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1 Introduction

A basic tool in wavelet analysis are norm equivalences in Sobolev and Besov
spaces [8, 10, 22]. They play a crucial role in multilevel preconditioning (see e.g.
[10, 23]) and also in nonlinear approximation [13, 7]. Accordingly, multilevel
norm equivalences have been proved for many types of multiresolution bases in
scales of Sobolev and Besov spaces. In these norm equivalences, the levels or
scales of wavelet expansions are mimicing a Littlewood-Paley decomposition, ex-
ploiting more the frequency behaviour of the basis function. Norm equivalences
in terms of wavelet expansions for Sobolev and Besov spaces have been proved
by several authors. First proofs were based on techniques borrowed from Fourier
analysis see e.g. [22] and references therein. We also refer to the articles [8, 5]
for surveys. Despite their practical importance weighted spaces where the weight
is a function of the space variable, have not been considered to our knowledge.
However, the local support of the wavelet basis is especially suited to analyze the
impact of the weight function w(x) on the norm equivalence. To prove multilevel
norm equivalences in scales of weighted Sobolev spaces with regular or singular
weight function w(x) is the purpose of the present paper.

The proof of norm equivalences in weighted Sobolev norms can not be based on
the use of explicit Fourier techniques due to the lack of translation invariance in-
duced by the weight functions. Alternative proofs of norm equivalences are based
exclusively on approximation theory, namely the inverse and the approximation
property, respectively, and its relation with Besov norms [23, 10]. Our proof of
weighted norm equivalences is based on a strengthened Cauchy Schwarz inequal-
ity, a technique borrowed from domain decomposition and applied to multilevel
preconditioning by [3]. With these techniques we prove an upper estimate [25]
while the lower estimate can be easily deduced from the upper estimate for the
dual wavelet basis in a biorthogonal setting like in [25]. For this reason we con-
sider in our proofs the primal and dual wavelet systems simultaneously. We note
that the singularity of the weight must be compensated in certain cases by homo-
geneous Dirichlet boundary conditions for the dual wavelet basis.

We consider several applications of our theory, in particular wavelet precondition-
ing of the element stiffness matrices for the p- or spectral FEM. Here, the natural
weights are the Jacobi weights which are singular at the boundary. We emphasize
that apart from p-FEM there are several places where such weighted norms are
important, for example in preconditioning of wavelet discretizations of degener-
ate elliptic problems. Further applications of the present tools include weighted
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Lp-spaces or weights with singularities in the interior which are not considered
explicitly here.

Let us briefly elaborate on the significance of preconditioning the elemental stiff-
ness matrices in p-FEM, or when combined with mesh-refinement, in the hp-
FEM. The hp-FEM applied to elliptic and parabolic problems allows for expo-
nential convergence rates, in terms of the number of degrees of freedom, since
the solutions are piecewise analytic [26, 24]. Due to the cost in generating the
element stiffness and mass matrices in hp-FEM and the numerical solution of the
linear systems, in practical applications, in particular in three dimensions, the gain
in using high polynomial degrees is in part offset by the computational expense in
matrix generation and solution. Matrix generation in high order FEM can be ac-
celerated to near optimal complexity by sum factorization and spectral quadrature
techniques, see e.g. [27, 21]. This leaves the numerical solution of the linear sys-
tems as computational bottleneck. Once the internal degrees of freedom on each
element are condensed, effective iterative methods are available for the solution
of the global linear systems (based e.g. on domain decomposition). In dimension
three and for degree p ≥ 4, however, the condensation process becomes extremely
expensive, even if executed in parallel due to mutual independence of the internal
degrees of freedom. Alternatively to condensation by direct solution (elimina-
tion), condensation by iterative methods could be considered. For efficiency, a
preconditioner is required, since at high polynomial degree p, the element ma-
trices can be rather ill-conditioned. p-element pre-conditioners were constructed
early by spectrally equivalent low order finite - difference or finite element dis-
cretizations on graded tensor product meshes on Lobatto points (see [19], [14],).

Here, we propose a different approach: we build a preconditioner based on wavelet
discretizations on uniform meshes, but with the singular weights taken into ac-
count in each scale. We deduce from our weighted norm equivalences by judicious
choice of the weights a new, spectrally equivalent wavelet preconditioner for the
p-version FEM. In addition, the regular refinements of the sequence of grids and
the dyadic structure of the wavelet basis allow for fast realization of this precondi-
tioner. We close the paper by generalizing the weighted norm equvialences from
L2 to Sobolev spaces of nonzero order and present optimal wavelet precondition-
ers for multilevel FEM applied to a class of degenerate elliptic equations of second
order.

The outline of the paper is as follows: In section 2, we present some background
material about multiresolutions and wavelet bases. Section 3 contains the main
technical tool of the paper, the discrete norm equivalences in weighted L2 and
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higher order norms. Section 4 presents the construction of the preconditioner for
the p-FEM, and Section 5 concludes with applications to anisotropic and degen-
erate elliptic problems.

2 Wavelets and Multiresolution analysis

Multiresolution analysis is by now a well established tool in signal processing.
Among the many excellent accounts, we refer the reader to the survey paper [9]
and the references therein. Here we collect only some facts which are useful for
our purpose. We need wavelets on the unit interval [0, 1]. There are different
approaches to define wavelets on a finite interval. Our present method is based on
the construction of orthogonal compactly supported wavelets on [0, 1] given in [7]
and biorthogonal wavelets [11]. A multiresolution analysis on the interval [0, 1]
consists of a nested family of finite dimensional subspaces

�
0 ⊂

�
1 ⊂ . . . ⊂ �

j ⊂
�
j+1 . . . ⊂ . . . ⊂ L2 ((0, 1)) , (1)

such that dim
�
l ∼ 2nl and

⋃

l∈ � 0

�
l = L2 ((0, 1)) , � 0 = {0, 1, . . .}.

Each space
�
l is defined by a single scale basis Φl = {ϕlk}, i.e.,

�
l = span {ϕlk :

k ∈ ∆l}, where ∆l denotes a suitable index set with cardinality #(∆l) ∼ 2nl. An
important requirement is that these bases are uniformly stable, i.e., for any vector
c = {ck, k ∈ ∆l}

‖c‖l2(∆l) ∼
∥

∥

∥

∥

∥

∑

k∈∆l

ckϕ
l
k

∥

∥

∥

∥

∥

0

(2)

holds uniformly in j. Furthermore, the single scale bases satisfy a locality condi-
tion

diam supp (ϕlk) ∼ 2−l. (3)

Instead of using only a single scale l one is interested in the supplement of infor-
mation between an approximation of a function in the spaces

�
l and

�
l+1. Since�

l ⊂
�
l+1 there are several ways to decompose

�
l+1 =

�
l ⊕ � l, with some

complementary space � l, � l ∩
�
l = {0}, not necessarily orthogonal to

�
l. The
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complementary spaces Wl of
�
l in

�
l+1 are spanned by the multi scale bases

Ψl = {ψlk : k ∈ ∇l = ∆l+1/∆l}. It is supposed that the collections Φl ∪ Ψl are
also uniformly stable bases of

�
l+1. If

Ψ =

∞
⋃

l=−1

Ψl,

where Ψ−1 = Φ0, is a Riesz–basis of L2 ((0, 1)) we will call it a wavelet basis. We
assume that these basis functions ψjl are local with respect to the corresponding
scale l, i.e.,

diam supp ψlk ≤ Cψ2−l

and we will normalize them by ‖ψlk‖L2([0,1]) ∼ 1. An important property of these
functions are the vanishing moment property

∫ 1

0

xαψlk(x) dx = 0 , for α = 0, 1, . . . , d̃ . (4)

In the dual space ˜� l we have

∫ 1

0

xαψ̃lk(x) dx = 0 , for α = 0, 1, . . . , d . (5)

