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Abstract
This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equa-
tions. Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of
boundary integral operators. This yields quasi-sparse system matrices which can be compressed
toO(NJ) relevant matrix entries without compromising the accuracy of the underlying Galerkin
scheme. Herein,O(NJ) denotes the number of unknowns. The assembly of the compressed sys-
tem matrix can be performed inO(NJ) operations. Therefore, we arrive at an algorithm which
solves boundary integral equations within optimal complexity. By numerical experiments we
provide results which corroborate the theory.



2 1 INTRODUCTION

1 Introduction

Various problems in science and engineering can be formulated as boundary integral equations.
In general, boundary integral equations are solved numerically by the boundary element method
(BEM). For example, BEM is a favourable approach for the treatment of exterior boundary value
problems. Nevertheless, traditional discretizations of integral equations suffer from a major
disadvantage. The associated system matrices are densely populated. Therefore, the complexity
for solving such equations is at leastO(N2

J), whereNJ denotes the number of equations. This
fact restricts the maximal size of the linear equations seriously.

Modern methods for the fast solution of BEM reduce the complexity to a suboptimal rate, i.e.,
O(NJ logαNJ), or even an optimal rate, i.e.,O(NJ). Prominent examples for such methods are
the fast multipole method[16], thepanel clustering[19] or hierarchical matrices[18, 30]. As
introduced by [1] and improved in [9, 10, 11, 12, 28], wavelet bases offer a further tool for the
fast solution of integral equations. In fact, a Galerkin discretization with wavelet bases results
in quasi-sparse matrices, i.e., the most matrix entries are negligible and can be treated as zero.
Discarding these nonrelevant matrix entries is called matrix compression. It has been shown in
[28] that onlyO(NJ) significant matrix entries remain.

Concerning boundary integral equations, a strong effort has been spent on the construction of
appropriate wavelet bases on surfaces [7, 13, 14, 20, 25, 28]. In order to achieve the optimal
complexity of the wavelet Galerkin scheme, wavelet bases are required with a sufficiently large
number of vanishing moments. Our realization is based on biorthogonal spline wavelets derived
from the multiresolution developed in [4]. These wavelets are advantageous since the regularity
of the duals is known [31]. Moreover, the duals are compactly supported which preserves the
linear complexity of the fast wavelet transform also for its inverse. This is an important task for
the coupling of FEM and BEM, cf. [21, 22]. Additionally, in view of the discretization of op-
erators of positive order, for instance, the hypersingular operator, globally continuous wavelets
are available [2, 5, 13, 20].

The efficient computation of the relevant matrix coefficients turned out to be an important task
for the successful application of the wavelet Galerkin method [20, 26, 28]. We present a fully
discrete Galerkin scheme based on numerical quadrature. Supposing that the given manifold
is piecewise analytic we can use ahp-quadrature scheme [20, 28, 29] in combination with
exponentially convergent quadrature rules. This yields an algorithm with asymptotically linear
complexity without compromising the accuracy of the Galerkin scheme.

The outline of the present paper is as follows. First, we introduce the class of problems under
consideration. Then, in Section 3 we provide suitable wavelet bases on manifolds. With such
bases at hand we are able to introduce the fully discrete wavelet Galerkin scheme in Section 4.
We survey on several practical issues like setting up the compression pattern, assembling the
system matrix and preconditioning. In Section 5 we present numerical results which confirm our
analysis quite well. The accuracy of the Galerkin scheme is never compromised by the matrix
compression.
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2 Setting up the Problem

For the numerical approximation of a boundary integral equation we need a discretization
method which ends up with a sufficiently accurate finite-dimensional approximation of the given
operator. At first we consider a general setting for the boundary element method. Next, a short
description of the representation of the geometry on a computer is given. Then, we discuss the
properties for the class of kernel functions under consideration.

2.1 Boundary integral equations

We consider a boundary integral equation on the closed boundary surfaceΓ of a (n + 1)-
dimensional domainΩ

(Aρ)(x) =

∫
Γ

k(x,y)ρ(y)dσy = f(x), x ∈ Γ. (1)

Herein, the boundary integral operatorA denotes an operator of the order2q, that isA :

Hq(Γ) → H−q(Γ). Especially we are interested in the casen = 2.

For the present purpose, we assume that the boundaryΓ ∈ Rn+1 is represented by piecewise
parametric mappings, see Subsection 2.2 for details. The number of different mappings, which
is the number of surface patches, will be denoted byM . The surface representation is in contrast
to the usual approximation of the surface by panels. It has the advantage that the rate of con-
vergence is not limited by this approximation. Notice that technical surfaces generated by CAD
tools are represented in this form. Of course, this fact makes the use of numerical integration
indispensable for the computation of the system matrices.

The properties of the class of kernel functionsk(x,y) which are under consideration will be
outlined in Subsection 2.3.

