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Abstract

The wavelet Galerkin scheme for the fast solution of boundary integral
equations produces approximate solutions within discretization error accuracy
offered by the underlying Galerkin method at a computational expense that
stays proportional to the number of unknowns. In this paper we present an
adaptive version of the scheme which preserves the super-convergence of the
Galerkin method.

Key Words: Boundary integral equations; biorthogonal wavelet bases; Galerkin
scheme; adaptive methods.

1 Introduction

As shown by Dahmen, Harbrecht and Schneider [3, 8, 9], the fully discrete wavelet
Galerkin scheme for boundary integral equations scales linearly with the number of
unknowns without compromising the accuracy of the underlying Galerkin scheme.

In view of nonsmooth geometries or singularities of the solution, a modern
method should put into practice adaptivity. The most adaptive methods realize
the adaptivity in the energy norm such that the super-convergence of the underly-
ing Galerkin method is generally not realized. Wavelet bases offer the possibility to
measure a wide range of Sobolev norms. In particular, adaptive schemes working
with the optimal negative norm can be performed. Based on our actual approach
we present these developments and provide numerical results which demonstrate the
potential of our algorithm.

2 Problem formulation and preliminaries

We are interested in solving a boundary integral equation

Au = f on Γ, (1)

where Γ ∈ R3 is a boundary manifold and the kernel of the boundary integral
operator

A : Hq(Γ) → H−q(Γ), u 7→ Au(x) =

∫
Γ

k(x, y)u(y)dΓy,

satisfies estimates of the type

|∂αx∂βy k(x, y)| . ‖x− y‖−(2+2q+|α|+|β|), (2)

We partition the manifold Γ into a finite number of patches

Γ =
M⋃
i=1

Γi, Γi = γi(�), i = 1, 2, . . . ,M,
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where each γi : � → Γi defines a diffeomorphism of � := [0, 1]n onto Γi. The
intersection Γi ∩ Γi′ , i 6= i′, of the patches Γi and Γi′ is supposed to be either empty
or a common edge or vertex.

A mesh of level j on Γ is induced by dyadic subdivisions of depth j of the
unit square into 4j squares Cj,k = [2−jk1, 2

−j(k1 + 1)] × [2−jk2, 2
−j(k2 + 1)] with

0 ≤ k1, k2 < 2j. This yields 4jM elements Γi,j,k := γi(Cj,k) ⊆ Γi, i = 1, 2, . . . ,M ,
cf. Figure 3.

The nested trial spaces Vj ⊆ Vj+1 that we employ in the Galerkin scheme are
spanned the traditional piecewise constant or bilinear ansatz functions defined on the
given partition, where the latter ones are supposed to be patchwise continuous, but
along the interfaces of the patches double nodes or continuity might be considered.

Instead of these single-scale bases we discretize Eq (1) by biorthogonal spline
wavelets {ψj,k} constructed in several papers [1, 2, 4, 8]. Notice that j indicates the
level whereas k describes the locality with respect to the scale j. Besides compacts
supports, i.e. diam suppψj,k ∼ 2−j, such wavelets provide vanishing moments

|〈v, ψj,k〉| . 2−j(d̃+1)|v|
W d̃,∞(suppψj,k)

.

A plot of such biorthogonal spline wavelets can be found in Figure 1. If the number
of vanishing moments is sufficiently large, that is d < d̃+ 2q, the associated system
matrix becomes quasi-sparse due to the decay property of the kernels, cf. Eq (2).
Neglecting the nonrelevant matrix coefficients is called matrix compression. The
compressed linear system of equations can be computed and solved within linear
complexity, see Dahmen, Harbrecht and Schneider [3, 8, 9] for the details.

3 Adaptivity

This section is concerned with finding a sequence of spaces

V0 = V̂0 ⊆ V̂1 ⊆ V̂2 ⊆ · · · ⊆ V̂J ⊆ VJ ,

where V̂j ⊆ Vj, such that the Galerkin solution with respect to V̂j provides the same
accuracy as the Galerkin solution with respect to Vj.

