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Abstract

The present paper is intended to give a survey of the developments of the wavelet
Galerkin boundary element method. Using appropriate wavelet bases for the dis-
cretization of boundary integral operators yields numerically sparse system matrices.
These system matrices can be compressed to O(Nj) nonzero matrix entries with-
out loss of accuracy of the underlying Galerkin scheme. Herein, O(Nj) denotes the
number of unknowns. As we show in the present paper, the assembly of the com-
pressed system matrix can be performed within optimal complexity. By numerical
experiments we provide examples which corroborate the theory.

Introduction

Widely used approaches for the solution of elliptic boundary value problems in the three-
dimensional Euclidean spaces are e.g. the discretization by finite differences or finite ele-
ments. In particular, for exterior boundary value problems these methods encounter serious
problems concerning the discretization of an infinite domain. An alternative approach is
the boundary element method which transfers the problem to the boundary of the given
domain. This reduces the dimension of the problem and furthermore limits the discretiza-
tion to the surface of the domain. Unfortunately, the resulting system matrix is densely
populated and possibly ill-conditioned. This makes the computation very costly in both
respects, the computation time and computer memory requirements. The dense system
matrix leads to algorithms which computational costs are at least the square of the number
of unknowns.

In recent years several ideas for the efficient approximation of the discrete system have
been developed. All these methods have in common a fast matrix-vector multiplication
combined with the use of iterative linear solvers. Most prominent examples of these meth-
ods are fast multipole [16], panel clustering [20], wavelet Galerkin methods [12],[27],[34],
mosaic skeleton approaches [15] and the hierarchical matrix approach [18],[19]. Such fast
discretization methods end up with linear or almost linear complexity with respect to the
number of unknowns.

In this paper we present a fully discrete wavelet Galerkin approach. For this approach
it is possible to develop an algorithm with linear complexity (without any logarithmic
factor) by preserving the optimal order of convergence of the underlying Galerkin scheme
([24],[38]). In the wavelet Galerkin method we use a wavelet basis for the representation
of the Galerkin scheme. The arising matrix can be approximated by a sparse matrix.
The sparsity pattern is chosen carefully by a level dependent compression strategy such
that the optimal order of convergence of the Galerkin scheme is not violated. In [34] it
is shown that the wavelet Galerkin method converges quite fast and with high accuracy.
Our numerical experiences show that the accuracy of the Galerkin scheme has never been
deteriorated if we use the present compression strategy. Sometimes, due to round-off errors
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the compressed scheme behaves even slightly better. However, the rate of compression can
be about a factor of 1000.

We present a fully discrete Galerkin scheme based on numerical quadrature. It has been
proved that for this method the number of quadrature points grows also only linearly
with the number of unknowns. But the computation of the coefficients of the sparse
matrix approximation involves integrals in higher dimensions and is still time-consuming.
Depending on the relative distance between the supports of the wavelets we have three types
of integrals, namely singular integrals, nearly singular integrals and farfield integrals. We
have to deal with singular integrals for which we propose special quadrature techniques on
cubes based on the work in [14],[32],[33] The efficient approximation of the so-called nearly
singular integrals, where the domains of integration are very close together, are treated like
in [34] and [35]. By the proposed method the solution is computed within asymptotically
linear complexity without compromising the accuracy of the Galerkin scheme.

Nevertheless we are confronted with some difficulties which have to be considered in order
to get an efficient realization on a computer. In our present implementations the discretiza-
tion of the surface of a three-dimensional domain is represented by piecewise parametric
mappings of a two-dimensional reference domain – a well studied tool in Computer Aided
Geometric Design. For extremely complex geometries the number of unknowns are not yet
satisfactory and thus the treatment of the geometry in connection with wavelet methods
is still in progress. The computation of suitable multiscale bases on surface patches is
addressed in several publications ([3],[11],[13],[21],[34]).

1 Setting up the Problem

For the numerical approximation of a boundary integral equation we need a discretization
method which ends up with a sufficiently accurate finite-dimensional approximation of the
given operator. At first we consider a general setting for the boundary element method.
Next, a short description of the representation of the geometry on a computer is given.
Then, we discuss the properties for the class of kernel functions under consideration.

The further outline is as follows. In Section 2 we give a brief introduction to multiscale
bases. With the help of such a basis we can describe the multiscale wavelet Galerkin
discretization in Section 3. A multiscale wavelet discretization in the framework of a
Galerkin method allows to exploit the advantages of wavelet bases. The compact support
of wavelets offers the possibility to focus on local phenomena of the discretized operator and
their good approximation properties allow to reduce the number of unknowns drastically.
We concentrate on wavelet bases based on cardinal B-spline wavelets. With such a basis at
hand we are in the position to describe the classical multiscale Galerkin method. We recall
the main advantages of the wavelet basis which result in the matrix compression algorithm
[34].

In the last years wavelet approaches have been developed to reduce the number of un-
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knowns drastically in various applications. The numerical treatment of boundary integral
equations in connection with wavelets benefits from these compression techniques. A mul-
tiscale ansatz is based on a discrete approximation of the operator on a relatively coarse
approximation level and adding the details of subsequent levels. In Section 4 we present the
compression algorithm which reduces the number of relevant matrix coefficients asymptot-
ically having linear complexity [34]. In Section 5 we show that also the number of function
evaluations to compute those matrix entries grows only linearly with respect to the number
of unknowns [9].

Section 6 is dedicated to the preconditioning of the system matrices arising from boundary
integral operators with nonzero order. In the wavelet basis we have the possibility to
precondition the system matrix by diagonal scaling [10]. Finally, in Section 7 we present
numerical computations which confirm the theory quite well.