2.2 Parametric representation of manifolds

Let � denote the unitn-cube, i.e.,� = [0, 1]n. We subdivide the given manifoldΓ ∈ Rn+1 into
severalpatches

Γ =
M⋃
i=1

Γi, Γi = γi(�), i = 1, 2, . . . ,M,

such that eachγi : � → Γi defines a diffeomorphism of� ontoΓi. The intersectionΓi ∩ Γi′,
i 6= i′, of the patchesΓi andΓi′ is supposed to be either∅ or a lower dimensional face. On
the levelj, the unit cube is subdivided equidistantlyj times into2jn cubesCj,k ⊆ �, where
k = (k1, . . . , kn) with 0 ≤ km < 2j. This yields2jnM elements(or elementary domains)
Γi,j,k := γi(Cj,k) ⊆ Γi, i = 1, 2, . . . ,M . In order to get a regular mesh ofΓ the parametric
representation is subjected to the following matching condition. For allx ∈ Γi ∩ Γi′ exists a
bijective, affine mappingΞ : � → � such thatγi(s) = (γi′ ◦Ξ)(s) = x for s = [s1, . . . , sn]

T ∈
� with γi(s) = x, cf. Fig. 1.
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Figure 1: The parametrization of the unit sphere is obtained by projecting it onto the cube
[−1, 1]3, which yields six patches (left). On the right hand side one figures out the partition on
the levelj = 4.

The first fundamental tensor of differential geometry is given by the matrixKi(s) ∈ Rn×n with

Ki(s) :=
[(∂γi(s)

∂sj
,
∂γi(s)

∂sj′

)
l2(Rn+1)

]
j,j′=1,...,n

.

Sinceγi is supposed to be a diffeomorphism, the matrixKi(s) is symmetric and positive defi-
nite. The canonical inner product inL2(Γ) is given by

(u, v)L2(Γ) =

∫
Γ

u(x)v(x)dσx =
M∑
i=1

∫
�
u
(
γi(s)

)
v
(
γi(s)

)√
det

(
Ki(s)

)
ds.

The corresponding Sobolev spaces are indicated byHs(Γ). Of course, depending on the global
smoothness of the surface, the range of permitteds ∈ R is limited tos ∈ (−sΓ, sΓ).

2.3 Kernel Functions and their Properties

We can now specify the kernel functions. To this end, we denote byα = (α1, . . . , αn) and
β = (β1, . . . , βn) multi-indices of dimensionn and define|α| := α1 + . . .+ αn. Moreover, we
denote byki,i′(s, t) the transported kernel functions, that is

ki,i′(s, t) := k
(
γi(s), γi′(t)

)√
det

(
Ki(s)

)√
det

(
Ki′(t)

)
, 1 ≤ i, i′ ≤M. (2)

Definition 2.1. A kernelk(x,y) is called standard kernel of the order2q, if the partial deriva-
tives of the transported kernel functionski,i′(s, t), 1 ≤ i, i′ ≤M , are bounded by∣∣∂α

s ∂
β
t ki,i′(s, t)

∣∣ ≤ cα,β
∥∥γi(s)− γi′(t)

∥∥−(n+2q+|α|+|β|)

provided thatn+ 2q + |α|+ |β| > 0.
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We emphasize that this definition requires patchwise smoothness butnot global smoothness of
the geometry. The surface itself needs to be only Lipschitz. Generally, under this assumption,
the kernel of a boundary integral operatorA of order2q is standard of order2q. Hence, we may
assume this property in the sequel.

3 Wavelets and multiresolution analysis

Multiresolution is by now a well-studied topic in signal processing. There are many excellent
accounts about it, we refer the reader to the survey paper [6] and the references therein. Here
we collect only some facts which are useful for our purpose.

In general, a multiresolution analysis consists of a nested family of finite dimensional subspaces

Vj0 ⊂ Vj0+1 ⊂ · · · ⊂ Vj ⊂ Vj+1 · · · ⊂ · · · ⊂ L2(Γ),

such thatdimVj ∼ 2jn and ⋃
j≥j0

Vj = L2(Γ).

Each spaceVj is defined by a single-scale basisΦj = {φj,k : k ∈ ∆j}, i.e.,Vj = span Φj,
where∆j denotes a suitable index set with cardinality|∆j| ∼ 2nj. A final requirement is that
these bases are uniformly stable, i.e., for any vectorc ∈ l2(∆j) holds

‖c‖l2(∆j) ∼ ‖Φjc‖L2(Γ)

uniformly in j. Furthermore, the single-scale bases satisfy a locality condition

diam suppφj,k ∼ 2−j.

If one is going to use the spacesVj as trial spaces for the Galerkin scheme then additional
properties are required. The trial spaces shall have(approximation) orderd ∈ N andregularity
γ > 0, that is

γ = sup{s ∈ R : Vj ⊂ Hs(Γ)},
d = sup{s ∈ R : inf

vj∈Vj

‖v − vj‖0 . 2−js‖v‖s}.

