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Abstract

A singularly perturbed convection–diffusion problem in two and three space di-
mensions is discretized using the streamline upwind Petrov Galerkin (SUPG) variant
of the finite element method. The dominant convection frequently gives rise to solu-
tions with layers; hence anisotropic finite elements can be applied advantageously.

The main focus is on a posteriori energy norm error estimation that is robust
in the perturbation parameter and with respect to the mesh anisotropy. A residual
error estimator and a local problem error estimator are proposed and investigated.

The analysis reveals that the upper error bound depends on the alignment of
the anisotropies of the mesh and of the solution. Hence reliable error estimation
is possible for suitable anisotropic meshes. The lower error bound depends on the
problem data via a local mesh Peclet number. Thus efficient error estimation is
achieved for small mesh Peclet numbers.

Altogether, error estimation approaches for isotropic meshes are successfully ex-
tended to anisotropic elements. Several numerical experiments support the analysis.
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1 Introduction

Our work deals with the singularly perturbed diffusion–convection–reaction problem

−ε∆u+ b · ∇u+ cu = f in Ω
u = 0 on ΓD

ε∂nu = g on ΓN.







(1)

Such problems arise e.g. when linearizing the Navier–Stokes equations. The convection
dominated case is particularly interesting, and thus the diffusion parameter is supposed to
be small, 0 < ε ¿ 1. As a consequence, the solution u of (1) frequently has exponential
(or regular) boundary layers of width O(ε| ln ε|), or parabolic (or characteristic) boundary
layers of width O(√ε| ln√ε|). Standard numerical methods such as the Finite Element
Method (FEM) or the Finite Difference Method usually fail for small ε since they introduce
nonphysical oscillations. One possible remedy involves additional stabilisation. The most
successful approaches are the streamline upwind Petrov Galerkin method (SUPG), also
known as streamline diffusion finite element method (SDFEM), the Galerkin least squares
approximation (GLS), and the Douglas–Wang method. Among the extensive literature, we
refer to the overview work of [RST96] and [Mor96], and to [HL98] for a unified presentation
of stabilized Galerkin methods.

In our work we are solely concerned with the SUPG variant of the finite element method.
This includes the analysis of the standard (unstable) Galerkin method when omitting any
stabilisation.

Our main interest is in reliable and efficient a posteriori error estimators. This topic is
by now well understood for symmetric, elliptic partial differential equations (PDEs) where
tight upper and lower error bounds are achieved, cf. the overview work of [Ver96, AO00].
For the convection dominated case as considered here, the theory is much less mature.
This is mainly caused by the large convection which implies a gap between the ellipticity
constant and the boundedness constant of the bilinear form associated with the PDE.
Hence the constants in the error bounds depend on the problem parameters. Reliability
and/or efficiency of the error estimator may be affected adversely.

The last decade has seen much effort to diminish the influence on the problem data.
Angermann [Ang95] was the first to eliminate this dependence completely. Unfortunately
the error is measured there in a complicated norm which is defined implicitly via an infinite
dimensional variational problem. Hence tight error bounds are achieved on the expense of
a norm that is difficult to evaluate.

A more feasible approach is presented by Verfürth [Ver98a] and Kay/Silvester [KS01]
which measure the error in the energy norm and the H1 seminorm, respectively. In both
cases the error estimator is reliable, i.e. an upper error bound holds. The efficiency is asso-
ciated with the lower error bound and depends on a local mesh Peclet number, cf. Section 4
for details.

Formaggia at al. [FPZ01] propose a post–processing based error estimator that employs
the dual solution. Recently Sangalli [San01] obtained an error estimate in a particular norm
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2 1 INTRODUCTION

for the so–called residual free bubble method. Also worth mentioning is the numerical study
of a posteriori error estimators by John [Joh00]. He compares several estimators that are
either heuristically derived or mathematically analysed. There valuable conclusions are
obtained about reliability of estimators and their suitability for adaptive algorithms. One
(slightly surprising) observation is that parabolic layers can be more difficult to treat than
exponential layers.

Finally, a maximum norm a posteriori estimator for a 1D problem has been proposed
recently in [Kop01]. We also mention the vast literature on a priori estimates, cf. [Ape99,
RST96] and the citations therein.

The singularly perturbed nature of the convection–diffusion problem frequently gives
rise to boundary layers. These layers have strong anisotropic behaviour, i.e. they exhibit
lower–dimensional features. Problems with anisotropic solutions can be favourably resolved
using anisotropic meshes. By this we mean meshes with elements whose aspect ratio is not
bounded, as in the conventional theory, but can be arbitrarily large. For further reference
we refer to Apel [Ape99]; see e.g. also [Kun99, HL98, LS01]. As a consequence of using
anisotropic elements, the whole theory of a priori and a posteriori error estimators has to
be reinvestigated since the large aspect ratio influences the error bounds adversely.

Here we are chiefly concerned about a posteriori estimators for anisotropic elements.
There has been some development in recent years; exemplarily we mention [DGP99, Kun00,
Kun01c, Sie96]. There is a common feature of all those estimators that is different to
the isotropic theory. Namely, the reliability and efficiency of the error estimator is not
achieved for arbitrary anisotropic meshes (i.e. independent of the anisotropic solution). If
the anisotropy of the mesh and of the solution are well aligned then tight upper and lower
error bounds are obtained. Otherwise there can be an arbitrarily large gap between both
error bounds, and the error estimator would be useless. For more details see Section 3.3.

In this work we derive and analyse a posteriori error estimators that are suitable for
singularly perturbed convection–diffusion problems on anisotropic meshes. Our propos-
als are inspired by estimators for convection–diffusion problems [KS01, Ver98a] and by
estimators for anisotropic elements [Kun01b, Kun01c]. It turns out that the upper error
bound depends on the alignment of the anisotropic mesh and of the anisotropic solution.
This dependence enters in the same way as for the Poisson equation or reaction–diffusion
equations, cf. [Kun00, Kun01c]. The lower error bound involves a local mesh Peclet num-
ber PeT . It implies efficiency of the error estimator if the mesh Peclet number is small
(PeT . 1). This is an analogous result as for isotropic elements.

The remainder of the paper is organised as follows. The model problem is introduced in
Section 2. The notation and some auxiliary results are presented in Section 3. The interpo-
lation results of Section 3.3 deserve particular attention since they describe the alignment
of anisotropic mesh and function. Section 4 then presents residual error estimation while
Section 5 is devoted to error estimation via local problems. The numerical experiments
of Section 6 confirm the theoretical predictions but also shed light on limitations of the
estimators.
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2 Model problem and its discretization

Assume that Ω ⊂ R
d, d = 2, 3, is a bounded polyhedral domain with Lipschitz boundary

∂Ω = ΓD∪ΓN. In our exposition we will only address the more technical three dimensional
case; the 2D analogues can be derived easily.

For a bounded domain ω ⊂ R
d, d = 2, 3, we denote by L2(ω) the usual Lebesgue space

equipped with the norm ‖ · ‖ω and the scalar product ( · , · )ω. Similarly introduce the
standard space L∞(ω) with norm ‖ · ‖∞,ω, and let H1(ω) be the usual Sobolev space,
cf. [Ada75]. For the whole domain ω = Ω the index of the norms will be omitted.

We are interested in the convection dominated case of (1) and assume

(A1) b ∈W 1,∞(Ω)d, c ∈ L∞(Ω)

(A2) There exists a positive constant c0: −12∇ · b+ c ≥ c0 > 0

(A3) b · n ≥ 0 on ΓN.

Next, define an energy norm which is closely related to the differential equation by

|||v|||2ω := ε‖∇v‖2ω + c0‖v‖2ω . (2)

Let H1
o (Ω) be the standard Sobolev space of functions of H1(Ω) with vanishing trace

on ΓD. The variational formulation corresponding to (1) becomes:

Find u ∈ H1
o (Ω) : B(u, v) = 〈F, v〉 ∀ v ∈ H1

o (Ω) (3)

with B(u, v) := ε(∇u,∇v) + (b · ∇u, v) + (cu, v)
〈F, v〉 := (f, v) + (g, v)ΓN

.

