
Technische Universität Chemnitz

Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

W. Dahmen, H. Harbrecht and R. Schneider

Compression Techniques for Boundary
Integral Equations – Optimal Complexity

Estimates

Preprint SFB393/02-06

Preprint-Reihe des Chemnitzer SFB 393
ISSN 1619-7178 (Print) ISSN 1619-7186 (Internet)

SFB393/02-06 April 2002



Author’s addresses:

W. Dahmen
RWTH Aachen
Institut für Geometrie und Praktische Mathematik
Templergraben 25
D-52056 Aachen

H. Harbrecht and R. Schneider
TU Chemnitz
Fakultät für Mathematik
D-09107 Chemnitz

http://www.tu-chemnitz.de/sfb393/



Abstract. In this paper matrix compression techniques in the context of wavelet Galerkin schemes for boundary
integral equations are developed and analyzed that exhibit optimal complexity in the following sense. The fully
discrete scheme produces approximate solutions within discretization error accuracy offered by the underlying
Galerkin method at a computational expense that is proven to stay proportional to the number of unknowns.
Key issues are the second compression, that reduces the near field complexity significantly, and an additional a-
posteriori compression. The latter one is based on a general result concerning an optimal work balance, that applies,
in particular, to the quadrature used to compute the compressed stiffness matrix with sufficient accuracy in linear
time. The theoretical results are illustrated by a 3D example on a nontrivial domain.

AMS Subject Classification: 47A20, 65F10, 65F50, 65N38, 65R20
Key Words: Wavelets, norm equivalences, multilevel preconditioning, first and second compres-
sion, a-posteriori compression, asymptotic complexity estimates.

1. Introduction. Many mathematical models concerning e.g. field calculations, flow simu-
lation, elasticity or visualization are based on operator equations with global operators, especially
boundary integral operators. Discretizing such problems will then lead in general to possibly very
large linear systems with densely populated matrices. Moreover, the involved operator may have
an order different from zero which means that it acts on different length scales in a different way.
This is well known to entail the linear systems to become more and more ill-conditioned when
the level of resolution increases. Both features pose serious obstructions to the efficient numerical
treatment of such problems to an extent that desirable realistic simulations are still beyond current
computing capacities.

This fact has stimulated enormous efforts to overcome these obstructions. The resulting signif-
icant progress made over the past ten or fifteen years manifests itself in several different approaches
such as panel clustering (PC) [18], multipole expansions (MP) [17] and wavelet compression (WC)
[1]. Each of these methodologies has its recognized advantages and drawbacks whose balance may
depend on the problem at hand. The first two (PC), (MP) are quite similar in spirit and exploit
perhaps in the best way the (typical) smoothness of the integral kernel away from the boundary
manifold. As a consequence, they are fairly robust with regard to the shape and complexity of
the boundary manifold. Common experience seems to indicate that the third option (WC) de-
pends in a more sensitive way on the underlying geometry and its performance may suffer from
strong domain anisotropies. On the other hand, (WC) allows one in a natural way to incorporate
preconditioning techniques which very much supports the fast solution of the resulting sparsified
systems. Moreover, recent developments suggest a natural combination with adaptive discretiza-
tions to keep from the start, for a given target accuracy, the size of the linear systems as small
as possible. The perhaps main difference between (PC), (MP) on one hand, and (WC) on the
other hand, is that the former are essentially agglomeration techniques, while (WC) is more apt
to refining a given coarse discretization. Since these methodologies are in that sense somewhat
complementary in spirit, it is in our opinion less appropriate to contrapose them, but one should
rather try to get out the best from each option.

As indicated before, a preference for any of the above mentioned solution strategies will, in
general, depend on the concrete application at hand. The objective of this paper is therefore
to provide a complete analysis of the wavelet approach (WC) from the following perspectives.
Recall that (WC) has been essentially initiated by the pioneering paper [1] where it was observed
that certain operators have an almost sparse representation in wavelet coordinates. Discarding all
entries below a certain threshold in a given principal section of the wavelet representation will then
give rise to a sparse matrix that can be further processed by efficient linear algebra tools. This
idea has since initiated many subsequent studies. The diversity as well as the partly deceiving
nature of the by now existing rich body of literature is one of the main reasons for us to take up
this issue here again.

When dealing with large scale problems, a sharp asymptotic analysis of the complexity is in
our opinion ultimately essential for assessing its potential. It is important to clarify the meaning
of “complexity” in this context. It is always understood as the work/accuracy rate of the method
under consideration when the level of resolution increases, i.e., the overall accuracy of the computed
approximate solution is to be tied to the computational work required to obtain it. There is no
point in increasing the number of degrees of freedom, i.e., the size of the linear systems, without
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improving the accuracy of the resulting solutions. On the other hand, since one is ultimately
interested in the “exact solution of the infinite dimensional problem” it makes no sense to determine
the solution to the discrete finite dimensional problem with much more accuracy than that offered
by the discretization. Thus, a reasonable target accuracy for the solutions of the discrete systems
is discretization error accuracy which will guide all our subsequent considerations. A method will
therefore be said to exhibit optimal complexity if the discrete solution can be computed within
discretization error accuracy at a computational expense that stays proportional to the number N
of unknowns, i.e., when not even logarithmic factors are permitted.

In the present context, this says that the solutions of the compressed systems should exhibit the
same asymptotic convergence rates as the solutions to unperturbed discretizations. In connection
with (WC) this, in turn, means that any threshold parameters and truncation strategies have to be
adapted to the current number N of degrees of freedom. Such an asymptotic analysis is missing
in [1] and in many subsequent investigations. The program carried out in [11, 12, 26, 27, 30]
aimed at determining exactly such work/accuracy rates for various types of boundary integral
equations. Roughly speaking, it could be shown that discretization error accuracy can be realized
for appropriately chosen wavelet bases at a computational work that stays bounded by C N(logN)a

for some constants C, a independent of the size N of the linear systems. Moreover, in [30] it was
shown for the first time that, by incorporating second compression, an overall optimal compression
strategy can be devised that even avoids additional logarithmic factors, while the complexity
estimates for a corresponding adaptive quadrature scheme was confined to collocation methods.

The purpose of the present paper can now be summarized as follows.
– We present a complete analysis of wavelet compression schemes for boundary integral equa-

tions based on Galerkin discretizations, that exhibit overall asymptotically optimal complexity,
i.e., discretization error accuracy is obtained at a computational expense that stays proportional
to the size N of the arising linear systems, uniformly in N .

– The analysis significantly simplifies previous studies including the effect of second compres-
sion. In particular, it reveals the right work balance for the compression and the quadrature
needed to compute the compressed matrices with sufficient accuracy, so as to realize optimal com-
putational complexity of the fully discretized scheme. Specifically, the computational work for
computing and assembling the compressed stiffness matrix remains proportional to the number N
of degrees of freedom.

– This also lays the foundation for an additional proper a-posteriori compression which to-
gether with a new preconditioning technique improves the quantitative performance of the scheme
significantly.

– The performance of the scheme is demonstrated by a 3D example on a non-trivial domain
geometry, namely a crankshaft. While further more extensive numerical studies will be presented
elsewhere, this example already indicates that, when all ingredients of the scheme are properly
chosen, the dependence on the geometry is much weaker than expected. Moreover, it also confirms
in a quantitative manner that the compression strategy realizing optimal complexity, does not
degrade the discretization accuracy offered by the Galerkin scheme. These facts particularly
encourage us in our efforts devoted to a careful and complete analysis of (WC).

Our analysis concerns what is called the standard wavelet representation. A preference for
using the so called nonstandard form is frequently reported in the literature. The reason is that
the entries in this latter form only involve scaling functions and wavelets on the same level.
This indeed simplifies assembling the matrices and offers essential advantages when dealing with
shift-invariant problems. However, aside from the problem of preconditioning in connection with
operators of nonzero order, to our knowledge it has so far not been shown that, for a fixed order of
vanishing moments, optimal computational complexity in the above sense can be obtained with the
nonstandard form. In fact, for regular solutions approximate solutions with prescribed accuracy
can be obtained at (asymptotically) lower computational cost with the aid of the standard form
when compared with the nonstandard form. This is backed by theory and confirmed by numerical
experience.

As mentioned before, it is important to employ the “right” wavelet bases. This question
has been discussed extensively in previous work [2, 6, 13, 14]. In this paper we shall make use
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of these findings and remark here only that, depending on the order of the operator, a proper
relation between the approximation order of the underlying multiresolution spaces and the order
of vanishing moments matters, which often rules out orthonormal wavelets.

We shall frequently write a . b to express that a is bounded by a constant multiple of b,
uniformly with respect to all parameters on which a and b may depend. Then a ∼ b means a . b
and b . a.

2. Problem Formulation and Preliminaries. We consider boundary integral equations
on a closed boundary surface Γ of a (n+ 1)-dimensional domain Ω ⊂ Rn

Au = f on Γ, (2.1)

where the boundary integral operator

Au(x̂) =
∫

Γ

k(x̂, ŷ)u(ŷ)dΓŷ

is assumed to be an operator of order 2q, that is

A : Hq(Γ)→ H−q(Γ).

The kernel functions under consideration are supposed to be smooth as functions in the variables
x̂, ŷ, apart from the diagonal {(x̂, ŷ) ∈ Γ×Γ : x̂ = ŷ} and may have a singularity on the diagonal.
Such kernel functions arise, for instance, by applying a boundary integral formulation to a second
order elliptic problem. In general, they decay like a negative power of the distance of the arguments
which depends on the spatial dimension n and the order 2q of the operator.

