A Matrix Model for $\nu_{k_{1} k_{2}}=\frac{k_{1}+k_{2}}{k_{1} k_{2}}$ Fractional Quantum Hall States

A. Jellal ${ }^{1,2 *}$, E.H. Saidi ${ }^{2}$, H.B. Geyer ${ }^{3}$ and R.A. Römer ${ }^{1 \dagger}$
${ }^{1}$ Institut für Physik Technische Universität, D-09107, Chemnitz, Germany
${ }^{2}$ Lab/UFR, High Energy Physics, Physics Department, Mohammed V University, Av. Ibn Battouta, P.O. Box. 1014, Rabat, Morocco ${ }^{3}$ Institute for Theoretical Physics, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

(Received July 25, 2002)

KEYWORDS: Non-commutative Chern-Simons, Matrix Model Theory, Fractional Quantum Hall (FQH) Fluids

1. Introduction

Recently, Susskind ${ }^{1)}$ showed that an Abelian noncommutative Chern-Simons theory at level k is actually equivalent to Laughlin theory: ${ }^{2)}$

$$
\begin{equation*}
S=\frac{k}{4 \pi} \int d^{3} y \epsilon^{\mu \nu \lambda}\left[A_{\mu} \star \partial_{\nu} A_{\lambda}+\frac{2}{3} A_{\mu} \star A_{\nu} \star A_{\lambda}\right] \tag{1}
\end{equation*}
$$

where the star-product is the usual Moyal product with parameter θ. Therefore, he obtained the filling factor

$$
\begin{equation*}
\nu_{\mathrm{S}}=\frac{1}{k} \tag{2}
\end{equation*}
$$

He also pointed out that the above theory can be formulated in terms of a matrix model involving classical Hermitian matrix variables $A_{0}, X^{i}, i=1,2$. The Lagrangian for the matrix theory is

$$
\begin{equation*}
L=B \operatorname{Tr}\left\{\epsilon_{i j}\left(\dot{X}^{i}+i\left[A_{0}, X^{i}\right]\right) X^{j}+2 \theta A_{0}\right\} \tag{3}
\end{equation*}
$$

B is the magnetic field. The equation of motion for the coordinate A_{0} (Gauss law constraint) is

$$
\begin{equation*}
\left[X^{1}, X^{2}\right]=i \theta \tag{4}
\end{equation*}
$$

which can only be solved if the matrices are infinite dimensional. This corresponds to an infinite number of electrons on an infinite plane.

For a finite system, Polychronakos ${ }^{3}$) has introduced an additional set of bosonic degrees of freedom $\psi_{m}, m=$ $1,2, \ldots, M$, such that $\psi=\left(\psi_{1}, \cdots, \psi_{M}\right)$,

$$
\begin{equation*}
L_{\psi}=\psi^{\dagger}\left(i \dot{\psi}-A_{0} \psi\right) . \tag{5}
\end{equation*}
$$

Considering $L+L_{\psi}$, Polychronakos ${ }^{3}$) found a quantum correction to Susskinds filling factor such that

$$
\begin{equation*}
\nu_{\mathrm{P}}=\frac{1}{k+1} . \tag{6}
\end{equation*}
$$

In this case, the Gauss law constraint becomes

$$
\begin{equation*}
\left[X^{1}, X^{2}\right]=i \theta\left(\mathbf{1}-\frac{1}{k+1} \psi \psi^{\dagger}\right) \tag{7}
\end{equation*}
$$

Later Hellerman and Van Raamsdonk ${ }^{4}$ built the corre-

[^0]sponding wavefunctions for $L+L_{\psi}$,
\[

$$
\begin{equation*}
|k\rangle=\left\{\epsilon^{i_{1} \cdots i_{M}}\left(\psi^{\dagger}\right)_{i_{1}}\left(\psi^{\dagger} A^{\dagger}\right)_{i_{2}} \ldots\left(\psi^{\dagger} A^{\dagger M-1}\right)_{i_{M}}\right\}^{k} \mid C \tag{8}
\end{equation*}
$$

\]

where $\epsilon^{i_{1} \cdots i_{M}}$ is the fully antisymmetric tensor. These are similar to Laughlins wavefunction. ${ }^{2)}$ Subsequently, three of us generalised ${ }^{5}$) the above results to any filling factor given by

$$
\begin{equation*}
\nu_{k_{1} k_{2}}=\frac{1}{k_{1}}+\frac{1}{k_{2}}, \quad k_{2}>k_{1} \tag{9}
\end{equation*}
$$

In what follows, we propose a matrix model to describe such FQH states that are not of Laughlin type.

