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1. Introduction

The integer quantum Hall (QH) transition is described
well in terms of a delocalization-localization transition of
the electron wavefunction. In contrast to a usual metal-
insulator transition (MIT), the QH transition is charac-
terized by a single extended state located exactly at the
center € = 0 of each Landau band.)) When approaching
e = 0, the localization length £ of the electron wave-
function diverges according to a power law €7, where
€ defines the distance to the MIT for a suitable control
parameter, e.g., the electron energy. On the theoreti-
cal side, the value of v has been extracted from various
numerical simulations, e.g., v = 2.5 + 0.5,2) 2.4 +0.2,%)
2.35 +0.03,% and 2.39 4+ 0.01.5) In experiments v ~ 2.3
has been obtained, e.g., from the frequency® or the sam-
ple size” dependence of the critical behavior of the re-
sistance in the transition region at strong magnetic field.

We study the critical properties of the integer QH tran-
sition by employing the real-space renormalization-group
(RG) approach to the Chalker-Coddington (CC) network
model.?) We calculate the critical distribution P,(G)
of the conductance and the critical exponent v of the
QH transition for two different RG units. This allows
to demonstrate that the quality of the results crucially
depends on the choice of the RG unit.

The CC model describes a single QH transition us-
ing a chiral network consisting of electron trajectories
along equipotential lines (links) and saddle points (SP’s)
of the potential (nodes). Each SP acts as a scatterer and
relates the wavefunction amplitudes in two incoming and
two outgoing channels. It can be characterized by a 2 x 2
S matrix, which depends only on the transmission and
reflection coefficients t; and r;. The links correspond to
random phases ®; and reflect the randomness of the po-
tential disorder in a sample. We consider two previously
studied, different RG units on a regular 2D square lattice
as shown in Fig. 1. One is constructed from 4 SP’s,%9)
the other consists of 5 SP’s.>1?) The RG unit should be
chosen in a way such that the essential properties of the
network are taken into account. In the course of our RG
approach an RG unit is then mapped onto a new single
super-SP using the analytical dependence® ')

t' = f ({ti’ri}’{q)j}) (1)
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Fig. 1. RG units constructed from 4 SP’s (left) and 5 SP’s (right)
indicated by full circles. Some connectivity is neglected (dotted
circles). The phases ®; are accumulated by the electron motion
(arrows) along contours of the energy potential.

of the transmission coefficient ¢ of the super-SP on the
coefficients ¢; and r; and the phases ®; within the RG
unit. The effective system size of our samples is doubled
in each RG step, which allows to reach very large effective
systems. Starting from an initial distribution P, (¢) of the
transmission coefficient ¢ of a SP we can now compute
Py (t') of the RG unit and then continue iteratively.?)
We note that P(G) of the dimensionless conductance G
is related to P(t) by G = t%.

2. RG approach for P(G)

In order to find the fixed point (FP) conductance dis-
tribution P.(G), we start from a certain initial distri-
bution of transmission coefficients, Py(t). The distribu-
tion is discretized in at least 1000 bins, such that the
bin width is typically 0.001 for the interval ¢ € [0, 1].
From Py(t), we obtain ¢;, and substitute them into the
RG transformation (1). The phases ®; are chosen ran-
domly from the interval ®; € [0,27]. In this way we
calculate at least 107 super-transmission coefficients ¢'.
At the next step we repeat the procedure using P; as
an initial distribution. We assume that the iteration
process has converged when the mean-square deviation
[ dt[Py(t) — Py—1(t)]? of the distribution P, and its pre-
decessor P, _; deviate by less than 10~*. While we reach
convergence in the 4 SP approach only when chosing Py
very close to the FP distribution, in the 5 SP case any
Py(G) symmetric with respect to G = 0.5 is suitable.
Our resulting P.(G) of both RG units is shown in Fig.
2. For the 5 SP unit the FP distribution P.(G) exhibits
a flat minimum around G = 0.5, and sharp peaks close
to G = 0 and G = 1. It is symmetric with respect to
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Fig. 2. Comparison of the critical distribution of the conductance
P.(G) at the QH transition obtained using the 5 SP (dashed
line) and 4 SP (dotted line) RG unit. The latter clearly deviates
from the expected symmetry with respect to G = 0.5.

G =~ 0.5. The 4 SP unit yields differing results. While
P.(G) is still rather flat it is clearly asymmetric, which
already indicates that the 4 SP unit can not describe all
of the underlying symmetry of the CC network.

3. RG approach for v

We now turn to the critical exponent v. We intro-
duce the dimensionless SP height z;. It is related to the
transmission coefficient ¢; at € = 0 by t; = (e +1)~1/2,
which allows to translate transformation (1) into the lan-
guage of SP heights. Correspondingly, the distribution
P(G) determines a distribution Q(z) of SP heights via
Q(z) = P(G)dG/dz. Suppose that the RG procedure
starts with an initial distribution, Qo(z) = Q.(z — 20),
shifted from the critical distribution, Q.(z), by a small
2o o €. As a result of the instability of the FP, an initial
shift zog results in a further drift of the maximum posi-
tion, Zmax,n, away from z = 0 after each RG step where
Zmax,n depends linearly on 2y for small 20.%) From the
corresponding slope the critical exponent can be calcu-
lated for each RG step n using

v = h172 (2)

In (z"‘ﬂ)
20

Figure 3 shows the behavior of v as function of n for the
4 and 5 SP RG units. Both curves approach convergence
monotonously from larger values of v. During all itera-
tion steps, v for the 4 SP differs from the 5 SP result
by an almost constant positive shift. After 8 iterations,
which equals an increase of system size by a factor of
256, we find v = 2.39 £ 0.01 (5 SP) and v = 2.74 £+ 0.02
(4 SP). The error describes a confidence interval of 95%
as obtained from the fit to a linear behavior. The result
for v of the 4 SP RG unit deviates clearly from the 5 SP
result and the values obtained by other methods.2%
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Fig. 3. The critical exponent v as function of the effective sys-
tem size N = 2" for 4 SP (dotted line) and 5 SP unit (dashed
line). Inset: Maximum zmax of Q(z) vs. initial shift zo for 8 RG
iterations (symbols) using 4 SP. Dashed lines indicate linear fits.

4. Conclusion

The real-space RG approach allows only a crude ap-
proximation of the network, since links of the network
are cut and the full connectivity of the network is not
preserved. Therefore for the determination of P.(G) and
v, it is essential to construct the RG unit in such a way
that it includes the symmetry of the network and the
corresponding physical problem. We have shown that a
simple 4 SP RG unit already provides a rough picture of
the critical properties of the QH transition. A slightly
larger 5 SP unit yields surprisingly accurate results. It
seems obvious that the accuracy of the RG approxima-
tion should further enhance when increasing the size of
the RG unit.®) However from a numerical point of view
one benefits from the analytic form of Eq. (1), which is
not known for large RG units.

We remark that the RG approach can be performed
also for the phases of the RG unit.'? This allows to cal-
culate the energy level statistics which is a further char-
acteristic of the critical properties at the QH transition
and examplifies the strength of the RG approach.
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