To define a wavelet basis well on V̂j, we have to ensure that the support of a
small wavelet does not intersect large elements. We call a mesh 1-graded, if the
levels of adjacent elements differ at most by one. Likewise, a graded mesh is 2-
graded, if the levels of all neighbours of each element differ at most by one, and so
on, cf. Figure 2. An exact definition of m-gradedness can be found in Dahmen et
al. [5]. The gradedness ensures that we find a tree structured (with respect to the

supports of the associated wavelets) index set Λj such that V̂j = span{ψλ : λ ∈ Λj}
with |Λj| = dim V̂j. Moreover, completing Λj by the sons of all leaves, we obtain

the index set Λj,�, which generates the trial space V̂j,� = span{ψλ : λ ∈ Λj,�} that
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arises from uniform subdivision of V̂j. We mention that the mesh has to be patchwise
1-graded in the case of the piecewise constant wavelets presented in Figure 1. The
piecewise bilinear wavelets require 2-gradedness, which has to be extended to global
2-gradedness if we consider them globally continuous.

The traditional formulation of adaptive algorithms is based on the energy norm.
To our experience this restricts in general the super-convergence of the Galerkin
scheme. The highest order of convergence of the boundary element method is
achieved with respect to the norm in H2q−d(Γ), see Wendland [10]. Since the number

of vanishing moments is chosen such that d < d̃+ 2q, we can estimate this norm by
the estimates∥∥∥∑

j,k

vj,kψj,k

∥∥∥2

t
.

∑
j,k

22jt|vj,k|2 .

{∥∥∑
j,k vj,kψj,k

∥∥2

t′
, t ∈ (−d̃,−γ̃], t < t′,∥∥∑

j,k vj,kψj,k
∥∥2

t
, t ∈ (−γ̃, γ),

where γ and γ̃ denote the regularity of the primal and dual wavelets, respectively.
Assumption. Let V̂j denote an arbitrary m-graded trial space and let V̂j,� be

the trial space that arises from uniform subdivision of V̂j. For a fixed t ∈ [2q− d, γ)
we assume that that there exists a constant θ < 1 such that the solutions uj with

respect to V̂j and uj,� with respect to V̂j,� satisfy

‖u− uj,�‖t ≤ θ‖u− uj‖t. (3)

Theorem. Assume that (3) holds. If the Galerkin solution uj+1 with respect to

the trial space V̂j ⊆ V̂j+1 ⊆ V̂j,� satisfies

‖uj,� − uj+1‖t ≤ ε‖uj,� − uj‖t, (4)

then it holds

‖u− uj+1‖t ≤ [θ(1 + ε) + ε]‖u− uj‖t,

i.e. the solution uj+1 is more accurate than uj if ε < (1− θ)/(1 + θ).
Proof. The proof follows immediately from Eqs (3), (4) and the triangle inequal-

ity.
Up to now we can compute the Galerkin solutions uj and uj,�. Our problem

reads now: find the smallest index set Λj ⊆ Λj+1 ⊆ Λj,�, such that the Galerkin so-
lution uj+1 with respect to ψΛj+1

satisfies Eq (4). At present we choose the canonical
strategy and compute elementwise error portions by bunching the wavelets which
correspond to the subdivision of an element of V̂j. This procedure is simple to imple-
ment and corresponds completely to that when using hierarchical error estimators,
see Mund et al. [6, 7]. After sorting these error portions by their modulus, we in-
crease the index set Λj successively by activating the wavelets corresponding to the
largest error portions until Eq (4) is satisfied. Possibly the so constructed index set

Λj+1 has to be extended to ensure the m-gradedness of the new trial space V̂j+1.
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We are now in the position to formulate our adaptive algorithm, which is based
on a nested iteration.

initialization: V̂0 := V0

for j := 1 to J − 1 do begin

compute the compressed system matrix for V̂j−1,�

compute the solutions uj − 1 and uj−1,�

determine V̂j such that (4) holds

end

compute the compressed system matrix for V̂J−1,�

compute the final solution uJ := uJ−1,�

4 Numerical results

For a given function f ∈ H1/2(Γ) we consider an interior Dirichlet problem, i.e., we
seek u ∈ H1(Ω) such that

∆u = 0 in Ω, u = f on Γ. (5)

We consider the crankshaft presented in Figure 3 as domain Ω. Choosing the har-
monical function u(x) = 〈a, x− b〉‖x− b‖−3, where a = (4, 2, 1) and b = (0, 0, 1.5) 6∈
Ω, and setting f = u|Γ, the Dirichlet problem has the unique solution u.