Instead of using only a single-scalej the idea of wavelet concepts is to keep track to increment
of information between two adjacent scalesj and j + 1. SinceVj ⊂ Vj+1 one decomposes
Vj+1 = Vj⊕Wj with some complementary spaceWj,Wj∩Vj = {0}, not necessarily orthogonal
to Vj. Of practical interest are the bases of the complementary spacesWj in Vj+1

Ψj = {ψj,k : k ∈ ∇j = ∆j+1 \∆j}.

It is supposed that the collectionsΦj ∪Ψj are also uniformly stable bases ofVj+1. If

Ψ =
∞⋃

j=j0−1

Ψj,



6 3 WAVELETS AND MULTIRESOLUTION ANALYSIS

whereΨj0−1 := Φj0, is a Riesz-basis ofL2(Γ) we will call it a wavelet basis. We assume that
these basis functionsψj,k are local with respect to the corresponding scalej, i.e.,

diam suppψj,k ∼ 2−j

and we will normalize them such that‖ψj,k‖L2(Γ) ∼ 1.

We note that at first glance it would be very convenient to deal with a single orthonormal system
of wavelets. But it was shown in [12, 28] that orthogonal wavelets are not completely appropri-
ate for the efficient solution of boundary integral equations. For that reason we use biorthogonal
wavelet bases. Then, we have also a biorthogonal, or dual, multiresolution analysis, i.e., dual
single-scale bases̃Φj = {φ̃j,k : k ∈ ∆j} and wavelets̃Ψj = {ψ̃j,k : k ∈ ∆j}which are coupled
to the primal ones via

(Φj, Φ̃j)L2(Γ) = I, (Ψj, Ψ̃j)L2(Γ) = I.

The associated spacesṼj := span Φ̃j andW̃j := span Ψ̃j satisfy

Vj ⊥ W̃j, Ṽj ⊥ Wj. (3)

Also the dual spaces shall have some orderd̃ ∈ N and regularitỹγ > 0.

Denoting likewise to the primal side

Ψ̃ =
∞⋃

j=j0−1

Ψ̃j, Ψ̃j0−1 := Φ̃j0 ,

then, everyv ∈ L2(Γ) has a representation

v = Ψ̃(v,Ψ)L2(Γ) = Ψ(v, Ψ̃)L2(Γ)

Moreover, there hold the well known norm equivalences

‖v‖2
t ∼

∞∑
j=j0−1

22jt‖(v, Ψ̃j)L2(Γ)‖2
l2(∇j)

, t ∈ (−γ̃, γ),

‖v‖2
t ∼

∞∑
j=j0−1

22jt‖(v,Ψj)L2(Γ)‖2
l2(∇j)

, t ∈ (−γ, γ̃).
(4)

The relation (3) implies that the wavelets providevanishing momentsor acancellation property

|(v, ψj,k)L2(Γ)| . 2−j(d̃+n/2)|v|
W d̃,∞(suppψj,k)

. (5)

Here|v|
W d̃,∞(Ω)

:= sup|α|=d̃, x∈Ω |∂αv(x)| denotes the semi-norm inW d̃,∞(Ω). We refer to [6]
for further details.

For the current type of boundary surfacesΓ theΦj, Φ̃j are generated by constructing first dual
pairs of single-scale bases on the interval[0, 1], using B-splines for the primal bases and the
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dual components from [4] adapted to the interval [8]. Tensor products yield corresponding dual
pairs on�. Using the parametric liftingsγi and gluing across patch boundaries leads to globally
continuous single-scale basesΦj, Φ̃j on Γ, [2, 5, 13, 20]. For B-splines of orderd and duals of
orderd̃ ≥ d such thatd+ d̃ is even theΦj, Φ̃j have approximation ordersd, d̃, respectively. It is
known that the respective regularity indicesγ, γ̃ (inside each patch) satisfyγ = d − 1/2 while
γ̃ > 0 is known to increase proportionally tõd. Appropriate wavelet bases are constructed by
projecting astable completioninto the correct complement spaces (see [3, 13, 28] for details).

4 The Wavelet Galerkin scheme

This section presents a fully discrete wavelet Galerkin scheme for boundary integral equations.
In the first subsection we discretize the given boundary integral equation. In Subsection 4.2
we introduce the a-priori matrix compression which reduces the relevant matrix coefficients to
an asymptotically linear number. Then, in Subsection 4.3 and Subsection 4.4 we point out the
computation of the compressed matrix. Next, in Subsection 4.5 we introduce an a-posteriori
compression which reduces again the number of matrix coefficients. The last subsection is ded-
icated to the preconditioning of system matrices which arise from boundary integral operators
of nonzero order.

In the sequel, the collectionΨJ with a capitalJ denotes the finite wavelet basis in the spaceVJ ,
i.e.,ΨJ :=

⋃J−1
j=j0−1 Ψj. Further,NJ := dimVJ ∼ 2Jn indicates the number of unknowns.

4.1 Discretization

The variational formulation of the given boundary integral equation (1) reads

seekρ ∈ Hq(Γ) : (Aρ, η)L2(Γ) = (f, η)L2(Γ) ∀ η ∈ Hq(Γ). (6)

It is well known, that the variational formulation (6) is equivalent to the boundary integral
equation (1), see e.g. [17, 24] for details.