We suppose that there exists also a biorthogonal, or dual, Riesz–basis

Ψ̃ = {ψ̃lk : k ∈ ∇l, l = −1, 0, 1, . . .}

such that 〈ψ̃lk, ψij〉 = δk,jδi,l and every v ∈ L2 ((0, 1)) has a representation

v =

∞
∑

l=−1

∑

k∈∇l

〈v, ψlk〉ψ̃lk =

∞
∑

l=−1

∑

k∈∇l

〈v, ψ̃lk〉ψlk (6)

and that the norm equivalence

‖v‖2
0 ∼

∞
∑

l=−1

∑

k∈∇l

|〈v, ψlk〉|2 ∼
∞
∑

l=−1

∑

k∈∇l

|〈v, ψ̃lk〉|2

holds. We refer to [9] for further details.
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If one is going to use the spaces
�
l and

˜�
l = span{ψ̃ik : k ∈ ∇i, i = −1, 0, 1, . . . , l − 1}

multiresolution spaces then additional properties are required. Usually it is as-
sumed that the following Jackson and Bernstein type estimates, respectively ap-
proximation and inverse property, hold for t ≤ τ ≤ d, t ≤ s ≤ γ and uniformly
in l

inf
v∈ � l

‖u− v‖t ≤ c2−l(τ−t)‖u‖τ , u ∈ Hτ , (7)

and
‖v‖s ≤ c2l(s−t)‖v‖t, v ∈ �

l, (8)

where γ, d > 0 are fixed constants given by

γ = sup {s ∈ �
:

�
l ⊂ Hs([0, 1])},

d = sup {s ∈ �
: ex.b0 > 0∀l ≥ 0, u ∈ C∞ : inf

v∈ � l

‖u− v‖0 ≤ b02
−ls‖u‖s}.

Usually, d is the maximal degree of polynomials which are locally contained in
�
l

and is refered to as order of exactness of the multiresolution analysis { �
l}. The

parameter γ denotes the regularity or smoothness of the functions in the spaces
�
l.

We will assume that γ ≤ d, which is the case in all known examples of wavelet
functions. Analogous estimates are valid for the dual multiresolution analysis
{ ˜�

l} with constants γ̃, d̃.

The assumptions that (7), (8) hold with some constants γ0, γ̃0 relative to { �
l},

{ ˜�
l}. They provide a convenient device for switching between the norms ‖ · ‖t

and corresponding sums of weighted wavelet coefficients from the representation
(6). The following norm estimates are a consequence of the approximation and
the inverse inequality

‖v‖2
t ≤ c

∞
∑

l=−1

22lt
∑

k∈∇l

|vl,k|2, (9)

where v =
∞
∑

l=−1

∑

k∈∇l

vl,kψ
l
k and vl,k = 〈v, ψ̃lk〉 and t < γ,

‖v‖2
t ≤ c

∞
∑

l=−1

22lt
∑

k∈∇l

|ṽl,k|2 (10)
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where v =
∞
∑

l=−1

∑

k∈∇l

vl,kψ̃
l
k and ṽl,k = 〈v, ψlk〉 and t < γ̃. We note that by a simple

duality argument there follows the well known norm equivalence

‖v‖2
t ∼

∞
∑

l=−1

22lt
∑

k∈∇l

|wl,k|2 , (11)

for t ∈ (−γ̃0, γ0) if wl,k = 〈v, ψ̃lk〉. In the case wl,k = 〈v, ψlk〉 the above norm
equivalence holds for t ∈ (−γ0, γ̃0), see, e.g., [8] and [25] for the details.

As a technical assumption for proving such a norm equivalence we need that the
wavelets and also the dual wavelets belong to W 1,∞([0, 1]). This is satisfied for
various families of spline wavelets constructed by stable completions, for exam-
ple. In order that the wavelets together with their duals belong to the weighted
function space, we also need a decay condition at the end points. Presently, we
consider subsets

� 0
l ⊂ H1

0 ((0, 1)), i.e. satisfying homogeneous Dirichlet bound-
ary conditions. For the spaces under consideration the index sets ∆l can be char-
acterized by the knots ∆l = {k2−l : k = 0, . . . , 2l} or simply by {k = 0, . . . , 2l}
and ∇l = {(k + 1/2)2−l : k = 0, . . . , 2l − 1} or simply by {k = 1, . . . , 2l}.
It was shown in [12] that there are bases in

�
l and ˜�

l such that φlk(0) = δ0,k
and φ̃lk(0) = δ0,k and vice versa at the other end point. As indicated in [12] one
removes the basis functions φl0, φ̃l0, φl2l and φ̃l2l to define the subspaces

� 0
l :=

span {φlk : k = 1, . . . , 2l − 1} and ˜� 0
l := span {φ̃lk : k = 1, . . . , 2l − 1}. Ob-

viously, all basis functions are zero at the end points. This choice induces other
wavelet spaces � 0

l and wavelet bases {ψlk} (see [12] for further details). The only
difference is that at the end points there are two basis functions ψ lk with k = 1 and
k = 2l−1 for which

∫ 1

0
ψlk(x) dx 6= 0.

For notational convenience we introduce

∇I
l = {k ∈ � , 1 ≤ k ≤ 2l − 1, 0 /∈ supp ψlk}

as the index set corresponding to all wavelets ψlk which have a support with an
distance to 0 and

∇L
l = {k ∈ � , β − 1 ≤ k ≤ 2l − 1, 0 ∈ supp ψlk},

as the index set corresponding to all wavelets ψlk having a support containing 0,
where β ∈ � is specified later.
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3 Condition number of the mass matrix

Using (11),we can show ‖ v ‖0≡
∑∞

l=1

∑

k∈∇l
| wl,k |2. In this chapter, we prove

an estimate for the condition number of the mass-matrix M of a weighted L2,w

norm given by

M =

(

∫ 1

0
w2(x)ψlk(x)ψ

l′

k′(x) dx

w(2−lk)w(2−l′k′)

)

(k,l);(k′,l′)

:=
((

ψlk, ψ
l′

k′

)

w

)

(k,l);(k′,l′)
(12)

in a multiresolution basis (ψlk)(k,l) with the following properties

• The wavelets ψlk and their duals are normed such that ‖ ψlk ‖L1∼ Cψ2
− l

2

holds.

• The wavelets have a vanishing moment condition, e.g.
∫ 1

0
ψlk(x) dx = 0.

We split the main result into several lemmas. Furthermore, we make the following
two assumptions.

ASSUMPTION 3.1. The nonnegative weight function w(x) is assumed to belong
to W 1,∞((δ, 1)) for every δ > 0 and to satisfy

C−1
w ≤ w(x)

xα
≤ Cw, C−1

w ≤ w′(x)

xα−1
≤ Cw,

for some Cw > 0 and some α ∈ � .

Here and in the following, Cw denotes a generic positive constant depending only
on the weight function w(x) which can take different values in different places.
The parameter α will be specified in the next assumption.

At the boundary x = 0, we consider the following kind of multiresolution spaces.

ASSUMPTION 3.2. ψlk ∈ � 0 ⊂ W 1,∞((0, 1)) with 0 ∈ suppψlk satisfies

|ψlk(x)| ≤ Cψ2l/2(2lx)β, |(ψlk)′(x)| ≤ Cψ23l/2(2lx)β−1, (13)

for x ∈ [0, 2−l], β ∈ � ∪ {0}. We assume that α + β > − 1
2

or, equivalently,
2α+ 2β + 1 > 0.
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REMARK 3.1. The estimate (13) is only required for boundary wavelets, that
is k = 1, ..., N . We write k ≈ 1 in this situation. The boundary wavelets ψ lk
with k ≈ 1 satisfy homogeneous Dirichlet boundary conditions up to order β.
Constructions of such boundary wavelets can be found for example in [12, 6].

We note further that these functions generally do not satisfy vanishing moment
conditions.

