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1. Introdu
tion

Re
ently, Susskind

1)

showed that an Abelian non-


ommutative Chern-Simons theory at level k is a
tually

equivalent to Laughlin theory:
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where the star{produ
t is the usual Moyal produ
t with

parameter �. Therefore, he obtained the �lling fa
tor

�

S

=

1

k

: (2)

He also pointed out that the above theory 
an be for-

mulated in terms of a matrix model involving 
lassi
al

Hermitian matrix variables A

0

; X

i

, i = 1; 2. The La-

grangian for the matrix theory is

L = B Tr

n
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ij
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_
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+ i[A
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j

+ 2�A
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o
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B is the magneti
 �eld. The equation of motion for the


oordinate A

0

(Gauss law 
onstraint) is

[X

1

; X

2

℄ = i� (4)

whi
h 
an only be solved if the matri
es are in�nite di-

mensional. This 
orresponds to an in�nite number of

ele
trons on an in�nite plane.

For a �nite system, Poly
hronakos

3)

has introdu
ed

an additional set of bosoni
 degrees of freedom  

m

, m =

1; 2; :::;M , su
h that  = ( 

1

; � � � ;  

M

),

L

 

=  

y
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Considering L + L

 

, Poly
hronakos

3)

found a quantum


orre
tion to Susskinds �lling fa
tor su
h that

�

P

=

1

k + 1

: (6)

In this 
ase, the Gauss law 
onstraint be
omes
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y
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: (7)

Later Hellerman and Van Raamsdonk

4)

built the 
orre-

�
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sponding wavefun
tions for L+ L
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where �

i

1

���i

M

is the fully antisymmetri
 tensor. These

are similar to Laughlins wavefun
tion.

2)

Subsequently,

three of us generalised

5)

the above results to any �lling

fa
tor given by

�
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1
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2
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2
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1
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In what follows, we propose a matrix model to des
ribe

su
h FQH states that are not of Laughlin type.

2. �

k

1

k
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fra
tional quantum Hall states

Although the � =

2

5

FQH state is not of the Laughlin

type, it shares some basi
 features of Laughlin 
uids.

The point is that from the standard de�nition of the

�lling fa
tor � =

N

N

�

, the state � =

2

5


an naively be

thought of as 
orresponding to � =

N

N

�

where the number

N

�

of 
ux quanta is given by a fra
tional amount of the

ele
tron number; that is

N

�

= (3�

1

2

)N: (10)

In fa
t this way of viewing things re
e
ts the original idea

of a hierar
hi
al 
onstru
tion of FQH states for general

�lling fa
tor

p

q

. In Haldane's hierar
hy,

6)

the elements

of the series
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orrespond to taking N

�

as given by a spe
i�
 rational

fa
tor of the ele
tron number, i.e.,
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Upon setting

k

1

= p

1

; k

2

= k

1

(k

1

p

2

� 1) � rk

1

(13)

we have �
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. For � =
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, e.g.,

� =
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15

: (14)
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2 Short Note

3. Matrix model analysis

To des
ribe FQH 
uids at �

k

1

k

2

, we 
onsider the fol-

lowing a
tion for a system of N = N

1

+N

2

parti
les

5)
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where 1 � �; � � N

1

, 1 � a; b � N

2

, Z
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+ iX
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the gauge for the ith parti
le. The J
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urrents (Gauss law 
onstraints) read as

J

(1)

��

= [Z

1

;

�

Z

1

℄

��

+

�

2k

1

�

P

N

2

a=1

	

�a

�

	

�a

� J

(1)

0

�

;

J

(2)

aa

= [Z

2

;

�

Z

2

℄

aa

+

�

2k

2

�

P

N

1

�=1

	

�a

�

	

�a

� J

(2)

0

�

;

(16)

where the two U(1) 
harge operators J

(1)

0

and J

(2)

0

are
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The wavefun
tions j�i des
ribing the (N

1

+N

2

) system

of ele
trons on the non-
ommutative plane R

2

�

with �lling

fa
tor �

k

1

k

2

should obey the 
onstraint

5)

J
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On
e we know the fundamental state j�

(0)

�

k

1

k

2

i, ex
ita-

tions are immediately determined by applying the usual

rules. Upon re
alling the 
oordinate operators as
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the total Hamiltonian H may be treated as the sum of a

free part given by
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where N

1
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the operator numbers 
ounting the N
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respe
tively, and an intera
ting part
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des
ribing 
ouplings between the two se
tors.
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The 
re-

ation and annihilation operators r
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, s
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sat-

isfy the Heisenberg algebra
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all others are given by 
ommuting relations. A way to

build the spe
trum of the Hamiltonian H

0

is given by

help of the spe
ial 
ondensate operators
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The wavefun
tions for the va
uum j0 > of H

0

read as
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where the O
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's are building blo
ks and given by
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The 
orresponding energy spe
trum E
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Note that for large value of N
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This energy relation is less than the total energy E
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of the de
oupled 
on�guration (j�
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Therefore, we have the following relation
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For the example of the FQH state at � =

2

5

, the energy

of the de
oupled representation reads as
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while that of the intera
ting one is
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leading to
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4. Con
lusion

We have developed a matrix model for FQH states at

�lling fa
tor �

k

1

k

2

going beyond the Laughlin theory. To

illustrate our idea, we have 
onsidered an FQH system of

a �nite number N = (N

1

+N

2

) of ele
trons with �lling

fa
tor �

k

1

k

2

� �

p
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1

p
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�1

; p

1

is an odd integer and

p

2

is an even integer. The �

p

1

p

2

series 
orresponds just

to the level two of the Haldane hierar
hy; it re
overs

the Laughlin series �

p

1

=

1

p

1

by going to the limit p

2

large and 
ontains several observable FQH states su
h

as � =

2

3

;

2

5

; � � � .
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