For the Galerkin scheme we replace the energy spaceHq(Γ) in the variational formulation (6)
by the finite dimensional spacesVJ introduced in the previous section. Then, we arrive at the
problem

seekρJ ∈ VJ : (AρJ , ηJ)L2(Γ) = (f, ηJ)L2(Γ) ∀ ηJ ∈ VJ .

Equivalently, due to the finite dimension ofVJ , the ansatzρJ = ΨJρ
ψ
J together with

Aψ
J :=

(
AΨJ ,ΨJ

)
L2(Γ)

, fψJ :=
(
f,ΨJ

)
L2(Γ)

,

yields the wavelet Galerkin scheme
Aψ
Jρ

ψ
J = fψJ . (7)

The system matrixAψ
J is quasi-sparse and might be compressed toO(NJ) nonzero matrix

entries if the wavelets have a sufficiently large number of vanishing moments. The remainder
of this paper is devoted to the efficient computation of the system matrix.
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Remark 4.1. Replacing the wavelet basisΨJ by the single-scale basisΦJ yields the traditional
single-scale Galerkin scheme

Aφ
Jρ

φ
J = fφJ ,

whereAφ
J :=

(
AΦJ ,ΦJ

)
L2(Γ)

, fφJ :=
(
f,ΦJ

)
L2(Γ)

andρJ = ΦJρ
φ
J . This scheme is related to

the wavelet Galerkin scheme by

Aψ
J = TJA

φ
JT

T
J , µψ

J = T−T
J µφ

J , fψJ = TJ f
φ
J ,

whereTJ denotes the wavelet transform. The system matrixAφ
J is densely populated. Therefore,

the costs of solving a given boundary integral equation traditionally in the single-scale basis is
at leastO(N2

J).

4.2 A-priori compression

The discretization of a boundary integral operatorA : Hq(Γ) → H−q(Γ) by wavelets with
a sufficiently large number of vanishing moments (5) yields quasi-sparse matrices. In a first
compression step all matrix entries, for which the distances of the supports of the corresponding
ansatz and test functions are bigger than a level depending cut-off parameterBj,j′, are set to zero.
In the second compression step also some of those matrix entries are neglected, for which the
corresponding ansatz and test functions have overlapping supports.

First, we introduce the abbreviation

Θj,k := conv hull(suppψj,k),

Ξj,k := sing suppψj,k.

Note thatΘj,k denotes the convex hull to the support ofψj,k while Ξj,k denotes the so-called
singular supportof ψj,k, i.e., those points whereψj,k is not smooth.

The compressed system matrixAψ
J corresponding to the boundary integral operatorA is defined

by

[Aψ
J ](j,k),(j′,k′) :=


0, dist

(
Θj,k,Θj′,k′

)
> Bj,j′ , j, j′ ≥ j0,

0, dist
(
Ξj,k,Θj′,k′

)
> B′j,j′ , j′ > j,

0, dist
(
Θj,k,Ξj′,k′

)
> B′j,j′ , j > j′,(

Aψj′,k′ , ψj,k
)
L2(Γ)

, otherwise.

(8)

Herein, choosing
a, a′ > 1, d < δ, δ′ < d̃+ 2q, (9)

the cut-off parametersBj,j′ andB′j,j′ are set as follows

Bj,j′ = a max
{

2−min{j,j′}, 2
2J(δ−q)−(j+j′)(δ+d̃)

2(d̃+q)

}
,

B′j,j′ = a′ max
{

2−max{j,j′}, 2
2J(δ′−q)−(j+j′)δ′−max{j,j′}d̃

d̃+2q

}
.

(10)
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The resulting structure of the compressed matrix is figuratively calledfinger structure, cf. Fig. 2.
It is shown in [28] that this compression strategy does not compromise the stability and accuracy
of the underlying Galerkin scheme.

Theorem 4.2. Let the system matrixAψ
J be compressed in accordance with(8), (9) and (10).

Then, the wavelet Galerkin scheme is stable and the error estimate

‖ρ− ρJ‖H2q−d(Γ) . 2−2J(d−q)∥∥ρ∥∥
Hd(Γ)

(11)

holds, whereρ ∈ Hd(Γ) denotes the exact solution of the given boundary integral equation
Aρ = f andρJ = ΨJρ

ψ
J is the numerically computed solution, i.e.,Aψ

Jρ
ψ
J = fψ.
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Figure 2: The finger structure of the compressed system matrix computed with respect to the
two dimensional (left) and the three dimensional (right) unit spheres.

The next theorem shows that the over-all complexity of assembling the compressed system
matrix isO(NJ) even if each entry is weighted by a logarithmical penalty term [20]. We mention
that the choiceα = 0 proves that the a-priori compression yieldsO(NJ) relevant matrix entries
in the compressed system matrix.

