by Kunert [11].

In Section 5 we give a proof for a saturation assumption. The saturation as-
sumption signifies that using the quadratic finite element basis we achieve strictly
higher accuracy than with linear ones. Namely, in some norm || - ||:

|lu —us|| < afju —wuy|, wherea <1,

up is the usual linear finite element solution, u, is the solution using the enriched
finite element space. However, as it was shown in the paper by Dorfler and Nochetto
[9], there are examples that the saturation assumption fails in this form (the equa-
tion f = —Au was set under consideration). The modification done there concerns
on additional term — the so-called data oscillation appeares in the right hand side.
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For more details on data oscillation see [9]. Their proof of the saturation assumption
was based on the residual a posteriori error estimator. More recently Agouzal [1]
has given a proof for the saturation assumption for the reaction-diffusion equation
(1.1). The proofin this case does not involve any theory of residual a posteriori error
estimators. The proof of the current work mainly follows the lines of the work [9],
but appears to be much more technical. The estimate obtained (Theorem 5.2) is not
only uniform with respect to the mesh size, but also with respect to the aspect ratio
and the perturbation parameters x and . As in the forementioned works the satu-
ration assumption makes sense if the data oscillation is comparatively small. The
main difference with the isotropic case is in the matching function m, (-, -) which nat-
urally appears in the right hand side of the saturation assumption. The moderate
size of the matching function together with the small data oscillation guarantees
the saturation assumption.

In Section 6 the validity of the strengthened Cauchy-Schwarz inequality is con-
firmed. Namely, it is shown that

(@, y) <Allzll lyll, VeeW, yels

where V] is the original piecewise linear finite element space, V, is the enrichment
space, described in section 5. We emphasize that the constant v in the strengthened
Cauchy-Schwarz inequality for the chosen pair of spaces is always strictly smaller
then 1 independently of aspect ratio.

Furthermore, in Section 7 the saturation assumption and the strengthened Cauchy-
Schwarz inequality are utilized in order to show the reliability and the efficiency of
the proposed estimator. The final estimates are in accordance with Kunert [12]
and Grosman [10]. The numerical experiments presented in Section 8 confirm our
formulas for the robustness of the error estimator and show the validity of the sat-
uration assumption.

2 The model problem, its discretization and some
notation

Assume [ € Ly(2). The Sobolev space of functions from H'(Q2) that vanish on 9O
is denoted by H}(Q2) as usual. The corresponding variational formulation for (1.1)

becomes:
Find v € H}(Q): B(u,v) = (f,v) Yv € H}(Q), (2.1)

where

B(u,v) := /(aszquH—fouv) dz,
Q

(f,v) = /vadx.
2



We utilize a family F = {7} of triangulations 7 of Q. Let V; C H}(Q) be the space
of continuous, piecewise linear functions over 7 that vanish on 0. Then the finite
element solution u; € V; is uniquely defined by

B(uy,v) = (f,v) Yvel. (2.2)

Due to the Lax-Milgram Lemma both problems (2.1) and (2.2) admit unique solu-
tions.
We also will use some notation (for any w C )

Ly-norm: [|lv]| = ([0 dat:)l/2 :

Energy norm: o]l = (V) + w2 {lu]®)",

Local energy scalar product: B, (u,v) = [ (2V'uVo+ x?uv) d,

Local L,-norm: |0l Loy = [, v*de,

Local energy norm: ol = (A9l + r2lul,q) "
Length of an edge ~ v = meas;(7),

Area of subdomain w |w]| = measy(w),

Patch of an edge v v := int {Uclosure(K), K € 7 : v € 0K} .

We will require the trivial extension operator F.,; : P°(y) — P°(K) defined by

Fon(p)(x) = ¢, = const.

Now we introduce so-called bubble functions which are defined as usual, cf. [14].
Denote by Ak 1, Ak 2, Ak 3 the barycentric coordinates of an arbitrary triangle K. The
element bubble function by is defined by

bK = 27)\[(71 . )\K,Q . )\K,?’ on K

Let v = int(K; N K;) be an inner face (edge) of 7,. Enumerate the vertices of K; and
K, such that the vertices of v are numbered first. Define the face bubble function b,
by

b,y = 4/\](1.71 . >\Ki72 on KZ', 1= 1, 2,
with the obvious modification for a boundary face v C 0€2. For simplicity assume
that b and b, are extended by zero outside their original domain of definition. There

holds 0 < by (). b,(x) < 1 and [[bx [l = b, = 1.
We will also use the following notation

a b< a>Ch,
a b< a < Cb,

a ~ bsa-b&a=b,

LA 1Y

where C does not depend on ~ and triangulation 7.
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3 Special bubble functions

3.1 Special edge bubble functions

Following Kunert [11] we define special edge bubble functions, and state the cor-
responding inverse inequalities. They play a crucial role in the enrichment of the
linear finite element space as well as in the proof of the saturation assumption and
a posteriori error estimation before (see [11] and [12]). The definition is given first
for the standard triangle K and then for the actual triangle K.