1.1 Boundary Integral Equations

We consider a boundary integral equation on the closed boundary surface Γ of a (s + 1)-
dimensional domain Ω ⊂ Rs+1

Au(x) =

∫
Γ

k(x, y)u(y) dΓ y = f(x), x ∈ Γ. (1)

Especially we are interested in the case s = 2. For the present purpose, we assume that
the boundary Γ is a two-dimensional surface in R3, which is represented by piecewise
parametric mappings, see Subsection 1.2 for details. The number of different mappings
which is the number of surface patches, will be denoted by Nπ. In this paper we will also
examine to which extent the present multiscale approach can be applied efficiently. The
surface representation is in contrast to the usual approximation of the surface by panels.
It has the advantage that the rate of convergence is not limited by this approximation.
Notice that technical surfaces generated by CAD tools are represented in this form. Of
course, this fact makes the use of numerical integration indispensable for the computation
of the system matrices.

Example 1.1 (Single layer potential operator of order r = −1) We consider

V u(x) =

∫
Γ

k(x, y)u(y) dΓ y = f(x), x ∈ Γ.

The right hand side f resulting from the direct approach (see e.g. [6],[7]) is given by f =
(1

2
I +K) where K is the double layer potential operator

Ku(x) =

∫
Γ

∂

∂ny
k(x, y)u(y) dΓ y = f(x), x ∈ Γ. (2)
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• In three dimensions we have

k(x, y) =
1

4π

1

|x− y|

• and in two dimensions the kernel function is defined by

k(x, y) = − 1

2π
log |x− y|.

It is known that V maps the Sobolev space H−
1
2 (Γ) into H

1
2 (Γ) and leads to a symmetric

elliptic variational problem. The operator V −1(1
2
I + K) : H

1
2 (Γ) → H−

1
2 (Γ) transfers the

Dirichlet data of harmonic functions u to the Neumann data (i.e. ∆u(x) = 0 on Ω).

The properties of the class of kernel functions k(x, y) which are under consideration will be
outlined in Subsection 1.3. Further examples of boundary integral equations are considered
in the numerical results, see Section 7.

1.2 Parametric Representation of Geometry

The construction of a wavelet basis Ψ on a manifold Γ depends essentially on the way how
the boundary Γ is represented. The geometry is supposed to be exactly defined by the
union of parametric surface patches. This setting is frequently used and well understood
in Computer Aided Geometric Design [23],[31].

We describe a surface patch πi as the image of a reference domain (e.g. � := [0, 1]s) by a
parametric mapping κi. The boundary Γ is represented by the union of sufficiently many
patches

Γ =
Nπ⋃
i=1

Γi, Γi = κi(�), i = 1, . . . , Nπ.

Such surface patches are not allowed to share any interior points, i.e. they either have a
common vertex, a common edge or an empty intersection. An example of a parametrization
of drilled out cube can be found in Figure 1.

The parametric mappings κi : Rs → R
s+1 are supposed to be smooth functions. In

many practical applications the parametrizations are of sufficiently high componentwise
smoothness, e.g. piecewise rational or polynomial functions.

1.3 Kernel Functions and their Properties

The class of kernel functions under consideration are functions in two variables which are
smooth apart from the diagonal and may have a singularity on the diagonal. Such kernel
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Figure 1: The domain decomposition of a drilled out cube into 48 patches (left) and the
corresponding mesh after three subdivision steps (right).

functions arise by applying a boundary integral formulation to a second order elliptic
problem, for example. In general, they decay like a negative power of the distance of the
arguments which depends on the spatial dimension s and the order r of the operator.

We denote by |κx| and |κy| the Jacobian determinants of the parametric map. Moreover,
α and β encode multi-indices of dimension s and |α| := α1 + . . .+ αs. Furthermore, x̂ and
ŷ are points on the surface, i.e. x̂ := κ(x).

Definition 1.2 A kernel k(x̂, ŷ) is called analytically standard of order r, if the partial
derivatives of the transported kernel function

K(x, y) := k(κ(x), κ(y))|κx||κy|, (3)

are uniformly bounded by

|∂αx∂βyK(x, y)| ≤ C
(|α|+ |β|)!

(q dist(x̂, ŷ))s+r+|α|+|β|
, x̂ := κ(x), ŷ := κ(y) (4)

with some q > 0.

We emphasize that this definition requires patchwise smoothness but not global smoothness
of the geometry. The surface itself needs only to be Lipschitz. Generally under this
assumption, the kernel of a boundary integral operator of order r is analytically standard
of order r. Hence, we may assume this property in the sequel.
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2 Multiscale Bases

In this section we will recall some basic framework of wavelet analysis. Clearly, of main
interest are cardinal B-spline wavelets because they offer some additional features which
are very important in the analysis of a fully discrete wavelet Galerkin scheme for boundary
integral equations. For cardinal B-spline wavelets we can find a biorthogonal system such
that the wavelets on the dual side have higher polynomial power of approximation as
on the primal side ([4],[11],[13]). This flexibility is widely used and necessary to get a
multiscale wavelet Galerkin algorithm with linear complexity by retaining the optimal
order of convergence of the Galerkin scheme.

The transform from the single-scale into the multiscale basis can be performed very fast
for all wavelets due to their local supports. In the case of cardinal B-spline wavelets it
is possible to find dual wavelets having also compact supports. This implies a fast back
transform from the multiscale into the single-scale basis.

The wavelets on the surface are formed for example by taking tensor products of one-
dimensional interval wavelets ([11],[13]) which are lifted via the parametrization onto the
surface patches. Improved definitions can be found in [21]. In [13], the basis functions
near the boundary of a patch are modified to get global smoothness. Similar constructions
based on domain decomposition can be found in [2] and [5].

2.1 Scaling Functions

For the Galerkin scheme we replace the original equation (1) by a finite-dimensional ap-
proximation. Therefore we need finite-dimensional function spaces Sj in L2(Γ). Those
function spaces Sj are generated by the so called single-scale basis on a certain arbitrary
but fixed level j

Φj = {ϕλ : λ ∈ ∆j} , ∆j := {λ : |λ| = j}.