Theorem 4.3. Let the system matrixAψ
J = (AΨJ ,ΨJ)L2(Γ) be compressed according to(8),

(9) and (10). The complexity of computing this compressed matrix isO(NJ) if the calculation
of its entries(Aψj′,k′ , ψj,k)L2(Γ) is performed inO

([
J − j+j′

2

]α)
operations with someα ≥ 0.

4.3 Setting up the compression pattern

In order to compute the matrix compression we cannot check the distance criterion (8) for each
matrix coefficient since this leads toO(N2

J) functions calls. To realize linear complexity, we
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exploit the underlying tree structure with respect to the supports of the wavelets, to predict
negligible matrix coefficients. We will call a waveletψj+1,son a son ofψj,father if Θj+1,son ⊆
Θj,father.

Lemma 4.4. We considerΘj+1,son ⊆ Θj,father andΘj′+1,son ⊆ Θj′,father.

1. If
dist

(
Θj,father,Θj′,father′

)
> Bj,j′

then there holds

dist
(
Θj+1,son,Θj′,father′

)
> Bj+1,j′

dist
(
Θj+1,son,Θj′+1,son′

)
> Bj+1,j+1′ .

2. For j > j′ suppose
dist

(
Θj,father,Ξj′,father′

)
> B′j,j′

then we can conclude that

dist
(
Θj+1,son,Ξj′,father′

)
> B′j+1,j′

With the help of this lemma we have to check the distance criteria only for coefficients which
stem from subdivision of calculated coefficients on a coarser level. Therefore, the resulting
procedure of checking the distance criteria is still linear.

4.4 Assembly of the compressed matrix

Up to this point we know that the compressed system matrix has at mostO(NJ) nonzero en-
tries. Now we discuss how to compute the relevant matrix coefficients(Aψj′,k′ , ψj,k)L2(Γ) in the
Galerkin approach. The matrix entries are given by a double integral over the support of the
basis functions, which in the case of a three-dimensional problem is a doubled two-dimensional
integration. Unfortunately even for cardinal B-splines it is not possible to determine the matrix
entries analytically. Therefore we are forced to compute the matrix coefficients by quadrature
rules. This causes an additional error which has to be controlled and it takes place against
a background of realizing asymptotically optimal accuracy while preserving efficiency. This
means that the numerical methods have to be chosen carefully such that the desired linear com-
plexity of the algorithm is not violated. However, it is not obvious that the complexity in order
to compute the relevant coefficients is still linear. It is an immediate consequence of the fact that
we require only a level dependent precision of quadrature, cf. [20, 28].

Lemma 4.5. Let the error of quadrature for computing the relevant matrix coefficients
(Aψj′,k′ , ψj,k)L2(Γ) be bounded by the level dependent accuracy

εj,j′ ∼ min
{

2−|j−j
′|n/2, 2

−2n(J− j+j′
2

) δ−q

d̃+q

}
22Jq2−2d′(J− j+j′

2
) (12)

with somed′ > d andδ ∈ (d, d̃+r) from (9). Then, the Galerkin scheme is stable and converges
with the optimal order(11).
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From (12) we conclude that the entries on the coarse grids have to be computed with the full
accuracy while the entries on the finer grids are allowed to have less accuracy. Unfortunately,
the domains of integration are very large on coarser scales.

0 0 0 0 0 00 0 0 0 0 0
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-1964
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45
64 -1964

0 0 0 0 0 00 0 0 0 0 0

Figure 3: The element-based representation of a piecewise linear wavelet with four vanishing
moments.

According to the fact that a wavelet is a linear combination of scaling functions the numerical
integration can be reduced to interactions of polynomial shape functions on certain elements.
This suggests to employ an element-based representation of the wavelets like illustrated in Fig. 3
in the case of a piecewise linear wavelet. Consequently, we have only to deal with integrals of
the form

I(Γi,j,k,Γi′,j′,k′) :=

∫
Cj,k

∫
Cj′,k′

ki,i′(s, t)pl(s)pl′(t) dt ds (13)

with pl denoting the polynomial shape functions and the transported kernel function (2). This is
quite similar to the traditional Galerkin discretization. The main difference is that in the wavelet
approach the elements may appear on different levels due to the multilevel hierarchy of wavelet
bases.

Difficulties arise if the domains of integration are very close together relatively to their size. We
have to apply numerical integration carefully in order to keep the number of evaluations of the
kernel function at the quadrature knots moderate and to fulfill the assumptions of Theorem 4.3.
In [20, 28, 29] a geometrically graded subdivision is proposed in combination with varying
polynomial degrees of approximation in the integration rules, cf. Fig. 4. This provides that the
parametric liftingsγi are analytical. As shown in [20] the combination of tensor product Gauß-
Legendre quadrature rules with such ahp-quadrature scheme leads to the number of quadrature
points satisfying the assumption of Theorem 4.3 withα = 2n.