We assume that our wavelets have compact support, in particular that

supp (ψ0
1) ⊆ [0, 2N − 1]

Furthermore, the parameter CΨ is a constant which is independent of the level
numbers l and l′, and, k and k′.
We prove now two technical lemmas for estimating the weight function.

LEMMA 3.1. Let ξ, 2−l′k′ ∈ [2−l(k − N), 2−l(k + N)] and N ∈ � with 0 <
N < k. Then, the weight function w satisfies

w2(ξ)

w(2−lk)w(2−l′k′)
< Cw

uniformly with respect to l and k.

Proof: Let α > 0, then we estimate

w2(ξ)

w(2−lk)w(2−l′k′)
≤ Cw

ξ2α

(2−lk)α(2−l′k′)α

≤ Cw
(2−l(k +N))2α

(2−lk)α(2−l(k −N))α

= Cw

(

1 +
N

k

)α(
k +N

k −N

)α

≤ CwN
α

due to the fact that fN : � → � fN → k+N
k−N

satisfies 1 ≤ fN(k) ≤ 2N + 1 for
k > N . With the arguments at hand we prove the case α < 0 analogously. 2

LEMMA 3.2. Let k′, ξ and w satisfy the assumptions of Lemma 3.1 and let l < l′.
Then there holds

∣

∣

∣

∣

2−l
[w2]′(ξ)

w(2−lk)w(2−l′k′)

∣

∣

∣

∣

< Cw.
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Proof: Since w2(x) ≥ Cwx
2α and (w2)′(x) ≤ Cwx

2α−1,

(w2)′(x) =
Cw
x
w2(x). (14)

We estimate the term
∣

∣

∣

2−l

ξ

∣

∣

∣
. The remaining term of (14) can be estimated by

Lemma 3.1. There holds
∣

∣

∣

∣

2−l

ξ

∣

∣

∣

∣

≤
∣

∣

∣

∣

2−l

2−l(k −N)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

k −N

∣

∣

∣

∣

≤ 1,

since k −N ≥ 1, i.e. the wavelets are not supported near the point 0. 2

We are now in position to prove the strenghtened Cauchy-Schwarz inequalities.
We consider first the situation when 0 /∈ supp ψlk. We assume that l′ ≥ l.

PROPOSITION 3.1. If l = l′ and 0 /∈ supp ψlk ∪ supp ψl
′

k′ , then there is c > 0
independent of l, l′ such that

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ CψCw. (15)

Proof: Since
(

ψlk, ψ
l′

k′

)

w
= 0 if supp ψlk ∩ supp ψl

′

k′ = ∅, we estimate the left hand
side of (15) in the case supp ψlk ∩ supp ψl

′

k′ 6= ∅. By definition,

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
=

∣

∣

∣

∣

∫ 1

0

w2(x)ψlk(x)ψ
l′

k′(x) dx

w(2−lk)w(2−l′k′)

∣

∣

∣

∣

≤
∣

∣

∣

∣

w2(ξ)

w(2−lk)w(2−l′k′)

∣

∣

∣

∣

∫ 1

0

∣

∣

∣
ψlk(x)ψ

l′

k′(x)
∣

∣

∣
dx

with some suitable ξ ∈ supp ψlk ∩ supp ψl
′

k′ ⊂ [2−l
′

(k′ − N), 2−l
′

(k′ + N)].
According to Lemma 3.1 this expression is bounded by some constant and the
normalization of the wavelets together with the Cauchy-Schwarz inequality gives
the result. 2

We prove now an estimate for
∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣, l′ > l, in the case that ψlk has a support
not containing 0.

LEMMA 3.3. Let l′ > l, 0 /∈ supp ψlk and ψlk ∈ W 1,∞(supp ψl
′

k′). If supp ψlk ∩
supp ψl

′

k′ 6= ∅ then
∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ CψCw2−

3

2
(l′−l).
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Proof: Denote by Ω = suppψl
′

k′ . We write u(x) = w2(x)ψlk(x) at y = 2−l
′

k′ in
the form

u(x) = u(y) +R1u(x), R1u(x) =

∫ x

y

u′(ξ)dξ.

The remainder R1u satisfies for u ∈ W 1,∞(Ω) the estimate, cf. [4],

‖ R1u ‖L∞(Ω)≤ C diam(Ω) | u |W 1,∞(Ω) .

Thus, there holds
∣

∣

∣

∣

∣

∫ 1

0
w2(x)ψlk(x)ψ

l′

k′(x) dx

w(2−lk)w(2−l′k′)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ 1

0
(u(y) +R1u(x))ψl

′

k′(x) dx

w(2−lk)w(2−l′k′)

∣

∣

∣

∣

∣

.

According to the vanishing moment condition, we can conclude

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
=

∣

∣

∣

∣

1

w(2−lk)w(2−l′k′)

∫ 1

0

R1u(x)ψl
′

k′(x) dx

∣

∣

∣

∣

≤ ‖ R1u ‖L∞(Ω)

w(2−lk)w(2−l′k′)

∫ 1

0

∣

∣

∣
ψl

′

k′(x)
∣

∣

∣
dx

≤ diam(Ω)
| u |W 1,∞(Ω)

w(2−lk)w(2−l′k′)

∫ 1

0

∣

∣

∣
ψl

′

k′(x)
∣

∣

∣
dx

≤ Cψ2−l
′ | u |W 1,∞(Ω)

w(2−lk)w(2−l′k′)
2−l

′/2

Moreover, by u(x) = w2(x)ψlk(x)

| u |W 1,∞(supp ψl′

k′
)

w(2−lk)w(2−l′k′)
=

Cψ
w(2−lk)w(2−l′k′)

‖ (w2)′ψlk + w2(ψlk)
′ ‖L∞(supp ψl′

k′
)

≤ Cψ
w(2−lk)w(2−l′k′)

{

‖ (w2)′ ‖L∞ 2
l
2 + ‖ w2 ‖L∞ 2

3l
2

}

.

Due to Lemma 3.2 and Lemma 3.1, we estimate

‖ (w2)′ ‖L∞

w(2−lk)w(2−l′k′)
≤ 2lCw and

‖ w2 ‖L∞

w(2−lk)w(2−l′k′)
≤ Cw,

which gives the desired result. 2

11



REMARK 3.2. If l′ > l and 0 ∈ supp ψlk, but k′ > 2l
′−l, the result

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ c2−

3

2
(l′−l)

follows by the same arguments.

Next, we consider the case that 0 ∈ supp ψlk, but 0 /∈ supp ψl
′

k′ , l
′ > l and

k′ < 2l
′−l.

LEMMA 3.4. Let l′ > l, 0 ∈ supp ψlk and 0 /∈ supp ψl
′

k′ . If 0 < k′ < 2l
′−l then

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ CwCψ2

− 1

2
(l′−l)(1+2α+2β)k′

α+β−1
.

Proof: We develop u(x) = w2(x)ψlk(x) around y = 2−l′k′ in a Taylor series:

u(x) = w2(x)ψlk(x) = w2(y)ψlk(y) +R1u(x).

