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1. Introdution

Reently, Susskind

1)

showed that an Abelian non-

ommutative Chern-Simons theory at level k is atually

equivalent to Laughlin theory:
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where the star{produt is the usual Moyal produt with

parameter �. Therefore, he obtained the �lling fator

�

S

=

1

k

: (2)

He also pointed out that the above theory an be for-

mulated in terms of a matrix model involving lassial

Hermitian matrix variables A

0

; X

i

, i = 1; 2. The La-

grangian for the matrix theory is

L = B Tr

n
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ij
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o
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B is the magneti �eld. The equation of motion for the

oordinate A

0

(Gauss law onstraint) is

[X

1

; X

2

℄ = i� (4)

whih an only be solved if the matries are in�nite di-

mensional. This orresponds to an in�nite number of

eletrons on an in�nite plane.

For a �nite system, Polyhronakos

3)

has introdued

an additional set of bosoni degrees of freedom  

m

, m =

1; 2; :::;M , suh that  = ( 
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Considering L + L

 

, Polyhronakos

3)

found a quantum

orretion to Susskinds �lling fator suh that

�

P
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1

k + 1

: (6)

In this ase, the Gauss law onstraint beomes
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Later Hellerman and Van Raamsdonk

4)

built the orre-
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sponding wavefuntions for L+ L
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where �

i

1

���i

M

is the fully antisymmetri tensor. These

are similar to Laughlins wavefuntion.
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Subsequently,

three of us generalised

5)

the above results to any �lling

fator given by

�
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In what follows, we propose a matrix model to desribe

suh FQH states that are not of Laughlin type.

2. �
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frational quantum Hall states

Although the � =

2

5

FQH state is not of the Laughlin

type, it shares some basi features of Laughlin uids.

The point is that from the standard de�nition of the

�lling fator � =

N

N

�

, the state � =

2

5

an naively be

thought of as orresponding to � =

N

N

�

where the number

N

�

of ux quanta is given by a frational amount of the

eletron number; that is

N

�

= (3�

1

2

)N: (10)

In fat this way of viewing things reets the original idea

of a hierarhial onstrution of FQH states for general

�lling fator

p

q

. In Haldane's hierarhy,
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the elements

of the series
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orrespond to taking N

�

as given by a spei� rational

fator of the eletron number, i.e.,
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Upon setting
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we have �
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, e.g.,
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3. Matrix model analysis

To desribe FQH uids at �

k

1

k

2

, we onsider the fol-

lowing ation for a system of N = N

1

+N

2

partiles

5)
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where 1 � �; � � N

1

, 1 � a; b � N

2

, Z
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= X
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+ iX
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and
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the gauge for the ith partile. The J
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urrents (Gauss law onstraints) read as
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where the two U(1) harge operators J

(1)
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and J
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The wavefuntions j�i desribing the (N

1

+N

2

) system

of eletrons on the non-ommutative plane R

2

�

with �lling

fator �

k
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should obey the onstraint
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One we know the fundamental state j�

(0)

�

k

1

k
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i, exita-

tions are immediately determined by applying the usual

rules. Upon realling the oordinate operators as
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the total Hamiltonian H may be treated as the sum of a

free part given by
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where N
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desribing ouplings between the two setors.
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The re-

ation and annihilation operators r
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isfy the Heisenberg algebra
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all others are given by ommuting relations. A way to

build the spetrum of the Hamiltonian H

0

is given by

help of the speial ondensate operators
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The wavefuntions for the vauum j0 > of H
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read as
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where the O
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The orresponding energy spetrum E
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Note that for large value of N
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This energy relation is less than the total energy E

d

(�

k

i

)

of the deoupled on�guration (j�

1

; v

k

1

i 
 j�

2

; v

k

2

i):

E

d

(�

k

i

) � E

�

1

k

1

�

+E

�

1

k

2

�

�

k

2

(r + 1)

2

N

2

2

: (28)

Therefore, we have the following relation
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For the example of the FQH state at � =

2
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, the energy

of the deoupled representation reads as
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while that of the interating one is
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leading to
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4. Conlusion

We have developed a matrix model for FQH states at

�lling fator �

k

1

k

2

going beyond the Laughlin theory. To

illustrate our idea, we have onsidered an FQH system of

a �nite number N = (N

1

+N

2

) of eletrons with �lling

fator �
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is an odd integer and

p
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is an even integer. The �
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series orresponds just

to the level two of the Haldane hierarhy; it reovers

the Laughlin series �

p
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=

1

p

1

by going to the limit p

2

large and ontains several observable FQH states suh

as � =

2

3

;

2

5

; � � � .
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