The multi-index λ := (`, k) contains the information which is necessary to address a basis
function on the surface in a unique way. With ` we encode the level of the function while k
denotes its location. We mention that the functions in Φj can be addressed by the indices
λ in several ways, e.g. as a multi-index or by associated points.

Of course, for the Galerkin scheme, the basis functions are required to provide a certain
power of approximation d, that is

inf
fj∈Sj

‖f − fj‖0 ≤ C2−`d‖f‖W d,∞(Γ). (5)

We assume further that the basis functions ϕλ ∈ Φj have compact supports and that the
size of the supports behaves like 2−j, i.e.

diam suppϕλ ∼ 2−j for j →∞.
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The locality of the basis functions is an important property which allows to focus on
the local behaviour of the underlying operator. Furthermore it is convenient to consider
normalized basis functions ‖ϕλ‖0 ∼ 1. Here a ∼ b means that a is bounded from above
and below by c1b ≤ a ≤ c2b, with some constants c1, c2 which are independent of a and b.

In the application of wavelet Galerkin methods for boundary integral equations it is neces-
sary to have access to a suitable biorthogonal wavelet basis. The less restrictive biorthogo-
nal construction in comparison to the orthogonal one offers some flexibility in choosing the
number of vanishing moments. Furthermore we can retain this power of approximation at
the boundary of a patch or to construct a globally continuous wavelet basis on the surface.
The biorthogonal basis is generated by a second system {ϕ̃λ′ , λ′ ∈ ∆j} for the given basis
{ϕλ, λ ∈ ∆j} satisfying

(ϕλ, ϕ̃λ′) = δλ,λ′ , for λ, λ′ ∈ ∆j. (6)

The spaces S̃j spanned by the biorthogonal basis functions ϕ̃λ′ are finite-dimensional spaces
with dimSj = dim S̃j.

With the biorthogonal basis at hand we are in the position to realize finite-dimensional
approximations of functions in L2(Γ) in terms of projectors of the form

Qjf :=
∑
λ∈∆j

(f, ϕ̃λ)ϕλ. (7)

The basis functions ϕλ are supposed to form a stable basis in the sense that the following
norm equivalence holds: ∥∥∥∥ ∑

λ∈∆j

uλϕλ

∥∥∥∥2

0

∼
∑
λ∈∆j

|uλ|2.

Note that up to now we have a single-scale basis in Sj for an arbitrary but fixed level j.

2.2 Wavelets

Multiscale concepts are based on a sequence of nested discretization spaces S` such that

S0 ⊂ . . . ⊂ S` ⊂ S`+1 ⊂ . . . ⊂ L2(Γ)

and, moreover, we assume that the dual spaces S̃` are also nested, i.e.

S̃0 ⊂ . . . ⊂ S̃` ⊂ S̃`+1 ⊂ . . . ⊂ L2(Γ). (8)

Using the projectors Qj from (7) we obtain an approximation in Sj := QjL2(Γ) for each
function f ∈ L2(Γ). We introduce the linear spaces

Wj−1 := (Qj −Qj−1)L2(Γ)
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and get

Sj = QjL2(Γ) = (Qj −Qj−1)L2(Γ) +Qj−1L2(Γ) = Wj−1 + Sj−1.

Here we use the summation sign for the direct sum of vectorspaces, i.e. Wj−1∩Sj−1 = {0}.
Then the multiscale decomposition of Sj is given by

Sj =

j−1∑
`=−1

W`

with W−1 := S0. A function fj ∈ Sj can be represented by the telescopic sum

fj =

j∑
`=0

(Q` −Q`−1)f with Q−1 := 0. (9)

The assumption (8) is equivalent to the fact that Q`Qj = Q` for ` ≤ j and that (Q`−Q`−1)
is also a projector, see e.g. [34]. The second property ensures that we can find basis
functions such that

(Q` −Q`−1)f =
∑
λ∈∇`

(f, ψ̃λ)ψλ

with the index set ∇` := ∆`+1\∆` and ∇−1 := ∆0. On each level we have a basis {Ψ`} =
{ψλ : λ ∈ ∇`} for the complementary spaces W` of S` in S`+1. We assume that the
function ψλ has also compact support with respect to the associated level

diam suppψλ ∼ 2−|λ|.

Furthermore there exists a set of basis functions ψ̃λ′ , λ
′ ∈ ∇`, ` ≥ −1 spanning the spaces

S̃` which are biorthogonal to the basis functions ψλ, i.e.

(ψ̃λ′ , ψλ) = δλ′,λ.

We obtain the multiscale basis for Sj by

Ψ :=

j−1⋃
`=−1

Ψ`

using the notation Ψ−1 := Φ0. The basis functions in Ψ are called wavelets.

Now we have two bases for the space Sj, the single-scale basis and the wavelet basis. These
allows us to express the projection of the function f ∈ L2(Γ) onto Sj by

fj =
∑
λ∈∆j

fλϕλ =

j−1∑
`=−1

∑
λ∈∇`

dλψλ.
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To ensure that the wavelet transform from the multiscale to the single-scale basis and its
inverse are linear in complexity we require that the primal as well as the dual counterparts
of wavelet and scaling functions have also compact support, i.e.

diam supp ϕ̃λ′ ∼ 2−|λ
′| and diam supp ψ̃λ′ ∼ 2−|λ

′|.

Moreover, for the matrix compression the wavelets are requested to have a certain number
of vanishing moments d∗ which is also called cancellation property

|(f, ψλ)| ≤ C2−`(d
∗+ s

2
)‖f‖W d∗,∞(Γ). (10)

Note that d∗ denotes the power of approximation of the dual wavelet.

Wavelet constructions based on cardinal B-splines and their duals fulfill the requirements
mentioned above. Other approaches in the direction of wavelet Galerkin methods work
with multiwavelets [26]. Globally continuous basis functions with such properties are con-
structed in [11],[13], see also Figure 2. The construction is based on a stable completion
(see [3],[34]).

Figure 2: A globally continuous piecewise linear wavelet with two vanishing moments (left)
and its corresponding dual (right) near a degenerated vertex.