According to the vanishing moment
∫ 1

0
ψl

′

k′(x) dx = 0 we obtain

∫ 1

0

w2(x)ψlk(x)ψ
l′

k′(x) dx =

∫

supp ψl′

k′

R1u(x)ψ
l′

k′(x) dx. (16)

We note that, for x ∈ [0, 2−l]

|ψlk(x)| ≤ Cψ2
l
2 (2lx)β,

cf. (13) and
|(ψlk)′(x)| ≤ Cψ2

l
2
(1+2β)xβ−1. (17)

Inserting this fact and |(w2)′(x)| ≤ Cwx
2α−1 into the relation (16) we get

I : =

∫ 1

0

w2(x)ψlk(x)ψ
l′

k′(x) dx

≤ ‖ R1u ‖L∞(suppψl′

k′
)

∫ 1

0

|ψl′k′(x)| dx

≤ Cψ2
−3l′/2 ‖ (w2)′ψlk + (ψlk)

′w2 ‖L∞(suppψl′

k′
)

≤ CψCw

∣

∣

∣
(2−l

′

k′)2α+β−12−
3

2
l′2

l
2
(1+2β)

∣

∣

∣

12



due to the assumption 0 /∈ supp ψl
′

k′ . Since 0 ∈ supp ψlk, there holds k ≈ 1 or,
equivalently, 2−lk ≈ 2−l. Inserting the above results, we obtain

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
=

I

w(2−lk)w(2−l′k′)
=

I

(2−lk)α(2−l′k′)α

≤ Cw
I

2−lα(2−l′k′)α
≤ CwCψ

∣

∣

∣
(2−l

′

k′)α+β−12−
3

2
l′2

l
2
(1+2β+2α)

∣

∣

∣
.

Finally, we obtain
∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ CψCw

∣

∣

∣
2−

1

2
|l′−l|(1+2α+2β)k′

α+β−1
∣

∣

∣
,

which is the desired result. 2

From now on, we do not distinguishCw, Cψ and absorb all constants into a generic
c which is independent of l, l′, k, k′.

Summing up the estimate in Lemma 3.4 over all k′ = 1, . . . , 2l
′−l, the next lemma

follows immediately.

LEMMA 3.5. Let l′ > l and 0 ∈ supp ψlk, 0 /∈ supp ψl
′

k′ . Then

2l′−l
∑

k′=1

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ c

{

2−
1

2
|l′−l| if α + β 6= 0

2−
1

2
|l′−l||l′ − l| if α + β = 0

.

Proof: Due to Lemma 3.4, we have
∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ c2−

1

2
|l′−l|(1+2α+2β)(k′)α+β−1

Summation with respect to k′ gives

2l′−l
∑

k′=1

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ c2−

1

2
(1+2α+2β)|l′−l|

2l′−l
∑

k′=1

(k′)α+β−1.

If α + β 6= 0 we get
∑2l′−l

k′=1(k
′)α+β−1 ≤ c2(l′−l)(α+β). In the case α + β = 0 the

harmonic series gives
∑2l′−l

k′=1
1
k′
≤ c|l′ − l|, which proves the lemma. 2

In the extreme case 0 ∈ supp ψlk∩supp ψl
′

k′ , we note that k′ ≈ 1. Then, we obtain
a similar estimate as in Lemma 3.4.

13



LEMMA 3.6. Let l′ > l and 0 ∈ supp ψlk ∩ supp ψl
′

k′ . Then, there holds

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ c2−

1

2
|l′−l|(1+2α+2β).

Proof: We split

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
=

∣

∣

∣

∣

∣

∫ 2−l′

0

w2(x)ψlk(x)ψ
l′

k′(x)

w(2−lk)w(2−l′k′)
dx

+

∫ 2−l′N

2−l′

w2(x)ψlk(x)ψ
l′

k′(x)

w(2−lk)w(2−l′k′)
dx

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ 2−l′

0

w2(x)ψlk(x)ψ
l′

k′(x)

w(2−lk)w(2−l′k′)
dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ 2−l′N

2−l′

w2(x)ψlk(x)ψ
l′

k′(x)

w(2−lk)w(2−l′k′)
dx

∣

∣

∣

∣

∣

. (18)

We estimate now the first integral on the right hand side of (18). From Assumption
3.2 and 0 ∈ supp ψlk ∩ supp ψl

′

k′ we have

|ψlk(x)| ≤ c2
l
2 (2lx)β ≤ c2

l
2
(1+2β)xβ for x ∈ [0, 2−l]

and |ψl′k′(x)| ≤ 2
l′

2
(1+2β)xβ for x ∈ [0, 2−l

′

]. Therefore, using w2(x) ≤ cx2α we
deduce the bound

∣

∣

∣

∣

∣

∫ 2−l′

0

w2(x)ψlk(x)ψ
l′

k′(x) dx

∣

∣

∣

∣

∣

≤ c2
l+l′

2
(1+2β)

∫ 2−l′

0

x2α+2β dx

= c2
l+l′

2
(1+2β)2−l

′(1+2β+2α)

if 2α + 2β > −1, cf. Assumption 3.2. Otherwise this integral does not exist.
Furthermore, from 0 ∈ supp ψlk and 0 ∈ supp ψl

′

k′ , we can conclude 2−lk ∼ 2−l

and 2−l
′

k′ ∼ 2−l
′

. Hence,
∣

∣

∣

∣

∣

∫ 2−l′

0

w2(x)ψlk(x)ψ
l′

k′(x)

w(2−lk)w(2−l′k′)
dx

∣

∣

∣

∣

∣

≤ c2
l+l′

2
(1+2β+2α)2−l

′(1+2β+2α) = c2
l−l′

2
(1+2β+2α).

(19)
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We estimate now the second sum on the right hand side of (18). By w(x) �
w(2−l

′

k′) � w(2−l
′

) for x ∈ supp ψl
′

k′\[0, 2−l
′

) and w(2−lk) � w(2−l) we have

∣

∣

∣

∣

∣

∫ 2−l′N

2−l′

w2(x)ψlk(x)ψ
l′

k′(x)

w(2−lk)w(2−l′k′)
dx

∣

∣

∣

∣

∣

≤ c

∣

∣

∣

∣

∣

∫ 2−l′N

2−l′

w(x)

2−lα
ψlk(x)ψ

l′

k′(x) dx

∣

∣

∣

∣

∣

≤ c2lα2
l′

2

∣

∣

∣

∣

∣

∫ 2−l′N

2−l′

w(x)ψlk(x) dx

∣

∣

∣

∣

∣

.

Now apply w(x) ≤ cxα and |ψlk(x)| ≤ c2
l
2
(1+2β)xβ . The integrals yield the

following estimate

∣

∣

∣

∣

∣

∫ 2−l′N

2−l′

w2(x)ψlk(x)ψ
l′

k′(x)

w(2−lk)w(2−l′k′)
dx

∣

∣

∣

∣

∣

≤ c2
l−l′

2
(1+2α+2β). (20)

Inserting (19) and (20) into (18) proves the lemma. 2

Next, we prove the boundedness of the matricesM = (
(

ψlk, ψ
l′

k′

)

)k,l;k′,l′ in l2 using
the well known Schur lemma. For this purpose, the next proposition determines
the number of nonzero entries for the matrix M .

PROPOSITION 3.2. For fixed integer l′ > l each row of the block matrixMl,l′ =
(
(

ψlk, ψ
l′

k′

)

)l,l′ contains at most O(2l−l
′

) nonzero entries while the columns contain
at most O(1) nonzero matrix entries.

Proof: The assertion follows directly from the properties of hierarchical basis
functions, cf. [25]. 2

Now, we start with the case 0 /∈ supp ψlk ∩ supp ψl
′

k′ . For wavelets ψlk, k ∈ ∇I
l ,

we prove now the boundedness of the corresponding block of the mass matrix.

THEOREM 3.1. If 0 /∈ supp ψlk then

∞
∑

l=1

∑

k∈∇I
l

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
2−

l
2 ≤ c2−

l′

2 k′ ∈ �

15



Proof: Let k ∈ ∇I
l and k′ ∈ ∇I

l′ . Then it follows by Lemma 3.3 and Proposition
3.2
∞
∑

l=1

∑

k∈∇I
l

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
2−

l
2 ≤ c

∞
∑

l=1

∑

k∈∇I
l

2−
l
2 2−

3

2
|l−l′|δsupp ψl

k
,supp ψl′

k′

≤ c

(

l′
∑

l=1

2−
3

2
(l′−l)2−

l
2 +

∞
∑

l=l′+1

2−
3

2
(l−l′)2−

l
2 2l−l

′

)

= c2−
l′

2 ,

where δM1,M2 = 0 if meas(M1 ∩M2) = ∅ and δM1,M2 = 1 else. We consider
now the case k′ ∈ ∇L

l′ . Then, for l < l′ there holds
∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
= 0 k ∈ ∇I

l , k
′ ∈ ∇L

l′ (21)

and we estimate

∞
∑

l=1

∑

k∈∇I
l

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
2−

l
2 =

∞
∑

l=l′





2l−l′

∑

k=1

+
∑

k>2l−l′





∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
2−

l
2 (22)

=: A1 + A2.