Consider the standard triangle K and the face 7 thereof (by v we denote the
corresponding face on the boundary of actual triangle K). Without loss of generality
we assume that 7 lies on the axis Oy. For a real number § € (0, 1] define a linear
mapping Fs : R? — R? by

or,

1-9
Fg(X) = B(; X with 35 = dlag{é, ?} S RQXQ.

Set K5 := F5(K), i.e K; is the triangle with the face 7 and a vertex at § - e;.
Let b5 be the usual face bubble function of 7 on K. Define the special bubble
function b, 5 by
5%5 = % e} F5_1

i.e. b, 5 is the usual face bubble function of 7 on the triangle K ;. For clarity we recall
that b, s = 0on K \ Ks.
Consider now an actual triangle K. The special edge bubble function b, ; € H'(K)
of a face ~y of K is defined by
b%(; = 1_7%5 @) Fgl

The actual value of parameter ¢ will be specified later.
Lemma 3.1. (Inverse inequalities for bubble functions and special edge bub-

ble functions). Let v be an arbitrary face of K. Assume that ¢ € P°(K) and
@, € P'(). Then the following inverse inequalities hold:

IV (e - )|y~ Poin i - 19| Lo (56) (3.1)
K\ 12

[ Fezt(9r) - Oy sllLamy ~ (%) 52 | | e (3.2)
IK]

Y K| !
IV (Fane(,) - b llaciey ~ ( ) 5V -min{am,hmm,f(} e (3.3)

7l
Proof. See [11]. O



We are in a position to specify our parameter § = §(y). From now on we use

1|9l | —1
= —=emin(e  Amina, K ). (3.4)
0l 3 |fy| ( Y )
Note that if v = 0K (0K, then
el -1 —1 7] | —1
Oy ~ ——emin(e” hpmin i, K ) ~ emin(e™ hmingr, K ).
T K] | K|

We should mention that the definition (3.4) differs from the original definition in
Kunert [11] by a factor of i, which however does not disturb the estimates. This
modification is done in order to avoid overlapping supports of special edge bubble
functions.

3.2 Notation of the triangle

Let a triangulation 7 be given which satisfies the usual conformity condition (see
[8], Chapter 2). Following Kunert [11] we introduce the following notation. The
three vertices of an arbitrary triangle K € 7, are denoted by P, P;, P, such that
PyP; is the longest edge of K. Additionally define two orthogonal vectors p;, with
lengths h; x := |pi|, see Figure 2. Observe that h; x > he x and set Ay x = Ik,
hmm,K = h2,K-

P

D2

P £ P,

Figure 1: Notation of a triangle K.
In addition to the usual conformity conditions of the mesh we demand the fol-
lowing two assumptions.
1. The number of triangles containing a node z,, is bounded uniformly.
2. The dimensions of adjacent triangles must not change rapidly, i.e.
higr ~hix VK, K withKNK #0,i=1,2.
Define the matrices Ax and Cx € R**? by
_ ——
A = (RP, RhP) and  Cg = (p1,p2)
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and introduce affine linear mappings
— —
FA(M):AKH+PO and Fc(M)Z:CK'M+P0,M€R2.

These mappings implicitly define the so-called standard triangle K := F;'(K)
and the reference triangle K := F;'(K). Variables that are related to the standard
triangle K and reference triangle & are referred to with a bar and hat, respectively
(e.g. V, 7). The determinants of both mappings are |det(Ax)| = |det(Ck)| = 6| K|, and
the transformed derivatives satisfy Vo = A, Vv and Vi = CL V.

Furthermore, for any interior face v = K (| K’ define the quantity h,,;, - by

h o hmin,K + hmin,K’
min,y 2

The advantage of this notation is clear, we need a value that relates to the edge, in
contrast with others related to triangles. Note that L, ~ Rpin. ik ~ Rmin x» due to
the mesh assumptions.

4 A posteriori residual error estimator

After some additional notation and definition of the matching function we formu-
late an upper error bound for the error measured in the energy norm. The jump
discontinuity in the approximation of the normal flux at an interelement boundary
is defined by

Juy
{ on
and the usual interior and boundary residuals » and R are given by

:| =Ng - (Vul)[( + ngr - (Vul)K/,

r=f+4e’Au; — k*uy

and . /
rolc [24] on 9K NOK
0 on 0K N oS}
which are defined as usually (see [2]). Define by rx := ﬁ [, 7 dz the mean value of
r over an element K.
In addition we introduce the following notation:
ag = min(e  hpini, K,
ay, = min(z—:_lhmmmﬁ_l).
Definition 4.1. (Matching function m;). Let v € H'(Q)) be any arbitrary non-

constant function, and F be a family of triangulations of ). Define the matching
function mi(-,-) : H'(Q) x F — R by

1/2
(5 it ICKVolE
S

(4.1)
Vol

my(v,7T) =



The matching function satisfies the following property:

h
1 < my(v,T) < max 2228
KeT

min, K

The definition means that small value of m,(v,7) is reached for the meshes 7" well
aligned with an anisotropic function v.

