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Real-spae renormalization group approah to the quantum Hall transition
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1. Introdution

The integer quantum Hall (QH) transition is desribed

well in terms of a deloalization-loalization transition of

the eletron wavefuntion. In ontrast to a usual metal-

insulator transition (MIT), the QH transition is hara-

terized by a single extended state loated exatly at the

enter � = 0 of eah Landau band.

1)

When approahing

� = 0, the loalization length � of the eletron wave-

funtion diverges aording to a power law �

��

, where

� de�nes the distane to the MIT for a suitable ontrol

parameter, e.g., the eletron energy. On the theoreti-

al side, the value of � has been extrated from various

numerial simulations, e.g., � = 2:5 � 0:5,

2)

2:4� 0:2,

3)

2:35� 0:03,

4)

and 2:39� 0:01.

5)

In experiments � � 2:3

has been obtained, e.g., from the frequeny

6)

or the sam-

ple size

7)

dependene of the ritial behavior of the re-

sistane in the transition region at strong magneti �eld.

We study the ritial properties of the integer QH tran-

sition by employing the real-spae renormalization-group

(RG) approah to the Chalker-Coddington (CC) network

model.

2)

We alulate the ritial distribution P



(G)

of the ondutane and the ritial exponent � of the

QH transition for two di�erent RG units. This allows

to demonstrate that the quality of the results ruially

depends on the hoie of the RG unit.

The CC model desribes a single QH transition us-

ing a hiral network onsisting of eletron trajetories

along equipotential lines (links) and saddle points (SP's)

of the potential (nodes). Eah SP ats as a satterer and

relates the wavefuntion amplitudes in two inoming and

two outgoing hannels. It an be haraterized by a 2�2

S matrix, whih depends only on the transmission and

reetion oeÆients t

i

and r

i

. The links orrespond to

random phases �

j

and reet the randomness of the po-

tential disorder in a sample. We onsider two previously

studied, di�erent RG units on a regular 2D square lattie

as shown in Fig. 1. One is onstruted from 4 SP's,

8, 9)

the other onsists of 5 SP's.

5, 10)

The RG unit should be

hosen in a way suh that the essential properties of the

network are taken into aount. In the ourse of our RG

approah an RG unit is then mapped onto a new single

super-SP using the analytial dependene

5, 11)

t

0

= f (ft

i

; r

i

g; f�

j

g) (1)
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Fig. 1. RG units onstruted from 4 SP's (left) and 5 SP's (right)

indiated by full irles. Some onnetivity is negleted (dotted

irles). The phases �

j

are aumulated by the eletron motion

(arrows) along ontours of the energy potential.

of the transmission oeÆient t

0

of the super-SP on the

oeÆients t

i

and r

i

and the phases �

j

within the RG

unit. The e�etive system size of our samples is doubled

in eah RG step, whih allows to reah very large e�etive

systems. Starting from an initial distribution P

0

(t) of the

transmission oeÆient t of a SP we an now ompute

P

1

(t

0

) of the RG unit and then ontinue iteratively.

5)

We note that P (G) of the dimensionless ondutane G

is related to P (t) by G = t

2

.

2. RG approah for P (G)

In order to �nd the �xed point (FP) ondutane dis-

tribution P



(G), we start from a ertain initial distri-

bution of transmission oeÆients, P

0

(t). The distribu-

tion is disretized in at least 1000 bins, suh that the

bin width is typially 0:001 for the interval t 2 [0; 1℄.

From P

0

(t), we obtain t

i

, and substitute them into the

RG transformation (1). The phases �

j

are hosen ran-

domly from the interval �

j

2 [0; 2�℄. In this way we

alulate at least 10

7

super-transmission oeÆients t

0

.