We apply now Lemma 3.5 to estimate the first sum A1 of (22) by

A1 =
∞
∑

l=l′

2−
l
2 2

l′−l
2 (l − l′) = 2−

l′

2

∞
∑

l=l′

2l
′−l(l − l′) = 2−

l′

2

∞
∑

l=0

2−ll = c2−
l′

2

for α + β = 0 and

A1 =
∞
∑

l=l′

2−
l
2 2

l′−l
2

(2α+2β+1) = 2−
l′

2

∞
∑

l=l′

2(l′−l)(α+β+1) = c2−
l′

2

for α+ β 6= 0 and α+ β > −1. The second term A2 of (22) can be handled as in
the case of k′ ∈ ∇I

l′ , cf. Remark 3.2. 2

REMARK 3.3. The proof allows to obtain the estimate

∞
∑

l=1

∑

k∈∇I
l

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ c

for all k′ ∈ � in the same way.
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Next, we consider the case k ∈ ∇L
l and k′ ∈ ∇I

l′ .

LEMMA 3.7. There holds
∞
∑

l=1

∑

k∈∇L
l

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ c k′ ∈ ∇I

l′.

Proof: We note that for l > l′ holds
∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
= 0 k ∈ ∇L

l , k
′ ∈ ∇I

l′, (23)

cf. (21). Then, we can conclude

∞
∑

l=1

∑

k∈∇L
l

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
=

l′
∑

l=1

∑

k∈∇L
l

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
.

Using Proposition 3.2, we note the second summation
∑

k∈∇L
l

has only O(1)

nonzero summands. We distinguish now two cases 1 < k ′ < 2l
′−l and k′ ≥ 2l

′−l.
We start with 1 < k′ < 2l

′−l and obtain by Lemma 3.4

l′
∑

l=1

∑

k

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ c

l′
∑

l=1

2−
1

2
(l′−l)(1+2α+2β)(k′)α+β−1.

If α + β ≥ 1 then (k′)α+β−1 ≤ (2l
′−l)α+β−1. Then, we can conclude

l′
∑

l=1

∑

k

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ c

l′
∑

l=1

2
3

2
(l−l′) ≤ c. (24)

In the case α + β < 1 we estimate (k′)α+β−1 ≤ 1 and obtain by the geometric
series

l′
∑

l=1

∑

k

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ c (25)

if 2α + 2β + 1 > 0. If k′ ≥ 2l
′−l we obtain using Lemma 3.3 the estimate (24)

directly for all α, β ∈ � . 2

For the sums

2
l
2

∞
∑

l′=1

∑

k′∈∇L
l′

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
2−

l′

2
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the estimates can be obtained in the same way. We obtain only in the case α+β =
0 a structurally modified result since we have in (25) a summation over 1s rather
than a convergent series.

REMARK 3.4. There holds

∞
∑

l=1

∑

k∈∇L
l

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
2−

l
2 ≤ c

{

2−
l′

2 if α+ β 6= 0

l′2−
l′

2 if α+ β = 0
k′ ∈ ∇I

l′.

The last case to be considered is k ∈ ∇L
l and k′ ∈ ∇L

l′ .

LEMMA 3.8. There holds
∞
∑

l=1

∑

k∈∇L
l

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ c k′ ∈ ∇L

l′ .

Proof: We note that on each level l not more than O(1) wavelets ψ lk satisfy 0 ∈
supp ψlk. Therefore the summation over k ∈ ∇L

l is done over maximal O(1)
scalar products

(

ψlk, ψ
l′

k′

)

w
. By Lemma 3.6 we have the following estimate

∞
∑

l=0

∑

k∈∇L
l

∣

∣

∣

(

ψlk, ψ
l′

k′

)

w

∣

∣

∣
≤ c

∞
∑

l=0

2−
1

2
|l′−l|(1+2α+2β) ≤ c

iff 1 + 2α + 2β > 0. 2

Now, we are able to formulate the main results of this section.

THEOREM 3.2. The matrix M = (
(

ψlk, ψ
l′

k′

)

w
)(k,l);(k′,l′) is bounded in l2.

Proof: We decompose the matrix M into M = M1 + M2 where the coefficients
in M2 are

(

ψlk, ψ
l′

k′

)

w
iff 0 ∈ supp ψlk ∩ supp ψl

′

k′ and M1 does not contain the
interaction of wavelets which are both located at the point zero. By applying
Theorem 3.1, Lemma 3.7 and the Schur Lemma toM1 we have ‖M1 ‖2≤ c. From
Lemma 3.8 we have ‖ M2 ‖1≤ c and ‖ M2 ‖∞≤ c which shows ‖ M2 ‖2≤ c.
Hence, the assertion is proven. 2

We show now the equivalence of the L2
w norm of a function

u =
∞
∑

l=l0

∑

k

ulkψ
l
k ∈ L2

w ([0, 1])
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with its discrete l2w norm of the coefficients ulk ∈ � , i.e.
�
ulk

�
2
w :=

∑

l

∑

k

w2(2−lk)|ulk|2.

THEOREM 3.3. For any u =
∑∞

l=l0

∑

k u
l
kψ

l
k ∈ L2

w ((0, 1)) holds

‖ u ‖2
w≈

�
ulk

�
2
w .

Proof: From Theorem 3.2 we conclude

‖ u ‖2
w =

∑

l,l′

∑

k,k′

ulku
l′

k′w(2−lk)w(2l
′

k′)
(

ψlk, ψ
l′

k′

)

w

≤ ‖M ‖2

(

∑

l

∑

k

∣

∣ulk
∣

∣w(2−lk)

)2

≤ c
�
ulk

�
2
w .

To prove the lower estimate we consider the dual system

ṽ =
∑

l

∑

k

ṽlkψ̃
l
k = G(ṽlk)

in the dual space L2
w−1 ((0, 1)). We denote by M̃ the mass matrix of the dual

wavelet basis ψ̃lk with respect to the L2
w−1 ((0, 1)) innerproduct. Then, by the

same arguments
‖ ṽ ‖2

w−1≤‖ M̃ ‖2

�
ṽlk

�
2
w−1 .

This means G : l2w−1 → L2
w−1 ((0, 1)) is bounded. Therefore, the adjoint operator

G∗ : L2
w ((0, 1)) → l2w is bounded, too. G∗ is explicitly given by

G∗u :=
(

〈u, ψ̃lk〉
)

l,k
= (ulk)l,k

which proves the lower bound. 2

4 Application to the p-Version of the FEM

The theory of Chapter 3 can be applied to find a fast solver for the element stiff-
ness matrices in the p-Version of the FEM in two and three dimensions. The basic
idea is to precondition the p-FEM stiffness matrices by corresponding h-FEM ma-
trices which are spectrally equivalent and for which efficient inversion is possible.
Previous work focused on tensor products of linear elements on suitably graded
meshes, see Ivanov and Korneev [17], [18], Jensen and Korneev [19], and Mund
[14].
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4.1 Model Problem

We consider the model problem

−4u = f in R = (−1, 1)d̂, d̂ = 2, 3 (26)

u = 0 on ∂R. (27)

We solve (26,27) approximately using the p−version of the FEM with only one
element R. As finite element space, we choose

�
= {u |R∈ Qp, u = 0 on ∂R},

where Qp is the space of all polynomials of degree p in each variable. The dis-
cretized problem is: find up ∈

�

∫

R

∇up · ∇vp d(x, y) =

∫

R

fvp d(x, y)

for all vp ∈ �
. As basis in

�
, we choose the integrated Legendre polynomials,

which we define below.
Let for i = 0, 1, . . . , Li(x) = 1

2ii!
di

dxi (x
2 − 1)i for i ≥ 2 the i-th Legendre polyno-

mial,

L̂i(x) =

√

(2i− 3)(2i− 1)(2i+ 1)

4

∫ x

−1

Li−1(s) ds

the i-th integrated Legendre polynomial. By definition,

L̂0(x) =
1 + x

2
, L̂1(x) =

1 − x

2
.

