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Real-spa
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1. Introdu
tion

The integer quantum Hall (QH) transition is des
ribed

well in terms of a delo
alization-lo
alization transition of

the ele
tron wavefun
tion. In 
ontrast to a usual metal-

insulator transition (MIT), the QH transition is 
hara
-

terized by a single extended state lo
ated exa
tly at the


enter � = 0 of ea
h Landau band.

1)

When approa
hing

� = 0, the lo
alization length � of the ele
tron wave-

fun
tion diverges a

ording to a power law �

��

, where

� de�nes the distan
e to the MIT for a suitable 
ontrol

parameter, e.g., the ele
tron energy. On the theoreti-


al side, the value of � has been extra
ted from various

numeri
al simulations, e.g., � = 2:5 � 0:5,

2)

2:4� 0:2,

3)

2:35� 0:03,

4)

and 2:39� 0:01.

5)

In experiments � � 2:3

has been obtained, e.g., from the frequen
y

6)

or the sam-

ple size

7)

dependen
e of the 
riti
al behavior of the re-

sistan
e in the transition region at strong magneti
 �eld.

We study the 
riti
al properties of the integer QH tran-

sition by employing the real-spa
e renormalization-group

(RG) approa
h to the Chalker-Coddington (CC) network

model.

2)

We 
al
ulate the 
riti
al distribution P




(G)

of the 
ondu
tan
e and the 
riti
al exponent � of the

QH transition for two di�erent RG units. This allows

to demonstrate that the quality of the results 
ru
ially

depends on the 
hoi
e of the RG unit.

The CC model des
ribes a single QH transition us-

ing a 
hiral network 
onsisting of ele
tron traje
tories

along equipotential lines (links) and saddle points (SP's)

of the potential (nodes). Ea
h SP a
ts as a s
atterer and

relates the wavefun
tion amplitudes in two in
oming and

two outgoing 
hannels. It 
an be 
hara
terized by a 2�2

S matrix, whi
h depends only on the transmission and

re
e
tion 
oeÆ
ients t

i

and r

i

. The links 
orrespond to

random phases �

j

and re
e
t the randomness of the po-

tential disorder in a sample. We 
onsider two previously

studied, di�erent RG units on a regular 2D square latti
e

as shown in Fig. 1. One is 
onstru
ted from 4 SP's,

8, 9)

the other 
onsists of 5 SP's.

5, 10)

The RG unit should be


hosen in a way su
h that the essential properties of the

network are taken into a

ount. In the 
ourse of our RG

approa
h an RG unit is then mapped onto a new single

super-SP using the analyti
al dependen
e

5, 11)

t

0

= f (ft

i

; r

i

g; f�

j

g) (1)
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Fig. 1. RG units 
onstru
ted from 4 SP's (left) and 5 SP's (right)

indi
ated by full 
ir
les. Some 
onne
tivity is negle
ted (dotted


ir
les). The phases �

j

are a

umulated by the ele
tron motion

(arrows) along 
ontours of the energy potential.

of the transmission 
oeÆ
ient t

0

of the super-SP on the


oeÆ
ients t

i

and r

i

and the phases �

j

within the RG

unit. The e�e
tive system size of our samples is doubled

in ea
h RG step, whi
h allows to rea
h very large e�e
tive

systems. Starting from an initial distribution P

0

(t) of the

transmission 
oeÆ
ient t of a SP we 
an now 
ompute

P

1

(t

0

) of the RG unit and then 
ontinue iteratively.

5)

We note that P (G) of the dimensionless 
ondu
tan
e G

is related to P (t) by G = t

2

.

2. RG approa
h for P (G)

In order to �nd the �xed point (FP) 
ondu
tan
e dis-

tribution P




(G), we start from a 
ertain initial distri-

bution of transmission 
oeÆ
ients, P

0

(t). The distribu-

tion is dis
retized in at least 1000 bins, su
h that the

bin width is typi
ally 0:001 for the interval t 2 [0; 1℄.

From P

0

(t), we obtain t

i

, and substitute them into the

RG transformation (1). The phases �

j

are 
hosen ran-

domly from the interval �

j

2 [0; 2�℄. In this way we


al
ulate at least 10

7

super-transmission 
oeÆ
ients t

0

.