Throughout the remainder of this paper we shall assume that the boundary manifold Γ is
given as a parametric surface consisting of smooth patches. More precisely, let � := [0, 1]n denote
the unit n-cube. The manifold Γ ∈ Rn+1 is partitioned into a finite number of patches

Γ =
M⋃
i=1

Γi, Γi = γi(�), i = 1, 2, . . . ,M, (2.2)

where each γi : � → Γi defines a diffeomorphism of � onto Γi. We also assume that there exist
smooth extensions Γi ⊂⊂ Γ̃i and γ̃i : �̃ := [−1, 2]n → Γ̃i. The intersection Γi ∩ Γi′ , i 6= i′, of the
patches Γi and Γi′ is supposed to be either ∅ or a lower dimensional face.

A mesh of level j on Γ is induced by dyadic subdivisions of depth j of the unit cube into 2nj

cubes Cj,k ⊆ �, where k = (k1, . . . , kn) with 0 ≤ km < 2j . This generates 2njM elements (or
elementary domains) Γi,j,k := γi(Cj,k) ⊆ Γi, i = 1, . . . ,M .

In order to ensure that the collection of elements {Γi,j,k} on the level j forms a regular mesh
on Γ, the parametric representation is subjected to the following matching condition: For all
x̂ ∈ Γi ∩ Γi′ exists a bijective, affine mapping Ξ : � → � such that γi(x) = (γi′ ◦ Ξ)(x) = x̂ for
x = (x1, . . . , xn) ∈ � with γi(x) = x̂.

The first fundamental tensor of differential geometry is given by the matrix Ki(x) ∈ Rn×n
defined by

Ki(x) :=
[(∂γi(x)

∂xj
,
∂γi(x)
∂xj′

)
l2(Rn+1)

]n
j,j′=1

. (2.3)

Since γi is supposed to be a diffeomorphism, the matrix Ki(x) is symmetric and positive definite.
The canonical inner product in L2(Γ) is then given by

〈u, v〉 =
∫

Γ

u(x)v(x)dΓx =
M∑
i=1

∫
�
u
(
γi(x)

)
v
(
γi(x)

)√
detKi(x)dx. (2.4)

The corresponding Sobolev spaces are denoted by Hs(Γ), endowed with the norms ‖ ·‖s, where for
s < 0 it is understood that Hs(Γ) = (H−s(Γ))′. Of course, depending on the global smoothness
of the surface, the range of permitted s ∈ R is limited to s ∈ (−sΓ, sΓ).

3



We can now specify the kernel functions. To this end, we denote by α = (α1, . . . , αn) and
β = (β1, . . . , βn) multi-indices of dimension n and define |α| := α1 + . . . + αn. Recall that x̂ and
ŷ are points on the surface, i.e. x̂ := γi(x) and ŷ := γi′(y) for some 1 ≤ i, i′ ≤M .

Definition 2.1. A kernel k(x̂, ŷ) is called standard kernel of order 2q, if the partial derivatives
of the transported kernel function

k̃(x, y) := k
(
γi(x), γi′(y)

)√
detKi(x)

√
detKi′(y) (2.5)

are bounded by

|∂αx ∂αy k̃(x, y)| . 1
dist(x̂, ŷ)n+2q+|α|+|β| , (2.6)

provided that n + 2q + |α| + |β| > 0. We emphasize that this definition requires patchwise
smoothness but not global smoothness of the geometry. The surface itself needs to be only
Lipschitz. Generally, under this assumption, the kernel of a boundary integral operator A of order
2q is a standard kernel of order 2q. Hence, we may assume this property in the sequel. We shall
encounter further specifications below in connection with discretizations.

3. Galerkin Scheme. We shall be concerned with the Galerkin method with respect to a
hierarchy of conforming trial spaces VJ ⊂ VJ+1 ⊂ Hq(Γ): find uJ ∈ VJ solving the variational
problem

〈AuJ , vJ〉 = 〈f, vJ〉 for all vJ ∈ VJ . (3.1)

Here the index J reflects a meshwidth of the order 2−J . Moreover, we say that the trial spaces
have (approximation) order d ∈ N and regularity γ > 0 if

γ = sup{s ∈ R : Vj ⊂ Hs(Γ)},

d = sup{s ∈ R : infvj∈Vj ‖v − vj‖0 . 2−js‖v‖s}.
(3.2)

Thus conformity requires, of course, that γ > max{0, q}.
In order to ensure that (3.1) is well posed we shall make the following assumptions on the

operator A throughout the remainder of the paper.
Assumption:

1. A is strongly elliptic, i.e., there exists a symmetric compact operator C : Hq(Γ)→ H−q(Γ)
such that

〈(A+A? + C)u, u〉 & ‖u‖2q.

2. The operator A : Hq(Γ)→ H−q(Γ) is injective, i.e. KerA = {0}.
Remark: Most boundary integral equations of the first kind, resulting from a direct approach,

are known to satisfy these requirements, even if Γ is supposed to be the boundary of a Lipschitz
domain [7]. The boundary value problem is then known to be strongly elliptic. In particular,
this is the case for the first kind boundary integral equations for the Laplacian, the system of
Navier-Lamé equations and the Stokes system. For second kind integral equations the condition
is obvious if the double layer potential operator is compact, or in case of smooth boundaries, since
the principal symbol satisfies a G̊arding inequality.

Lemma 3.1. Under the above assumptions the Galerkin discretization is stable, i.e.

〈(A+A?)vJ , vJ〉 & ‖vJ‖2q, vJ ∈ VJ , (3.3)

for J sufficiently large, and

|〈AvJ , wJ〉| . ‖vJ‖q‖wJ‖q, vJ , wJ ∈ VJ . (3.4)
4



Furthermore, let u, uJ denote the solution of the original equation Au = f respectively of (3.1).
Then one has

‖u− uJ‖t . 2J(t−t′)‖u‖t′ (3.5)

provided that −d− 2q ≤ t < γ, t ≤ t′, q ≤ t′ ≤ d and Γ is sufficiently regular. Note that the best
possible convergence rate is given by

‖u− uJ‖−d+2q . 2−2J(d+q)‖u‖d (3.6)

provided that u ∈ Hd(Γ) which is only possible when Γ is sufficiently regular. Since this case gives
rise to the highest convergence rate, it will be seen later to impose the most stringent demands on
the matrix compression.

4. Wavelets and Multiresolution Analysis. The nested trial spaces Vj ⊂ Vj+1 that we
shall employ in (3.1) are spanned by so called single-scale bases Φj = {φj,k : k ∈ ∆j} whose
elements are normalized in L2(Γ) and whose compact supports scale like diam suppφj,k ∼ 2−j .
Associated with these collections are always dual bases Φ̃j = {φ̃j,k : k ∈ ∆j}, i.e., one has
〈φj,k, φ̃j,k′〉 = δk,k′ , k, k′ ∈ ∆j . For the current type of boundary surfaces Γ the Φj , Φ̃j are
generated by constructing first dual pairs of single-scale bases on the interval [0, 1], using B-
splines for the primal bases and the dual components from [5] adapted to the interval [10]. Tensor
products yield corresponding dual pairs on �. Using the parametric liftings γi and gluing across
patch boundaries leads to globally continuous single-scale bases Φj , Φ̃j on Γ, [2, 6, 14, 19]. For
B-splines of order d and duals of order d̃ ≥ d such that d+ d̃ is even the Φj , Φ̃j have approximation
orders d, d̃, respectively. It is known that the respective regularity indices γ, γ̃ (inside each patch)
satisfy γ = d− 1/2 while γ̃ > 0 is known to increase proportionally to d̃.

In view of the biorthogonality of Φj , Φ̃j , it will be convenient to employ the canonical projectors

Qjv :=
∑
k∈∆j

〈v, φ̃j,k〉φj,k, Q?jv :=
∑
k∈∆j

〈v, φj,k〉φ̃j,k, (4.1)

associated with the multiresolution sequences {Vj}j≥j0 , {Ṽj}j≥j0 . Here and below j0 always stands
for some fixed coarsest level of resolution that may depend on Γ.

It follows from the L2-boundedness of the Qj that one has the following Jackson and Bernstein
type estimates uniformly in j, namely

‖v −Qjvj‖s . 2−j(t−s)‖v‖t, v ∈ Ht(Γ), (4.2)

for all −d̃ ≤ s ≤ t ≤ d, s < γ, −γ̃ < t and

‖Qjv‖s . 2j(s−t)‖Qjv‖t, v ∈ Ht(Γ), (4.3)

for all t ≤ s ≤ γ.
Given the single-scale bases Φj , Φ̃j , one can construct now biorthogonal complement bases

Ψj = {ψj,k : k ∈ ∇j}, Ψ̃j = {ψ̃j,k : k ∈ ∇j}, i.e., 〈ψj,k, ψ̃j′,k′〉 = δ(j,k),(j′,k′), such that

diam suppψj,k ∼ 2−j , j ≥ j0, (4.4)

see e.g. [2, 6, 13, 14] and [19] for particularly useful local representations of important construction
ingredients. In fact, for this type of bases, the dual wavelets scale in the same way, but this will
not be needed and does not hold for alternative constructions based on finite elements [15].