Thanks to assumptions (A1)–(A3) the bilinear form B(·, ·) satisfies

B(v, v) ≥ |||v|||2 ∀v ∈ H1
o (Ω) (4)

B(v, w)|ω ≤ |||v|||ω ·
(

max{1, c−10 ‖c‖∞,ω} |||w|||ω + ε−1/2‖b‖∞,ω‖w‖ω
)

(5)

for all v, w ∈ H1(ω). The Lax Milgram lemma ensures existence and uniqueness of the
weak solution u of (3).

Next, introduce a family F = {T } of triangulations T of Ω that consist of tetrahedra.
We assume an admissible triangulation in the sense of [Cia78]. Let Vo,h ⊂ H1

o (Ω) be the
space of continuous, piecewise linear functions over T that vanish on ΓD.

The variational problem (3) is now discretized with the streamline upwind Petrov
Galerkin scheme (SUPG):

Find uh ∈ Vo,h : Bδ(uh, vh) = 〈Fδ, vh〉 ∀ v ∈ Vo,h (6)

with Bδ(uh, vh) := B(uh, vh) +
∑

T∈T
δT (−ε∆uh + b · ∇uh + cuh, b · ∇vh)T

〈Fδ, vh〉 := 〈F, vh〉+
∑

T∈T
δT (f, b · ∇vh)T .
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When the real stabilization parameters δT vanish for all elements T then (6) coincides
with the standard Galerkin discretization. In the singularly perturbed case (ε ¿ 1) this
discretization is unsuitable since it suffers from severe instabilities. Then the stabilized
SUPG discretization (corresponding to δT > 0) is more appropriate.

The discrete solution uh exists and is unique if the stabilization parameters δT are
sufficiently small. Following [RST96, Section III.3.2.1], one can show that

0 ≤ δT ≤
1

2
min{c0‖c‖−2∞,T , h2min,T ε−1µ−2}

is sufficient (see also [HL98, Section 2.2]). Here hmin,T is the minimal length of an ele-
ment T , see Section 3.1 below for a precise definition. The constant µ is such that the
inverse inequality

‖ div∇vh‖T ≤ µh−1min,T‖∇vh‖T
holds for all vh ∈ Vo,h. For the case of piecewise linear functions in Vo,h as considered here,
this simplifies to µ = 0 and (after some refined calculation) to 0 ≤ δT ≤ c0‖c‖−2∞,T . In the
sequel we always assume

δT . hmin,T‖b‖−1∞,T ∀T ∈ T
This demand is met for all kinds of stabilisation employed in our work, cf. the numerical
experiments and Section 6.4 in particular. Furthermore it is advantageous to define a
so–called local mesh Peclet number by

PeT :=
‖b‖∞,Thmin,T

2ε
,

cf. [HL98, Section 2.4] or the isotropic counterpart [RST96, Section III.3.2.1]. This mesh
Peclet number relates the ratio of local convection and diffusion to the minimal local mesh
size.

3 Notation and auxiliary results

Let P
k(ω) be the space of polynomials of order k at most over some domain ω. To avoid

excessive use of constants, we employ the shorthand notation x . y and x ∼ y as abbre-
viation for x ≤ c · y or c1x ≤ y ≤ c2x, respectively (with positive constants independent
of x, y and ε, T ).

3.1 Notation

Tetrahedron: Denote the four vertices of an arbitrary tetrahedron T ∈ T by P0, . . . , P3
such that P0P1 is the longest edge of T , meas2(4P0P1P2) ≥ meas2(4P0P1P3), and that
meas1(P1P2) ≥ meas1(P0P2). Introduce three mutually orthogonal vectors pi,T of length
hi,T := |pi,T | according to Figure 1. Then h1,T > h2,T ≥ h3,T . Set

hmin,T := h3,T
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and define the matrix
CT := (p1,T ,p2,T ,p3,T ) ∈ R

3×3 . (7)

Furthermore introduce the scaling factor αT that will be used frequently,

αT := min{c−1/20 , ε−1/2 · hmin,T} . (8)

P0
P1

P2

P3

p1,T

p2,T

p3,T

Figure 1: Notation of tetrahedron T

We denote tetrahedra by T, T ′ or Ti, and faces thereof by E. The length of the height
over a face E is given by

hE,T := 3meas3(T )/meas2(E) .

For a face E, let ωE be the domain formed by both neighbouring tetrahedra, with obvious
modifications for a boundary face. For a tetrahedron T , define the domain ωT that consists
of T and its (generically four) face neighbouring tetrahedra. For convenience, define the
mesh Peclet number on this domain by

PeωT
:= max

T ′⊂ωT

PeT ′ . (9)

Mesh requirements: In addition to the standard admissibility conditions of the mesh
[Cia78, Chapter 2] we require two further assumptions.
1. The number of tetrahedra containing a node xj is bounded uniformly.
2. The dimensions of adjacent tetrahedra must not change rapidly, i.e.

hi,T ′ ∼ hi,T ∀T, T ′ with T ∩ T ′ 6= ∅ , i = 1 . . . 3 .

For notational simplicity it is convenient to employ also face based quantities (instead of
element based terms as e.g. hmin,T ). Therefore we consider an interior face E = T1 ∩ T2
and define

hE := (hE,T1
+ hE,T2

)/2, hmin,E := (hmin,T1
+ hmin,T2

)/2, αE := (αT1
+ αT2

)/2 .
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Consequently these terms are no longer related to T1 or T2 but to E. Because of the
previous mesh requirements they satisfy hE ∼ hE,Ti

, hmin,E ∼ hmin,Ti
and αE ∼ αTi

. For
a boundary face E ⊂ ∂T ∩∂Ω define similarly hE := hE,T , hmin,E := hmin,T and αE := αT .

Squeezed tetrahedron TE,γ: The squeezed tetrahedra have proven to be useful in pre-
vious work [Ver98a, Kun01b, Kun01c]. Here we repeat the main results.

Start with a tetrahedron T and an arbitrary face E thereof. Denote the vertices of T
such that E = Q1Q2Q3 and T = PQ1Q2Q3, and let SE be the midpoint of the face E,
cf. Figure 2.

For γ ∈ (0, 1] being a real parameter, construct the point Pγ on the line SEP such that

| ~SEPγ| = γ · | ~SEP |. The squeezed tetrahedron is now defined as TE,γ = PγQ1Q2Q3.

Q3

Q2 PγSE

Q1

P

Figure 2: Tetrahedra T = PQ1Q2Q3 and TE,γ = PγQ1Q2Q3

Finally consider the affine linear mapping FT,E,γ that maps the unit tetrahedron to
the squeezed tetrahedron TE,γ . In the next section we require a bound of the inverse
transformation matrix which has been proven in [Kun01b],

‖F−1T,E,γ‖R3×3 . min{γ · hE,T , hmin,T}−1 . (10)

3.2 Bubble functions

Bubble functions are an approved tool to obtain lower error bounds. Here we recapitulate
some standard definitions and results (cf. [Ver96]) before we present refined face bubble
functions.

Denote the barycentric coordinates of an arbitrary tetrahedron T by λT,1, · · · , λT,4. The
element bubble function is defined by

bT := 44 · λT,1 · λT,2 · λT,3 · λT,4 ∈ P
4(T ) on T . (11)

Consider next an (interior) face E = T1 ∩ T2. Enumerate the vertices of T1 and T2 such
that the vertices of E are numbered first, and define the standard face bubble function
bE ∈ C0(ωE) by

bE|Ti
:= 33 · λTi,1 · λTi,2 · λTi,3 on Ti, i = 1, 2 .
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For boundary faces modify bE appropriately. The element and face bubble functions are
extended by zero outside their original domain of definition.