Theorem 4.2.

llu—w] = mi(u—uy,T) {Z gl Iz,
KeT

1/2

+ Z e oy IR, ) + Z ajellr — 7”K”%Q(K)} ;
yeOT KeT

where 07 denote the collection of all edges in the triangulation 7.

Proof. See the proof for the anisotropic case in Kunert [11]. For the isotropic case it
appeared first in Verfirth [15]. O

5 Saturation assumption

In the case of a singularly perturbed problem the choice of space enrichment is
crucial. First, recall the definition of the space V;:

Vii={v, € Hy(Q) : VK € T, vp|x € Pi(K)}.

We enrich the space V; by the squeezed bubble functions for all edges and the inte-
rior bubbles. Namely,

Vo = {u, € Hy(Q) : VK € T, vy, € Pi(K) + span{bk,bys 17 € 0K \ 00} }.
Then the finite element solution u, € V; is uniquely defined by
B(ug,v) = (f,v) Yve V. (5.1)

It is not clear at the moment wether we get the estimate similar to the estimate
of Theorem 5.2 using the usual bubbles as it was done for example in [9] for the
Laplace problem.

The proof of the saturation assumption is based on the following lemma.

Lemma 5.1.

e = wl* < Cma(u —uy, T)* (IHul —wfl®+ ) akllr - TKHiQ(K)) :
KeT



Proof. Using the Theorem 4.2 we estimate the terms involving boundary and inte-
rior residual subsequently.

1. Boundary residual. Due to the fact that R is constant over each edge v applying
partial integration we get:

2
—|v|R = /Rb%(gw ds = — / Vuy - Vb, s, dx
3 v 0

= ¢? / V(ug —uy) - Vb5 dv + K2 /(u2 —uy) - bys, dr — / fbys dr+ K2 /u1 - by 5, dr
v o] v v
= By(uz — u1,by5,) — /:Tb'%(S“/ dz,

Y

where 7 is the union of two triangles sharing the edge ~ (see Section 2). Squaring
and integrating over v we get

2
IR,y = Biluz —ur,bys, ) + </~ rbys, dx)
gl

< Mz = walll5005, 15 + 17 11Z 5 1045, 12, 5)

Estimate the first term using the inequalities for the special bubble functions
(3.2), (3.3) and the definition of ¢, (3.4) as follows:

s, 11 = €290y 5, ) + 5210015, 3
K , K 2 K
<<Z(ﬁﬁ%m{m%+mm§ m+ﬁﬁM@
KA 8 Y Y
~ D7 (o min{ea, bk ] + weax])
Kcy
< el

Estimate the second term using (3.2):

16,5, 1125 =

Combining three previous estimates we come to the following:

K|
~ 5“/"7‘ ~ ‘7‘8057

e Ry 2 llua = w2+ 2 lrl, )

llue —wll3 + ) akllrxlzum + Y aklr — il

Kcy Kcy
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2. Interior residual. It remains to estimate the term o ||rx||7, (5)- We have

K
TKu = / T‘KbK dx
51 p
= /fbKd:C—F;z/uledx—/ 'r’bKdJH—/ rrbr dr
K K K K
= BK(UQ,Z)K) — BK(Ul,bK) — / (T‘ — TK)bK d[L‘
K
= Bg(ug —uy,bg) — / (r — rg)bk dz,
K
because [, Vu, - Vbg dx = — [, Auy - bg dz = 0. Squaring and integrating over an

element K we get:

IA

By (ug — uy, b )* + (/K(r — )bk d:c) 2

[z = wn I lllbrcllie + I = 7l 105 o

K17l

IN

Now we use (3.1) for |||bk|||x as follows

ol = 21V Or) 1 Za00) + K110 7000
= (52h;£n,K + “2) ||bK||%2(K)
= (h,i x + K K|

min, K

or,
o lll% < az?lK].

Thus, it follows that
gellrr o) = Mlue — willli + adellr = rcllz, i (5.2)

Now, applying the inequalities (5.2) and (5.2) to the estimate of the Theorem 4.2 we
get the result claimed. O

Theorem 5.2 (Saturation assumption on anisotropic meshes). The following
inequality takes place:

1/2
1
_ < — — 21l — 7|2 . .
I uz‘”—% Gt — a7 I uurw(}:amrr rKHK) 6.3

KeT

Proof. Using the identity
llw = wi[II* = Il — wo|I* + f[Jur — usl||?

9



we get

1
o= wall? < (1= gt ) = wall? + 3 el = il ey

KeT

Taking the square root we finish the proof. O

The estimate (5.3) we call the saturation assumption on anisotropic meshes. As
it could be mentioned the constant in (5.3) depends strongly on the value of the
matching function m;, and only bounding m; one can claim that the error reduces
its value significantly while using refined finite element space.

6 The strengthened Cauchy-Schwarz Inequality

6.1 Theoretical background
Definition 6.1. Let X, Y be two subspaces of a Hilbert space equipped with a scalar

product (-,-) and induced norm || - ||. A saturation assumption is said to hold for this
couple of spaces if there exist a non-negative constant v < 1 such that:

(z,y) <Allzll lyll, Vze X, yeY. (6.1)

Let X, Y be finite dimensional spaces. Consider a stiffness matrix B correspond-
ing to the space X* =X p Y,

BYX BYY

We state here without a proof the following theorem from [2].