2.3 Basis Transforms

The nestedness of spaces S` ⊂ S`+1 implies that the basis functions in S` can be expressed
by a linear combination of basis functions in S`+1, the so-called two-scale or refinement
equation

ϕλ =
∑

µ∈∆`+1

aµ,λϕµ, λ ∈ ∆`. (11)
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Equation (11) can be written in matrix notation as

ΦT
` = ΦT

`+1M `,0 with M `,0 := (aµ,λ)µ∈∆`+1,λ∈∆`
. (12)

Analogously and because of W` ⊂ S`+1 there also exists a functional equation for repre-
senting the wavelets in terms of scaling functions on the next higher level

ψλ =
∑

µ∈∆`+1

bµ,λϕµ, λ ∈ ∆` (13)

or
ΨT
` = ΦT

`+1M `,1, M `,1 := (bµ,λ)µ∈∆`+1,λ∈∇` . (14)

On the basis of the nestedness of the dual spaces similar functional equations hold true.
We have

ϕ̃λ =
∑

µ∈∆`+1

ãµ,λϕ̃µ, λ ∈ ∆` or Φ̃` = GT
`,0Φ̃`+1

as well as
ψ̃λ =

∑
µ∈∇`+1

b̃µ,λϕ̃µ, λ ∈ ∇`, or Ψ̃` = GT
`,1Φ̃`+1.

We get transform matrices G` = (G`,0,G`,1) and M ` = (M `,0,M `,1) to perform one step
of the multiscale transform by

Φ`+1 = G`

(
Φ`

Ψ`

)
(15)

respectively (
Φ`

Ψ`

)T
= ΦT

`+1M `.

The biorthogonality then implies that

GT
`,eM `,e′ = δe,e′I with e, e′ ∈ {0, 1}.

One step of the multiscale decomposition can be expressed by (12) and (14) as

ΦT
` c` + ΨT

` d` = ΦT
`+1 (M `,0c` +M `,1d`) .

The whole transform from a single-scale basis to a multiscale basis is expressed by matrix
multiplications as follows. If we define the matrix

T j,` :=

(
M ` 0
0 Ij−`

)
for 0 ≤ ` < j then the multiscale transform is given by

T j = T j,0 · . . . · T j,j−1.

This procedure realizes the reconstruction scheme shown in Figure 3.

In view of (15) the inverse transform reads as

ΦT
`+1c`+1 = ΦT

` (G`,0c`+1) + ΨT
` (G`,1c`+1) = ΦT

` c` + ΨT
` d`

and corresponds to the multiscale decomposition as shown in Figure 4.
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3 Multiscale Galerkin Method

In this section we describe the finite-dimensional approximation process of the boundary
integral equation (1) using a multiscale Galerkin method. We have already introduced
the spaces {S`}`∈N and {S̃`}`∈N. In the sequel we will assume these families of finite-
dimensional subspaces to be generated by a cardinal B-Spline function for arbitrary but
fixed d, d∗ (d+ d∗ even). This may include boundary adaptions.

A given function can be represented in a multiscale basis by a telescopic sum of projections
(9) onto the finite-dimensional spaces S`. To discretize the original operator equation

Au = f,

we replace the solution u by a function in Sj and apply to both sides of the equation the
adjoint projector Q∗j

Ajuj := Q∗jAQjuj = Q∗jf. (16)

The approximate solution uj converges to the original solution u for j →∞ if and only if
the discrete operator Aj is consistent to the original operator A and if the discrete operator
is stable in the sense that we have a uniform a-priori estimate ‖Ajuj‖ ≥ C‖uj‖. It is proven
in [34] that both is valid in the present setting.

The equation (16) reads in the multiscale basis as

j∑
`′=0

j∑
`=0

(Q∗`′ −Q∗`′−1)A(Q` −Q`−1)uj =

j∑
`′=0

(Q∗`′ −Q∗`′−1)f

respectively as

j∑
`′=0

j∑
`=0

∑
λ′∈∇`′

∑
λ∈∇`

(Aψλ, ψλ′)(uj, ψ̃λ)ψ̃λ′ =

j∑
`′=0

∑
λ′∈∇`′

(f, ψλ′)ψ̃λ′ .
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This representation results in the linear system of equations

Ajdj = bj.

This is equivalent to find uj ∈ Sj such that

(Auj, vj) = (f, vj) ∀vj ∈ Sj.

The multiscale matrix Aj contains the entries

Aj = (aλ,λ′) = (Aψλ, ψλ′), λ ∈ ∇`, λ′ ∈ ∇`′ , `, `′ = 0, . . . , j, (17)

and the vectors dj and bj have the following form

dj = (dλ) = (u, ψ̃λ), λ ∈ ∇`, ` = 0, . . . , j,

bj = (bλ′) = (f, ψλ′), λ′ ∈ ∇`′ , `′ = 0, . . . , j. (18)

The system matrix Aj in the multiscale basis is still dense. Nevertheless it is shown in [12],
[34] that most coefficients in the multiscale matrix are close to zero and negligible without
any significant loss of accuracy. We call such a matrix numerically sparse. The process of
approximating the system matrix by a sparse matrix is called matrix compression.

4 Matrix Compression

It is shown in e.g. [34] that the matrix entries fulfill the estimate

|aλ,λ′| ≤ C
2(`+`′)( s

2
−d∗)

dist(Ωλ,Ωλ′)s+r+2d∗
(19)

with the order r from the integral operator in equation (4). We denote by Ωλ := suppψλ
the support of the wavelet function on the surface.

This above estimate is based on the Taylor expansion of the kernel function and the use of
the cancellation property (10) of the wavelets. The arising derivatives in Taylor’s expansion
can be estimated by the decay property of the kernel function (4) (see [34] for details).