For conceptual clarity we also introduce an extension operator Fext : P
0(E) → P

0(ωE)
that maps a constant function over a face E to the same constant function on ωE.

Lemma 1 (Equivalences for bubble functions) Let ϕT ∈ P
0(T ) and ϕE ∈ P

0(E).
Then

‖b1/2T · ϕT‖T ∼ ‖ϕT‖T (12)

‖b1/2E · ϕE‖E ∼ ‖ϕE‖E (13)

Proof: Both equivalences are easily obtained by standard scaling techniques.

For the analysis of singularly perturbed reaction/convection–diffusion problems one
can favourably employ modified face bubble functions that originate from [Ver98b] and
[Kun01b]. Here we repeat the definition and main results; for more details see also
[Kun01c].

Consider a face E and its two neighbouring tetrahedra T1 and T2. For a real number
γ ∈ (0, 1] construct both squeezed tetrahedra Ti,E,γ , cf. Figure 2. The squeezed face bubble
function bE,γ is defined as the standard face bubble function for the squeezed tetrahedra
T1,E,γ and T2,E,γ . Outside of T1,E,γ ∪T2,E,γ the function bE,γ is set to zero. Figure 3 depicts
this definition for the 2D analogue.

Later on, the following inverse inequalities will be required.

Lemma 2 (Inverse inequalities) Let E be an arbitrary face of T . Assume ϕT ∈ P
0(T ) ,

ϕE ∈ P
0(E), and let γ ∈ (0, 1] be arbitrary. Then

‖bE,γ · Fext(ϕE)‖T . γ1/2 · h1/2E,T · ‖ϕE‖E (14)

‖∇(bE,γ · Fext(ϕE))‖T . γ1/2 · h1/2E,T ·min{γ · hE,T , hmin,T}−1 · ‖ϕE‖E (15)

|||bE,γ · Fext(ϕE)|||T . γ1/2 · h1/2E,T ·
(

c
1/2
0 + ε1/2min{γ · hE,T , hmin,T}−1

)

· ‖ϕE‖E (16)

|||bT · ϕT |||T . α−1T ‖ϕT‖T . (17)

Proof: Inequalities (14) and (15) require a careful analysis of the underlying geometri-
cal properties of the squeezed tetrahedron, see e.g. the bound (10). The proof of both
relations is given in detail in [Kun01b, Lemma 3.7]. A combination provides directly the
corresponding bound (16) in the energy norm.

Finally, by standard scaling techniques one concludes ‖∇(bT · ϕT )‖T . h−1min,T · ‖ϕT‖T
for arbitrary ϕT ∈ P

0(T ). Together with ‖bT · ϕT‖T ≤ ‖ϕT‖T and the definition (8) of αT

one infers (17).
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T1,E,γ T2,E,γT1 T2

Figure 3: Top: ωE and squeezed triangles Ti,E,γ (2D case)
Middle: standard face bubble function bE
Bottom: squeezed face bubble function bE,γ

3.3 Interpolation results

Within the last decade research has been increasingly focusing on error estimators for
anisotropic meshes. Primarily one is interested in reliable and efficient a posteriori error
estimators, i.e. upper and lower error bounds should hold. Unfortunately, up to now relia-
bility and efficiency at the same time can be guaranteed only if the anisotropy of the mesh
is sufficiently aligned with the anisotropic function. For example, in [Sie96] the analysis is
restricted to a certain set of treatable anisotropic functions. In [Kun99, Kun00, Kun01b]
a so–called matching function m1(v, T ) is introduced which measures the alignment of an
anisotropic function v and an anisotropic mesh T . Lastly, in Dobrowolski/Gräf/Pflaum
[DGP99] a saturation assumption is necessary that implies a similar correspondence.

Here we follow the approach of Kunert and present the matching function [Kun99,
Kun00]. This matching function plays an important role in the anisotropic interpolation
estimates and, subsequently, in the upper error bounds (cf. Lemma 3 and Theorems 4 and
7 below).
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Definition 1 (Matching function) Let v ∈ H1(Ω), and T ∈ F be a triangulation of Ω.
Define the matching function m1 : H

1(Ω)×F 7→ R by

m1(v, T ) :=
(

∑

T∈T
h−2min,T · ‖CT

T ∇v‖2T
)1/2/

‖∇v‖ , (18)

with the matrix CT ∈ R
3×3 given by (7).

Further discussion can be found in the aforementioned literature. Here few remarks shall
give some impressions of the behaviour of the matching function.

First, with the temporary notation hmax,T := h1,T , one concludes

1 ≤ m1(v, T ) . max
T∈T

hmax,T/hmin,T .

This upper bound on m1 is practically useless. It confirms, however, that m1 ∼ 1 on
isotropic meshes, and the matching function merges there with other constants. Hence
(18) can be regarded as a natural extension of the theory for isotropic meshes.

On anisotropic meshes that are well aligned with an anisotropic function v one also
obtains m1(v, T ) ∼ 1; in practical experiments m1 mostly ranges from 1.5 to 4. If the
anisotropic mesh is not aligned with an anisotropic function v then the matching function
can be arbitrarily large. Consequently the error can be extremely overestimated, i.e. the
error estimator becomes practically useless [Kun01a, Section 4.2].

Next we state anisotropic interpolation results which form an indispensable ingredient
for the analysis of the residual error estimator. Since the usual Lagrange interpolant is
not defined for functions v ∈ H1(Ω), we resort to to Clément interpolation operator ICl,
cf. also [Clé75]. In [Kun00] the interpolation estimates have been extended to anisotropic
tetrahedral meshes. The results have been adapted to suit the analysis of a singularly
perturbed reaction–diffusion problem in [Kun01b]. Note that all anisotropic interpolation
estimates contain the aforementioned matching function.

Here we repeat the interpolation estimates obtained in [Kun01b].

Lemma 3 (Clément interpolation) Let v ∈ H1
o (Ω) and αT given by (8). The Clément

interpolation operator ICl : H
1
o (Ω) 7→ Vo,h satisfies the inequalities below:

|||IClv||| . m1(v, T ) · |||v||| (19)
∑

T∈T
α−2T · ‖v − IClv‖2T . m1(v, T )2 · |||v|||2 (20)

ε1/2
∑

E⊂Ω\ΓD

α−1E · ‖v − IClv‖2E . m1(v, T )2 · |||v|||2 . (21)

Proof: The stability estimate (19) follows from the inequalities

‖IClv‖ . ‖v‖
‖∇IClv‖ . m1(v, T ) · ‖∇v‖

which can be proven exactly as in [Kun00, Section 3]. The last two inequalities are proven
in [Kun01b, Lemma 3.11].
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4 Residual error estimation

Error bounds can be obtained by measuring and scaling the residuals, cf. the textbooks
[AO00, Ver96]. The general approach here is similar, and it follows the analysis for the
convection–diffusion problem on isotropic elements [Ver98a]. All the details here are of
course tailored to take the anisotropy of the elements into account. More precisely, the
upper error bound is based on specific anisotropic interpolation estimates while the lower
error bound relies on (adapted) bubble functions and corresponding inverse inequalities. It
is noteworthy that we can utilize most of the techniques and ingredients that were derived
to analyse reaction–diffusion problems (cf. [Kun01b]).

In Section 4.1 we propose and analyse error bounds for a piecewise linear finite element
solution uh and piecewise constant approximate residuals. Section 4.2 is devoted to higher
order approximations.

4.1 Error estimation using constant approximate residuals

We start with the definition of the (exact and approximate) residuals, and of the error
estimator.

Exact residuals: For an element T and a face E define the exact element residual RT

and the exact face residual RE as follows:

RT := f − (−ε∆uh + b · ∇uh + cuh) on T,

RE(x) :=















ε · lim
t→+0

[∂nE
uh(x+ tnE)− ∂nE

uh(x− tnE)] if E ⊂ Ω \ Γ

g − ε · ∂nuh if E ⊂ ΓN

0 if E ⊂ ΓD .