B:|:BXX BXY:|.

Theorem 6.2. The constant ~ in the Cauchy-Schwarz inequality 6.1 may be ex-
pressed in the following way:
2 XTBxyB;%/BYXx

v* = max
xeRdim(X) XTBXXX

Now come back to our problem. Suppose that for each element K of triangulation
the constant v is known:

Bi(u,v) < yillullxllvllx, Ve € Xk, v e Yk,

where X and Yy are restrictions of corresponding spaces to the element K. Now,
prescribing v = maxy vx, we obtain the constant ~ for the whole mesh:

B(u,v) =Y Bi(u,v) <y Y lulllllvllx < Alllulll - llv], (6.2)
K K
where we utilized the discrete Cauchy-Schwarz inequality.
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6.2 Pure Laplace problem x =0

We state this result here because it could be used in other applications. In the case
of a pure Laplace problem the Cauchy-Schwarz constant has a nice structure and
may be expressed explicitly (see below). We assume here that 6, = 1, for all edges
in triangulation. In other words V, is the space consisting of three usual edge bubble
functions together with interior bubble function. The following decomposition holds
Vo=Vid Vs

Let a triangle have angles ¢, ¢», ¢3. After straight forward maple calculations
we get the matrices needed to obtain the strengthened Cauchy-Schwarz constant
for H, semi-norm:

% — cot ¢3 — cot 9
sin ¢q sin @3 5
1 sin ¢y
BV1V1 = 5 — cot (b3 m — cot ¢1 y
sin ¢3
cot ¢z cot g sin ¢4 sin ¢o
t
D —cot ¢3 —cot @o CO5¢1
t
1| —cotos D — cot ¢y CO5¢2
Boo ==
VoV t J
2 oot ¢o —cot ¢y D cot g
cot ¢ cot ¢ cot ¢3 g
5 5 5 15
where D — % .gbl COS.¢2 cos. o3 + 1.
sin ¢ sin ¢y sin @3
% — cot ¢3 — cot ¢9
sin ¢ sin ¢3 '
1 — cot ¢3 & — cot ¢y
By = —= sin ¢ sin ¢ )
o 6 b6 66 sin ¢3
—co —Co _
2 ! sin ¢ sin ¢o
0 0 0
_ pT
BV1‘72 o B‘F;gvl :
Compute the matrix L = By, ¢, 19‘2/21‘72 By, € R

Ai23 DBsia2 DBasg
Bsio Assi Bips |,
Bisi Bias Asie

11



where we used the notation:
(2 — cos? ¢ — 2 cos ¢; cos ¢; cos ) sin ¢;

Aijr = : -

v sin ¢; sin ¢y, ’
B COS ¢ COS P, — 2 €OS @;

ik = - .

v sin ¢;

What remains is to find
9 xT' Lx
~v° = max

x€R3 XTBVIVIX.
If By,y, was a non-singular matrix then we would solve an eigenvalue problem
Lx = A\By,y,x and maximal eigenvalue \,,,, would be our wanted constant 2. How-
ever, it is not possible in this case since By,y, has a vector ¢ = [1,1, 1]7 in its kernel.
It turns out that e lies in the kernel of the matrix L as well. There exist two vectors
e; and ey such that {e, ey, e;} is the basis in R?. We have
2 (ae + Prey + Paes)" Lae + Breg + fBoes)

= max
7 a,B1,3:€R (e + Bre; + [ae2)T By, (e + frer + Baes)

max (Bre1 + Baea) " L(Breq + faes)
afrB2eR (Brer + Baea)T Byyv; (Brer + Baea)
B STETLES
~ e BTET By, EB’
where the matrix £ = (e;,ez) € R¥*? can be chosen in such a way that {e, e, ep} is
the basis in R3. Choosing for simplicity

FE =

S O =
O = O

and solving eigenvalue problem ETLES = A\ET By,y, E3 we get two eigenvalues

1 1

Br2 = 5 + 6\/1 — 8Os @1 oS ¢g COS P3.

Choosing the maximal of these two numbers we formulate the following lemma.

Theorem 6.3. The constant v in the strengthened Cauchy-Schwarz inequality for
the spaces V| and V, is expressed by

1 1
7E = B + 6\/1 — 8 €os ¢ oS ¢ COS ¢3.
Proof. For the proof see above arguments. O

In the inequality of Theorem 6.3 maximum angle condition naturally appears in
the sense that, if one angle of a triangle goes to = then the strengthened Cauchy-
Schwarz constant goes to 1. It leads to the fact that induced hierarchical error
estimator will fail in general on meshes where the maximum angle condition is not
satisfied.

12



6.3 Squeezed case

Divide a triangle K into three parts K 1 where the central point is the center of
mass. Mention that support of each special edge bubble function lies inside exactly
one part ;. Evaluate (estimate from above) the Cauchy-Schwarz constant for each
part independently assuming that the squeezing parameter § of the special edge
bubble function can be any number from 0 to 1/3. The constant for the whole triangle
and subsequently for the whole mesh may be chosen as the maximum value of three
corresponding constants as we did in (6.2).