Denoting by Wj , W̃j the span of Ψj , respectively Ψ̃, biorthogonality implies

Vj+1 = Wj ⊕ Vj , Ṽj+1 = W̃j ⊕ Ṽj , Ṽj ⊥Wj , Vj ⊥ W̃j .
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Hence VJ and ṼJ can be written as a direct sum of the complement spaces Wj , respectively W̃j ,
j0 − 1 ≤ j < J (using the convention Wj0−1 := Vj0 , W̃j0−1 := Ṽj0 , Qj0−1 = Q?j0−1 := 0). In fact,
one has for vJ ∈ VJ , ṽJ ∈ ṼJ

vJ =
J∑

j=j0

(Qj −Qj−1)vJ , ṽJ =
J∑

j=j0

(Q?j −Q?j−1)ṽJ ,

where

(Qj+1 −Qj)v =
∑
k∈∇j

〈v, ψ̃j,k〉ψj,k, (Q?j+1 −Q?j )v =
∑
k∈∇j

〈v, ψj,k〉ψ̃j,k.

A biorthogonal or dual pair of wavelet bases is now obtained by taking the coarse single-scale
basis and the union of the complement bases

Ψ =
⋃

j=j0−1

Ψj , Ψ̃ =
⋃

j=j0−1

Ψ̃j ,

where we have set for convenience Ψj0−1 := Φj0 , Ψ̃j0−1 := Φ̃j0 . We will refer to Ψ and Ψ̃ as the
primal, respectively dual basis.

Throughout the paper, all basis function (scaling functions and wavelets) are normalized in
L2(Γ).

From biorthogonality and the fact that the dual single-scale bases on � represent all polyno-
mials of order d̃ exactly one infers vanishing polynomial moments of the primal wavelets on �,
which, on account of the locality (4.4) entails the first key feature of the primal wavelet bases,
namely vanishing moments or the cancellation property

|〈v, ψj,k〉| . 2−j(d̃+n/2)|v|W d̃,∞(suppψj,k). (4.5)

Here |v|W d̃,∞(Ω) := sup|α|=d̃, x∈Ω |∂
αv(x)| denotes the semi-norm in W d̃,∞(Ω). The fact, that the

concept of biorthogonality allows us to choose the order d̃ of vanishing moments higher than the
approximation order d, will be essential for deriving optimal compression strategies that could not
be realized by orthonormal bases.

Of course, in the infinite dimensional case the notion of basis has to be made more specific.
The second key feature of the basis Ψ is now the fact that (properly scaled versions of) Ψ and Ψ̃
are actually Riesz bases for a whole range of Sobolev spaces, which means

‖v‖2t ∼
∞∑

j=j0−1

∑
k∈∇j

22jt|〈v, ψ̃j,k〉|2, t ∈ (−γ̃, γ),

‖v‖2t ∼
∞∑

j=j0−1

∑
k∈∇j

22jt|〈v, ψj,k〉|2, t ∈ (−γ, γ̃).
(4.6)

The validity of these norm equivalences hinges on the estimates (4.2) and (4.3) for both the primal
and dual multiresolution sequences. The equivalences (4.6) will be essential for preconditioning.

5. Wavelet Galerkin Schemes – Preconditioning. As before let A : Hq(Γ) → H−q(Γ)
be a boundary integral operator of order 2q. Since the wavelet basis Ψ is, in particular, a Riesz
basis for L2(Γ), the associated system matrices

AJ = [〈Aψj′,k′ , ψj,k〉]j0−1≤j,j′<J, k∈∇j , k′∈∇j′

become more and more ill conditioned when J increases. In fact, one has condl2 AJ ∼ 22J|q|.
However, as a consequence of the stability of the Galerkin discretization under the given circum-
stances and the norm equivalences (4.6), the following simple diagonal preconditioner gives rise to
uniformly bounded spectral condition numbers [8, 9, 11].
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Theorem 5.1. Let the diagonal matrix Dr
J be defined by[

Dr
J

]
(j,k),(j′,k′)

= 2rjδ(j,k),(j′,k′), k ∈ ∇j , k′ ∈ ∇j′ , j0 − 1 ≤ j, j′ < J.

Then, if A : Hq(Γ)→ H−q(Γ) is a boundary integral operator of order 2q, satisfying the assump-
tions 1), 2) from Section 3, and if γ̃ > −q, the diagonal matrix D2q

J defines an asymptotically
optimal preconditioner for AJ , i.e.,

condl2(D−qJ AJD−qJ ) ∼ 1.

It should be stressed that while the above scaling is asymptotically optimal, the quantitative
performance may vary significantly among different scalings with the same asymptotic behavior.
In particular, since Ψ is, on account of the mapping properties of A and the norm equivalences
(4.6), also a Riesz basis with respect to the energy norm, it would be natural to normalize the
wavelets in this energy norm which would suggest the specific scaling 〈Aψj,k, ψj,k〉 ∼ 22qj . In fact,
this latter diagonal scaling improves and simplifies the wavelet preconditioning. We shall mention
later another alternative offering a further significant improvement.

In view of the above simple preconditioning, the iterative solution of the Galerkin systems
is feasible and its overall efficiency relies now on the cost of matrix/vector multiplications which
brings us to the central issue, namely matrix compression.

6. Basic Estimates. The basic ingredients in the analysis of the compression procedure are
estimates for the matrix entries 〈Aψj′,k′ , ψj,k〉 with k ∈ ∇j , k′ ∈ ∇j′ and j, j′ ≥ j0 − 1. The
convex hulls of the supports of the wavelets will be denoted by

Ωj,k := conv hull(suppψj,k). (6.1)

A complete proof of the following estimates can be found e.g. in [30, 15].
Theorem 6.1. Suppose n+ 2d̃+ 2q > 0 and j, j′ ≥ j0. Then one has

|〈Aψj′,k′ , ψj,k〉| .
2−(j+j′)(d̃+n/2)

dist(Ωj,k,Ωj′,k′)n+2q+d̃

uniformly with respect to J .
However, in order to arrive ultimately at solution schemes with linear complexity, the number

of nonzero entries in the compressed matrices should remain proportional to their size while pre-
serving discretization error accuracy. To achieve this, it is not sufficient to consider only coefficients
where the supports of the involved wavelet do not overlap. There are stillO(NJ logNJ) = O(2JnJ)
coefficients that would remain. To avoid the logarithmic term we propose an additional, so called
second compression. For this purpose we require that our primal basis functions are piecewise
polynomial, in the sense that ψj,k

∣∣
Γi,j+1,l

= p ◦ γ−1
i , where p is a polynomial. By

Ω′j,k := sing suppψj,k (6.2)

we denote the singular support of ψj,k, which is that subset of Γ, where the function ψj,k is not
smooth. Thus the singular support of the wavelet ψj,k consists of the boundaries of some of the
elements Γi,j+1,l. The goal of the subsequent investigation is to estimate those matrix coefficients
for which dist(Ωj,k,Ω′j′,k′), j ≥ j′, is sufficiently large.

To this end, we require the following extension lemma which follows e.g. immediately from
the well known extension theorem of Calderón [32].

Lemma 6.2. The function fi,j,k,l, defined by

fi,j,k,l := ψj,k
∣∣
Γi,j+1,l

◦ γi = (ψj,k ◦ γi)
∣∣
Cj+1,l

∈ C∞(Cj+1,l),

can be extended to a function f̃i,j,k,l ∈ C∞0 (Rn) in such a way that diam supp f̃i,j,k,l . 2−j,
f̃i,j,k,l ≡ ψj,k ◦ γi on Cj+1,l, and that for all s ≥ 0∥∥f̃i,j,k,l∥∥Hs(Rn)

. 2js,
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independently of i, j, k, l.
Proof. Suppose that f� ∈ C∞(�) with ‖f�‖Hs(�) . 1. By virtue of Calderón’s extension

theorem, there exists an extension f ∈ C∞0 (Rn), i.e. f(x) ≡ f�(x) on �, satisfying ‖f‖Hs(Rn) .
‖f�‖Hs(�). Let us consider an affine map κ with Cj+1,l = κ(�) and choose fi,j,k,l

(
κ(x)

)
:= f�(x).

The claim follows now from |∂ακ(x)| = 2|α|(j+1).
It is well known that boundary integral operators A of order 2q, acting on smooth surfaces,

are classical pseudodifferential operators [34]. Since the patches Γi are smooth and have smooth
extensions Γ̃i, there exists for each i, a pseudodifferential operator A] : Hq(Rn)→ H−q(Rn) such
that

A]f(x) =
∫
Rn

χ(x)χ(y)k
(
γ̃i(x), γ̃i(y)

)
f(y)

√
det K̃i(y)dy, (6.3)

where χ is a C∞-cut-off function with respect to �, i.e., χ(x) = 1 on � and χ(x) = 0 outside
[−1, 2]n. Therefore A]f(x) = A(f ◦ γi)(γi(x)), for all f ∈ C∞0 (�), x ∈ � and A] is compactly
supported [23]. Moreover, it is well known [23] that the Schwartz kernel of pseudodifferential
operators satisfy the standard estimate (2.6).

A compactly supported pseudodifferential operator A] : Hs(Rn)→ Hs−2q(Rn) of order 2q acts
continuously on Sobolev spaces [23, 33]. Therefore, for any function f̃i,j,k,l ∈ C∞0 (Rn), satisfying
diam supp f̃i,j,k,l ∼ 2−j and ‖f̃i,j,k,l‖Hs(Rn) . 2js, for all s ≥ 0, one has A]f̃i,j,k,l ∈ C∞0 (Rn) with

‖A]f̃i,j,k,l‖Hs−2q(Rn) . 2js. (6.4)

With these preparations at hand, we are able to formulate the following result.
Theorem 6.3. Suppose that n + 2d̃ + 2q > 0 and j′ > j ≥ j0 − 1. Then, the coefficients

〈Aψj′,k′ , ψj,k〉 and 〈Aψj,k, ψj′,k′〉 satisfy

|〈Aψj′,k′ , ψj,k〉|, |〈Aψj,k, ψj′,k′〉| .
2jn/22−j

′(d̃+n/2)

dist(Ω′j,k,Ωj′,k′)2q+d̃
,

uniformly with respect to j, provided that

dist(Ω′j,k,Ωj′,k′) & 2−j
′
. (6.5)

Proof. We shall consider three cases.
(i) The first observation concerns an estimate for disjoint supports that will be applied several
times.