Here nE ⊥ E is any of the two unitary normal vectors whereas n ⊥ E ⊂ ΓN denotes the
outer unitary normal vector.

Approximate residuals: Parts of the theory require residual terms from a finite
dimensional space. Therefore we utilize an approximation operator P that approximates
the element residual and the face residual by piecewise constant values, respectively. By
these means we define the (approximate) element residual rT and the (approximate) face
residual rE:

rT := P(RT ) ∈ P
0(T ) ∀T ∈ T

rE := P(RE) ∈ P
0(E) ∀E .

Since the finite element solution uh is linear, the exact face residual RE is already constant
for interior faces or Dirichlet faces. Hence it is natural to demand

rE = RE ∀E ⊂ Ω \ ΓN ,

i.e. the face residual is approximated only for Neumann boundary faces.
Note also that formally the approximations can be chosen arbitrarily. In order to obtain

tight results, the approximation error should nevertheless be small (cf. the results below).
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Definition 2 (Residual error estimator) For a tetrahedron T , the residual error esti-
mator ηR,T and the approximation term ζT are defined by

η2R,T := α2T · ‖rT‖2T + ε−1/2 · αT ·
∑

E⊂∂T\ΓD

‖rE‖2E

ζ2T := α2T · ‖rT −RT‖2ωT
+ ε−1/2 · αT ·

∑

E⊂∂T∩ΓN

‖rE −RE‖2E ,

where the scaling factor αT is given by (8). Furthermore define the corresponding global
expressions by

η2R :=
∑

T∈T
η2R,T and ζ2 :=

∑

T∈T
ζ2T .

Now we are ready to state the error bounds. The upper error bound involves the
alignment of the anisotropic mesh and the anisotropic solution. Thus reliable error esti-
mation is achieved for suitable meshes. The lower error bound contains an additional and
potentially large factor that is related to the local mesh Peclet number. Hence one can
guarantee efficiency of the error estimator only for small Peclet numbers PeT . 1. This
result is analogous to the isotropic counterpart (but different to e.g. the Poisson problem
or the reaction–diffusion problem). For more details see also Remark 2 and the numerical
experiments of Section 6.

The main theoretical result is presented next.

Theorem 4 (Residual error estimation) The error is bounded locally from below for
all T ∈ T by

ηR,T . |||u− uh|||ωT
·
(

max{1, c−10 ‖c‖∞,ωT
}+ ε−1/2αT‖b‖∞,ωT

)

+ ζT . (22)

Recalling PeωT
from (9), this lower bound can be rewritten in the slightly weaker form

ηR,T . |||u− uh|||ωT
·
(

max{1, c−10 ‖c‖∞,ωT
}+ PeωT

)

+ ζT . (23)

Assume further that the stabilization parameters satisfy δT . hmin,T/‖b‖∞,T . Then the
error is bounded globally from above by

|||u− uh||| . m1(u− uh, T ) ·
[

η2R + ζ2
]1/2

. (24)

Proof: The proof follows the lines of [Ver98a], with appropriate modifications for aniso-
tropic elements. We start with a basic error equation. Element–wise integration by parts
yields for all w ∈ H1

o (Ω)

B(u− uh, w) =
∑

T∈T
(RT , w)T +

∑

E⊂Ω\ΓD

(RE, w)E . (25)

In order to derive the lower error bound (22), we have to bound ‖rT‖T and ‖rE‖E. To
this end insert wT := bT · rT into (25) and conclude

(rT , wT )T = B(u− uh, wT ) + (rT −RT , wT )T .
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The bilinear form is bounded using (5). With the inverse inequality (17) and the obvious
relation ‖wT‖T ≤ ‖rT‖T this yields

B(u− uh, wT ) ≤ |||u− uh|||T
(

max{1, c−10 ‖c‖∞,T} |||wT |||T + ε−1/2‖b‖∞,T‖wT‖T
)

(17)
. |||u− uh|||T · ‖rT‖T ·

(

max{1, c−10 ‖c‖∞,T}α−1T + ε−1/2‖b‖∞,T

)

.

Using (rT −RT , wT )T ≤ ‖rT −RT‖T ‖rT‖T and (rT , wT )T ∼ ‖rT‖2T from (12) one obtains

αT‖rT‖T . |||u− uh|||T
(

max{1, c−10 ‖c‖∞,T}+ ε−1/2αT‖b‖∞,T

)

+ αT‖rT −RT‖T .

Next the norm of the face residuals is to be bounded. Let us start with an interior face
E = T1 ∩ T2 and recall rE = RE ∈ P

0(E) (i.e. the approximate residual is exact). Set

wE := bE,γE
· Fext(rE) .

Here the parameter γE is chosen to be

γE := min

{

1 ,
hmin,E

hE

,
ε1/2

c
1/2
0 hE

}

(26)

which implies γE ∼ ε1/2αEh
−1
E ∼ ε1/2αTi

h−1E . Insert wE in equation (25) and infer

(rE, wE)E = B(u− uh, wE)−
2
∑

i=1

(rTi
, wE)Ti

+
2
∑

i=1

(rTi
−RTi

, wE)Ti
.

The L2 scalar products are bounded using the Cauchy Schwarz inequality, several inverse
inequalities and the specific value of γE.

(rE, wE)E = (rE, bErE)E
(13)∼ ‖rE‖2E

‖wE‖Ti

(14)
. ε1/4α

1/2
Ti
‖rE‖E

|||wE|||Ti

(16)
. ε1/4α

−1/2
Ti
‖rE‖E .

Applying these inequalities and relation (5) to B(u− uh, wE) results in

B(u− uh, wE)
(5)
. |||u− uh|||ωE

·
(

max{1, c−10 ‖c‖∞,ωE
} |||wE|||ωE

+ ε−1/2‖b‖∞,ωE
‖wE‖ωE

)

. |||u− uh|||ωE
· ‖rE‖E

(

max{1, c−10 ‖c‖∞,ωE
} ε1/4α−1/2E + ε−1/4α

1/2
E ‖b‖∞,ωE

)

.

Combining all these inequalities and utilizing the previous bound of ‖rT‖T gives

ε−1/4α
1/2
E ‖rE‖E . |||u− uh|||ωE

(

max{1, c−10 ‖c‖∞,ωE
}+ ε−1/2αE‖b‖∞,ωE

)

+αE

2
∑

i=1

‖rTi
−RTi

‖Ti
.
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For a Neumann boundary face E ⊂ ΓN of an element T one proceeds similarly to conclude

ε−1/4α
1/2
E ‖rE‖E . |||u− uh|||T

(

max{1, c−10 ‖c‖∞,T}+ ε−1/2αE‖b‖∞,T

)

+αE‖rT −RT‖T + ε−1/4α
1/2
E ‖rE −RE‖E .

Next recall that αE ∼ αT for E ⊂ ∂T . All inequalities together then prove the lower error
bound (22). Finally note that the term ε−1/2αT‖b‖∞,ωT

of (22) can be bounded by the
local mesh Peclet number,

ε−1/2αT‖b‖∞,ωT
. max

T ′⊂ωT

PeT ′ = PeωT

which proves the slightly weaker bound (23).

In order to prove the upper error bound (24), we employ (4) and obtain

|||u− uh|||
(4)
≤ B(u− uh, u− uh)

|||u− uh|||
=

B(u− uh, v)

|||v||| ,

with v := u − uh. The numerator is now decomposed with the help of the Clément
interpolation operator ICl,

B(u− uh, v) = B(u− uh, v − IClv) +B(u− uh, IClv) .

The middle term is treated via (25) and results in

B(u− uh, v − IClv) =
∑

T∈T
(RT , v − IClv)T +

∑

E⊂Ω\ΓD

(RE, v − IClv)E .