C

K
A B

Figure 2: Notation of a trangle, the vertices have the following coordinates: A =
(0,0), B=(a,0),C = ((a+¢€)/2,b), D=(A+ B+ C)/3.

=

Lemma 6.4.

2v/2

(U,U)Hl(K%) < T|U|H1(K%)|U|H1(K%)a Yu e Vi,v € V.

Proof. Write down matrices in notation from Figure 2.

4 + (1 —e)? 4> -1+ 1—c¢

24b 24b C12b
B . 40 — 1+ €2 4b* + (1 —€)? 1+e¢
v — — — )
24b 24b 12b
1—¢ 1+e€ 1
126 12b 6b
6%€ 4+ 460 + 3 5%€? — 382 + 46%6% + 105 — 8
Be~ — 48b6 2400
VaVa 5%€%2 — 362 + 46%h% + 106 — 8 €2 4+ 4b% + 51 ’
240b 194400
1—e¢ 1+e€ 1
Be  — 12b 12b 6b
\21% 1—¢ 1+e€ 1

1080 108h  54b
Compute the matrix L = BVI%B‘Z/;%B%VI € R33 and using the same trick as in

the proof of Theorem 6.3 we solve eigenvalue problem ETLES = \ET By,y, E3. One

13



of two eigenvalues of this problem equals zero, the second one is the constant of
interest:

v o= % — g[—9o — 48600* 4 95586 + 7296 — 48606% + 9994

—50% 4 816°)€*

—19446% + 64806* 4 1806 — 60 — 19440° — 1206%)b*

—3007 + 16206* — 15 + 456 — 4866° — 4866%)¢?

12965° — 806%)b* + (6485° — 406%)€°b?]

[51840 — 129606% — 48600 — 765 + 7296° + 119885

507 4 818%)e* + (64800* — 60 — 10206% — 518446 — 19444°)b?

1296% — 25567 + 16205* — 4865° — 15)€* + (12966° — 8052)b* + (6485° — 406)e*b?]

(
(
(
(

+ o+~ + + o+

(—
(—
Observing that for ¢ € [0, 1]

—90 — 48606* + 955863 + 7296° — 48606% + 9995

2
=9(30 — 1) (243 <5 — é) + 14—3 +96%(36 — 1)(6 — 6)) <0
—50% 4+ 816° = §*(816° — 5) < =26 < 0
—19445% + 64806* + 1806 — 60 — 19446° — 12062
40 4 ) 3 \° 293
-5 - 3(35— 1) <5(155+7)(35— 1)+ 99 <54 (2 —5) -5 ))
40 4 )
<—3 - §<35 —1) (5(156 + 7)(36 — 1) —25-96%) < 0
—306% + 16206* — 15 + 456 — 4865° — 4860°
10 1 29
_ (30 —1) (5(155+ 7)(36 — 1) + 962 (54 <§ — 5) — E)) <0
3 3 2 2
12965° — 800% = 166%(816* —5) < 0
6485° — 406 = 80%(816* —5) < 0
51846 — 129606% — 48600* — 765 + 7296° + 119884°
107\ 6571 . 10 ?
= — - — — - — <
9(36 — 1) (477 <5 318) + 55 ) + 816§ (9 < 2 5) 111) < 0
—50% +815° < 0
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64800* — 60 — 102062 — 518463 — 19444°

= —60 — 124° (85 +6 (162 <§ —5)2 — 18)) < 0
—12966% — 25562 + 16206* — 48656° — 15
= —15 — 36° <s5+5 (162 (g —5)2 — 18)) <0
129656° — 806% <
6486° — 400 < 0
we finish the proof. O

Lemma 6.5.

31927 7193953
(u, U)LQ(K%) <

”UHLz(K )HUHLQ(K%)7 Yu € Vi,v € ‘72

1
3

35680 - 35680

31927 . 74193953
35680 35680
Proof. The matrices in the L, case has the following form:
13 17 5

324 648 648
17 13 5

648 324 648 |’
I
648 648 324
5 52(30% — 146 + 19)

2

P = pap g 1|
10080 15120
5(5—0) &(5-05) &

— 2 240 240 120

[y 17 17 13

14580 14580 29160
Computing the matrix L and then solving the eigenvalue problem Lx = ABy,,x
we get three eigenvalues, from which one is zero and the maximal is

~ 0.9812165548 < 1.

2
BV1V1 = a“b

1
v = 5(—187677064 4 4082406° + 324135007 — 3024006° — 221480 — 12757506

— 70(6123015456% — 1146474008 + 1201056666 — 12544369565”
49789526316% — 95941240565 + 108536960885° — 82792048865°
469505508304 — 20176086425 + 10010896)/2)

(546756 — 5103006° + 18832500° — 32319006* 4 21930755 — 226800).