2. $\boldsymbol{\nu}_{\boldsymbol{k}_{1} \boldsymbol{k}_{\mathbf{2}}}$ fractional quantum Hall states

Although the $\nu=\frac{2}{5}$ FQH state is not of the Laughlin type, it shares some basic features of Laughlin fluids. The point is that from the standard definition of the filling factor $\nu=\frac{N}{N_{\phi}}$, the state $\nu=\frac{2}{5}$ can naively be thought of as corresponding to $\nu=\frac{N}{N_{\phi}}$ where the number N_{ϕ} of flux quanta is given by a fractional amount of the electron number; that is

$$
\begin{equation*}
N_{\phi}=\left(3-\frac{1}{2}\right) N . \tag{10}
\end{equation*}
$$

In fact this way of viewing things reflects the original idea of a hierarchical construction of FQH states for general filling factor $\frac{p}{q}$. In Haldane's hierarchy, ${ }^{6}$) the elements of the series

$$
\begin{equation*}
\nu_{p_{1} p_{2}}=\frac{p_{2}}{p_{1} p_{2}-1} \tag{11}
\end{equation*}
$$

correspond to taking N_{ϕ} as given by a specific rational factor of the electron number, i.e.,

$$
\begin{equation*}
N_{\phi}=\left(p_{1}-\frac{1}{p_{2}}\right) N . \tag{12}
\end{equation*}
$$

Upon setting

$$
\begin{equation*}
k_{1}=p_{1}, \quad k_{2}=k_{1}\left(k_{1} p_{2}-1\right) \equiv r k_{1} \tag{13}
\end{equation*}
$$

we have $\nu_{p_{1} p_{2}} \equiv \nu_{k_{1} k_{2}}$. For $\nu=\frac{2}{5}$, e.g.,

$$
\begin{equation*}
\nu=\frac{2}{5} \equiv \frac{1}{3}+\frac{1}{15} . \tag{14}
\end{equation*}
$$

3. Matrix model analysis

To describe FQH fluids at $\nu_{k_{1} k_{2}}$, we consider the following action for a system of $N=N_{1}+N_{2}$ particles ${ }^{5}$)

$$
\begin{align*}
\mathcal{S} & =\int d t \sum_{i=1}^{2}\left[\frac{k_{i}}{4 \theta} \operatorname{Tr}\left(i \bar{Z}_{i} D Z_{i}-\omega \bar{Z}_{i} Z_{i}+2 \theta A_{0, i}\right)\right] \\
& +h . c .+\int d t\left[\frac{i}{2} \bar{\Psi}^{\alpha a}\left[\partial_{t}+A_{0,1}^{\beta} \delta_{a}^{b}+A_{0,2}^{b}{ }_{a}^{\beta} \delta_{\alpha}^{\beta}\right] \Psi_{\beta b}\right. \\
& \left.+\lambda \bar{\Psi}^{\alpha a} Z_{1}^{\beta}{ }_{\alpha}^{b} Z_{2 a}^{b} \Psi_{\beta b}\right]+ \text { h.c. } \tag{15}
\end{align*}
$$

where $1 \leq \alpha, \beta \leq N_{1}, 1 \leq a, b \leq N_{2}, Z_{l}=X_{l}^{1}+i X_{l}^{2}$ and $A_{0, i}$ the gauge for the i th particle. The $J_{\alpha \alpha}^{(1)}$ and $J_{a a}^{(2)}$ currents (Gauss law constraints) read as

$$
\begin{align*}
J_{\alpha \alpha}^{(1)} & =\left[Z_{1}, \bar{Z}_{1}\right]_{\alpha \alpha}+\frac{\theta}{2 k_{1}}\left(\sum_{a=1}^{N_{2}} \Psi_{\alpha a} \bar{\Psi}_{\alpha a}-J_{0}^{(1)}\right), \\
J_{a a}^{(2)} & =\left[Z_{2}, \bar{Z}_{2}\right]_{a a}+\frac{\theta}{2 k_{2}}\left(\sum_{\alpha=1}^{N_{1}} \Psi_{\alpha a} \bar{\Psi}_{\alpha a}-J_{0}^{(2)}\right), \tag{16}
\end{align*}
$$

where the two $U(1)$ charge operators $J_{0}^{(1)}$ and $J_{0}^{(2)}$ are

$$
\begin{equation*}
J_{0}^{(1)}=J_{0}^{(2)}=J_{0}=\sum_{\alpha=1}^{N_{1}} \sum_{a=1}^{N_{2}} \quad \bar{\Psi}_{\alpha a} \Psi_{\alpha a} . \tag{17}
\end{equation*}
$$