At the next step we repeat the pro
edure using P

1

as

an initial distribution. We assume that the iteration

pro
ess has 
onverged when the mean-square deviation

R

dt[P

n

(t)� P

n�1

(t)℄

2

of the distribution P

n

and its pre-

de
essor P

n�1

deviate by less than 10

�4

. While we rea
h


onvergen
e in the 4 SP approa
h only when 
hosing P

0

very 
lose to the FP distribution, in the 5 SP 
ase any

P

0

(G) symmetri
 with respe
t to G = 0:5 is suitable.

Our resulting P




(G) of both RG units is shown in Fig.

2. For the 5 SP unit the FP distribution P




(G) exhibits

a 
at minimum around G = 0:5, and sharp peaks 
lose

to G = 0 and G = 1. It is symmetri
 with respe
t to

1
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Fig. 2. Comparison of the 
riti
al distribution of the 
ondu
tan
e

P




(G) at the QH transition obtained using the 5 SP (dashed

line) and 4 SP (dotted line) RG unit. The latter 
learly deviates

from the expe
ted symmetry with respe
t to G = 0:5.

G � 0:5. The 4 SP unit yields di�ering results. While

P




(G) is still rather 
at it is 
learly asymmetri
, whi
h

already indi
ates that the 4 SP unit 
an not des
ribe all

of the underlying symmetry of the CC network.

3. RG approa
h for �

We now turn to the 
riti
al exponent �. We intro-

du
e the dimensionless SP height z

i

. It is related to the

transmission 
oeÆ
ient t

i

at � = 0 by t

i

= (e

z

i

+1)

�1=2

,

whi
h allows to translate transformation (1) into the lan-

guage of SP heights. Correspondingly, the distribution

P (G) determines a distribution Q(z) of SP heights via

Q(z) = P (G)dG=dz. Suppose that the RG pro
edure

starts with an initial distribution, Q

0

(z) = Q




(z � z

0

),

shifted from the 
riti
al distribution, Q




(z), by a small

z

0

/ �. As a result of the instability of the FP, an initial

shift z

0

results in a further drift of the maximum posi-

tion, z

max;n

, away from z = 0 after ea
h RG step where

z

max;n

depends linearly on z

0

for small z

0

.

5)

From the


orresponding slope the 
riti
al exponent 
an be 
al
u-

lated for ea
h RG step n using

� =

ln2

n

ln

�

z

max;n

z

0

�

: (2)

Figure 3 shows the behavior of � as fun
tion of n for the

4 and 5 SP RG units. Both 
urves approa
h 
onvergen
e

monotonously from larger values of �. During all itera-

tion steps, � for the 4 SP di�ers from the 5 SP result

by an almost 
onstant positive shift. After 8 iterations,

whi
h equals an in
rease of system size by a fa
tor of

256, we �nd � = 2:39� 0:01 (5 SP) and � = 2:74� 0:02

(4 SP). The error des
ribes a 
on�den
e interval of 95%

as obtained from the �t to a linear behavior. The result

for � of the 4 SP RG unit deviates 
learly from the 5 SP

result and the values obtained by other methods.

2{4)
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Fig. 3. The 
riti
al exponent � as fun
tion of the e�e
tive sys-

tem size N = 2

n

for 4 SP (dotted line) and 5 SP unit (dashed

line). Inset: Maximum z

max

of Q(z) vs. initial shift z

0

for 8 RG

iterations (symbols) using 4 SP. Dashed lines indi
ate linear �ts.

4. Con
lusion

The real-spa
e RG approa
h allows only a 
rude ap-

proximation of the network, sin
e links of the network

are 
ut and the full 
onne
tivity of the network is not

preserved. Therefore for the determination of P




(G) and

�, it is essential to 
onstru
t the RG unit in su
h a way

that it in
ludes the symmetry of the network and the


orresponding physi
al problem. We have shown that a

simple 4 SP RG unit already provides a rough pi
ture of

the 
riti
al properties of the QH transition. A slightly

larger 5 SP unit yields surprisingly a

urate results. It

seems obvious that the a

ura
y of the RG approxima-

tion should further enhan
e when in
reasing the size of

the RG unit.

8)

However from a numeri
al point of view

one bene�ts from the analyti
 form of Eq. (1), whi
h is

not known for large RG units.

We remark that the RG approa
h 
an be performed

also for the phases of the RG unit.

12)

This allows to 
al-


ulate the energy level statisti
s whi
h is a further 
har-

a
teristi
 of the 
riti
al properties at the QH transition

and exampli�es the strength of the RG approa
h.
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