4.1 First Compression

Equation (19) implies that the matrix entries in the matrix block A``′ decline when the
distance of the supports increases. The matrix block A``′ contains all those coefficients
for which |λ| = ` and |λ′| = `′. Based on the observation (19) it is possible to perform a
compression step, the so-called first compression, by neglecting all coefficients where the
disctance of the supports of the associated wavelets is larger than a level dependent trun-
cation parameter. The compression algorithm can be improved by the second compression

12
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Figure 5: The sparsity pattern of the system matrix after the first compression (left) and
after the first and second compression (right).

where we additionally neglect some coefficients for which the difference of the levels is suffi-
ciently large. After the matrix compression there remain only O(Nj) matrix entries. They
are sufficient to compute an appropriately accurate solution retaining the optimal order of
convergence of the Galerkin scheme. Here Nj ∼ 2js denotes the number of unknowns for
a discretization with the maximal level j. The level dependent bandwidth is required to
ensure this optimal order of convergence. We intend to compute only these O(Nj) matrix
entries including the relevant matrix coefficients reflecting the essential information of the
operator.

We will show in the next section that under the above assumptions we can compute the
compressed matrix with at most O(Nj) function evaluations ([9],[21],[25]). The outline is
as follows. First, we introduce the first compression which reduces the number of nonzero
coefficients in the system matrix to at most O(Nj logNj) (Lemma 4.1). Then, Lemma 4.2
confirms that by the second compression the number of matrix entries can be reduced even
to O(Nj) nonzero coefficients. The last subsection explains how to set up the compression
pattern retaining this optimal complexity.

︸ ︷︷ ︸
dist(Ωλ,Ωλ′)

ψλ
ψλ′

Figure 6: The situation affected by the first compression.
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The analysis in [34] shows that only coefficients where the supports of the wavelets are
close to each other or are overlapping are required. Consequently, an entry of the system
matrix has to be calculated if

dist(Ωλ,Ωλ′) < B`,`′ (20)

where

B`,`′ = amax

{
2−min{`,`′}, 2

j(2d′−r)−(`+`′)(d∗+d′)
2d∗+r

}
, d < d′ < d∗ + r, a > 1

is a level dependent bandwidth. The parameter a has to be chosen appropriately. Then
we obtain a blockmatrix of bandmatrices (see Figure 5) in the two-dimensional case or a
blockmatrix of sparse matrices with a number of bands in a more complicated setting (3D
case). In the system matrix remain O(Nj logNj) coefficients [34]. The result is given in
the following lemma.

Lemma 4.1 Suppose that d < d∗ + r and let d′ be an appropriate chosen parameter such
that d < d′ < d∗ + r. Let Aε

j be the resulting matrix after the first compression, which
means neglecting all matrix entries with

dist(Ωλ,Ωλ′) ≥ B`,`′

and

B`,`′ = amax

{
2−min{`,`′}, 2

j(2d′−r)−(`+`′)(d∗+d′)
2d∗+r

}
,

Then the matrix Aε
j has at most O(Nj logNj) nonzero coefficients.

Note that only the entries with Ωλ ∩Ωλ′ = ∅ are affected by the first compression, cf. Fig-
ure 6.

4.2 Second Compression

A second compression in this section affects all coefficients which come out of the first
compression step. Especially it reduces the number of coefficients in those blocks where
Ωλ ⊂ Ωλ′ and |λ| � |λ′| is valid.

In the case of d < d′ < d∗+ r, we apply a second compression which allows to neglect even
more coefficients so that we end up with O(Nj) coefficients. The second compression is
defined by additionally setting matrix coefficients to zero which fulfill

`′ ≤ ` dist(Ω′λ,Ωλ′) ≥ B′`,`′ (21)

or

` ≤ `′ dist(Ωλ,Ω
′
λ′) ≥ B′`,`′ (22)

14



with

B′`,`′ = a′max

{
2−max{`,`′}, 2

j(2d′−r)−max{`,`′}d∗−(`+`′)d′
d∗+r

}
and Ω′λ = singsuppψλ. Here Ω′λ = singsuppψλ denotes the singular support, i.e. the set of
points where the wavelet is not smooth. The result of this criterion is that we can neglect
coefficients if one basis function is located in the support of the other but relatively far
away from its singular support, cf. Figure 7. Clearly, this implies that we get only an effect
in such matrix blocks Aε

``′ , where the difference of ` and `′ is large enough, i.e. far away
from the diagonal in the blockmatrix Aε

j . After the second compression there remain only
O(Nj) entries in the system matrix as the next lemma confirms ([9],[21],[25],[34]).

︸︷︷︸
dist(Ωλ,Ω

′
λ′)

ψλ

ψλ′

Figure 7: The situation affected by the second compression.

Lemma 4.2 Suppose that d < d∗ + r, d′ as before and dist(Ωλ,Ωλ′) ≤ c2−min{`,`′}. After
the second compression by neglecting all matrix entries for which

dist(Ω′λ,Ωλ′) > B′`,`′

with

B′`,`′ ∼ max

{
a′2−max{`,`′}, a′2

j(2d′−r)−max{`,`′}d∗−(`+`′)d′
d∗+r

}
the matrix Aε

j has only O(Nj) nonzero entries.

Remark 4.3 The second compression requires a large difference between the levels. In
practice, we are dealing with only few levels. Nevertheless, the compression criterion works
also for matrix coefficients of type (Aϕλ, ψλ′). The only matrix block cannot be compressed
contains the entries of type (Aϕλ, ϕλ′), |λ| = |λ′| = 0. In order to achieve linear complexity
we have to guarantee that

dimS0 .
√
Nj.

Taking a possibly coarse level on each patch the dimension of S0 is proportional to the
number of patches. This gives us a rule of thumb to which extent our method can be
applied to complicated geometries. We made the experience that our method works nearly
independent of the complexity of the geometry as long as we follow this rule of thumb,
see Section 7.
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4.3 Setting up the compression pattern

A naive check of the distance criterion (20) for each matrix coefficient results in an O(N2
j )-

procedure. The following lemma will help us to avoid this and is the basis for an O(Nj)-
algorithm for checking the distance criterion.