The wavefunctions $|\Phi\rangle$ describing the $\left(N_{1}+N_{2}\right)$ system of electrons on the non-commutative plane \mathbb{R}_{θ}^{2} with filling factor $\nu_{k_{1} k_{2}}$ should obey the constraint ${ }^{5)}$

$$
\begin{equation*}
J_{0}|\Phi\rangle=\frac{N}{\nu_{k_{1} k_{2}}}|\Phi\rangle . \tag{18}
\end{equation*}
$$

Once we know the fundamental state $\left|\Phi_{\nu_{k_{1} k_{2}}}^{(0)}\right\rangle$, excitations are immediately determined by applying the usual rules. Upon recalling the coordinate operators as

$$
\begin{equation*}
Z_{1 \alpha \alpha}=\sqrt{\frac{\theta}{2}} r_{\alpha \alpha}^{+}, \quad Z_{2 a a}=\sqrt{\frac{\theta}{2}} s_{a a}^{+}, \tag{19}
\end{equation*}
$$

the total Hamiltonian \mathcal{H} may be treated as the sum of a free part given by

$$
\begin{equation*}
\mathcal{H}_{0}=\frac{\omega}{2}\left(2 \mathcal{N}_{1}+2 \mathcal{N}_{2}+N_{1}^{2}+N_{2}^{2}\right) \tag{20}
\end{equation*}
$$

where $\mathcal{N}_{1}=\sum_{\alpha, \beta=1}^{N_{1}} r_{\alpha \beta}^{\dagger} r_{\beta \alpha}^{-}$and $\mathcal{N}_{2}=\sum_{a, b=1}^{N_{2}} s_{a b}^{\dagger} s_{b a}^{-}$are the operator numbers counting the N_{1} and N_{2} particles respectively, and an interacting part

$$
\begin{equation*}
\mathcal{H}_{\mathrm{int}} \sim\left(\psi_{a \alpha}^{+} r_{\alpha \beta}^{+} s_{a b}^{-} \psi_{\beta b}^{-}+h . c .\right) \tag{21}
\end{equation*}
$$

describing couplings between the two sectors. ${ }^{5}$) The creation and annihilation operators $r_{\alpha \alpha}^{ \pm}, s_{a a}^{ \pm}$, and $\psi_{\alpha a}^{ \pm}$satisfy the Heisenberg algebra

$$
\begin{align*}
& {\left[\left(r^{-}\right)_{\alpha}^{\alpha},\left(r^{+}\right)_{\beta}^{\beta}\right]=\delta_{\alpha \beta}, \quad\left[\left(s^{-}\right)_{a}^{a},\left(s^{+}\right)_{b}^{b}\right]=\delta_{a b},} \tag{22}\\
& {\left[\left(\psi^{-}\right)^{\alpha a},\left(\psi^{+}\right)_{\alpha a}\right]=1,}
\end{align*}
$$

all others are given by commuting relations. A way to build the spectrum of the Hamiltonian \mathcal{H}_{0} is given by help of the special condensate operators

$$
\begin{equation*}
\left(A^{+}\right)_{a \alpha}^{(n, m)}=\left[\left(s^{+}\right)^{n-1} \psi^{+}\left(r^{+}\right)^{m-1}\right]_{a \alpha} \tag{23}
\end{equation*}
$$

The wavefunctions for the vacuum $\mid 0>$ of \mathcal{H}_{0} read as

$$
\begin{equation*}
\left[\varepsilon^{\alpha_{1} \ldots \alpha_{N_{1}}} \prod_{j=1}^{p} O_{\alpha_{\left(j N_{2}+1\right)} \ldots \alpha_{(j+1) N_{2}}}^{(j)}\right]^{k_{1}} \mid 0> \tag{24}
\end{equation*}
$$

where the $O^{(j)}$'s are building blocks and given by

$$
\begin{align*}
& O_{\alpha_{\left(j N_{2}+1\right)}^{(j)} \ldots \alpha_{(j+1) N_{2}}}^{(j,}=\varepsilon^{a_{\left(j N_{2}+1\right)} \ldots a_{(j+1) N_{2}}} \\
& \quad \times\left(A^{+}\right)_{a_{\left(j N_{2}+1\right)} \alpha_{\left(j N_{2}+1\right)}} \cdots\left(A^{+}\right)_{a_{(j+1) N_{2}} \alpha_{(j+1) N_{2}}}^{\left(N_{2}, j\right)} \tag{25}
\end{align*}
$$