Lemma 6.4. Suppose that Ωj,k ∩ Ωj′,k′ = ∅ and that f is any function supported on Ωj,k
satisfying |f(x)| . 2jn/2, x ∈ Ωj,k. Then one has

|〈Aψj′,k′ , f〉| . 2jn/22−j
′(d̃+n/2) dist(Ωj,k,Ωj′,k′)−2q−d̃. (6.6)

To prove (6.6) note that our assumption implies that dist(Ω′j,k,Ωj′,k′) = dist(Ωj,k,Ωj′,k′). On
account of the cancellation property (4.5) of the wavelet bases and the decay property (2.6) of the
kernel, we obtain

|Aψj′,k′(x)| = |〈k(x, ·), ψj′,k′〉| . 2−j
′(d̃+n/2)|k(x, ·)|W∞,d̃(Ωj′,k′ )

. 2−j
′(d̃+n/2) dist(x,Ωj′,k′)−n−2q−d̃

for all x ∈ ψj,k. Therefore, we conclude that

|〈Aψj′,k′ , f〉| . ‖f‖L∞(Γ)

∫
Ωj,k

|Aψj′,k′(x)|dΓx

. 2jn/22−j
′(d̃+n/2)

∫
Ωj,k

dist(x,Ωj′,k′)−n−2q−d̃dΓx

≤ 2jn/22−j
′(d̃+n/2) dist(Ωj,k,Ωj′,k′)−2q−d̃,
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which proves the lemma. Of course, the same reasoning applies to the adjoint boundary integral
operator A?.
(ii) Next, we treat the case Ωj,k ∩ Ωj′,k′ 6= ∅ and Ωj,k ⊂ Γi. By (6.5) we have Ωj′,k′ ⊂ Ωj,k
i.e., both wavelets are supported on the same patch. We infer from (6.5) that there exists an
element Ωj′,k′ ⊂ Γi,j+1,l ⊂ Ωj,k such that

fi,j,k,l := ψj,k
∣∣
Γi,j+1,l

◦ γi = (ψj,k ◦ γi)
∣∣
Cj+1,l

is a C∞(Cj+1,l)-function. On account of Lemma 6.2, we can choose an extension of fi,j,k,l, denoted
by f̃i,j,k,l. Decomposing

ψj,k ◦ γi = f̃i,j,k,l + f̃Ci,j,k,l,

we obtain

|〈Aψj,k, ψj′,k′〉| =
∣∣∣∣∫
Rn

A](f̃i,j,k,l + f̃Ci,j,k,l)(x)(ψj′,k′ ◦ γi)(x)dx
∣∣∣∣

≤
∣∣∣∣∫
Rn

A]f̃i,j,k,l(x)(ψj′,k′ ◦ γi)(x)dx
∣∣∣∣+
∣∣∣∣∫
Rn

A]f̃Ci,j,k,l(x)(ψj′,k′ ◦ γi)(x)dx
∣∣∣∣ .

The second term on the right hand side can be treated analogously to (6.6), i.e.,∣∣∣∣∫
Rn

A]f̃Ci,j,k,l(x)(ψj′,k′ ◦ γi)(x)dx
∣∣∣∣ . 2jn/22−j

′(d̃+n/2) dist(Ω′j,k,Ωj′,k′)
−2q−d̃,

because

dist
(

supp f̃Ci,j,k,l, supp(ψj′,k′ ◦ γi)
)
∼ dist(Ω′j,k,Ωj′,k′).

Invoking (6.4) and (4.5), the first term can be estimated by∣∣∣∣∫
Rn

A]f̃i,j,k,l(x)(ψj′,k′ ◦ γi)(x)dx
∣∣∣∣ . 2−j

′(d̃+n/2)‖A]f̃i,j,k,l(x)‖W∞,d̃(supp(ψj′,k′◦γi))
.

By virtue of Sobolev’s embedding theorem, this implies, in view of (6.4),∣∣∣∣∫
Rn

A]f̃i,j,k,l(x)(ψj′,k′ ◦ γi)(x)dx
∣∣∣∣ . 2−j

′(d̃+n/2)‖A]f̃i,j,k,l(x)‖Hd̃+n/2(Rn)

. 2−j
′(d̃+n/2)2j(d̃+2q+n/2).

By (6.5) and and j′ ≥ j, we arrive at the desired estimate∣∣∣∣∫
Rn

A]f̃i,j,k,l(x)(ψj′,k′ ◦ γi)(x)dx
∣∣∣∣ . 2jn/22−j

′(d̃+n/2) dist(Ω′j,k,Ωj′,k′)
−2q−d̃.

(iii) It remains to consider the case Ωj,k ∩ Ωj′,k′ 6= ∅ where, however, ψj,k is not supported
completely in the patch Γi. In this case we decompose ψj,k = (ψj,k −ψj,k

∣∣
Γi

) +ψj,k
∣∣
Γi

). Invoking
(6.6), we derive

|〈A(ψj,k − ψj,k
∣∣
Γi

), ψj′,k′〉| .
2jn/22−j

′(d̃+n/2)

dist(Ω′j,k,Ωj′,k′)2q+d̃

because we have again

dist(supp(ψj,k − ψj,k
∣∣
Γi

),Ωj′,k′) ≥ dist(Ω′j,k,Ωj′,k′).
9



Finally, estimating |〈A(ψj,k
∣∣
Γi

), ψj′,k′〉| as in step (ii), finishes the proof.
Remark: We recall from [8, 30] that there is a general estimate which says that matrix entries

for wavelets with overlapping supports decay with increasing difference of scales. In fact, for each
0 ≤ δ < γ − q we have

|〈Aψj′,k′ , ψj,k〉| . 2−δ|j−j
′|.

Since γ < d this estimate is, however, not sufficient to achieve the optimal order of convergence
within the desired linear complexity. Therefore, this estimate will not be exploited in the present
study.

7. Matrix Compression. The discretization of a boundary integral operator A : Hq(Γ)→
H−q(Γ) by wavelets with a sufficiently strong cancellation property (4.5) yields, in view of the
above estimates, quasi-sparse matrices. In a first compression step all matrix entries, for which
the distance of the supports of the corresponding trial and test functions are larger than a level
depending cut-off parameter Bj,j′ , are set to zero. In the second compression step also some
of those matrix entries are neglected, for which the corresponding trial and test functions have
overlapping supports.

A-priori compression. Let Ωj,k and Ω′j,k be given as in (6.1) and (6.2). Then, the com-
pressed system matrix Aε

J , corresponding to the boundary integral operator A, is defined by

[Aε
J ](j,k),(j′,k′) :=



0, dist(Ωj,k,Ωj′,k′) > Bj,j′ and j, j′ ≥ j0,
0, dist(Ωj,k,Ωj′,k′) . 2−min{j,j′} and

dist(Ω′j,k,Ωj′,k′) > B′j,j′ if j′ > j ≥ j0 − 1,
dist(Ωj,k,Ω′j′,k′) > B′j,j′ if j > j′ ≥ j0 − 1,

〈Aψj′,k′ , ψj,k〉, otherwise.

(7.1)

Fixing

a, a′ > 1, d < d′ < d̃+ 2q, (7.2)

the cut-off parameters Bj,j′ and B′j,j′ are set as follows

Bj,j′ = a max
{

2−min{j,j′}, 2
2J(d′−q)−(j+j′)(d′+d̃)

2(d̃+q)

}
,

B′j,j′ = a′max
{

2−max{j,j′}, 2
2J(d′−q)−(j+j′)d′−max{j,j′}d̃

d̃+2q

}
.

(7.3)

The parameter a is a fixed constant which determines the bandwidth in the block matrices

Aε
j,j′ := [Aε

J ](j,∇j),(j′,∇j′ ), j0 − 1 ≤ j, j′ < J.

This parameter has to be chosen in such a way that the scaled compressed matrix retains stability,
see [30]. We emphasize that the parameters a and a′ are independent of J .

When the entries of the compressed system matrix Aε
J have been computed, we apply an

a-posteriori compression by setting all entries to zero, which are smaller than a level depending
threshold. In this way, a matrix Ãε

J is obtained which has even less nonzero entries than the
matrix Aε

J . Although this does not accelerate the computation of the matrix coefficients, the
amount of necessary memory is reduced when the system matrix has to be stored. For instance,
this offers advantages for the coupling of FEM and BEM, cf. [20, 21].

A-posteriori compression. We define the a-posteriori compression by

[
Ãε
J

]
(j,k),(j′,k′)

=

{
0, if

∣∣[Aε
J ](j,k),(j′,k′)

∣∣ ≤ εj,j′ ,
[Aε

J ](j,k),(j′,k′), if
∣∣[Aε

J ](j,k),(j′,k′)

∣∣ > εj,j′ .
(7.4)
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Here the level dependent threshold εj,j′ is chosen as

εj,j′ = a′′min
{

2−
|j−j′|n

2 , 2−n(J− j+j
′

2 ) d
′−q
d̃+q

}
22Jq2−2d′(J− j+j

′
2 ) (7.5)

with a′′ < 1 and d′ ∈ (d, d̃+ r) from (7.2).