~ t+ +

15



In Figure 3 we can see dependence of the strengthened Cauchy-Schwarz constant

0.982

0.981

0.98

0.979

0978

0977

0.976

L L L L L L
0 0.05 0.1 0.15 0.2 0.25 03 0.35

Figure 3: dependence of the strengthened Cauchy-Schwarz constant on the param-
eter 4.

~ on the parameter 6. The maximum is reached for § = 1/3 and is equal to the

forementioned constant. O
Theorem 6.6.
31927  7+/193953 ~
Proof. This is an immediate consequence of the previous two lemmas. O
Corollary 6.7.
31927  7+/193953 ~
B < . .
(1,0) < \/ e Dl el e Vi e T
Proof. For the proof see (6.2). O

We will also need the Cauchy-Schwarz constant between the space of edge bub-
ble functions and the space of interior bubble functions. Introduce the following
notation:

Vveb = @ Span{b%é'y}v

~yeOT

Vip, = @spcm{b;(}.

KeT

We express the resulting strengthened Cauchy-Schwarz inequality in the follow-
ing theorem.

16



Theorem 6.8.

2v/2
Br(u,v) < —=llulllxlllvlllx, Vu € Vep, v € Vas.

Proof. Prove this inequality for K 1. The statement of the lemma will be a direct
consequence.

1. Verify first the inequality for /; semi-norm and corresponding scalar product.
The matrices for computing the strengthened Cauchy-Schwarz constant are
now reduced to scalars. Therefore we simply state the constant and estimate
it from above.

8§ 1
2 = —— = 2~ 7296°)(e* + 4b%)?
v 9 45[(405 72907) (e )

+ (437465 — 145806* 4 120 + 116645% + 20405%)(¢* + 4b?)
— 65610° + 6120 — 1078926° + 437405 + 1166400 — 466566]
/(34 6%+ 4b%))(¢* + 4b% + 51)

Observing that for ¢ € [0, 1]

400% — 7296° = 62(40 — 7296°%) > 1352

43745° — 145806% + 120 + 116645° + 204062

= (120 + 72905° + 20405%) + 14585°(36 — 1)(6 — 3)
—65616° 4 6120 — 1078920° + 437406* + 1166406% — 466566

{5 [213 418105 + (1 — 36)(60 + 2v/105 — 150)| (1 — 38) + 1755 + 204\/105}

15048 36288 15048 36288
x (156 — 15 4+ v/105)* + — ~ Tor V105 > — I V105 & 34.87

27
625

we conclude

2v/2

() i)y < T‘U‘Hl(K
3

olae,y,  Yu € Vo, v € Vi, (6.3)
3

1
3

2. It remains to verify the inequality for L, scalar product. In this case the con-
stant of interest has the following structure:

3
? = ——§%(30° — 146 + 19)°.
It is easy to verify that the maximum is reached for 6 = 1/3 and is equal to
121/567. Thus,

121
(U,U)LQ(K%) < WHUHLQ(K%)HUHLQ(K%), Vu € Vep, v € Vi, (6.4)

Combining (6.3) and (6.4) and choosing the maximal constant among two we get
the result claimed. 0

17
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7 Hierarchical a posteriori error estimator

Let Vy = V4 @ Va. The true error e satisfies the following variational formulation:
B(e,v) = (f,v) — B(uj,v) YveV.

Now let us try to reduce the space V' to the space V5, namely consider e, satisfying
B(es,v) = (f,v) — B(u,v) Yov € V.

It is clear that ey = uy — u;.
Now by means of the saturation assumption we prove that the approximation of
the error e, is equivalent in the energy norm to the true error e.

Theorem 7.1.

1/2
lle2lll < lllefll < Cma(e, T) (IH@aH!2 I ?”Klli2(;<>z>

KeT
Proof. Let us verify the first inequality:
e=U—U =U— Uy~ €,
and due to orthogonal property we get
llell* = lllw = ual|* + [llea]]I%,

which leads to the first inequality |||e||| > |||e2]||-
The second inequality is nothing else, but Lemma 5.1. O

Represent error in the form e; = e9; + €90, Where ey € V7, €99 € \72, where es;, €99
satisfy
{ B(egr,v1) + Blegs,v1) = (f,v1) — B(u,vq) Yo, € Lfl
B(ear, v2) + Bleaa, va) = (f,v2) — B(uq, v2) Vg € Vs,
or,

{ B(ezl,vl) -+ B(ezg,vl) =0 Vvl c ‘é
B(ea1,v2) + Blea, v2) = (f,v2) — B(u1,v2) Yy € Va.

Ignoring the coupling terms we get

{ B(égl,vl) =0 Vvl c "{1
B(€,v2) = (f,v2) — B(u1,v2) Yy € V.

From the first equation we immediately get €;; = 0. Denote € := €5,. For € we have
the following equation:

B(e,vs) = (f,v2) — B(uy,v5) Vs € V.

18



It is useful to know that
{ B<€21,U1)+B(€22,’01) =0 V’Ul € Y:l
B(ezl, U2) + 3(622,’02) = B(E, ’02) V’UQ € ‘/2,
or,

{ B(ez,?}l) =0 Vvl € ‘/1 (71)

Bles, 1) = B(g,v) Vo, € V.
Now by means of strengthened Cauchy-Schwarz inequality we prove that the

approximation of the error € is equivalent in the energy norm to the approximation
€9.

