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1. Introdution

In a reent paper,

1)

heneforth it shall be alled P1,

we have suessfully been able to haraterize the metal-

insulator transition (MIT) of the three dimensional (3D)

anisotropi Anderson

2)

model (AM) via saling of the

level ompressibililty. The existene of an MIT for this

model even in the presene of very strong anisotropy

was previously demonstrated by the use of transfer-

matrix methods,

3)

multifratal analysis

4)

and energy

level statistis.

5)

The presene of a disorder indued MIT

in 3D and the absene of suh in 2D and in 1D was shown

via saling arguments

6)

(FSS). In the 3D AM we have the

metalli, the ritial and the insulating phases for low,

ritial and high disorder, respetively. At the MIT the

loalization length � diverges as a funtion of, say, disor-

derW , � � jW�W



j

��

, whereW



is the ritial disorder

and � is the loalization length ritial exponent.

7)

2. Spetral Statistis and Level Compressibility

The loalization properties of wave funtions of disor-

dered single-eletron systems are losely related to the

statistial properties of the orresponding spetra.

8)

In

the insulating regime loalized states, even if they are

lose in energy, have an exponentially small overlap and

their levels are ompletely unorrelated. Aordingly, in

the thermodynami limit the normalized distribution of

spaing s between neighboring energy levels follows the

Poisson law exp(�s). In the metalli regime, the large

overlap of deloalized states indues orrelations in the

energy spetrum leading to level repulsion. In this ase, if

the system is invariant under rotational and under time-

reversal symmetry, the normalized level spaing distribu-

tion losely follows the Wigner surmise of the Gaussian

orthogonal ensemble of random matrix theory

9)

P (s) =

�

2

s exp

�

�

�

4

s

2

�

.

The third system-size independent statistis diretly at

the MIT is usually alled ritial statistis and the or-

responding wave funtions are multifratal.

Our interest here is to use the number variane �

2

to

haraterize the MIT. The number variane is known to

�
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have the following general behavior as a funtion of the

mean number of levels �n in an energy interval, i.e.,

�

2

�

8

<

:

log(�n) deloalized,

��n ritial,

�n loalized.

The number variane in the ritial regime has been on-

jetured to be Poisson-like,

10)

i.e., �

2

� ��n, where the

level ompressibility� is another important parameter to

haraterize the MIT. Formally, the level ompressibility

is de�ned as

� � lim

�n!1

lim

N!1

d�

2

(�n)

d�n

. (1)

� takes values 0 � � � 1, being zero in the metalli state

and unity in the insulating state; N is the system size,

see P1 for details. Note that in order to perform any

statistial alulations the eigenspetrum must be "un-

folded"

11)

so that the average spaing between adjaent

eigenvalues is one.

3. The Model Hamiltonian

We study the 3D AM of loalization desribed by a

Hamiltonian in the lattie site basis as

H =

N

X

i

"

i

jiihij+

X

hi;ji

t

ij

jiihjj (2)

where hijji = Æ

ij

and the t

ij

are hopping integrals with

hi; ji denoting nearest-neighbors on a regular ubi lat-

tie with periodi boundary onditions. Our model in-

ludes anisotropy in the hopping integrals i.e., weakly

oupled planes de�ned by t

x

= t

y

= 1, t

z

= 0:1, here

t

x

, t

y

and t

z

are hopping integrals in the three spatial

diretions. We emphasize that we have hosen strong

anisotropy simply beause this is the ase with the most

aurate data (with relative error range form 0.2 to 0.4%)

from a previous study.

12)

In fat it has been shown that

anisotropy has no e�et on the universality lass of the

model

12, 13)

exept for hanging non-universal properties

suh as the ritial disorder W



. The site energies "

i

are

taken to be random numbers uniformly distributed in

the interval [�W=2;W=2℄.
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4. FSS and Results

To perform FSS with � we �t �

2

data with a polyno-

mial and then \extrat" the linear oeÆient �

p

whih

is an approximation to �, see �gures 1 and 2. In P1, we

have shown that a polynomial �t is stable and reliable for

the alulation of the ritial exponent � and the ritial

disorder W



. The polynomial is of the form,

�

p

�

�

2

(N;W; �n)

�n

�

m

X

k=1



k

(N;W )�n

k

,

where m is the order of the �t and 

k

(N;W ) are as-

sumed not to depend on �n. After performing FSS we

are able to estimate the values of the ritial exponent

� � 1:45�0:12 and the ritial disorderW



� 8:59�0:05.

These values are averages of the results of many �t pa-

rameters in the FSS proedure, see Table 3 of P1 for

details. The above approah is only suited to giving the

global behavior of � in the neighborhood of the MIT.

This implies that there is a systemati shift of �

p

toward

higher values and as suh this method exaggerates the

value of the ritial level ompressibility �



at the MIT.

For the alulation of the ritial level ompressibility�



,

we �t �

2

data via an ansatz funtion that inorporates

irrelevant saling exponents y

k

, i.e.,

�



�

�

2

(N;W; �n)

�n

�

m

X

k=1

�

k

(N;W )�n

�y

k

,

where �

k

(N;W ) are assumed not to depend on �n. Note

that this �t funtion works well for large system sizes

and gives �



� 0:28�0:06 as an average value, see Table

2 of P1 for details. This value is in good agreement with

previous studies.

14)
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Fig. 1. �

p

(N;W ) obtained from a polynomial �t (hene the sub-

sript on �) of degree m = 3. The N dependene is learly

evident. The solid lines are �t funtions from FSS, see P1.

5. Summary

In summary, our results show that � an be used to

ompute, with the help of FSS, estimates of W



and of �

whih are in good agreement with other spetral alu-

lations. Seondly, we have established that a polynomial
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Fig. 2. One-parameter saling dependene of �

p

on � for di�erent

system sizes N and disorders W 2 [6; 12℄.

�t an be used to extrat the universal ontent of the

level ompressibility in the viinity of the MIT.
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