Lemma 4.4 We consider Ωλ̃ ⊆ Ωλ and Ωλ̃′ ⊆ Ωλ′ with |λ̃| = ˜̀≥ ` = |λ| and |λ̃′| = ˜̀′ ≥
`′ = |λ′|.

1. If we assume that
dist(Ωλ,Ωλ′) ≥ B`,`′ ,

then we obtain that
dist(Ωλ̃,Ωλ̃′) ≥ B˜̀, ˜̀′ .

2. For ` ≥ `′ suppose
dist(Ωλ,Ω

′
λ′) ≥ B′`,`′ ,

then we can conclude that
dist(Ωλ̃,Ω

′
λ′) ≥ B′˜̀,`′ .

With the help of this lemma we only have to check the distance criteria (20) and (21), (22)
for coefficients which stem from subdivision of calculated coefficients on a coarser level.
In accordance with Lemma 4.2 at most O(Nj) matrix entries have to be calculated. The
resulting procedure of checking the distance criteria is then O(Nj), too.

5 Assembly of the Compressed Matrix

Up to this point we know that the compressed matrix Aε
j has at most O(Nj) nonzero

entries. Its structure is strictly determined by (19). Now we have to discuss how to obtain
the matrix coefficients

(Aψλ, ψλ′) =

∫
Ωλ

∫
Ωλ′

k(x, y)ψλ(x)ψλ′(y) dΓ y dΓ x (23)

in the Galerkin approach. The matrix entries are given by a double integral over the sup-
port of the basis functions, which in the case of a three-dimensional problem is a doubled
two-dimensional integration. Unfortunately even for cardinal B-splines it is not possible
to determine the matrix entries analytically. Therefore we are forced to compute the ma-
trix coefficients by numerical integration rules. Numerical integration causes an additional
error which has to be controlled and it takes place against a background of realizing asymp-
totically optimal accuracy while preserving efficiency. This means the numerical methods
have to be chosen carefully, such that the desired linear complexity of the algorithm is not
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violated. However, it is not obvious that the number of quadrature points employed to
compute these O(Nj) entries is still O(Nj), too. It is an immediate consequence of the
fact that we require only a level dependent precision of quadrature ([21],[34]).

Lemma 5.1 Let the error of quadrature for computing the relevant matrix coefficient aλ,λ′
be bounded by the level dependent accuracy

ε`,`′ ∼ min
{

2−
|`−`′|s

2 , 2−s(j−
`+`′

2
) 2d′−r

2d∗+r

}
2Jr2−2δ(j− `+`

′
2

) (24)

with d′ from the first compression and some δ > d. Then, the Galerkin scheme is stable
and converges with the optimal order.

From (24) we conclude that the entries on the coarse grids have to be computed with
the full accuracy while the entries on the finer grids are allowed to have less accuracy.
Unfortunately, the domains of integration are very large on coarser scales.

Remark 5.2 We can use (24) as thresholding parameter improving the a-priorily definied
compression. Due to our experience such an a-posteriori compression improves the rate of
compression by a factor 2–4.

To ensure linear complexity we investigate the number of quadrature points which are
permitted for computing the relevant matrix entries with the demanded accuracy. Due
to the level dependent precision of quadrature the number of quadrature points is not
a constant with respect to the considered level. For this reason we have to pay special
attention to counting the total number of quadrature points. As we have seen in Lemma
4.1 and Lemma 4.2 the number of elements in the blocks Aε

``′ for `′ � ` or ` � `′ is Nα
``′

with some α ∈ (0, 1) and N``′ ∼ 2max{`,`′}s the dimension of the block Aε
``′ . Therefore we

can use in such matrix blocks log(N``′) quadrature points to retain linear complexity for
the computation of the matrix Aε

j . A more precise formulation gives us the next theorem.

Theorem 5.3 Suppose d < d∗ + r, d′ as before. Let us further assume that the number of
quadrature points nλ,λ′ for the computation of one matrix entry aλ,λ′ is bounded by

nλ,λ′ ≤ (C1 ((j − `) + (j − `′)) + C2)
α

(25)

for some α ≥ 0. Then the number of quadrature points for the computation of the com-
pressed matrix is O(Nj).

According to the fact that a wavelet is a linear combination of scaling functions the numer-
ical integration can be reduced to interactions of scaling functions or polynomial functions
on certain elements

I(�λ,�λ′) :=

∫
�λ

∫
�λ′

K(x, y)pλ(x)pλ′(y) dy dx (26)
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with K(x, y) defined by (3). This is quite similar to the traditional Galerkin discretization.
The main difference is that in the wavelet approach the elements may appear on different
levels due to the multilevel hierarchy of wavelet bases.

Difficulties arise if the domains of integration κ(�λ) and κ(�λ′) in (26) are very close to-
gether relatively to their size. We have to apply numerical integration carefully in order to
keep the number of evaluations of the kernel function at the quadrature knots moderate
and to fulfill the assumptions of Theorem 5.3. It is clear that an equidistant subdivision
of the domain of integration is not adequate. In [28],[34],[35] a geometrically graded sub-
division is proposed in combination with varying the polynomial degree of approximation
in the integration rules, cf. Figure 8. It is shown in [21],[25],[34] that exponentially con-
vergent quadrature rules combined with such a hp-quadrature scheme lead to the number
of quadrature points n`,`′ satisfying the assumption (25) with α = 2s. In practice, tensor
product Gauß-Legendre quadrature rules offer exponential convergence.

��
κ(�λ)

κ(�λ′)

Figure 8: Adaptive subdivision of the domains of integration with respect to the elements
κ(�λ) and κ(�λ′).