Since the kernel functionk(x,y) has a singularity on the diagonalx = y, we are confronted
with singular integrals if the domains of integration live on the same level and have any points
in common. This situation appears if the underlying elements are identical or share a common
edge or vertex. Such singular integrals can be treated by the so-calledDuffy-trick [15, 27], which
transform the singular integrands onto analytical ones.
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��
Γi′,j′,k′

Γi,j,k

Figure 4: Adaptive subdivision of the domains of integration.

4.5 A-posteriori compression

LetA : H−q(Γ) → Hq(Γ) be a boundary integral operator andAψ
J the associated system matrix

compressed according to Subsection 4.2. If the entries of the compressed system matrixAψ
J

have been computed, we may apply an a-posteriori compression by setting all entries to zero,
which are smaller than a level depending threshold. That way, a matrixÃψ

J is obtained which
has less nonzero entries than the matrixAψ

J . Clearly, this does not accelerate the calculation of
the matrix coefficients. But the requirement to the memory is reduced if the system matrix has
to be stored. For instance, this is advantageous for the coupling of FEM and BEM, cf. [21, 22].
To our experiences this procedure reduces the number of nonzero coefficients by a factor 2–5.

Theorem 4.6.We define the a-posteriori compression by

[
Ãψ
J

]
(j,k),(j′,k′)

=

{
0, if

∣∣[Aψ
J

]
(j,k),(j′,k′)

∣∣ ≤ εj,j′ ,[
Aψ
J

]
(j,k),(j′,k′)

, if
∣∣[Aψ

J

]
(j,k),(j′,k′)

∣∣ > εj,j′ .

Herein, the level dependent thresholdεj,j′ is chosen as in(12) with somed′ > d and δ ∈
(d, d̃ + r) from (9). Then, the optimal order of convergence(11) of the Galerkin scheme is not
compromised.

4.6 Wavelet preconditioning

LetA : Hq(Γ) → H−q(Γ) denote a boundary integral operator of the order2q with q 6= 0. Then,
the corresponding system matrixAψ

J is ill conditioned. In fact, there holdscondl2 Aψ
J ∼ 22J |q|.

According to [6, 28], the wavelet approach offers a simple diagonal preconditioner based on the
norm equivalences.

Theorem 4.7.Let the diagonal matrixDr
J defined by[

Dr
J

]
(j,k),(j′,k′)

= 2rjδj,j′δk,k′ , k ∈ ∇j, k′ ∈ ∇j′ , j0 − 1 ≤ j, j′ < J. (14)

Then, ifA : Hq(Γ) → H−q(Γ) denotes a boundary integral operator of the order2q with
γ̃ > −q, the diagonal matrixD2q

J defines a preconditioner toAψ
J , i.e.,

condl2(D
−q
J Aψ

JD
−q
J ) ∼ 1.
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Remark 4.8. The coefficients on the main diagonal ofAψ
J satisfy

(
Aψj,k, ψj,k

)
L2(Γ)

∼ 22qj.
Therefore, the above preconditioning can be replaced by a diagonal scaling. In fact, the diago-
nal scaling improves and simplifies the wavelet preconditioning.

As the numerical results in [23] confirm, this preconditioning works well in the two dimensional
case. However, in the three dimensions, the results are not satisfactory. One figures out of Fig. 5
the condition numbers of the stiffness matrices with respect to the single layer operator on
a square discretized by piecewise linears. We employed different constructions for wavelets
with four vanishing momets (spanning identical spaces, cf. [20] for details). In spite of the
preconditioning, the condition numbers with respect to the wavelets are not significantly better
than with respect to the single-scale basis. We mention that the situation becomes even worse
for operators defined on more complicated geometries.

1 1.5 2 2.5 3 3.5 4 4.5 5

10
1

10
2

10
3

level J

l2 −c
on

di
tio

n

diagonal scaling: single−scale basis
diagonal scaling: tensor product wavelets
diagonal scaling: simplified tensor product wavelets
diagonal scaling: wavelets optimized w.r.t. the supports
modified preconditioner

Figure 5: Thel2-condition numbers with respect to the single layer operator on the unit square
and piecewise linear wavelets with four vanishing moments.

A slight modification of the wavelet preconditioner yields much better results. The simple trick
is to combine the above preconditioner with the mass matrix which yields an appropriate oper-
ator based preconditioning.

Theorem 4.9. We consider a boundary integral operatorA : Hq(Γ) → H−q(Γ) with corre-
sponding Galerkin matrixAψ

J . LetDr
J be defined as in(14) andBψ

J := (ΨJ ,ΨJ)L2(Γ) denote
the mass matrix. Then, if̃γ > −q, the matrixC2q

J = Dq
JB

ψ
JD

q
J defines a preconditioner toAψ

J ,
i.e.,

condl2
((

C2q
J

)−1/2
Aψ
J

(
C2q
J

)−1/2
)
∼ 1.