The corresponding energy spectrum $E_{C}\left(\nu_{k_{1} k_{2}}\right)$ is

$$
\begin{equation*}
E_{c}=k_{1}\left[p \frac{\left(N_{2}-1\right)\left(N_{2}-2\right)}{2}+\frac{(p-1)(p-2)}{2} N_{2}\right]+\frac{N_{1}+N_{2}}{2} . \tag{26}
\end{equation*}
$$

Note that for large value of N_{1} and $N_{2}\left(N_{1}=r N_{2}\right)$, $E_{c}\left(\nu_{k_{1} k_{2}}\right)$ behaves quadratically in N_{2},

$$
\begin{equation*}
E_{c}\left(\nu_{k_{1} k_{2}} \sim \frac{k_{2}}{2} N_{2}^{2} .\right. \tag{27}
\end{equation*}
$$

This energy relation is less than the total energy $E_{d}\left(\nu_{k_{i}}\right)$ of the decoupled configuration $\left(\left|\Phi_{1}, v_{k_{1}}\right\rangle \otimes\left|\Phi_{2}, v_{k_{2}}\right\rangle\right)$:

$$
\begin{equation*}
E_{d}\left(\nu_{k_{i}}\right) \equiv E\left(\frac{1}{k_{1}}\right)+E\left(\frac{1}{k_{2}}\right) \sim \frac{k_{2}(r+1)}{2} N_{2}^{2} . \tag{28}
\end{equation*}
$$

Therefore, we have the following relation

$$
\begin{equation*}
E_{d} \sim(r+1) E_{c} . \tag{29}
\end{equation*}
$$

For the example of the FQH state at $\nu=\frac{2}{5}$, the energy of the decoupled representation reads as

$$
\begin{equation*}
E\left(\frac{1}{3}\right)+E\left(\frac{1}{15}\right) \sim 45 N_{2}^{2} \tag{30}
\end{equation*}
$$

while that of the interacting one is

$$
\begin{equation*}
E_{c}\left(\frac{2}{5}\right) \sim \frac{15}{2} N_{2}^{2} \tag{31}
\end{equation*}
$$

leading to

$$
\begin{equation*}
E\left(\frac{1}{3}\right)+E\left(\frac{1}{15}\right) \sim 6 E_{c}\left(\frac{2}{5}\right) . \tag{32}
\end{equation*}
$$

4. Conclusion

We have developed a matrix model for FQH states at filling factor $\nu_{k_{1} k_{2}}$ going beyond the Laughlin theory. To illustrate our idea, we have considered an FQH system of a finite number $N=\left(N_{1}+N_{2}\right)$ of electrons with filling factor $\nu_{k_{1} k_{2}} \equiv \nu_{p_{1} p_{2}}=\frac{p_{2}}{p_{1} p_{2}-1} ; p_{1}$ is an odd integer and p_{2} is an even integer. The $\nu_{p_{1} p_{2}}$ series corresponds just to the level two of the Haldane hierarchy; it recovers the Laughlin series $\nu_{p_{1}}=\frac{1}{p_{1}}$ by going to the limit p_{2} large and contains several observable FQH states such as $\nu=\frac{2}{3}, \frac{2}{5}, \cdots$.

[^1]
[^0]: * jellal@gursey.gov.tr
 \dagger Permanent address: Department of Physics, University of Warwick, Conventry CV4 7AL, UK

[^1]: 1) L. Susskind: hep-th/0101029.
 2) R.B. Laughlin: Phys. Rev. Lett. 501395 (1983).
 3) A.P. Polychronakos: JHEP 0104 (2001) 011.
 4) S. Hellerman and M. Van Raamsdonk: JHEP 0110 (2001) 039.
 5) A. Jellal, E.H. Saidi and H.B. Geyer: hep-th/0204248.
 6) F.D.M Haldane: Phys. Rev. Lett. 51 (1983) 605.