The Cauchy Schwarz inequality and the interpolation results of Lemma 3 yield

∑

T∈T
(RT , v − IClv)T ≤

(

∑

T∈T
α2T‖RT‖2T

)1/2

·
(

∑

T∈T
α−2T ‖v − IClv‖2T

)1/2

(20)
.

(

∑

T∈T
α2T‖RT‖2T

)1/2

·m1(v, T ) · |||v|||

∑

E⊂Ω\ΓD

(RE, v − IClv)E ≤
(

∑

E⊂Ω\ΓD

ε−1/2αE‖RE‖2E
)1/2

·
(

∑

E⊂Ω\ΓD

ε1/2α−1E ‖v − IClv‖2E
)1/2

(21)
.

(

∑

E⊂Ω\ΓD

ε−1/2αE‖RE‖2E
)1/2

·m1(v, T ) · |||v||| .

Thus the term B(u− uh, v − IClv) can be bounded by

B(u− uh, v − IClv) .

(

∑

T∈T
α2T‖RT‖2T +

∑

E⊂Ω\ΓD

ε−1/2αE‖RE‖2E
)1/2

·m1(v, T ) · |||v||| .
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Consider now the last term B(u − uh, IClv) of the decomposition from above. This
term is due to the SUPG discretization and vanishes for the standard Galerkin method.
For an arbitrary function vh ∈ Vo,h, standard scaling arguments readily imply ‖∇vh‖T .
h−1min,T‖vh‖T ≤ h−1min,T c

−1/2
0 |||vh|||T . Together with the obvious bound ‖∇vh‖T ≤ ε−1/2 |||vh|||T

one concludes

‖∇vh‖T . min{h−1min,T c
−1/2
0 , ε−1/2} |||vh|||T = h−1min,T αT |||vh|||T .

We now use the Galerkin orthogonality and recall that uh is the solution of the SUPG
discretization. Hence we can reformulate B(u−uh, IClv). With the previous inequality for
vh := IClv and the stability estimate (19) of the Clément operator one obtains

B(u− uh, IClv) = −
∑

T∈T
δT (RT , b · ∇IClv)T

≤
∑

T∈T
δT‖RT‖T‖b‖∞,T‖∇IClv‖T

.
∑

T∈T
δT‖RT‖T‖b‖∞,T · h−1min,T αT |||IClv|||T

(19)
.

(

∑

T∈T
δ2T‖RT‖2T‖b‖2∞,T · h−2min,T α2T

)1/2

·m1(v, T ) · |||v||| .

The stabilisation parameter is assumed to satisfy δT . hmin,T/‖b‖∞,T for all elements T .
Then the last bound simplifies to

B(u− uh, IClv) .

(

∑

T∈T
α2T‖RT‖2T

)1/2

·m1(v, T ) · |||v||| .

Combine now all results and recall the abbreviation v = u− uh which gives

|||u− uh||| . m1(u− uh, T ) ·
(

∑

T∈T
α2T‖RT‖2T +

∑

E⊂Ω\ΓD

ε−1/2αE‖RE‖2E
)1/2

.

Finally the triangle inequalities for the (exact and approximate) residuals provide the upper
error bound (24).

Remark 1 It is possible to redefine the residual error estimator by

η̃2R,T := α2T · ‖rT‖2T + ε−1/2 · αT ·
∑

E⊂∂T\ΓD

hmin,E

hE

‖rE‖2E

ζ̃2T := α2T · ‖rT −RT‖2ωT
+ ε−1/2 · αT ·

∑

E⊂∂T∩ΓN

hmin,E

hE

‖rE −RE‖2E .
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The only difference is the modified scaling of the face residual terms which implies

η̃R,T . ηR,T .

Consequently the same lower error bound (22) holds. A closer inspection of the Clément
interpolation estimates (cf. [Kun99, Lemma 4.3]) reveals that a corresponding upper error
bound (24) is also valid.

In the next section we will show the equivalence of the original residual error estima-
tor ηR,T with the local problem error estimator ηD,T . Such an equivalence could not be
established for the modified residual estimator. ¤

Remark 2 When investigating error estimators, one often encounters the terms reliable
and efficient. Up to approximation terms (or higher order terms), they commonly have
the meaning

(global) Reliability ⇔ |||u− uh||| . ηR
(local) Efficiency ⇔ ηR,T . |||u− uh|||ωT

,

i.e. they are closely related to (but not identical with) the upper and lower error bounds.

Let us compare these definitions with our main result of Theorem 4. We conclude that
the error is reliable whenever the matching function is small, m1(u− uh, T ) ∼ 1. This will
be the case when the anisotropic mesh is well adapted to the anisotropic solution.

The efficiency requires a careful distinction for convection–diffusion problems. Recall
the lower error bound (23),

ηR,T . |||u− uh|||ωT
·
{

max{1, c−10 ‖c‖∞,ωT
}+ PeωT

}

+ ζT .

Assume for a moment c0 ∼ ‖c‖∞,ωT
, i.e. the behaviour of the factor on the right–hand

side is essentially determined by the mesh Peclet numbers PeωT
. Hence the above error

bound implies efficiency only for small mesh Peclet numbers PeωT
. 1. Such small Peclet

numbers arise e.g. for (suitable) anisotropic elements in layer regions of exponential type
(i.e. layers of width O(ε)).

Conversely, for large mesh Peclet numbers the efficiency cannot be guaranteed since the
error estimator ηR,T may be large even when the error |||u− uh|||ωT

is small. Large Peclet
numbers PeωT

À 1 will usually arise for elements in coarse mesh regions or parabolic layer
regions (i.e. layers of width O(√ε)). Numerical comparisons of [Joh00] indicate that the
lacking efficiency is mainly a problem inside parabolic layers since the error is usually much
larger there than in coarse mesh regions with a smooth solution.

Finally we remark that the partial loss of efficiency is not due to the anisotropic elements
but to the dominating convection of the problem, cf. also [KS01, Ver98a]. ¤
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4.2 Error estimation using higher order approximate residuals

The error estimator of section 4.1 is suitable for piecewise linear uh and constant approx-
imate residuals. Now we will discuss the changes that are necessary when higher order
approximate residuals are used, or when higher order ansatz functions are employed to
construct the finite element space Vo,h.

Let us start with higher order approximate residuals, i.e. rT and rE are no longer
piecewise constant but instead rT ∈ P

k1(T ) and rE ∈ P
k2(E). Then Lemma 1 remains

valid although the inequality constants involved will depend on the polynomial degrees k1
and k2. Next the extension operator Fext has to be modified such that it can be applied
to functions from P

k2(E). The standard choice as e.g. proposed by [Ver96, Section 3.1] is
sufficient for Lemma 2 to hold. The definitions of the Clément interpolation operator, of
the exact residuals and of the error estimator ηR,T remain exactly the same as before. Only
the definition of the approximate residuals is modified to accommodate the higher order
approximation space. With these changes, the error bounds of Theorem 4 hold as before
(but not uniformly with respect to the polynomial degrees k1 and k2).

Higher order ansatz functions for Vo,h require changes of the theory only if the face
residuals for interior faces can not be represented exactly by the approximate residuals,
i.e. when rE 6= RE. Then the approximation term ζT has to include also terms for the
interior faces.

5 Local problem error estimation

The key idea is to solve the problem locally with a higher accuracy. The difference to
the original (piecewise linear) solution serves as error estimator, cf. the textbooks [AO00,
Ver96]. In [Ver98a] a local problem error estimator has been derived for the convection–
diffusion problem on isotropic elements.

On anisotropic elements, local problem error estimators could be established for the
Poisson problem [Kun01a] and a singularly perturbed reaction–diffusion problem [Kun01c].
Here we follow the ideas introduced in those works. It is interesting, however, that ap-
parently one has to solve a reaction–diffusion problem to obtain error bounds for the
convection–diffusion problem (1). If a local convection–diffusion problem is solved instead
then the upper error bound becomes worse. This coincides with the isotropic counterpart
(note that the first and third error bound of [Ver98a, Proposition 5.1] are not correct).