At the next step we repeat the proedure using P

1

as

an initial distribution. We assume that the iteration

proess has onverged when the mean-square deviation

R

dt[P

n

(t)� P

n�1

(t)℄

2

of the distribution P

n

and its pre-

deessor P

n�1

deviate by less than 10

�4

. While we reah

onvergene in the 4 SP approah only when hosing P

0

very lose to the FP distribution, in the 5 SP ase any

P

0

(G) symmetri with respet to G = 0:5 is suitable.

Our resulting P



(G) of both RG units is shown in Fig.

2. For the 5 SP unit the FP distribution P



(G) exhibits

a at minimum around G = 0:5, and sharp peaks lose

to G = 0 and G = 1. It is symmetri with respet to

1
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Fig. 2. Comparison of the ritial distribution of the ondutane

P



(G) at the QH transition obtained using the 5 SP (dashed

line) and 4 SP (dotted line) RG unit. The latter learly deviates

from the expeted symmetry with respet to G = 0:5.

G � 0:5. The 4 SP unit yields di�ering results. While

P



(G) is still rather at it is learly asymmetri, whih

already indiates that the 4 SP unit an not desribe all

of the underlying symmetry of the CC network.

3. RG approah for �

We now turn to the ritial exponent �. We intro-

due the dimensionless SP height z

i

. It is related to the

transmission oeÆient t

i

at � = 0 by t

i

= (e

z

i

+1)

�1=2

,

whih allows to translate transformation (1) into the lan-

guage of SP heights. Correspondingly, the distribution

P (G) determines a distribution Q(z) of SP heights via

Q(z) = P (G)dG=dz. Suppose that the RG proedure

starts with an initial distribution, Q

0

(z) = Q



(z � z

0

),

shifted from the ritial distribution, Q



(z), by a small

z

0

/ �. As a result of the instability of the FP, an initial

shift z

0

results in a further drift of the maximum posi-

tion, z

max;n

, away from z = 0 after eah RG step where

z

max;n

depends linearly on z

0

for small z

0

.

5)

From the

orresponding slope the ritial exponent an be alu-

lated for eah RG step n using

� =

ln2

n

ln

�

z

max;n

z

0

�

: (2)

Figure 3 shows the behavior of � as funtion of n for the

4 and 5 SP RG units. Both urves approah onvergene

monotonously from larger values of �. During all itera-

tion steps, � for the 4 SP di�ers from the 5 SP result

by an almost onstant positive shift. After 8 iterations,

whih equals an inrease of system size by a fator of

256, we �nd � = 2:39� 0:01 (5 SP) and � = 2:74� 0:02

(4 SP). The error desribes a on�dene interval of 95%

as obtained from the �t to a linear behavior. The result

for � of the 4 SP RG unit deviates learly from the 5 SP

result and the values obtained by other methods.

2{4)
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Fig. 3. The ritial exponent � as funtion of the e�etive sys-

tem size N = 2

n

for 4 SP (dotted line) and 5 SP unit (dashed

line). Inset: Maximum z

max

of Q(z) vs. initial shift z

0

for 8 RG

iterations (symbols) using 4 SP. Dashed lines indiate linear �ts.

4. Conlusion

The real-spae RG approah allows only a rude ap-

proximation of the network, sine links of the network

are ut and the full onnetivity of the network is not

preserved. Therefore for the determination of P



(G) and

�, it is essential to onstrut the RG unit in suh a way

that it inludes the symmetry of the network and the

orresponding physial problem. We have shown that a

simple 4 SP RG unit already provides a rough piture of

the ritial properties of the QH transition. A slightly

larger 5 SP unit yields surprisingly aurate results. It

seems obvious that the auray of the RG approxima-

tion should further enhane when inreasing the size of

the RG unit.

8)

However from a numerial point of view

one bene�ts from the analyti form of Eq. (1), whih is

not known for large RG units.

We remark that the RG approah an be performed

also for the phases of the RG unit.

12)

This allows to al-

ulate the energy level statistis whih is a further har-

ateristi of the ritial properties at the QH transition

and exampli�es the strength of the RG approah.
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