8. Matrix Estimates. In order to study the accuracy of the solutions to the compressed
systems we investigate the perturbation introduced by discarding specific matrix elements. The
perturbation matrices are of scalewise blocks of the type

Rj,j′ := Aj,j′ −Aε
j,j′ .

By ‖Rj,j′‖p we denote the operator norm of the matrix Rj,j′ with respect to the norm lp.
In order to analyze the error introduced by our compression strategy, we decompose the

complete compression into three subsequent steps.
Theorem 8.1 (First Compression). We define the matrix Aε1

J by

[Aε1
J ](j,k),(j′,k′) :=

{
0, dist(Ωj,k,Ωj′,k′) > Bj,j′ and j, j′ ≥ j0,

〈Aψj′,k′ , ψj,k〉, otherwise.

Here the parameter Bj,j′ is given by (7.2) and (7.3). Then, one has for the perturbation matrix
Rj,j′ := Aj,j′ −Aε1

j,j′

‖Rj,j′‖2 . a−2(d̃+q)22Jq2−2d′(J− j+j
′

2 ).

Proof. We proceed in two steps.
(i) We abbreviate Rj,j′ :=

[
r(j,k),(j′,k′)

]
k∈∇j ,k′∈∇j′

. Invoking Theorem 6.1, we find for the column
sum ∑

k∈∇j

|r(j,k),(j′,k′)| =
∑

{k∈∇j : dist(Ωj,k,Ωj′,k′ )>Bj,j′}

|〈Aψj′,k′ , ψj,k〉|

.
∑

{k∈∇j : dist(Ωj,k,Ωj′,k′ )>Bj,j′}

2−(j+j′)(d̃+n/2) dist
(
Ωj,k,Ωj′,k′

)−n−2(d̃+q)
.

Since Bj,j′ ≥ amax{2−j , 2−j′}, we can estimate this sum by an integral which yields∑
k∈∇j

|r(j,k),(j′,k′)| . 2−(j+j′)(d̃+n/2)2jn
∫
|x|>Bj,j′

|x|−n−2(d̃+q)dx

. 2−(j+j′)(d̃+n/2)2jnB−2(d̃+q)
j,j′ .

On the other hand, inserting the estimate Bj,j′ ≥ a2
2J(d′−q)−(j+j′)(d̃+d′)

2(d̃+q) (see (7.3)), we arrive at∑
k∈∇j

|r(j,k),(j′,k′)| . a−2(d̃+q)2
(j−j′)n

2 22Jq2−2d′(J− j+j
′

2 ).

In complete analogy one proves an analogous estimate for the row sums∑
k′∈∇j′

|r(j,k),(j′,k′)| . a−2(d̃+q)2
(j′−j)n

2 22Jq2−2d′(J− j+j
′

2 ).

(ii) From the estimate for the operator norms of matrices

‖Rj,j′‖22 ≤ ‖Rj,j′‖1‖Rj,j′‖∞,
11



it is easy to conclude the following version of the Schur lemma (see e.g. [24, 30])

‖Rj,j′‖ ≤
[

max
k∈∇j

∑
k′∈∇j′

2
(j−j′)n

2 |r(j,k),(j′,k′)|
]1/2[

max
k′∈∇j′

∑
k∈∇j

2
(j′−j)n

2 |r(j,k),(j′,k′)|
]1/2

≤ 1
2

[
max
k∈∇j

∑
k′∈∇j′

2
(j−j′)n

2 |r(j,k),(j′,k′)|+ max
k′∈∇j′

∑
k∈∇j

2
(j′−j)n

2 |r(j,k),(j′,k′)|
]

. a−2(d̃+q)22Jq2−2d′(J− j+j
′

2 ).

which proves the assertion.
The following so called second compression concerns entries involving basis functions with

overlapping supports. It is important that here the coarse scale basis function may be a scaling
function which greatly affects the near field compression.

Theorem 8.2 (Second Compression). In addition to the first compression we apply the
following second compression

[Aε2
J ](j,k),(j′,k′) :=


0, dist(Ωj,k,Ωj′,k′) . 2−min{j,j′} and

dist(Ω′j,k,Ωj′,k′) > B′j,j′ if j′ > j ≥ j0 − 1,
dist(Ωj,k,Ω′j′,k′) > B′j,j′ if j > j′ ≥ j0 − 1,

[Aε1
J ](j,k),(j′,k′), otherwise.

where the parameter B′j,j′ is set in accordance with (7.2) and (7.3). Then, the corresponding
perturbation matrix Sj,j′ := Aε1

j,j′ −Aε2
j,j′ satisfies

‖Sj,j′‖2 . (a′)−(d̃+2q)22Jq2−2d′(J− j+j
′

2 ).

Proof. Abbreviating Sj,j′ := [s(j,k),(j′,k′)]k∈∇j ,k′∈∇j′ and assuming without loss of generality
that j′ > j, we infer from Theorem 6.3 that

|s(j,k),(j′,k′)| . 2jn/22−j
′(d̃+n/2)B−2q−d̃

j,j′

. (a′)−2q−d̃2jn/22−j
′(d̃+n/2)2−2J(d′−q)+(j+j′)d′+j′d̃

= (a′)−2q−d̃2(j−j′)n/222Jq2−2d′(J− j+j
′

2 ).

The condition dist(Ωj,k,Ωj′,k′) . 2−min{j,j′} guarantees that in each row and column of Sj,j′
we have set at most O(2(j′−j)n), respectively O(1) entries to zero. Therefore, we obtain for the
weighted row sums∑

k∈∇j

2
(j−j′)n

2 |s(j,k),(j′,k′)| .
∑

k′∈∇j′

(a′)−2q−d̃2j
′n2(j−j′)n22Jq2−2d′(J− j+j

′
2 )

. (a′)−2q−d̃22Jq2−2d′(J− j+j
′

2 ),

and likewise for the weighted column sums∑
k′∈∇j′

2
(j′−j)n

2 |s(j,k),(j′,k′)| . (a′)−2q−d̃22Jq2−2d′(J− j+j
′

2 )

for all j0 − 1 ≤ j < j′ < J . In complete analogy to the proof of Theorem 8.1 we conclude

‖Sj,j′‖2 ≤
[

max
k∈∇j

∑
k′∈∇j′

2
(j−j′)n

2 |s(j,k,(j,k)|+ max
k′∈∇j′

∑
k∈∇j

2
(j′−j)n

2 |s(j,k,(j,k)|
]

. (a′)−2q−d̃22Jq2−2d′(J− j+j
′

2 ).
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Theorem 8.3 (A-posteriori compression). Let the matrix Aε
J be compressed according to

Theorems 8.1 and 8.2. Then the a-posteriori compression defined by

[Ãε
J ](j,k),(j′,k′) =

{
0, if

∣∣[Aε
J ](j,k),(j′,k′)

∣∣ ≤ εj,j′ ,
[Aε

J ](j,k),(j′,k′), if
∣∣[Aε

J ](j,k),(j′,k′)

∣∣ > εj,j′

with the level dependent threshold εj,j′ from (7.5), causes a block perturbation Tj,j′ := Ãε
j,j′−Aε

j,j′

satisfying

‖Tj,j′‖2 . a′′22Jq2−2d′(J− j+j
′

2 ).

Proof. We organize the proof in four steps.
(i) Abbreviating Tj,j′ := [t(j,k),(j′,k′)]k∈∇j ,k′∈∇j′ , one obviously has

∣∣t(j,k),(j′,k′)

∣∣ ≤ a′′min
{

2−
|j−j′|n

2 , 2−n(J− j+j
′

2 ) d
′−q
d̃+q

}
22Jq2−2d′(J− j+j

′
2 ). (8.1)

We shall use the first compression in order to derive from this inequality the desired. To this end,
we find in each row and column of Tj,j′ only O([Bj,j′2j

′
]n), respectively O([Bj,j′2j ]n) nonzero

entries. Setting M := d′+d̃

2(d̃+q)
, one has

2
2J(d′−q)−(j+j′)(d′+d̃)

2(d̃+q) = 2−J2
2J(d′+d̃)−(j+j′)(d′+d̃)

2(d̃+q) = 2−J2
(J−j)(d′+d̃)

2(d̃+q) 2
(J−j′)(d′+d̃)

2(d̃+q)

= 2−J2(J−j)M2(J−j′)M .

Hence, by (7.3), the cut-off parameter for the first compression takes the form

Bj,j′ ∼ max
{

2−min{j,j,′}, 2−J2(J−j)M2(J−j′)M
}
. (8.2)

From (7.2) and q < d − 1
2 , one concludes 1

2 < M < 1. Moreover, we shall make use of the
identity

2−n(J− j+j
′

2 ) d
′−q
d̃+q = 2−2n(J− j+j

′
2 )(M− 1

2 ). (8.3)

Without the loss of generality, we assume in the sequel that j′ ≥ j.
(ii) With these preparations at hand we shall first estimate the block matrices Tj,j′ with 2−

(j′−j)n
2 ≤

2−2n(J− j+j
′

2 )(M− 1
2 ). One readily verifies that this relation is equivalent to

2−j ≥ 2−J2(J−j)M2(J−j′)M ,

which, by (8.2), implies that the cut-off parameter satisfies Bj,j′ ∼ 2−j . Thus, from (8.1) one
infers the estimate∑

k′∈∇j′

2
(j−j′)n

2 |t(j,k),(j′,k′)| . a′′2
(j+j′)n

2 2−jn2−
(j′−j)n

2 22Jq2−2d′(J− j+j
′

2 )

= a′′22Jq2−2d′(J− j+j
′

2 ),

for the weighted row sums of Tj,j′ . Analogously, one derives∑
k∈∇j

2
(j′−j)n

2 |t(j,k),(j′,k′)| . a′′22Jq2−2d′(J− j+j
′

2 )

13



for the weighted column sums.