We use the indirect formulation involving the single layer operator

V : H−1/2(Γ) → H1/2(Γ), (V ρ)(x) :=
1

4π

∫
Γ

1

‖x− y‖
ρ(y)dΓy,

which gives a Fredholm integral equation of the first kind

V ρ = f on Γ.

We discretize this boundary integral equation by piecewise constant wavelets with
three vanishing moments as well as patchwise continuous piecewise bilinear wavelets
with four vanishing moments. The approximate potentials uJ = [(V ρ)(xi)] are
calculated in many points xi distributed inside the crankshaft. The exact potential
is denoted by u = [u(xi)]. The computations are performed by a standard personal
computer with 1 Gigabyte main memory.

First, in Table 1 we compare the adaptive scheme with the nonadaptive one in
the case of the piecewise constants wavelets. The setting for the adaptive scheme
is t = −2 and ε = 1/3. We tabulate the maximum norm of the absolute error
of uJ . The optimal order of convergence is cubic, but it cannot be expected due
to concave angles between the patches. Notice that level 6 is no more computable
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with the nonadaptive scheme. Both schemes provide a nearly identical accuracy,
but the adaptive one does it with essentially less unknowns and, hence, less memory
requirement and cpu-time (measured in seconds). The adaptive mesh on level 4 is
presented in Figure 4.

In Table 2 we consider the piecewise bilinear wavelets. The setting for the adap-
tive scheme is t = −3 and ε = 1/6. We loose one computable level but increase the
accuracy due to the higher order of the ansatz functions. The absolute error of the
adaptive scheme is 1.70e-4 on the level 5, which corresponds to a relative error of
3.11e-5 due to ‖u‖∞ = 5.488.

5 Conclusion

In this paper we presented an easily performable adaptive algorithm based on the
fully discrete wavelet Galerkin scheme for boundary integral equations. We demon-
strated by numerical results that our method solves a given boundary integral equa-
tions highly efficient.
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Figures and Tables
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Figure 1: (Interior) piecewise constant/bilinear wavelets with three/four vanishing
moments.
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Figure 2: A nongraded mesh (left) and corresponding graded (mid) and 2-graded
(right) meshes.

Figure 3: The mesh of a crankshaft parametrized by 172 patches after two subdivi-
sion steps.

unknowns adaptive scheme nonadaptive scheme

J dimVJ dim V̂J/ dimVJ ‖u− uJ‖∞ cpu-time ‖u− uJ‖∞ cpu-time
1 568 100 20.1 3 20.1 2
2 2272 99 1.03 27 1.01 16
3 9088 26 2.45e-1 95 2.40e-1 52
4 36352 7.2 1.82e-2 330 2.80e-2 1539
5 145408 3.0 5.27e-3 1230 5.24e-3 12125
6 581632 1.4 2.10e-3 4244 — —

Table 1: Numerical results for the crankshaft in the case of piecewise constant
wavelets.
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unknowns adaptive scheme nonadaptive scheme

J dimVJ dim V̂J/ dimVJ ‖u− uJ‖∞ cpu-time ‖u− uJ‖∞ cpu-time
1 1278 100 2.95 21 2.95 21
2 3550 100 1.33 87 1.33 87
3 11502 33 6.82e-2 838 6.66e-2 1164
4 41038 9.7 3.18e-3 2978 1.26e-3 11573
5 154638 3.5 1.70e-4 12696 — —

Table 2: Numerical results for the crankshaft in the case of piecewise bilinear
wavelets.

Figure 4: The adaptive mesh of the crankshaft on the level 4.
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