These scaled integrated Legendre polynomials were introduced by Jensen and
Korneev [19]. As basis in

�
, we choose

L̂ij(x, y) = L̂i(x)L̂j(y), or L̂ijk(x, y, z) = L̂i(x)L̂j(y)L̂k(z), (29)

with 2 ≤ i, j, k ≤ p for d̂ = 2 or d̂ = 3.

For satisfying (27), the polynomials L̂0 and L̂1 are not used. The stiffness matrix
Kd̂ for (26) with d̂ = 2 is determined by K2 = (aij,kl)

p
i,j=2;k,l=2, where

aij,kl =

∫

R

∇L̂ij(x, y) · ∇L̂kl(x, y) d(x, y) for d̂ = 2.
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By a simple calculation it follows

K2 = F ⊗D +D ⊗ F for d̂ = 2.

Analogously, we get

K3 = F ⊗ F ⊗D + F ⊗D ⊗ F +D ⊗ F ⊗ F for d̂ = 3,

where

F =

















1 0 −c2 0 · · ·
1 0 −c3 . . .

1 0
. . .

SYM
. . . . . . . . .

1

















is the one-dimensional mass-matrix and

D = diag(di)
p
i=2 =







d2 0 · · ·
0 d3

. . .

0 0
. . .







is the one-dimensional stiffness matrix with the coefficients

ci =

√

(2i− 3)(2i+ 5)

(2i− 1)(2i+ 3)
, and di =

(2i− 3)(2i+ 1)

2
,

[19]. Using a permutation P of rows and columns, there holds

P tFP =

(

F1 0

0 F2

)

, P tDP =

(

D1 0

0 D2

)

where D1 = diag(d2, d4, d6, . . .), D2 = diag(d3, d5, d7, . . .),

F1 = tridiag(−ce, 1,−ce) =











1 −c2 0 . . . 0
−c2 1 −c4 0 . . .
0 −c4 1 −c6
...

. . .











,

F2 = tridiag(−co, 1,−co)

with co = (c3, c5, c7, . . .).
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4.2 Preconditioning

We introduce now the following two matrices T and M̂3, given by

T = tridiag(−1, 2,−1) and M̂3 = tridiag(a,b, a), (33)

where

a =

(

i2 + i +
3

10

)n−1

i=1

and b =

(

4i2 +
2

5

)n

i=1

.

These matrices can be used as preconditioniers for the matrices F and D. The
following lemma holds, (cf. [1] and the references therein to Jensen and Korneev
[19]).

LEMMA 4.1. The following eigenvalue estimates are valid for i = 1, 2

λmin(Di
− 1

2 M̂3Di
− 1

2 ) ≥ c, λmax(Di
− 1

2M̂3Di
− 1

2 ) ≤ C,

λmin(Fi
− 1

2TFi
− 1

2 ) ≥ c

1 + log n
, λmax(Fi

− 1

2TFi
− 1

2 ) ≤ C.

Now, we show how the matrices T and M̂3 arise. To this end, we consider the
following auxiliary problem in one dimension: find u ∈ H1

0 ((0, 1)), such that

a1(u, v) = as(u, v) + am(u, v) = 〈g, v〉 (34)

holds for all v ∈ H1
0 ((0, 1)). The bilinear forms as(·, ·) and am(·, ·) are defined as

follows

as(u, v) =

∫ 1

0

u′(x)v′(x) dx = 〈u′, v′〉w=1 ∀u, v ∈ H1
0 ((0, 1)) ,

am(u, v) =

∫ 1

0

x2u(x)v(x) dx = 〈u, v〉w=x ∀u, v ∈ L2
w ((0, 1)) .

We discretize this one-dimensional problem (34) by using linear elements on the
uniform mesh

⋃n−1
i=0 τ

l
i , where τ li =

(

i
n
, i+1
n

)

. The number n of elements is as-
sumed to be a power of two, i.e. n = 2l where l denotes the level number. On this
uniform mesh we introduce the one-dimensional hat-functions

φ
(1,l)
i =







nx− (i− 1) on τ li
(i+ 1) − nx on τ li+1

0 else
for i = 1, . . . , n− 1.
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Let
(Tw)ij = 〈(φ(1,l)

i )′, (φ
(1,l)
j )′〉w and (Mw)ij = 〈φ(1,l)

i , φ
(1,l)
j 〉w. (35)

Then, an easy calculation shows, cf. [1], Tw=1 = n
2
T andMw=x = cM̂3 with some

constant c depending on n. So, we see the reason for introducing the matrices T
and M2 (33). By tensor product arguments, the following theorem holds.

THEOREM 4.1. Let

A2 = T ⊗ M̂3 + M̂3 ⊗ T,

A3 = T ⊗ T ⊗ M̂3 + T ⊗ M̂3 ⊗ T + M̂3 ⊗ T ⊗ T.

Furthermore let P2 and P3 permutation matrices, and

K̃d̂ = Pd̂blockdiag [Ad̂]
2d̂

i=1 P
t
d̂

for d̂ = 2, 3.

Then the condition number κ of K̃
− 1

2

d̂
Kd̂K̃

− 1

2

d̂
can be estimated by

κ(K̃
− 1

2

d̂
Kd̂K̃

− 1

2

d̂
) ≤ c(1 + log p)d̂−1 for d̂ = 2, 3.

Proof: The assertion follows by Lemma 4.1 and tensor product arguments. For
more details see [1]. 2

4.3 Wavelet Preconditioning

The matrices A2 and A3 are the stiffness matrices for discretizing in Ω = (0, 1)d̂

the following singular elliptic problems

−x2uyy − y2uxx = f, u |∂Ω= 0 for d̂ = 2,

x2uyyzz + y2uxxzz + z2uxxyy = f, u |∂Ω= 0 for d̂ = 3

using bi- or trilinear finite elements on the graded tensor product mesh τ li × τ lj for

d̂ = 2 or τ li × τ lj × τ lk for d̂ = 3. For more details, see [1].

Using Theorem 3.3 and Theorem 4.1 a wavelet preconditioner for Kd̂ can there-
fore be built as follows.
Let Q be the basis transformation matrix from the wavelet basis {ψ lk}k,l to the
basis {φ(1,l)

i }2l−1
i=1 . Furthermore let

Dm,w = diag
(

〈ψlk, ψlk〉w
)

, Ds,w = diag
(

〈(ψlk)′, (ψlk)′〉w
)

.
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From Theorem 3.3 with w(ξ) = ξ, we have for some c > 0 independent of p

κ(QtD−1
m,w=xQM̂3) ≤ c (36)

and from the properties of a multi resolution basis, cf. (11), we can conclude

κ(QtD−1
s,w=1QT ) ≤ c. (37)

Thus, by the properties of the Kronecker product follows κ(Q2A2) ≤ c where

Q2 = (Qt ⊗Qt)(Dm,w=x ⊗Ds,w=1 +Ds,w=1 ⊗Dm,w=x)
−1(Q⊗Q) (38)

and by Theorem 4.1

κ(P2blockdiag [Q2]
4
i=1 P

t
2K2) ≤ c(1 + log p).