This preconditioner decreases the condition numbers impressively, cf. Fig. 5. Let us remark that
the condition depends on the underlying spaces but not on the chosen wavelet basis. To our
experiences the condition reduces about the factor 10–100 compared to the preconditioner (14).
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5 Numerical Results

This section is dedicated to numerical examples in order to confirm our theory. Firstly, we com-
pute a Dirichlet problem. We use the indirect formulation for the double layer operator which
gives a Fredholm’s integral equation of the second kind. This is approximated by using piece-
wise constant wavelets. Secondly, we solve a Neumann problem employing the indirect formu-
lation for the hypersingular operator. The discretization requires globally continuous piecewise
linear wavelets. We mention that both problems are chosen such that the solutions are known
analytically in order to measure the error of method.

5.1 Dirichlet Problem

For a given functionf ∈ H1/2(Γ) we consider an interior Dirichlet problem, i.e., we seek
u ∈ H1(Ω) such that

∆u = 0 in Ω,

u = f onΓ.
(15)

The domainΩ is described by the set difference of the cube[−1, 1]3 and three cylinders with
radii 0.5, cf. Fig. 6. The boundaryΓ is parametrized via48 patches. Choosing the harmonical
polynomial

u(x) = 4x2 − 3y2 − z2

and settingf := u|Γ the problem (15) has the unique solutionu.

Figure 6: The mesh on the surfaceΓ and the evaluation pointsxi of the potential.

We employ thedouble layer operator

(Kρ)(x) :=
1

4π

∫
Γ

∂

∂ny

1

‖x− y‖2
ρ(y)dσy, x ∈ Γ, (16)
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which yields a Fredholm integral equation of the second kind(
K − 1

2
I
)
ρ = f onΓ

for the unknown densityρ. The solutionu of the Dirichlet problem is derived by application of
the double layer operator to this density, i.e.,

u = Kρ in Ω. (17)

The operator on the left hand side of (16) defines an operator of the order 0. We discretize this
equation by piecewise constant wavelets with three vanishing moments which is in accordance
with (9). The discrete solutions are denoted by

u := [u(xi)], uφJ := [(KρφJ)(xi)], uψJ := [(KρψJ )(xi)], (18)

where the evaluation pointsxi are specified in Fig. 6. Herein,uφJ indicates the approximation
computed by the traditional Galerkin scheme whileuψJ stands for the numerical solution of the
wavelet Galerkin scheme.

In Tab. 1 we list the maximum norm of the absolute errors ofuφJ anduψJ . The columns titled
by “contr.” (contraction) contain the ratio of the absolute error obtained on the previous level
divided by the present absolute error. The optimal order of convergence is quadratic which
implies a contraction close to 4. As the results in Tab. 1 confirm, the precisions of the single-
scale and the compressed wavelet Galerkin scheme are rather similar.

unknowns scaling functionsφ(1) waveletsψ(1,3)

J NJ ‖u− uφJ‖∞ contr. ‖u− uψJ‖∞ contr.
1 192 1.9 — 2.6 —
2 768 3.3e-1 4.0 4.1e-1 6.2
3 3072 5.7e-2 4.4 6.6e-2 6.2
4 12288 (1.4e-2) (4.0) 1.3e-2 5.0
5 49152 (3.6e-3) (4.0) 3.3e-3 4.0

Table 1: The maximum norm of the absolute errors of the discrete potential.

Fig. 7 is concerned with the rates of compression (left) and the computing times (right). We
measure the rates of compression by the ratio (in %) of the number of nonzero matrix coeffi-
cients andN2

J . ForNJ = 49152 unknows only0.78% of the matrix coefficients are relevant.
After the a-posteriori compression this number is even reduced to0.15%. In the plot on the right
hand side of Fig. 7 one finds a comparison of the over-all computing times of the traditional and
the fast wavelet discretization. Note that we extrapolated the computing times of the traditional
scheme to the levels 4 and 5. ForNJ = 49152 we obtain the speed-up factor11.4 in comparison
with the single-scale scheme.
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Figure 7: The compression rates and computing times.

5.2 Neumann Problem

For a given functiong ∈ H−1/2(Γ) with
∫

Γ
g(x)dσx = 0 we treat a Neumann problem on the

domainΩ, that is, we seeku ∈ H1(Ω) such that

∆u = 0 in Ω,
∂u
∂n

= g onΓ.
(19)

The domainΩ under consideration is described as the union of two spheresB1([0, 0,±2]T ) and
one connecting cylinder with the radius 0.5, compare Fig. 8. The boundaryΓ is represented via
14 patches. Choosing the harmonical function

u(x) =
(a,x− b)

‖x− b‖3
, a = [1, 2, 4]T , b = [1, 0, 0]T , (20)

and settingg := ∂u|Γ
∂n

the Neumann problem has the solutionu modulo a constant.

Thehypersingular operatorW is given by

(W)ρ(x) := − 1

4π

∂

∂nx

∫
Γ

∂

∂ny

1

‖x− y‖2
ρ(y)dσy, x ∈ Γ,

and defines an operator of order+1. In order to solve problem (19) we seek the densityρ

satisfying the Fredholm integral equation of the first kind

Wρ = g onΓ. (21)

SinceW is symmetric and positive semidefinite, cf. [17, 24], one restrictsρ by the constraint∫
Γ
ρ(x)dσx = 0. We emphasize that the discretization of the hypersingular operator requires

globally continuouspiecewise linear wavelets. According to (9) piecewise linear wavelets have
to provide two vanishing moments.
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Figure 8: The mesh on the surfaceΓ and the evaluation pointsxi of the potential.