Theorem 7.2.
el < [llez]l] <

1 _
——= llelll
v1i—7v

where ~ = \/ 12T + D958 s the constant from Corollary 6.7.

Proof. We have

le2lll? = Blear + €2, €21 + €22) = |[lean|||* + 2B (€21, €22) + [l ean ||
> lealll> = 2vlllearll lllea2ll + [lleaz]ll*-

Utilizing the inequality
29|llear [l lllea2lll < llleanlll + ez,

we get
el > (1 =) lleaa[I*.
Applying the first inequality of (7.1) we get

ezl = Bea, e21) + Blea, e22) = B(ea, ex2).

Applying the second inequality of (7.1) we get

_ _ 1 _
llealll* = (2, e22) < I[elll lez2lll < ——==lIelll le2]ll-
V2 Bl
So we get

1 _
ezl < ——==llelll-

V1—~2
Second inequality of the theorem is shown as follows:
lell* = B(e,) = Bez,2) < [[llllle2l,

and thus,
el < [llezlll,

19



Definition 7.3 (Error estimator). For all triangles K and edges ~ define the fol-
lowing terms

B(ula bﬁ/,é«,) - / fbﬁ/,é«, dx /Rb%éw ds + /~Tb%5'v dx
Q b 2l

a = = — s
! 16+, I 16+,5, 1112
B(Ul,bK)—/fbKdlL‘ /T‘bKdZL‘
Q K
Cg = = ——.
1ox] 112 101117

By means of these terms we define approximation function to the error:
€ = Z aﬁ/bﬁ/’gﬂ/ + Z CKbK,
~yeIT KeT

|Il€]ll is then the hierarchical a posteriori error estimator.

Let v, w € 172
v o= Z Uﬁ/b%&/ + Z UKbK
~edT KeT
w = Z wyby 5., + Z Wrbgk.
~edT KeT

Define a bilinear form d(,-) : V2 — R as follows:
d(v,w) =Y vyws by, 1P+ D vcwl[[bx |
~yeIT KeT
We need also a local analogue of this bilinear form for any triangle K:
dic(v,w) =Y vy, lbys, I + vxwi bl
YCOK

This bilinear form has the following properties:

dlv,w) = ZdK(v,w) (7.2)
KeT
d(&v) = —B(e,v) Yuve . (7.3)

The first relation is clear, let us prove the second one. Indeed,

dEv) = > {B(ul,bw)— A fbys. daz} v+ Y {B(ul,bK)— /K fbde} VK

yeOT KeT
= B(ul,v)—/fvdx:—B(E,v).
Q

In subsequent analysis we need a kind of stability property for the bilinear form
d(-,-) which we formulate in the following lemma.
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Lemma 7.4. _
d(v,v) < C||v||* Vv € Va. (7.4)

Proof:
d(v,v) < C|[]v|||> Yo € Va.

First we prove the claimed result locally, namely that for any triangle K the follow-
ing inequality holds: B
di(v,0) < Ofllvll% Vv € Va,

from which the inequality (7.4) evidently follows. Let v € \72, then v|x can be repre-
sented in the following way:

U|K = Z Uvb%(g,y +UKbK.

yCOK

We have

mWizlﬁ<Zﬂﬁmﬂwm§)wm+ww>

YCOK YCOK

= > Bl I + okllbxll + 2Bk (vaK, > Uvb%%>

YCOK YCOK

v

> b, M + vk lor I — 2 lllorbicllae -1l 03bys, ll

YCOK YCOK
> (1-9) ( > 2o, % + v%llleHI%) = (L =)dk(v,v),
YCOK

where 7 is the strengthened Cauchy-Schwarz constant from Theorem 6.8. Dividing
both sides by 1 — v we get the result claimed. O

We need also the estimates from above for interior and edge residuals. The fol-
lowing lemma is taken from [10].

Lemma 7.5 (Interior residual). Let K € 7. Then

Il oy = €hpin scllelllzc + 1l = 7l 2oy

Proof. For the proof see Grosman [10]. O
The following lemma is an improved version of the one from [10].
Lemma 7.6 (Face residual). Let v be any interior interface. Then,

1/2
_1/9 | K| _
IRle < Z{W%mew(—ﬁ &W“ﬂmm}

P ]
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Proof. Let v € H}(Q)). Integrating by parts on each element yields
B(e,v) = Z / rvde — Z Ru ds, (7.5)
KeT /K ~edT v

where 07 denotes the collection oiinteﬁalement faces.
Let v € 97. Suppose that v = K, N K,. Then
7 = int(K; U K,). Choosing v := F,;(R)b,s, € Hj(2) in (7.5) implies