Defining a matrix

Q3 = (Qt ⊗Qt ⊗Qt)(Dm,w=x ⊗Ds,w=1 ⊗Ds,w=1 (39)

+Ds,w=1 ⊗Dm,w=x ⊗Ds,w=1

+Ds,w=1 ⊗Ds,w=1 ⊗Dm,w=x)
−1(Q⊗Q⊗Q)

a similar result is true for d̂ = 3. Therefore, the following theorem is proven.

THEOREM 4.2. The matrices Qd̂ (38) and (39) satisfy

κ
(

Pd̂blockdiag [Qd̂]
2d̂

i=1
P t
d̂
Kd̂

)

≤ c(1 + log p)d̂−1 for d̂ = 2, 3.

Therefore, a nearly optimal preconditioner for the element stiffness matrix Kd̂ in
the p-version of the FEM is found.

Remark 4.1. This approach can be extended to discretizations of (26),(27) in
which the polynomial degree in the variables x and y is anisotropic. If R =
(−a1, a1) × (−a2, a2) or R = (−a1, a1) × (−a2, a2) × (−a3, a3) the precondi-
tioners Qd̂ can be used, too. However, instead of (38),

Q2 = (Qt ⊗Qt)(
a1

a2
Dm,w=x ⊗Ds,w=1 +

a2

a1
Ds,w=1 ⊗Dm,w=x)

−1(Q⊗Q)

should be used. Then, Theorem 4.2 holds with constants independent of the pa-
rameters a1 and a2. An analogous modification is possible for Q3 (39).

24



4.4 Arithmetical cost

We consider now total cost for solving Kd̂u = f with a preconditioned gradi-
ent method and the matrix Qd̂, (38),(39) as preconditioner. Let p the polynomial
degree, n = p−1

2
. Focus on one block of Kd̂. In one iteration, one matrix-vector-

multiplication costs O(nd̂) arithmetical operations. The cost for the precondi-
tioner is O(nd̂), too. Therefore, the cost for one iteration of the pcg-method is of
order nd̂. The number of iterations it to obtain a fixed relative accuracy ε for the
preconditioned residuum is, cf. Theorem 4.1, and the theory of the pcg-method,

it � | log ε |
√

κ
(

Pd̂blockdiag [Qd̂]
2d̂

i=1 P
t
d̂
Kd̂

)

= c | log ε |
√

1 + (log p)d̂−1

= c | log ε |
{ √

1 + log p for d̂ = 2

1 + log p for d̂ = 3
.

Therefore, the total cost for solving K2u = f is of O(| log ε | p2
√

1 + log p) and
for K3u = f is of O(| log ε | p3(1 + log p)).

4.5 Numerical results

We now illustrate the performance of the wavelet preconditioner by numerical
examples. We consider the following three multiresolution bases ψ2,s, s = 2, 4, 6,
cf. Figure 1. The functions ψ2,s are piecewise linear and satisfy (5) with d+1 = 2
and (4) with d̃+ 1 = s, s = 2, 4, 6. Note, that ψ̃22 is not continuous.

4.5.1 Condition number of mass matrix

Figure 2 displays the condition numbers of the matrix M (12) with the scaling
function w(ξ) = ξ in the multiresolution bases ψ2,s, s = 2, 4, 6. Note, that the
entry to ψlk is scaled with w(2−lk)2. With an another choice of diagonal scaling
the condition number cannot be significantly improved in the case of w(ξ) = ξ.
From the results it can be concluded that the condition numbers depend strongly
on the choice of the wavelet. The condition numbers are bounded or grow pro-
portionally to the logarithmus of the number of unknowns for all multiresolution
bases considered. The wavelet ψ22 shows the lowest condition numbers of about
15.
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Figure 1: Wavelets ψ22, ψ24 and their duals.

4.5.2 Preconditioner for the p-Version FEM

In this subsection, the systemKd̂u = f for d̂ = 2, 3 is considered. In all numerical
examples, the number of iterations of the pcg-method for reducing the error of the
residuum in the preconditioned energy norm to the factor ε = 10−10 is displayed.
The matrices Qd̂, (38) for d = 2 and (39) for d̂ = 3, are chosen as preconditioner.
Figure 3 displays the number of iterations for d̂ = 2, 3. In both cases, the number
of iterations grow moderately for the wavelet ψ22. However, for ψ26 the growth is
logarithmic, but the absolute number of iterations, i.e. about 1000 for d̂ = 3 and
p = 255, are too large.
Now, we compare these iterative methods with direct solvers for K3u = f . Two
direct methods are considered:

• Cholesky-decomposition with lexicographic ordering of the unknowns,

• Cholesky-decomposition with a nested ordering of the unknowns, cf. [15],
[16].

Both methods are compared with a pcg-method using the preconditioner Q3, (39)
and the wavelet ψ22. The relative accuracy is ε = 10−10. On the left picture of
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Figure 2: Condition number of the mass matrix.
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Figure 3: Number of iterations of the pcg for Kd̂ with prec. Qd̂, d̂ = 2 (left),
d̂ = 3 (right).

Figure 4, the number of floating point operations are compared, on the right one
the time for solving K3u = f . From the results can be concluded, that for p ≤ 15
the nested Cholesky decomposition is faster than the pcg-method with wavelet-
preconditioner. However, for p > 15 the iterative solver is faster.
We observe also that for d̂ = 2 the preconditioner based on ψ22 compares favour-
ably with algebraic multigrid preconditioners developed in [2], Table 4.3. We
note, that all calculations are done on a Pentium III, 800 MHz.
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5 Application to degenerate elliptic problems

Second order elliptic problems with degenerate diffusion arise in a number of
applications. The weighted norm equivalences established in this paper allow us
to precondition finite element discetizations of such equations optimally.

5.1 1-d Model Problem

We consider the following model problem in the one-dimensional domain Ω =
(0, 1): find u ∈ H1

w,0(Ω) such that

a(u, v) := 〈u′, v′〉w + 〈u, v〉

=

∫ 1

0

(

x2u′v′ + uv
)

dx =

∫ 1

0

fv dx ∀v ∈ H1
w,0(Ω) (40)

where H1
w,0(Ω) denotes the H1 space with weight w(x) = x, i.e.

H1
w,0(Ω) = {u ∈ L2(0, 1) : xu′ ∈ L2(0, 1), u(1) = 0}.

The space H1
w,0(Ω) equipped with the norm ‖ u ‖2

1,w:= a(u, u) is a Hilbert space
and hence the problem (40) admits, for every f ∈ (H1

w,0(Ω))∗, a unique solution
by the Lax-Milgram Lemma.

We discretize (40) by piecewise linear finite elements on a uniform mesh of mesh-
width h = 2−L, L ≥ 1, with zero Dirichlet boundary conditions at the right end
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point x = 1. Denoting by
� 0
l ⊂ H1

w,0(Ω) the corresponding subspace and, as
in the case of H1

0 ((0, 1)), we denote the corresponding spline wavelet spaces by
� 0

l , l = 0, ..., L and the wavelet bases by {ψlk}, again normalized so that

||ψlk||L2(Ω) = 1. (41)

The stiffness matrix A corresponding to the form a(·, ·) is then given by

A = Dw=x +Gw=1, (42)

where
Dw =

(

〈(ψlk)′, (ψl
′

k′)
′〉w
)

, Gw =
(

〈ψlk, ψl
′

k′〉w
)

. (43)

Due to the normalization (41), we have the norm equivalence which is analogous
to (11), namely

‖u‖2
t ∼

∞
∑

l=−1

22lt
∑

k∈∇l

|ul,k|2 (44)

for all u ∈ H1
0 (Ω) and for t ∈ (−γ0, γ̃0), where ul,k = 〈u, ψ̃lk〉. Analogously to

Theorem 3.3 we can prove

THEOREM 5.1. For u =
∑L

l=l0

∑

k u
l
kψ

l
k holds the norm equivalence

‖ u′ ‖2
w≈

∑

l

22l
∑

k

w2(2−lk)|ulk|2 =
∑

l

∑

k

k2|ulk|2

uniformly in L.