As before, in section 5.1 we analyse error bounds when uh is piecewise linear, and the
residuals are approximated by constant values. In section 5.2 we discuss the extension to
higher order approximations.
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5.1 Error estimation using constant approximate residuals

Consider an arbitrary tetrahedron T . We start by defining a local, finite dimensional space
VT that consists of an element bubble function and some squeezed face bubble functions,

VT := span{bT , bE,γE
: E ⊂ ∂T \ ΓD} . (27)

For interior tetrahedra this implies dimVT = 5. The squeezing parameters γE of the
squeezed face bubble functions are now specified as in (26) to be

γE := min

{

1 ,
hmin,E

hE

,
ε1/2

c
1/2
0 hE

}

which implies γE ∼ ε1/2h−1E αE. Note that VT depends implicitly on these parameters γE.
The local problem contains a new bilinear form that corresponds to a reaction–diffusion

problem,
B̃(v, w) := ε(∇v,∇w) + c0(v, w) .

This bilinear form is elliptic and continuous, i.e.

B̃(v, v) = |||v|||2 , B̃(v, w) ≤ |||v||| · |||w||| .

The local problem and the error estimator are defined as follows.

Definition 3 (Local Dirichlet problem error estimator)
Find the unique solution eT ∈ VT of the local variational problem:

B̃(eT , vT ) =
∑

T ′⊂ωT

(rT ′ , vT )T ′ +
∑

E⊂∂T\ΓD

(rE, vT ) ∀ vT ∈ VT . (28)

The local and global error estimators then become

ηD,T := |||eT |||ωT
and η2D :=

∑

T∈T
η2D,T . (29)

The next lemma provides key properties of the local space VT . Although the inequalities
resemble the inverse inequalities of Lemma 2, the relations here are much more technical
to obtain since a whole space of functions is involved (instead of just a single function).

Lemma 5 The following relations hold for all vT ∈ VT .

‖vT‖ωT
. hmin,T · ‖∇vT‖ωT

‖vT‖E . h
−1/2
E γ

−1/2
E ·min{hmin,T , γE hE} · ‖∇vT‖ωT

∀E ⊂ ∂T .

If T has at least two Neumann boundary faces then the inequality constants can depend on
the shape of the Neumann boundary (but not on T or T ).
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Proof: The technical proof is given in [Kun01c].

Lemma 6 (Equivalence with residual estimator) The local problem error estimator
and the residual error estimator are locally equivalent in the following sense.

η2D,T .
∑

T ′⊂ωT

η2R,T ′ (30)

η2R,T .
∑

T ′⊂ωT

η2D,T ′ . (31)

If T has at least two Neumann boundary faces then the constant in (30) can depend on the
shape of the Neumann boundary (but not on T or T ).
Proof: Recall first that the (element and face) residuals are approximated by constant
values. Then both estimators depend only on these constant values, on the geometry of
the elements of the patch ωT , and on ε, c0. It is important to note that the underlying
differential equation (1) does not influence either estimator explicitly (it determines only
the residuals).

For this reason we can proceed almost identically as in [Kun01c, Theorem 4.3] where
the equivalence of the estimators has been proven. Note that this result relies heavily on
Lemma 5.

The main theoretical result for the local problem error estimator is presented next. The
error bounds are the same as for the residual error estimator. Hence we can draw identical
conclusions about reliability and efficiency of the estimator, cf. Section 4.

Theorem 7 (Local Problem error estimation) The error is bounded locally from be-
low for all T ∈ T by

ηD,T . |||u− uh|||ωT
·
(

max{1, c−10 ‖c‖∞,ωT
}+ ε−1/2αT‖b‖∞,ωT

)

+ ζT . (32)

This lower bound can be rewritten again in the slightly weaker

ηD,T . |||u− uh|||ωT
·
(

max{1, c−10 ‖c‖∞,ωT
}+ PeωT

)

+ ζT .

Assume further that the stabilization parameters satisfy δT . hmin,T/‖b‖∞,T . Then the
error is bounded globally from above by

|||u− uh||| . m1(u− uh, T ) ·
[

η2D + ζ2
]1/2

. (33)

If T has at least two Neumann boundary faces then the constant in (32) can depend on
the shape of the Neumann boundary (but not on T or T ).
Proof: The upper error bound follows immediately from the equivalence (31) of both
estimators and the upper error bound (24) of the residual estimator.
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The proof of the lower error bound (32) starts with a reformulation of the local problem
(28). By element–wise partial integration one obtains the following equation that contains
both bilinear forms B̃ and B: Find eT ∈ VT such that

B̃(eT , vT ) = B(u−uh, vT )+
∑

T ′⊂ωT

(rT ′−RT ′ , vT )T ′+
∑

E⊂∂T∩ΓN

(rE−RE, vT )E ∀ vT ∈ VT .

Inserting vT = eT and using the bound (5) for B, we derive

|||eT |||2ωT
= B̃(eT , eT )

= B(u− uh, eT ) +
∑

T ′⊂ωT

(rT ′ −RT ′ , eT )T ′ +
∑

E⊂∂T∩ΓN

(rE −RE, eT )E

(5)
≤ |||u− uh|||ωT

·
(

max{1, c−10 ‖c‖∞,ωT
} |||eT |||ωT

+ ε−1/2‖b‖∞,ωT
‖eT‖ωT

)

+

(

∑

T ′⊂ωT

‖rT ′ −RT ′‖2T ′
)1/2

‖eT‖ωT
+

∑

E⊂∂T∩ΓN

‖rE −RE‖E ‖eT‖E .

Next we bound ‖eT‖ωT
and ‖eT‖E. The following inequalities can be proven using Lemma 5

(alternatively they have already been derived in the proof of [Kun01c, Theorem 4.3]). For
the local space VT with the specific choice of γE, one obtains for all functions vT ∈ VT

‖vT‖ωT
. αT |||vT |||ωT

‖vT‖E . ε−1/4α
1/2
T |||vT |||ωT

.

Substitute again vT = eT , combine all inequalities and recall |||eT |||ωT
= ηD,T to obtain the

desired lower error bound.

Remark 3 The local problem for the definition of the error estimator is a reaction–
diffusion problem. It is remarkable that the seemingly natural choice of a diffusion–
convection–reaction local problem does not yield an equivalence to the residual error esti-
mator. As a consequence, an upper error bound such as (33) does not hold.

This behaviour is independent of the anisotropy of the elements and is seen also for
isotropic elements (note that the isotropic result of [Ver98a, Proposition 5.1] is partially
wrong). ¤

5.2 Error estimation using higher order approximate residuals

When higher order approximate residuals are employed, roughly the same arguments as in
section 4.2 apply. Some aspects, however, are considerably more technical here.

For a precise description assume again rT ∈ P
k1(T ) and rE ∈ P

k2(E). Then the local
space VT ≡ V k1,k2

T has to contain all functions bT ϕT and bE,γE
Fext(ϕE), with ϕT ∈ P

k1(T ),
ϕE ∈ P

k2(E). Moreover the extension operator Fext should be improved such that Fext(rE)
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is independent of the local enumeration of the vertices of T (this is not the case with the
choice of [Ver96, Section 3.1]).

The most severe theoretical difficulty stems from Lemma 5. Even the proof for constant
approximate residuals (corresponding to V k1,k2

T with k1 = k2 = 0) in [Kun01c] is very
technical. The situation is likely to become worse for higher order approximations.

From a practical point of view, the efficient implementation of the local problem re-
quires additional consideration. The computational expense will heavily increase with
higher k1, k2, cf. again [Kun01c]. Hence one has to find a balance between accuracy and
implementational and computational cost.