(iii) We still have to estimate the errors in the remaining blocks, where 2−
(j′−j)n

2 > 2−2n(J− j+j
′

2 )(M− 1
2 ).

Then, by (8.3), the cut-off parameter is given by Bj,j′ ∼ 2−J2(J−j)M2(J−j′)M . Therefore, we ob-
tain for the weighted row sums

∑
k′∈∇j′

2
(j−j′)n

2 |t(j,k),(j′,k′)|

. a′′2
(j+j′)n

2 2−Jn2(J−j)Mn2(J−j′)Mn2−2n(J− j+j
′

2 )(M− 1
2 )22Jq2−2d′(J− j+j

′
2 )

= a′′22Jq2−2d′(J− j+j
′

2 ),

and a similar estimate for the weighted column sums.
(iv) Combining the estimates in steps (ii) and (iii), we conclude that

∑
k′∈∇j′

2
(j−j′)n

2 |t(j,k),(j′,k′)| . a′′22Jq2−2d′(J− j+j
′

2 ),

∑
k∈∇j

2
(j′−j)n

2 |t(j,k),(j′,k′)| . a′′22Jq2−2d′(J− j+j
′

2 ),

for all j0 − 1 ≤ j, j′ < J . The proof can now be completed in complete analogy to the proof of
Theorem 8.1.

9. Consistency. We shall establish next the consistency of the compressed scheme with the
original operator equation in the corresponding Sobolev norms, making crucial use of the norm
equivalences induced by the wavelet bases.

To this end, note that the operator ÃεJ : Hs(Γ)→ Hs−2q(Γ), −γ̃ < s < γ̃ + 2q, defined by

AεJu =
J−1∑

j,j′=j0−1

∑
k,k′

ψ̃j,k[Ãε
J ](j,k),(j′,k′)〈ψ̃j,k, u〉.

is represented by the compressed system matrix, since apparently

〈ÃεJψj′,k′ , ψj,k〉 = [Ãε
J ](j,k),(j′,k′).

Theorem 9.1. Let d < d̃+ 2q and Ãε
J the compressed matrix, defined according to Section 7.

Then, for q ≤ t, t′ ≤ d the estimate

|〈(A− ÃεJ)QJu,QJv〉| . ε2J(2q−t−t′)‖u‖t‖v‖t′ (9.1)

holds uniformly with respect to J , where

ε := a−2d̃−2q + (a′)−d̃−2q + a′′, (9.2)

and a, a′, a′′ are the constants from (7.2) and (7.5).
Proof. By definition of the block perturbation matrices Rj,j′ , Sj,j′ and Tj,j′ , one has

|〈(A− ÃεJ)ψj′,k′ , ψj,k〉| ≤
∣∣[Rj,j′ + Sj,j′ + Tj,j′ ]k,k′

∣∣.
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Hence, we can estimate

|〈(A− ÃεJ)QJu,QJv〉| (9.3)

=
∣∣∣∣ J∑
j,j′=j0

〈(A− ÃεJ)(Qj′ −Qj′−1)u, (Qj −Qj−1)v〉
∣∣∣∣

≤
J∑

j,j′=j0

|〈(A− ÃεJ)(Qj′ −Qj′−1)u, (Qj −Qj−1)v〉|

=
J∑

j,j′=j0

∣∣∣∣ ∑
k∈∇j

∑
k∈∇j′

〈(A− ÃεJ)ψj′,k′ , ψj,k〉〈u, ψ̃j′,k′〉〈v, ψ̃j,k〉
∣∣∣∣

≤
J∑

j,j′=j0

∥∥Rj,j′ + Sj,j′ + Tj,j′
∥∥

2

∥∥[〈u, ψ̃j′,k′〉]k′∈∇j′
∥∥

2

∥∥[〈v, ψ̃j,k〉]k∈∇j
∥∥

2
.

Invoking the inverse estimate (4.3) and the approximation property (4.2), yields∥∥[〈u, ψ̃j′,k′〉]k′∈∇j′
∥∥

2
∼ ‖(Qj′ −Qj′−1)u‖0 . 2−j

′t‖u‖t∥∥[〈v, ψ̃j,k〉]k′∈∇j′
∥∥

2
∼ ‖(Qj −Qj−1)v‖0 . 2−jt

′
‖v‖t′ .

Further, from Theorem 8.1, Theorem 8.2 and Theorem 8.3, we conclude

‖Rj,j′ + Sj,j′ + Tj,j′‖2 . ε22Jq2−2d′(J− j+j
′

2 ).

Inserting these estimates in (9.3), provides

|〈(A− ÃεJ)QJu,QJv〉| . ε2J(2q−t−t′)‖u‖t‖v‖t′
J∑

j,j′=j0

2−j
′(d′−t)2−j(d

′−t′)

. ε2J(2q−t−t′)‖u‖t‖v‖t′

since t, t′ ≤ d < d′.

10. Convergence. With the estimates of Section 8 at hand we can prove that the proposed
compression strategy retains the optimal order of convergence of the underlying Galerkin scheme,
see [30]. In this context we shall encounter conditions on the parameters a, a′, a′′ defining ε in
(9.2). From Theorem 9.1 we deduce

|〈(A− ÃεJ)uJ , uJ〉| ≤ ε‖uJ‖2q,

which implies the VJ -ellipticity. Indeed inserting this result into (3.3) we get for J > J0 that

|〈(ÃεJ + Ãε?J )uJ , uJ〉| ≥ (c− 2ε)‖uJ‖2q & ‖uJ‖2q,

with c > 0, if ε from (9.2) is sufficiently small.
Theorem 10.1 (Stability). Let ε from (9.2) be sufficiently small. Then, the matrix Ãε

J ,
which arises by the compression according to (7.1) and (7.4), defines a stable scheme, i.e.,

‖ÃεJuJ‖q ∼ ‖uJ‖q,

uniformly in J > J0.
In the above reasoning we have already required that γ̃ > −q. It has been shown in [28] that

Theorem 10.1 remains valid for γ̃ = −q.
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Theorem 10.2 (Convergence). Let ε from (9.2) be sufficiently small to ensure uniform
stability of ÃεJ . Then, the solution uJ =

∑J−1
j=j0−1

∑
k∈∇j uj,kψj,k of the compressed scheme

Ãε
JuJ = fJ , uJ = [uj,k]j0−1≤j<J, k∈∇j ,

differs from the exact solution u, satisfying Au = f , in the energy norm only by

‖u− uJ‖q . 2J(q−d)‖u‖d

uniformly in J .
Proof. Strang’s first lemma [4] provides

‖u− uJ‖q . inf
vJ∈VJ

{
‖u− vJ‖q + sup

wJ∈VJ

|〈(A− ÃεJ)vJ , wJ〉|
‖wJ‖q

}
.

The consistency (Theorem 9.1) implies

|〈(A− ÃεJ)QJu,wJ〉| = |〈(A− ÃεJ)QJu,QJwJ〉 . 2J(q−d)‖u‖d‖wJ‖q

for all u ∈ Hd(Γ) and wJ ∈ VJ . Hence, choosing vJ := QJu, we arrive at

‖u− uJ‖q . ‖u−QJu‖q + sup
wJ∈VJ

|〈(A− ÃεJ)QJu,QJwJ〉|
‖wJ‖q

. 2J(q−d)‖u‖d.

Theorem 10.3 (Aubin-Nitsche). In addition to the assumptions of Theorem 10.2 suppose
that ‖A?v‖t−q ∼ ‖v‖t+q for all 0 ≤ t ≤ d− q, i.e.

A? : Ht+q(Γ)→ Ht−q(Γ)

is an isomorphism. Then the error estimate

‖u− uJ‖q−t . 2J(q−d−t)‖u‖d

holds for all 0 ≤ t ≤ d− q.
Proof. Recalling that

‖u− uJ‖q−t = sup
g∈Ht−q(Γ)

〈u− uJ , g〉
‖g‖t−q

.

we obtain for v ∈ Ht+q(Γ) with A?v = g

‖u− uJ‖q−t = sup
v∈Ht+q(Γ)

|〈A(u− uJ), v〉|
‖v‖t+q

.

Utilizing the Galerkin orthogonality 〈ÃεJuJ , QJv〉 = 〈Au,QJv〉, we can decompose

〈A(u− uJ), v〉 = 〈A(u− uJ), v −QJv〉+ 〈A(u− uJ), QJv〉

= 〈A(u− uJ), v −QJv〉 − 〈(A− ÃεJ)uJ , QJv〉.

The first term on the right hand side is estimated by Theorem 10.2 in combination with the
approximation property (4.2)

|〈A(u− uJ), v −QJv〉| . ‖u− uJ‖q‖v −QJv‖q . 2J(q−d−t)‖u‖d‖v‖t+q.

For the second term we obtain, on account of Theorem 9.1,

|〈(A− ÃεJ)uJ , QJv〉| ≤ |〈(A− ÃεJ)(uJ −QJu), QJv〉|+ |〈(A− ÃεJ)QJu,QJv〉|
. 2−Jt‖uJ −QJu‖q‖v‖t+q + 2J(q−d−t)‖u‖d‖v‖t+q.
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Inserting ‖uJ −QJu‖q ≤ ‖u− uJ‖q + ‖u−QJu‖q . 2J(q−d)‖u‖d, yields

|〈(A− ÃεJ)uJ , QJv〉| . 2J(q−d−t)‖u‖d‖v‖t+q.