Since the kernel function has a singularity on the diagonal we are confronted with singular
integrals if the domains of integration κ(�λ) and κ(�λ′), ` = `′, have any points in common.
We have to give them a special treatment in form of a nonlinear substitution of variable
known as the Duffy transform [14]. This transform was studied for triangular domains
in [32] and on quadrilaterals in [33]. Note that singular integrals occur only if the trial
and test functions act on the same or on neighbouring patches with a common edge or a
common point.

More advanced quadrature techniques limiting the order of integration have been intro-
duced in [30] for the collocation scheme and in [29] for the Galerkin scheme. Basis oriented
quadrature formulas have been developed in [1] and [25].
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6 Wavelet preconditioning

Let A : Hr/2(Γ) → H−r/2(Γ) denote a boundary integral operator of order r 6= 0. Then,
the corresponding system matrix Aj is ill-conditioned. In fact, there holds

cond Aj ∼ 2j|r|.

According to [8],[34], for example, the wavelet approach offers a simple diagonal precondi-
tioner based on the well known norm equivalences on wavelet bases. The preconditioning
results from the fact that the wavelets can be normalized in the energy space H−r/2(Γ) if
γ̃ > −r/2. Here, γ̃ denotes the regularity of the dual wavelets

γ̃ = sup{q ∈ R : ψ̃λ ∈ Hq(Γ)}.

Let us remark that the regularity of the biorthogonal B-Spline wavelets is well known [37].
Moreover, we mention that this kind of wavelet preconditioning is of additive Schwartz
type. For a survey of further preconditioners based on additive Schwartz decompositions,
we refer to [36] and the references therein.

Theorem 6.1 Let the diagonal matrix Dq
j , q ∈ R, be defined by

(Dq
j)λ,λ′ = 2q`δλ,λ′ , λ ∈ ∇`, λ′ ∈ ∇`′ , −1 ≤ `, `′ < j.

Then, if A : Hr/2(Γ)→ H−r/2(Γ) denotes a boundary integral operator of the order r with
γ̃ > −r/2, the diagonal matrix Dr

j defines a preconditioner to Aj, i.e.

cond(D
−r/2
j AjD

−r/2
j ) ∼ 1.

The coefficients on the main diagonal of Aj satisfy

(Aψλ, ψλ) ∼ 2r`.

Therefore, the above preconditioning can be replaced by a diagonal scaling. In fact, the
diagonal scaling improves and simplifies the wavelet preconditioning.

Remark 6.2 This preconditioning strategy gives uniformly bounded condition numbers
which depend on the choice of the wavelet basis. The condition can be relatively large.
An advanced preconditioning reducing condition numbers by a magnitude has been intro-
duced in [21].
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7 Numerical Results

This section is dedicated to numerical examples which confirm our theory. First we solve a
Neumann problem employing the indirect formulation for the hypersingular operator. The
discretization requires globally continuous piecewise linear wavelets. Second, we compute a
Dirichlet problem. We use the indirect formulation for the double layer potential operator
which gives a Fredholm’s integral equation of the second kind. This is approximated by
using piecewise constant wavelets. We mention that both problems are chosen such that
the solutions are known analytically in order to measure the error of method.

7.1 Neumann Problem

For a given g ∈ H−1/2(Γ) with
∫

Γ
g(x) dΓ = 0 we consider a Neumann problem on the

domain Ω, that is, we seek u ∈ H1(Ω) such that

∆u= 0 in Ω,
∂u
∂n

= g on Γ.
(27)

The considered domain Ω is described as the union of two spheres B1((0, 0,±2)T ) and one
connecting cylinder with the radius 0.5, compare Figure 9. The boundary Γ is represented
via 14 patches. Choosing the harmonical function

u(x) =
(a, x− b)
‖x− b‖3

, a = (1, 2, 4)T , b = (1, 0, 0)T . (28)

and setting g := ∂u|Γ
∂n

the Neumann problem has the solution u modulo a constant.

The hypersingular operator W is given by

Wρ(x) := − 1

4π

∂

∂nx

∫
Γ

(ny, x− y)

‖x− y‖3
ρ(y) dΓ y, x ∈ Γ,

and defines an operator of order +1, i.e. W : H1/2(Γ) → H−1/2(Γ). In order to solve
problem (27) we seek the density ρ satisfying the Fredholm integral equation of the first
kind

Wρ = g on Γ. (29)

Since W is symmetric and positive semidefinite, cf. [17],[25], one restricts ρ by the con-
straint

∫
Γ
ρ(x) dΓ = 0. We emphasize that the discretization of the hypersingular operator

requires globally continuous piecewise linear wavelets since it defines an operator of order
+1. According to Lemma 4.1 and Lemma 4.2 piecewise linear wavelets have to provide
two vanishing moments.

The density ρ given by the boundary integral equation (29) leads to the solution u of the
Neumann problem by application of the double layer potential operator

u = Kρ in Ω, (30)
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Figure 9: The mesh on the surface Γ and the evaluation points xi of the potential.

cf. (2). We denote the discrete counterparts by

u :=
(
u(xi)

)
, uϕj :=

(
(Kρϕj )(xi)

)
, uψj :=

(
(Kρψj )(xi)

)
, (31)

where the evaluation points xi are specified in Figure 9. Herein, uϕj indicates the approx-

imation computed by the traditional Galerkin scheme while uψj stands for the numerical
solution of the wavelet Galerkin scheme.

First, we compare the errors of approximation with respect to the discrete potentials. The
order of convergence is cubic if the density is sufficiently smooth. The columns titled by
“contr.” (contraction) contain the ratio of the absolute error on the previous level and the
present error. Optimal convergence means a contraction of 8. As the results in Table 1
confirm, we obtain even a higher rate of convergence. But asymptotically one cannot
expect the full order of convergence due to the concave angles between the patches. The
wavelet Galerkin scheme achieves the same accuracy as the traditional Galerkin scheme.