6 Numerical experiments

The following three experiments will underline and confirm the theoretical predictions. The
first and easiest example features a convection–diffusion problem with vanishing convection
(i.e. the simpler reaction–diffusion problem). The second example describes a convection–
diffusion problem with exponential boundary layers. The third example is the most difficult
one; the underlying convection–diffusion equation gives rise to a parabolic boundary layer.

We present the main theoretical results for the residual error estimator ηR, cf. Theorem 4
of section 4. In all examples we consider four values of the perturbation parameter, namely
ε = 10−1, 10−2, 10−3, 10−6. The methodology to investigate the quality of the solution
process and of the error estimation is described in detail in Section 6.1 and repeated
subsequently.

6.1 Example 1

The reaction–diffusion problem described here is the special case of the convection–diffusion
problem (1) with vanishing convection. Although this example does not feature ‘dominat-
ing convection’, we have included it since it allows us to distinguish between effects that
are due to the anisotropic discretisation, and effects that are caused by a large convection.

In this example the local mesh Peclet number vanishes; PeT = 0 for all elements
T ∈ T . This favourite property implies that the corresponding variational problem and
the discrete problem are symmetric, respectively, and can be solved without stabilisation
(δT = 0∀T ∈ T ). Note that similar investigations in 3D can be found in [Kun01b, Kun01c];
for 2D results see [HL98, Ex. 4.2]. Here we have included this example to have a comparison
with problems with non–vanishing convection.

With b = (0, 0)> and c = c0 = 1 the PDE becomes

−ε∆u+ u = 0 in Ω = (0, 1)2 .

The exact solution is prescribed to be

u := e−x/
√
ε + e−y/

√
ε



6.1 Example 1 21

and exhibits exponential boundary layers of width O(√ε| ln ε|) along the lines x = 0 and
y = 0. The Dirichlet boundary data on ΓD := ∂Ω are set accordingly.

We utilize a sequence of three–directional triangular Shishkin type meshes. More pre-
cisely, the 2D mesh is the tensor product of two 1D Shishkin type meshes with transition
point τ := min{1/2,√ε · | ln ε|}.

Figure 4 presents the decrease of the error in the energy norm. The optimal rate of
convergence of approximately |||u− uh||| = O(DoF−0.5) confirms that the chosen meshes
are appropriate to resolve the boundary layers. Judging from our experience in [Kun99,
Kun01b] we expect the matching function m1(u− uh, T ) to be of moderate size, i.e. in the
range of 2 . . . 4.

Additionally in Figure 4 we display the global error estimator ηR which always overes-
timates the error by a factor of about 5.
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Figure 4: Error |||u− uh||| (filled symbols)
Error estimator ηR (empty symbols)

Next we investigate the main theoretical results which are the upper and lower error
bounds of Theorem 4. In order to present the underlying inequalities (24) and (22) appro-
priately, we reformulate them by defining the ratios of left–hand side and right–hand side,
respectively:

qup :=
|||u− uh|||
[η2R + ζ2]

1/2
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qlow := max
T∈T

ηR,T

|||u− uh|||ωT
·
(

max{1, c−10 ‖c‖∞,ωT
}+ ε−1/2αT‖b‖∞,ωT

)

+ ζT
.

The first ratio qup (or its inverse) is frequently referred to as effectivity index and measures
the reliability of the estimator. The second ratio is related to the efficiency of the estimator.

Note further that the factor in the denominator of qlow simplifies to

max{1, c−10 ‖c‖∞,ωT
}+ ε−1/2αT‖b‖∞,ωT

≡ 1

for this first example since b = (0, 0)>. Additionally the approximation terms vanish,
ζT = ζ = 0.

The lower and upper error bound (22), (24) now correspond to

qlow . 1 and qup . m1(u− uh, T ) .

In the right part of Figure 5 we observe indeed that qlow is bounded from above by 2.0.
Hence the estimator is efficient.

In order to investigate the upper error bound, recall first that the matching function
m1(u − uh, T ) is expected to be of moderate size (2 . . . 4) since we employ well adapted
meshes. Hence the corresponding ratio qup should be bounded from above which is con-
firmed by the experiment (left part of Figure 5). As soon as a reasonable resolution of
the layer is achieved, the quality of the upper error bound is independent of ε. Thus the
estimator is also reliable.

Finally we note that the qualitative and the quantitative behaviour of the error esti-
mator is very similar to the 3D counterpart, as described in [Kun01b].

0.1

0.2

0.5

1

100 1000 10000 100000

Degrees of Freedom

eps=1E-1
eps=1E-2
eps=1E-3
eps=1E-6

qup

0.5

1

2

3

4

5

10

100 1000 10000 100000

Degrees of Freedom

eps=1E-1
eps=1E-2
eps=1E-3
eps=1E-6

qlow

Figure 5: Left: Upper error bound qup
Right: Lower error bound qlow
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6.2 Example 2

The second example is a typical convection–diffusion problem. It involves convection along
b = (b1, b2)

> = (2, 3)>, and we set c = c0 = 1. For the resulting PDE

−ε∆u + 2ux + 3uy + u = f in Ω = (0, 1)2

we prescribe the analytical solution

u = sin(x)(1− e−2(1−x)/ε) · y2(1− e−3(1−y)/ε) .

The right–hand side f and the Dirichlet boundary data on ∂Ω are chosen accordingly.
The solution shows exponential boundary layers along the outflow boundary at x = 1

and y = 1. This choice of u serves as a typical example for boundary layers that are caused
by incompatibilities of f and the boundary data.

Similar to the previous example we employ a three–directional 2D Shishkin mesh. With
N denoting the number of nodal points in x and y direction, the mesh transitions points
are placed at

τx := min{1/2, 2ε lnN/b1} , τy := min{1/2, 2ε lnN/b2} ,

respectively, cf. [LS01, Section 2.2]. Hence inside the layer region the local mesh Peclet
number is small, PeT ∼ 1.

The unsymmetric variational problem requires stabilisation to yield accurate results.
For the stabilisation parameter δT we follow the isotropic proposal in [Ver98a] and define
the anisotropic counterpart by

δT :=
hmin,T

2‖b‖∞,T

· (coth(PeT )− Pe−1T ) .

This implies little stabilisation in the layer region and comparatively large stabilisation in
the coarse mesh region.

The results are presented in a similar fashion as for example 1. Start with the decrease
of the error |||u− uh||| and the error estimator, respectively, which is depicted in Figure 6.
The convergence rate is approximately |||u− uh||| = O(DoF−0.41) and thus sub–optimal.
The error estimator ηR overestimates the error by a factor of approximately 5 but behaves
similarly otherwise.

In order to assess the error bounds, we compute again the ratios qlow and qup and present
them in Figure 7, cf. the previous example. Starting with the lower error bound (22), we
observe that qlow is indeed bounded from above which confirms the theoretical predictions.
Note, however, that the right–hand side of (22) now contains the factor max{1, c−10 ‖c‖∞,ωT

}+
ε−1/2αT‖b‖∞,ωT

. This additional factor is of order 1 for small mesh Peclet numbers PeT . 1,
i.e. for elements inside the layer region. Then the error estimator is efficient.
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Figure 6: Error |||u− uh||| (filled symbols)
Error estimator ηR (empty symbols)
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Figure 7: Left: Upper error bound qup
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Conversely, the aforementioned factor becomes large for elements with a large mesh
Peclet number PeT À 1, i.e. in the coarse mesh region. Numerical investigation strongly
suggests that this factor cannot be omitted. As a consequence the efficiency of the error
estimator deteriorates as PeT becomes large. On the other hand this may not be too much
of a disadvantage since the mesh Peclet number should be large only in regions where the
solution u is smooth and the error is already small.

When investigating the upper error bound (24), the corresponding ratio qup is bounded
by the matching function m1(u − uh, T ). Again we expect m1 to be of moderate size
(say 2 . . . 4). Hence qup has to bounded from above which is confirmed by the left part of
Figure 7. Consequently the error estimator is reliable.