Therefore, we conclude

‖u− uJ‖q−t = sup
v∈Ht+q(Γ)

〈A(u− uJ), v〉
‖v‖t+q

. 2J(q−d−t)‖u‖d,

which finishes the proof.
Note that in the extreme case t = d − q we obtain the best possible convergence rate of the

Galerkin scheme (3.6).

11. Complexity. In this section we present a general theorem which shows that the overall
complexity of assembling the compressed system matrix with sufficient accuracy can be kept of
the order O(NJ), even when a computational cost of logarithmic order is allowed for each entry.
This theorem will be used later as the essential ingredient in proving that the quadrature strategy
proposed in Section 13 scales linearly.

Theorem 11.1. Assume that Aε
J is obtained by compressing the system matrix AJ =

[〈Aψj′,k′ , ψj,k〉]j0−1≤j,j′≤J, k∈∇j , k′∈∇j′ according to (7.1). The complexity of computing this com-

pressed matrix is O(NJ) provided that for some α ≥ 0 at most O
([
J − j+j′

2

]α) operations are
spent on the approximate calculation of the nonvanishing entries 〈Aψj′,k′ , ψj,k〉.

Proof. (i) We begin with some technical preparations. Recall from the proof of Theorem (8.3)
that the cut-off parameter with respect to the first compression is given by

Bj,j′ ∼ max
{

2−min{j,j,′}, 2−J2(J−j)M2(J−j′)M
}
,

where, as in the proof of Theorem 8.3, M = d′+d̃

2(d̃+q)
< 1. Moreover, we set M ′ := 2d′−2q

d̃+d′
and

N ′ := d̃+d′

d̃+2q
with d′ given by (7.2). Notice that M ′ and N ′ satisfy the relations 0 < M ′ < 1 and

0 < N ′. As one readily verifies, the cut-off parameter with respect to the second compression may
now be rewritten as

B′j,j′ ∼ max
{

2−j , 2−j
′
2[JM ′+(1−M ′)j′−j]N ′

}
, j ≥ j′. (11.1)

Further, we make use of the inequality logα x . 22δx which holds for all x > 0 and δ > 0. Thus,
it suffices to prove the claim for O

([
J − j+j′

2

]α) replaced by O
(
2δ(J−j)2δ(J−j

′)
)

where δ is chosen
sufficiently small.
(ii) First, we determine now the complexity C(1) of computing, within the above cost allowance, all
matrix entries found in the block matrices Aε

j,j′ = [Aε
J ](j,∇j),(j′,∇j′ ) with Bj,j′ ∼ 2−J2(J−j)M2(J−j′)M .

In such blocks, we have to process all coefficients 〈Aψj′,k′ , ψj,k〉 with

dist(Ωj,k,Ωj′,k′) . dist(1)
j,j′ := 2−J2(J−j)M2(J−j′)M . (11.2)

In each block, we find only O
([

2j
′
dist(1)

j,j′

]n) entries satisfying (11.2) per row and, hence a total

of O
([

2j+j
′
dist(1)

j,j′

]n). Summing over all blocks, yields

C(1) .
J∑

j,j′=0

2(j+j′)n2−Jn2(J−j)(M+δ)n2(J−j′)(M+δ)n

= 2Jn
J∑

j,j′=0

2(J−j)(M+δ−1)n2(J−j′)(M+δ−1)n . 2Jn,

provided that δ is chosen so as to ensure M + δ < 1.
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(iii) It remains to show that the complexity for computing the omitted blocks is likewise O(NJ).
Without the loss of generality, we assume j ≥ j′ in the remainder of this proof, since the roles of j
and j′ can be reversed. Observing that, because of 0 < M ′ < 1, one has 0 < JM ′+(1−M ′)j′ ≤ J ,
we consider first the blocks Aε

j,j′ with (j, j′) ∈ S, where the index set S is given by

S := {(j, j′) : 0 ≤ j′ ≤ J, JM ′ + (1−M ′)j′ ≤ j ≤ J}. (11.3)

In these blocks, we estimate the complexity C(2) required for the approximate computation of the
matrix entries 〈Aψj′,k′ , ψj,k〉 satisfying the relation

dist(Ω′j,k,Ωj′,k′) . dist(2)
j,j′ := 2−j

′
2[JM ′+(1−M ′)j′−j]N ′ , (11.4)

where we refer to the expression (11.1) for B′j,j′ . Since dist(2)
j,j′ ≤ 2−j

′
for all (j, j′) ∈ S, in each

block one finds only O
([

2jn2−j
′(n−1) dist(2)

j,j′

])
nontrivial matrix entries per column with (11.4),

and thus a total of O
([

2jn2j
′
dist(2)

j,j′

])
. Therefore, noting that the set S is equivalent to

S =
{

(j, j′) : JM ′ ≤ j ≤ J, 0 ≤ j′ ≤ j−JM ′
1−M ′

}
,

the complexity is bounded by

C(2) .
J∑

j=JM ′

j−JM′
1−M′∑
j′=0

2jn2[JM ′+(1−M ′)j′−j]N ′2δ(J−j)2δ(J−j
′)

=
J∑

j=JM ′

2jn2[JM ′−j]N ′2δ(J−j)2δJ
j−JM′
1−M′∑
j′=0

2j
′[(1−M ′)N ′−δ]

. 2δJ
2−M′
1−M′

J∑
j=0

2j(n−δ
2−M′
1−M′ ) . 2Jn.

C(2) estimates the complexity for those blocks with (j, j′) ∈ S when B′j,j′ ∼ dist(2)
j,j′ . But

according to (11.1), the cut-off parameter B′j,j′ is bounded from below by 2−j . In the case of

B′j,j′ ∼ 2−j we find O
([

2jn2j
′
dist(3)

j,j′

])
matrix entries 〈Aψj′,k′ , ψj,k〉 with

dist(Ω′j,k,Ωj′,k′) . dist(3)
j,j′ := 2−j .

Arguing analogously as above, summing over all blocks with (j, j′) ∈ S, one obtains

C(3) .
J∑

j=JM ′

j−JM′
1−M′∑
j′=0

2j(n−1)2j
′
2δ(J−j)2δ(J−j

′) =
J∑

j=JM ′

2j(n−1)2δ(2J−j)
j−JM′
1−M′∑
j′=0

2j
′(1−δ)

. 2δJ
2−M′
1−M′

J∑
j=0

2j(n−δ
2−M′
1−M′ ) . 2Jn.

(iv) Finally, we consider the blocks Aε
j,j′ with j ≥ j′ and (j, j′) 6∈ S. In view of step (ii), it suffices

to consider all entries 〈Aψj′,k′ , ψj,k〉 which fulfil

dist(Ωj,k,Ωj′,k′) . dist(4) := 2−min{j′,j} = 2−j
′
. (11.5)

Each block Aε
j,j′ consists of only O

([
2j2j

′
dist(4)

]n) entries with (11.5). Hence, according to
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(11.3), the complexity C(4) for the computation of these entries is

C(4) .
J∑

j′=0

JM ′+(1−M ′)j′∑
j=j′

2jn2δ(J−j)2δ(J−j
′) .

J∑
j′=0

22δ(J−j′)2j
′n

(J−j′)M ′∑
j=0

2j(n−δ)

. 2Jn
J∑

j′=0

2(J−j′)((M ′−1)(n−δ)+δ) . 2Jn,

since (M ′ − 1)(n− δ) + δ < 0. This completes this proof.

12. Setting up the Compression Pattern. Checking the distance criterion 7.1 for each
matrix coefficient, in order to assemble the compressed matrix, would require O(N2

J) function
calls. To realize linear complexity, we exploit the underlying tree structure with respect to the
supports of the wavelets, to predict negligible matrix coefficients. We will call a wavelet ψj+1,son

a son of ψj,father if Ωj+1,son ⊆ Ωj,father. The following observation is an immediate consequence of
the relations Bj,j′ ≥ Bj+1,j′ ≥ Bj+1,j+1′ , and B′j,j′ ≥ B′j+1,j′ for j > j′.

Lemma 12.1. For Ωj+1,son ⊆ Ωj,father and Ωj′+1,son ⊆ Ωj′,father the following statements hold.
1. dist(Ωj,father,Ωj′,father′) > Bj,j′ implies dist(Ωj+1,son,Ωj′,father′) > Bj+1,j′ as well as

dist(Ωj+1,son,Ωj′+1,son′) > Bj+1,j+1′ .
2. Suppose that j > j′ and dist(Ωj,father,Ω′j′,father′) > B′j,j′ . Then one has dist(Ωj+1,son,Ω′j′,father′) >
B′j+1,j′ .

With the aid of this lemma we have to check the distance criteria only for coefficients which
stem from subdivisions of calculated coefficients on a coarser level. Therefore, the resulting pro-
cedure of checking the distance criteria is still of linear complexity.

13. Computation of Matrix Coefficients. Of course, the significant matrix entries 〈Aψj′,k′ , ψj,k〉
retained by the compression strategy can generally neither be determined analytically nor be com-
puted exactly. Therefore we have to approximate the matrix coefficients by quadrature rules. This
causes an additional error which has to be controlled with regard to our overall objective of re-
alizing asymptotically optimal accuracy while preserving efficiency. Theorem 11.1 describes the
maximal allowed computational expenses for the computation of the individual matrix coefficients
so as to realize still overall linear complexity. From previous studies we already know that suffi-
cient accuracy requires only a level dependent precision of quadrature for computing the retained
matrix coefficients, see e.g. [19, 30]. This precision is actually described in Theorem 8.3.