/ bys, R ds = / rF.ui(R)bys, dv — By(e, Font(R)by5.).
v Ky K

Furthermore, applying the Cauchy-Schwarz inequality, one obtains

| Bi (€ Fear(R)by5,)| < [llelll x| Fear (R)by 5, |-

Using (3.2) and (3.3) one estimates the second factor as follows:

| Feae(R)by s, i = €IV (Feat (R)Dy.5 )1 a6) + 67| Fewt (R)by 5, 1L, 1

K] K] K]
< | € min {5 '|—7hminK} 5t + K20, — | [|R|[Z. .y
< R Tl T T F

Thus, we have

|K| 1/2
Brle, Fen(R)bys)] < <W) el l Bl

K] -
* 5min{57~—|,hmm71<} 5,1/2+/£5}/2 )
Y

Applying the Cauchy-Schwarz inequality, Lemma 7.5 and (3.2) to the second term
we have

/ TFepi(R)by 5, d
K

< |7l pocr) | Feat (R)by 5, || 2o (i)

, e (1K1Y
< [ehity o+ 1) el + I — 7llage] 8 (W) IRl ).

Combining two previous estimates we get

IR Loy =Y {(— 2 ||r — 7| pacry + llelll &

S L\l ]
K] Y 1 (1/2 1/2
* | emin {57 R hmm,K} 57/ + i K(Z/ + /ié,/ .
fy )
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By simple manipulations we get (with ¢., from (3.4)),

min, K>y

K —1
£ min {57 : % hmnK} 0%+ hit (002 4 kL < 482 Pat
which finishes the proof. 0

We are now in a position to formulate a main result of the present paper, namely
the robustness of the error estimator.

Theorem 7.7. In foregoing notation and assumptions the following inequalities hold

1/2
llelll = ma(e, T) (H\”@TH2 + Y akllr- TKH%Q(K)) ,

KeT
1/2

Nellx = (lellz+ D axlr—=relli,m |
KeK

where K is a unit of four triangles including K itself and three triangles sharing
with K its edges.

Proof. 1. First inequality.

KeT

1/2
llelll = ma(e, T) (III@zIII2 + > akllr - TKH%Q(K))

1

1/2
—[112 }: 2 1 2
= ml(evT) (MHMH + aKHT TKHLQ(K))

KeT

It remains to show that |||¢||| < |||€]||. Indeed,

lell* = d(e) < vd(ee) - Vd(ee) < lell el

2. Second inequality is obtained more or less straight forward as it is shown be-
low.

llellx < D layl by, Ml + lex] llbxclllx
YCOK

23



Estimate first and second term subsequently. Utilize (3.2), (3.3), Lemma 7.5
and Lemma 7.6 subsequently.

IRl o) 10+.6, | o) + [17]] 22 10,6, | 22 5)

|ay| [I[bys, ]Il <
T 64,5, Il
IRl 2+)
= 1/2 : 7_1/2 +CY7||T||L2(§)
KOy~ 4 €0y
< e 22| R Ly + aslI7 ]| o)
< lelly + ) ayllr = 7l o)

Kevy
Similarly estimating the second term we get the result claimed.

17| o) e | 2 (16)

lexe] Mol <
10w Nl

aK||T||L2(K)

lelllx + axcllr = i)

Combining two previous estimates we finish the proof.

8 Numerical experiments

Let us consider the 2D model problem
—Au+Kk*u=0in Q:=[0,1]*, u = up on I9.

Prescribe the exact solution
u — e*lill? _'_ e*K/y

which displays typical boundary layers along the sides = 0 and y = 0. The Dirich-
let boundary data u, are chosen accordingly.

In the first table we use a sequence of Shishkin meshes with transition parame-
ter 7 = 21In(k)/k.

The second table has the results for the various transition parameters 7 = 2y In(x)/x,
perturbed from the original value by additional factor v. v ~ 1 corresponds to the
appropriate transition parameter 7. v > 1 means that the mesh is unnecessarily
course, while v < 1 produces an overrefinement leading to the large values of the
matching function m,. We can observe the influence of the matching function to the
error estimator and the constant in the saturation assumption. It could be argued
that moderate values of the matching function yield the constant in the saturation
assumption actually smaller than 1, while the large values destroy the error reduc-
tion for enlarged finite element space. Thus it demonstrates that the estimate (5.3)
is sharp.
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Mesh | Elements mJ”_i'PI‘H ot | (e —u, T) ”%‘Jﬁlﬂ”
1 8 0.80 0.60 1.42 1.92
2 32 0.73 0.64 1.41 1.14
3 128 0.64 0.69 1.42 0.65
4 512 0.56 0.65 1.42 0.34
3 2048 0.50 0.55 1.42 0.17
6 8192 0.50 0.55 1.42 0.09
7 32768 0.51 0.54 1.42 0.04
8 131072 0.51 0.54 1.43 0.02

Table 1: Results for x = 1000 with transition parameter 7 = 21In(x)/k.

~ | Mesh | Elements mql”j!'lm oot | (e —u, T) ”“ﬁ;ﬁf‘”

1 4 512 0.56 0.65 1.42 0.34
0.1 4 512 0.41 0.91 16.6 0.45
0.01 4 512 0.40 0.97 24.8 2.56
10 4 512 0.72 0.65 1.44 2.05

Table 2: Results for x = 1000 with various transition parameters 7 = 2yIn(x) /.
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