6.3 Example 3

This example features a so–called parabolic layer. The numerical comparison of [Joh00] re-
veals that such layers are much more difficult to treat than exponential layers, in particular
when designing adaptive algorithms. The theoretical knowledge is also less developed al-
though parabolic layers may be equally important in practical applications. The difficulties
become apparent in the experiment below.

Our test is largely inspired by [HL98, Example 4.3]. With b = (1, 0)> and c = c0 = 1
the PDE becomes

−ε∆u+ ux + u = f in Ω = (0, 1)2 .

The exact solution is prescribed to be

u =
1√
1 + x

· exp
(

− y2

4ε(1 + x)

)

with an appropriate right–hand side f and the Dirichlet boundary data on ∂Ω. This
solution u displays a typical parabolic layer along the line y = 0. Note that the layer width
of O(√ε) is much larger than for an exponential layer.

Again a three–directional 2D Shishkin mesh is employed. With N denoting the number
of nodal points in y direction, the mesh transition point is set to

τ := min{1/2, 2√ε lnN}

Hence the elements T in the layer region have a minimal dimension hmin,T ∼
√
ε which

is (much) larger than ε (unless the mesh is very fine which is unrealistic for small ε).
Consequently the local mesh Peclet number is (much) larger than 1 even in the critical
layer region. This observation is a key difference to the exponential layers (cf. example 2).

When solving the variational problem, we apply the stabilisation proposed in [HL98,
Section 3.3] (up to the factor 1/3), namely

δT =
hmin,T

3‖b‖∞,T

·min{1,PeT} .
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With this setting the convergence rate of the error |||u− uh||| in the energy norm is
O(DoF−0.50) for ε = 10−1 and drops to about O(DoF−0.40) for ε = 10−6. The error
estimator ηR behaves qualitatively similarly and overestimates the error as in the previous
example.
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Figure 8: Error |||u− uh||| (filled symbols)
Error estimator ηR (empty symbols)

Next we investigate the error bounds in Figure 9. For the lower error bound (22) we
compute again qlow. In accordance with the theory, qlow is bounded from above. Since
most values of qlow are much smaller than in previous examples, the error bound (22) is
not sharp here. This may be caused by the parabolic structure of the boundary layer.

A more detailed inspection reveals that the efficiency is lost only for coarse mesh
elements, i.e. where the mesh Peclet number is large. Inside the parabolic layer the mesh
Peclet number is still large (unless the mesh is unrealistically fine for small ε). Nevertheless
the numerical results for this example yield that the error estimator is still quite efficient,
with only a mild decrease of efficiency for small ε and fine meshes. This behaviour is
somewhat better than we can expect from the theory.

The upper error bound is presented in the left part of Figure 9. This upper bound (24)
is not influenced by a (large) mesh Peclet number PeT , which should be reflected in the
numerical behaviour. Indeed we notice the same performance as in the previous example,
i.e. qup is bounded from above, and hence the error estimator is reliable. No adverse
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influence on the reliability is seen that could stem from large values of PeT .
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Figure 9: Left: Upper error bound qup
Right: Lower error bound qlow

6.4 Anisotropic stabilisation parameter

In order to avoid numerical instabilities when solving the singularly perturbed convection–
diffusion problem (1) one often resorts to stabilisation techniques, such as the SUPG ap-
proach (6) discussed here. An important question then is the correct choice of the sta-
bilisation parameter δT . For isotropic meshes there are several proposals and theoretical
investigations, see e.g. [RST96, Section III.3.2.1]. For anisotropic elements there is little
knowledge about appropriate choices of the stabilisation parameter. Hence we present here
existing proposals as well as some extensions of isotropic stabilisation parameters.

Hangleiter/Lube [HL98, Section 3.3] propose

δT =
hmin,T

3‖b‖∞,T

·min{1,PeT}

although they do not specify the factor 1/3. This factor worked sufficiently well for our
examples.

The isotropic version of Verfürth [Ver98a, Section 7] can be generalized to

δT =
hmin,T

2‖b‖∞,T

· (coth(PeT )− Pe−1T ) .

Similarly the isotropic stabilisation of Kay/Silvester [KS01, Section 2.1] is extended to

δT =
hmin,T

2‖b‖∞,T

· (1−min{1,Pe−1T }) .
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Finally there is a proposal by Linß/Stynes [LS01, Section 2.3] for Shishkin meshes which
reads

δT ∼
{

hmin,T if PeT ≥ 1
0 if PeT < 1

.

For the first three choices we also present graphically the dependence of δT on the
local mesh Peclet number PeT . To this end we omit the common factor hmin,T/(2‖b‖∞,T ),
i.e. we investigate the term δT · 2‖b‖∞,T/hmin,T . Figure 10 shows the behaviour for small
and medium values of PeT . We note that significant differences occur only for PeT in the
range of about 0 . . . 2 (which usually corresponds to elements in or near exponential layer
regions).
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Figure 10: Dependence of stabilisation parameter δT on Peclet number PeT

There is the natural question which stabilisation performs best, i.e. which method yields
the smallest error in the energy norm. First experiments with anisotropic meshes indicate
that the differences are quite small. For fine meshes the different stabilisations are almost
undistinguishable for certain examples. Slightly surprising, even omitting the stabilisation
produces the same results. The reason could be that numerical oscillations in the solution
may be avoided in two ways, either by using stabilisation or by using solution adapted
(anisotropic) meshes.

In order to visualize the aforementioned observation we consider again example 2 but
now without stabilisation, i.e. δT = 0. In a similar fashion as before we present in Figure 11
the error |||u− uh||| in the energy norm and the error estimator ηR.
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Next the results for the lower and upper error bounds (22), (24) are given in Figure 12.
The differences to the figures of example 2 are rarely visible, and we can refer to the same
conclusions.
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Right: Lower error bound qlow
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We remark that the different stabilisations perform similarly only with respect to the
error in the energy norm. If one is interested in the error in the (discrete) maximum norm
then the differences are much more pronounced.

Summarizing, stabilisation is vitally important for isotropic meshes but not fully un-
derstood for anisotropic elements. There are indications that for appropriate anisotropic
meshes little or no stabilisation is necessary.

6.5 Remarks

Some remarks may be useful and complement the numerical experiments. Let us start
with accuracy matters. All error integration has been performed with a 7 point numerical
integration rule of order 5. Tests with a 16 point integration rule of order 8 confirm a
sufficient accuracy. This could be expected for our examples since layers are properly
resolved.

In the last section we have investigated the influence of the stabilisation. The quality
of the solution is also determined by the underlying mesh T . This includes in particular

• the choice of the diagonals in a tensor product type mesh, i.e. whether a three–
directional mesh or a criss–cross mesh is used,

• the choice of the transition parameter τ for Shishkin type meshes,

• the type of mesh that is used (e.g. Shishkin type mesh, Bakhvalov mesh, adaptively
created meshes, . . . ).

It is clearly beyond the scope of this work to investigate all these factors in detail. We
have carried out many more experiments than those presented. From this we deduce that
the results may differ from that of the previous sections but the general conclusions about
reliability and efficiency of the error estimator are the same.

7 Summary

We have considered a singularly perturbed convection–diffusion problem that is discretised
using the SUPG stabilisation of the finite element method. The main focus has been on a
posteriori error estimators that are suitable for anisotropic elements. Two estimators have
been proposed, based either on the residuals or the solution of local problems.

The analysis has shown that the upper error bound depends on the alignment of the
anisotropies of mesh and solution. Hence reliable error estimation is possible for suitably
aligned anisotropic meshes. The lower error bound includes a local mesh Peclet number;
the results obtained is analogous to isotropic meshes. Thus efficient error estimation is
achieved for small Peclet numbers PeT . 1.

Hence the existing theory of error estimators for isotropic meshes has been extended
to anisotropic elements, and analogous reliability and efficiency results have been proven.
The standard Galerkin FEM is covered as well. Numerical experiments have confirmed the
analysis.
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