Proposition 13.1. Let the error of quadrature for computing the relevant matrix coefficients
〈Aψj′,k′ , ψj,k〉 be bounded by the level dependent accuracy

εj,j′ = εmin
{

2−
|j−j′|n

2 , 2−n(J− j+j
′

2 ) d
′−q
d̃+q

}
22Jq2−2d′(J− j+j

′
2 ) (13.1)

for some ε < 1 and d′ ∈ (d, d̃+ r) from (7.2). Then, the Galerkin scheme is stable and converges
with the optimal order (3.6).

From (13.1) we conclude that the entries on the coarse grids have to be computed with the
full accuracy while the entries on the finer grids are allowed to have less accuracy. Unfortunately,
the domains of integration are very large on coarser scales.

Since we employ primal multiresolution spaces Vj based on piecewise polynomials, the numeri-
cal integration can be reduced to the computation of the interaction of polynomial shape functions
on certain elements. Consequently, we have to deal only with integrals of the form

I(Γi,j,k,Γi′,j′,k′) :=
∫

Γi,j,k

∫
Γi′,j′,k′

k(x, y)pl
(
γ−1
i (x)

)
pl′
(
γ−1
i′ (y)

)
dΓy dΓx (13.2)

with pl denoting the polynomial shape functions. This is quite similar to the traditional Galerkin
discretization. The main difference is that in the wavelet approach the elements may appear on
different levels due to the multilevel hierarchy of wavelet bases.
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Difficulties arise if the domains of integration are very close together relatively to their size.
We have to apply numerical integration with some care in order to keep the number of evaluations
of the kernel function at the quadrature nodes moderate and to fulfil the requirements of Theo-
rem 11.1. The necessary accuracy can be achieved within the allowed expenses if we employ an
exponentially convergent quadrature method.

In [19, 30] a geometrically graded subdivision of meshes is proposed in combination with
varying polynomial degrees of approximation in the integration rules, cf. Figure 13.1. Exponential
convergence is shown for boundary integral operators under the assumption that the underlying
manifolds are piecewise analytic. It is shown in [19] that the combination of tensor product Gauß-
Legendre quadrature rules with such a hp-quadrature scheme leads to a number of quadrature
points satisfying the assumptions of Theorem 11.1 with α = 2n. Since the proofs are rather
technical we refer to [31, 27, 30, 19, 22] for further details. For that result to be valid we need
a slightly stronger assumption on our manifold Γ which should be piecewise analytic. Moreover,
the kernels of the operators should satisfy the following condition.

Assumption: The kernel k(x̂, ŷ), x̂, ŷ ∈ Γ, is analytically standard of order 2q, that is, the
partial derivatives of the transported kernel function (2.5) are uniformly bounded by

|∂αx ∂αy k̃(x, y)| . (|α|+ |β|)!
(q dist(x̂, ŷ))n+2q+|α|+|β| ,

with some q > 0.
Remark: The condition of piecewise analyticity has been relaxed in [28] to a maximal degree

piecewise Ck-smoothness of the surface. However these methods are more involved and, although
the required smoothness k is finite, it is still relatively large.

��
Γi′,j′,k′

Γi,j,k

Fig. 13.1. Adaptive subdivision of the domains of integration.

Since the kernel function has a singularity on the diagonal we are still confronted with singular
integrals if the domains of integration live on the same level and have some points in common. This
happens if the underlying elements are identical or share a common edge or vertex. When we do
not deal with weakly singular integral operators, the operators can be regularized, e.g. by partial
integration [25]. So we end up with weakly singular integrals. Such weakly singular integrals can
be treated by the so-called Duffy-trick [16, 29]. In this way the singular integrands are transformed
into analytical ones.

In summary, from the previous results together with the quoted references it follows that for
boundary integral operators arising from Laplace, Stokes and Lamé equation, the required accuracy
(13.1) for the computation of an individual matrix coefficient is achieved with O

([
J − j+j′

2

]2n)
function calls. According to Theorem 11.1 the total complexity needed to compute for every
dyadic level J a compressed matrix, representing a scheme with the original discretization error
accuracy, is O(NJ). Using nested iteration, where on each level the approximate solution of the
previous level is used as initial guess, so that, in view of Theorem 5.1, only a finite uniformly
bounded number of iteration is needed to realize the corresponding discretization error accuracy,
one has a solution process with asymptotically optimal complexity.
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Theorem 13.2. Employing nested iteration in combination with the above scheme of comput-
ing the compressed stiffness matrices, allows one to compute approximate solutions to (2.1) from
VJ , realizing discretization error accuracy, at the expense of O(NJ) operations, uniformly in J .

14. Numerical Results. In order to demonstrate the efficiency of our method we present
here only a representative example which does not only confirm the theoretical results quantita-
tively, but shows also that our concept can be applied to nontrivial geometries. In fact, it has
been already experienced in [19] that we achieve almost the same compression rates as for simple
surfaces e.g. a sphere.

We solve an interior Dirichlet problem for the Laplacian by the indirect approach using the
single layer potential operator, yielding a Fredholm integral equation of the first kind for an
unknown density ρ. Hence, in particular preconditioning is an issue. In our example the domain
Ω is a crankshaft of a parallel twin motor (as used in old British motorcycles), cf. Figure 14.1.
The surface of this crankshaft is parametrized with the aid of 142 patches. As Dirichlet data we
choose the restriction of the harmonical function

U(x) =
(a, x− b)
‖x− b‖3

, a = (1, 2, 4), b ∈ (1.5, 0, 0) 6∈ Ω

to Γ. Then, U is the unique solution of the Dirichlet problem. We discretize the given boundary in-
tegral equation by piecewise constant wavelets with three vanishing moments. For the computation
of the potential U we expect a pointwise convergence rate |U(x)−UJ(x)| . ‖ρ−ρJ‖−2 . 2−3J‖ρ‖1,
x ∈ Ω [34].

Fig. 14.1. The surface mesh and the evaluation points xi of the potential.

In order to measure the error produced by the method, we calculate the approximate solution
UJ = AρJ in several points xi inside the domain, plotted in Figure 14.1. The discrete potentials
are denoted by

U := [U(xi)], UJ := [(AρJ)(xi)].

We list in Table 14.1 the results produced by the wavelet Galerkin scheme. The optimal order of
convergence of the discrete potentials is cubic with respect to the l∞-norm over all points xi. In
fact, for the solution of the compressed scheme this order of convergence can be observed from our
numerical results. For NJ ≤ 9088 we have also computed the solution of the uncompressed scheme.
The corresponding absolute errors for this traditional Galerkin scheme are 1.0 if NJ = 2272 and
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J NJ ‖UJ −UJ‖∞ time a-priori (%) a-posteriori (%)
1 568 15.7 11 31.2 22.5
2 2272 1.0 (16) 62 11.8 8.39
3 9088 2.4e-1 (4.1) 760 4.55 2.11
4 36352 2.2e-2 (19) 5228 1.53 0.48
5 145408 4.0e-3 (3.2) 42785 0.44 0.12

Table 14.1

Numerical results with respect to the crankshaft.

2.5e-1 if NJ = 9088. This shows that the present compression does not degrade the accuracy of
the Galerkin scheme.

We measure the compression via the ratio of the number of nonzero entries of the compressed
matrix and N2

J . For 145408 unknowns, only 0.44% of the entries have to be computed. After the
a-posteriori compression even only 0.12% nonzero entries are used for computation of the solution
ρJ . In our wavelet Galerkin scheme we have allocated 1.3 Gigabyte storage for the solution of
145408 unknowns. From our compression rates one can observe that the number of nonzero matrix
coefficients grows only linearly with the number of unknowns, as predicted. We have observed
that more than 95% of the computing time is consumed by the precomputational steps, namely
setting up the matrix pattern and assembling the compressed Galerkin matrix. In comparison
with this our preconditioned iteration method for solution of the discrete equations is rather fast.
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[12] W. Dahmen, S. Prößdorf, and R. Schneider. Multiscale methods for pseudodifferential equations on smooth
manifolds. In C.K. Chui, L. Montefusco, and L. Puccio, editors, Proceedings of the International Con-
ference on Wavelets: Theory, Algorithms, and Applications, pages 385–424, 1995.

[13] W. Dahmen and R. Schneider. Composite wavelet bases for operator equations. Math. Comp., 68:1533–1567,
1999.

[14] W. Dahmen and R. Schneider. Wavelets on manifolds I. Construction and domain decomposition. SIAM J.
Math. Anal., 31:184–230, 1999.

[15] W. Dahmen and R. Stevenson. Element-by-element construction of wavelets satisfying stability and moment
conditions. SIAM J. Numer. Anal., 37:319–352, 1999.

[16] M. Duffy. Quadrature over a pyramid or cube of integrands with a singularity at the vertex. SIAM J. Numer.
Anal., 19:1260–1262, 1982.

[17] L. Greengard and V. Rokhlin. A fast algorithm for particle simulation. J. Comput. Phys., 73:325–348, 1987.
[18] W. Hackbusch and Z.P. Nowak. On the fast matrix multiplication in the boundary element method by panel

clustering. Numer. Math., 54:463–491, 1989.
[19] H. Harbrecht. Wavelet Galerkin schemes for the boundary element method in three dimensions. PHD Thesis,

Technische Universität Chemnitz, Germany, 2001.
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