Note that the summation over k runs, in level l, from k = 1 to kmax = O(2l), i.e.
the weight in the discrete norm equivalence ranges from L2 for the contributions
near x = 0 to H1 near x = 1.

As a corollary, we can give a preconditioner for the matrixA in (40) wherew(x) =
x.

Proposition 5.1. Denote by C the matrix with entries given by

C(l,k),(l′,k′) = kδk,k′δl,l′.

Then there is c > 0 independent of L such that for the stiffness matrix A of (40)
holds

cond2(C
−1AC−1) ≤ c <∞.
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The proof follows from Theorem 5.1 if we note that for every u↔ u

u>Dw=xu ∼
∫ 1

0

x2|u′|2dx ∼ u>C2u, u>Gw=1u ∼ u>u

due to the normalization (41) of the wavelets implies that

v>C−1Dw=xC
−1v ∼ v>v

and

v>v ≤ cv>C−1Dw=xC
−1v ≤ cv>C−1(Dw=x +Gw=1)C

−1v ≤ cv>v

for some c > 0 independent of L and any vector v.

5.2 2-d anisotropic problems

We consider the following two problems in the two-dimensional domain Ω =
(0, 1)2

• find u ∈ H1
w,0(Ω) such that

∫

Ω

(w2(x)w2(y)uxvx+uyvy+uv) d(x, y) =

∫

Ω

fv d(x, y) ∀v ∈ H1
w,0(Ω)

(45)

• find u ∈ H1
w,w,0(Ω) such that

∫

Ω

(w2(x)w2(y)(uxvx + uyvy) + uv) d(x, y) =

∫

Ω

fv d(x, y) (46)

for all v ∈ H1
w,w,0(Ω) holds.

where H1
w,0(Ω) denotes a weighted H1 space with weight w(x) = x, i.e.

H1
w,0(Ω) = {u ∈ L2(Ω), uy, w(x)w(y)ux ∈ L2(Ω), u(x, 1) = u(1, y) = 0}

and H1
w,w,0(Ω) is the weighted Sobolev space

H1
w,w,0(Ω) = {u ∈ L2(Ω), w(x)w(y)ux, w(x)w(y)uy ∈ L2(Ω),

u(x, 1) = u(1, y) = 0}.
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We discretize (45,46) by piecewise bilinear finite elements on the uniform tensor
product mesh τ li × τ lj . The stiffness matrix in the multiresolution-basis
{ψlk(x)ψLK(y)}(k,l),(K,L) is given by

B2 = Dw=x ⊗Gw=x +Gw=1 ⊗Dw=1 +Gw=1 ⊗Gw=1 for (45),

B3 = Dw=x ⊗Gw=x +Gw=x ⊗Dw=x +Gw=1 ⊗Gw=1 for (46)

with the matrices Dw and Gw introduced by relation (43). Denote by Cs,w and
Cm,w the diagonal matrices with entries given by

Cs,w(l,k),(l′,k′) = δk,k′δl,l′2
2lw2(2−lk), Cm,w(l,k),(l′,k′) = δk,k′δl,l′w

2(2−lk)

and let

C2 = (Cs,w=x ⊗ Cm,w=x + Cm,w=1 ⊗ Cs,w=1 + Cm,w=1 ⊗ Cm,w=1)
1

2 ,

C3 = (Cs,w=x ⊗ Cm,w=x + Cm,w=x ⊗ Cs,w=x + Cm,w=1 ⊗ Cm,w=1)
1

2 .

Then, by Theorem 5.1, Theorem 3.3, relation (11) and tensor product arguments
the following assertion is valid.

THEOREM 5.2. There holds for i = 2, 3 cond2(C
−1
i BiC

−1
i ) ≤ c < ∞ where

the constant c is independent on the level number l.

5.3 Numerical examples

We give now some numerical examples for the condition number of the matrix
C−1AC−1 in the l2-norm for the wavelets ψ22. Note, that this wavelet does not
satisfy the assumptions of Theorem 5.1. Unlike in the one-dimensional case, there
are now several ways to extract a preconditioner from the stiffness matrix A. We
investigate here numerically three different constructions of preconditioners C.
Cases A and C correspond to the usual block-diagonal preconditioners similar
to those employed in one dimension. The numerical experiments revealed that
although the condition number is bounded uniformly in the number of levels L, is
abosolute value is still rather large. In the construction of the preconditioner, the
most delicate problem are the wavelets at the boundary x = 0. For improving the
condition number of C−1AC−1 we consider therefore as case B a matrix CB in
which the entries corresponding to wavelets ψlk with 0 ∈ supp ψlk, i.e. with k = 1,
are not set to 0. Then, for solving CBw = r a linear system of dimension log2 n
has to be solved via Cholesky decomposition. Specifically, below the following
three types of preconditioning matrices C are considered.
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• case A:

CA
(l,k),(l′,k′) =

√

〈(ψlk)′, (ψlk)′〉wδk,k′δl,l′,

• case B:

CB
(l,k),(l′,k′) =







√

〈(ψlk)′, (ψl
′

k′)
′〉w if k = k′, l = l′

√

〈(ψlk)′, (ψl
′

k′)
′〉w if k = k′ = 1

0 else

,

• case C:
C(l,k),(l′,k′) = kδk,k′δl,l′.
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Figure 5: Condition number of the matrix A.

Figure 5 displays the condition numbers of C−1AC−1 choosing the wavelets ψ22.
One can see in all cases the same asymptotic behaviour. However, the condition
number is about 8 for case CB, in contrast to about 30 for the other cases.
Next, we consider the matrices C−1

i BiC
−1
i . In the corresponding one dimensional

example, we have seen that the matrix C = CB reduces the condition number of
C−1AC−1 in comparison to diagonal matrices C = CA or C = CC . Thus, instead
of C−1

i BiC
−1
i , i = 2, 3 we consider (CB

i )−1Bi where

CB
2 = CB ⊗ Cm,w=x + Cm,w=1 ⊗ Cs,w=1 + Cm,w=1 ⊗ Cm,w=1,

CB
3 = CB ⊗ Cm,w=x + Cm,w=x ⊗ CB + Cm,w=1 ⊗ Cm,w=1.
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Note, that the matrices Cm,w=1, Cs,w=1 and Cm,w=x are diagonal matrices. More-
over, the matrix CB can be written as

CB =

(

DB
0

0 RB

)

where DB is a diagonal matrix and RB is a fully populated matrix of dimension
log2 n, corresponding to the wavelets with k = 1. Thus, for solving the n2 × n2

system CB
2 w = r we have to solve n symmetric, positive definite linear systems

of dimension log2 n and a diagonal system of dimension n2 − n log2 n. Using
here a Cholesky decomposition, the total cost for these solves is asymptotically
n2 + 1

6
n(log2 n)3. With analogous arguments it can be shown that the total cost for

solving CB
3 w = r is asymptotically n2 + 1

6
(2n− 1)(log2 n)3 + 1

6
(log2 n)6. Table

1 displays the condition numbers of (CB
i )−

1

2Bi(C
B
i )−

1

2 for i = 2, 3 in the l2-norm
using the wavelets ψ22. We observe moderate growth of the condition numbers

Level 3 4 5 6
cond2((C

B
2 )−

1

2B2(C
B
2 )−

1

2 ) 8.2 10.1 11.5 14.6
cond2((C

B
3 )−

1

2B3(C
B
3 )−

1

2 ) 6.0 10.1 14.1 18.4

Table 1: Condition numbers of (CB
i )−

1

2Bi(C
B
i )−

1

2 .

which behaves roughly logarithmically with respect to n.
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