In Figure 10 we visualize the effects of the matrix compression. On the left hand side
we plot the number of nonzero coefficients in percent. For 57346 unknowns the matrix
compression yields only 1.37 % relevant matrix entries. On the right hand side one figures
out the over-all computing times of the traditional discretization compared with those of
the fast wavelet discretization. Note that we extrapolated the computing times of the
traditional scheme to the levels 5 and 6. On level 6 the speed-up of the wavelet Galerkin
scheme is about the factor 11 compared to the traditional scheme.
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unknowns scaling functions wavelets

j Nj ‖uj − uϕj ‖∞ contr. ‖uj − uψj ‖∞ contr.

1 58 7.1 — 7.6 —
2 226 4.3 1.4 4.2 1.8
3 898 1.2 3.6 1.2 3.5
4 3586 1.9e-1 6.3 1.9e-1 6.2
5 14338 (2.4e-2) (≤8.0) 1.4e-2 14
6 57346 (3.0e-3) (≤8.0) 4.8e-4 30

Table 1: The maximum norm of the absolute errors of the discrete potential.
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Figure 10: The compression rates and computing times.

7.2 Dirichlet Problem

For a given f ∈ H1/2(Γ) we consider an interior Dirichlet problem, i.e., we seek u ∈ H1(Ω)
such that

∆u= 0 in Ω,
u= f on Γ.

(32)

As domain Ω we consider a gearwheel with 30 teeths, cf. Figure 11. Let us remark that its
surface Γ is parametrized via 700 patches. We choose the harmonical potential analogously
to (28) but with b = (0, 0, 0)T and set f := u|Γ. Then, problem (32) has the unique solution
u.

For solving the Dirichlet problem by the double layer potential operator (2) we apply a
Fredholm’s integral equation of the second kind(

K − 1
2
I
)
ρ = f on Γ. (33)

22



−2

−1

0

1

2

−3

−2

−1

0

1

2

3

−0.5

0

0.5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 11: The description of the mesh of the gearwheel.

The operator on the left hand side of (33) defines an operator of order 0, i.e., K − 1
2
I :

L2(Γ)→ L2(Γ). We mention that sometimes it is convenient to take into account K− 1
2
I :

H1/2(Γ) → H1/2(Γ), see e.g. [22]. For the approximation we use piecewise constants.
According to Lemma 4.1 and Lemma 4.2 the wavelets must have three vanishing moments.
After solving (33) the solution u is represented as in (30). The discrete potentials with
respect to fixed interior points are denoted according to (31).

In Table 2 we compare the errors of approximation with respect to the discrete potentials.
The order of convergence is quadratic if the density is sufficiently smooth. In this case the
contraction is 4. Due to the concave angles between the patches this order is not achieved.
But as one figures out the wavelet Galerkin scheme achieves the same accuracy as the
traditional Galerkin scheme.

unknowns scaling functions wavelets

j Nj ‖uj − uϕj ‖∞ contr. ‖uj − uψj ‖∞ contr.

1 2800 0.4 — 1.3 —
2 11200 1.5e-1 2.7 1.4e-1 9.5
3 44800 (3.7e-2) (≤ 4.0) 4.8e-2 2.9
4 179200 (9.4e-3) (≤ 4.0) 1.3e-2 3.6

Table 2: The maximum norm of the absolute errors of the discrete potential.

In Figure 12 the compression rates and computing times are depicted. The number of
relevant matrix entries is only 0.34 % on the level 4. The traditional scheme would require
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about 93 hours for the computation while the wavelet Galerkin scheme does it in 5 hours
cpu-time. This means a speed-up of factor 13.
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Figure 12: The compression rates and computing times.
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talgorithmen für die Randelementmethode. Habilitation Thesis, Technische Universität
Chemnitz, Germany, 2001.

[30] A. Rathsfeld and R. Schneider. On a quadrature algorithm for the piecewise linear
collocation applied to boundary integral equations. SFB 393 Preprint 00-15, TU
Chemnitz, 2000. submitted to Math. Meth. in Appl. Sci.

26



[31] U. Reif. Biquadratic G–spline surfaces. Comp. Aided Geom. Design, 12:193–205, 1995.
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01-05 A. Eilmes, R. A. Römer, C. Schuster, M. Schreiber. Two and more interacting
particles at a metal-insulator transition. February 2001.

01-06 D. Michael. Kontinuumstheoretische Grundlagen und algorithmische Behandlung
von ausgewählten Problemen der assoziierten Fließtheorie. März 2001.

01-07 S. Beuchler. A preconditioner for solving the inner problem of the p-version of the
FEM, Part II - algebraic multi-grid proof. March 2001.

01-08 S. Beuchler, A. Meyer. SPC-PM3AdH v 1.0 - Programmer’s Manual. March 2001.

01-09 D. Michael, M. Springmann. Zur numerischen Simulation des Versagens duktiler met-
allischer Werkstoffe (Algorithmische Behandlung und Vergleichsrechnungen). März
2001.

01-10 B. Heinrich, S. Nicaise. Nitsche mortar finite element method for transmission prob-
lems with singularities. March 2001.

01-11 T. Apel, S. Grosman, P. K. Jimack, A. Meyer. A New Methodology for Anisotropic
Mesh Refinement Based Upon Error Gradients. March 2001.

01-12 F. Seifert, W. Rehm. (Eds.) Selected Aspects of Cluster Computing. March 2001.

01-13 A. Meyer, T. Steidten. Improvements and Experiments on the Bramble–Pasciak
Type CG for mixed Problems in Elasticity. April 2001.

01-14 K. Ragab, W. Rehm. CHEMPI: Efficient MPI for VIA/SCI. April 2001.

01-15 D. Balkanski, F. Seifert, W. Rehm. Proposing a System Software for an SCI-based
VIA Hardware. April 2001.

01-16 S. Beuchler. The MTS-BPX-preconditioner for the p-version of the FEM. May 2001.



01-17 S. Beuchler. Preconditioning for the p-version of the FEM by bilinear elements. May
2001.

01-18 A. Meyer. Programmer’s Manual for Adaptive Finite Element Code SPC-PM 2Ad.
May 2001.
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