The densityρ given by the boundary integral equation (21) leads to the solutionu of the Neu-
mann problem by application of the double layer operator according to (17). The discrete coun-
terparts are denoted as in (18), where the evaluation pointsxi are specified in Fig. 8.

First, we compare the errors of approximation with respect to the discrete potentials. The or-
der of convergence is cubic (contraction 8) if the density is sufficiently smooth. The results in
Tab. 2 suggest even a higher rate of convergence. But asymptotically one expects an order of
convergence less than cubic due to concave angles between the patches. The wavelet Galerkin
scheme achieves the same accuracy as the traditional Galerkin scheme.

unknowns scaling functionsφ(2) waveletsψ(2,2)

J NJ ‖uJ − uφJ‖∞ contr. ‖uJ − uψJ‖∞ contr.
1 58 7.1 — 7.6 —
2 226 4.3 1.4 4.2 1.8
3 898 1.2 3.6 1.2 3.5
4 3586 1.9e-1 6.3 1.9e-1 6.2
5 14338 (2.4e-2) (8.0) 1.4e-2 14
6 57346 (3.0e-3) (8.0) 4.8e-4 30

Table 2: The maximum norm of the absolute errors of the discrete potential.

Next, we visualize again the rates of compression and computing times, see Fig. 9. On the left
hand side we plot the number of nonzero coefficients in percent. ForNJ = 57346 unknowns
the matrix compression yields only 1.37 % and 0.73 % relevant matrix entries after a-priori
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and a-posteriori compression, respectively. On the right hand side one figures out the over-all
computing times. We extrapolated the computing times of the traditional scheme to the levels 5
and 6. On level 6 the speed-up of the wavelet Galerkin scheme is about the factor 11 compared
to the traditional scheme.
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Figure 9: The compression rates and computing times.
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[7] W. Dahmen, B. Kleemann, S. Prößdorf, and R. Schneider. A multiscale method for the
double layer potential equation on a polyhedron. In H.P. Dikshit and C.A. Micchelli,
editors,Advances in Computational Mathematics, pages 15–57, World Scientific Publ.,
Singapore, 1994.



REFERENCES 19

[8] W. Dahmen, A. Kunoth, and K. Urban. Biorthogonal spline-wavelets on the interval –
stability and moment conditions.Appl. Comp. Harm. Anal., 6:259–302, 1999.

[9] W. Dahmen, S. Pr̈oßdorf, and R. Schneider. Multiscale methods for pseudodifferential
equations. In L.L. Schumaker and G. Webb, editors,Wavelet Analysis and its Applications,
volume 3, pages 191–235, 1993.

[10] W. Dahmen, S. Pr̈oßdorf, and R. Schneider. Wavelet approximation methods for periodic
pseudodifferential equations. Part II – Fast solution and matrix compression.Advances in
Computational Mathematics, 1:259–335, 1993.

[11] W. Dahmen, S. Pr̈oßdorf, and R. Schneider. Wavelet approximation methods for periodic
pseudodifferential equations. Part I – Convergence analysis.Mathematische Zeitschrift,
215:583–620, 1994.

[12] W. Dahmen, S. Pr̈oßdorf, and R. Schneider. Multiscale methods for pseudodifferential
equations on smooth manifolds. In C.K. Chui, L. Montefusco, and L. Puccio, editors,
Proceedings of the International Conference on Wavelets: Theory, Algorithms, and Appli-
cations, pages 385–424, 1995.

[13] W. Dahmen and R. Schneider. Composite wavelet bases for operator equations.Math.
Comp., 68:1533–1567, 1999.

[14] W. Dahmen and R. Schneider. Wavelets on manifolds I. Construction and domain decom-
position.Math. Anal., 31:184–230, 1999.

[15] M. Duffy. Quadrature over a pyramid or cube of integrands with a singularity at the vertex.
SIAM J. Numer. Anal., 19:1260–1262, 1982.

[16] L. Greengard and V. Rokhlin. A fast algorithm for particle simulation.J. Comput. Phys.,
73:325–348, 1987.

[17] W. Hackbusch.Integralgleichungen. B.G. Teubner, Stuttgart, 1989.

[18] W. Hackbusch. A sparse matrix arithmetic based onH-matrices. Part I: Introduction to
H-matrices.Computing, 64:89–108, 1999.

[19] W. Hackbusch and Z.P. Nowak. On the fast matrix multiplication in the boundary element
method by panel clustering.Numer. Math., 54:463–491, 1989.

[20] H. Harbrecht. Wavelet Galerkin schemes for the boundary element method in three di-
mensions.PHD Thesis, Technische Universität Chemnitz, Germany, 2001.
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