
Technische Universität Chemnitz

Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Matthias Pester

Visualization Tools for 2D and 3D

Finite Element Programs

– User’s Manual –

Preprint SFB393/02-02

Preprint-Reihe des Chemnitzer SFB 393

SFB393/02-02 January 2002

Contents

1 Introduction 1

2 Visualization of 2D Domains 2
2.1 Programmer’s Interface for 2D Visualization . 2
2.2 User’s Interface for 2D Visualization . 4

2.2.1 Submenu Draw . 5
2.2.2 Submenu DoF . 6
2.2.3 Submenu Color . 8
2.2.4 Submenu Param . 9
2.2.5 Submenu Option . 11
2.2.6 Special Effects . 13

3 Visualization of 3D Domains 17
3.1 Notes on Finite Element Data Structures . 17

3.1.1 Assembled Matrices . 17
3.1.2 Element-by-Element Computation . 18

3.2 Programmer’s Interface for 3D Visualization . 18
3.2.1 Subroutine draw3d . 19
3.2.2 Subroutine x3dgraph . 20
3.2.3 Subroutine o3dgraph . 21
3.2.4 Subroutine out3dexpl . 22
3.2.5 Subroutine getdofs for 3D problems . 23

3.3 User’s Interface for 3D Visualization . 25
3.3.1 First User Interface for 3D: Surface or Intersection 25
3.3.2 Second User Interface for 3D – Surface and Clipping Planes 27
3.3.3 Third User Interface for 3D – File or Socket 27

3.4 Additonal Tools: Java Applets . 34

4 Special Features 35
4.1 Postscript Output . 35
4.2 Video Sequences . 38
4.3 More Realistic 3D View . 40

References 44

Appendix 46

Author:

Matthias Pester
Fakultät für Mathematik
TU Chemnitz, D-09107 Chemnitz mailto:pester@mathematik.tu-chemnitz.de

mailto:pester@mathematik.tu-chemnitz.de

1

1 Introduction

Visualization of numerical results is a very convenient method to understand and evaluate
a solution which has been calculated as a set of millions of numerical values. One of the
central research fields of the Chemnitz Sonderforschungsbereich (SFB 393: Numerical Sim-
ulation on Massively Parallel Computers) is the analysis of parallel numerical algorithms
for large systems of linear equations arising from differential equations (e.g. in solid and
fluid mechanics). Special emphasis is paid to the investigation of preconditioners for finite
element systems based on domain decomposition and multilevel techniques on massively
parallel computers.

Solving large problems on massively parallel computers (more than 100 processors)
makes it more and more impossible to store numerical data from the distributed memory
of the parallel computer to the disk for later postprocessing. However, the developer of
algorithms is interested in an on-line response of his algorithms. Both visual and numerical
response of the running program may be evaluated by the user for a decision how to switch
or adjust interactively certain parameters that may influence the solution process.

Thus, it is necessary to have an utility for a quick (and rather dirty than slow and
perfect) interactive visualization directly from the parallel machine to the user’s desktop
workstation. A high-quality postprocessing (especially in 3D) requires a high-performance
graphic workstation. Since, at least up to now, many users have only low-cost machines1

on their desk, we prefer a quick visualization which is only based on X11 for compatibility
with a wide field of workstation models. Another programming interface such as OpenGL
should be better, especially for implementing 3D graphics, but it would require higher
performance or hardware support.

In [10] we discussed two models for graphical output from a parallel computer, where
either the parallel computer or a graphical workstation executes the major part of postpro-
cessing. This manual considers mainly the first kind, i. e. preparing all data in parallel and
then transmitting pixel data to the user’s workstation. We assume that at least standard
X-library calls are available to the parallel program. An approach to use the second model
with a 3D visualization tool based on GRAPE ([12]) was implemented and is described
in [7]. As another external viewer we can use the IRIS Explorer [17]in the same way. A
first version of the X11-based approach for 2D visualization can be found in [9]. Mean-
while this graphic tool has been updated and is also used as a kernel for an X11-based 3D
visualization. Therefore, it is appropriate to give a new survey of the current state.

1There will be always differences between low-cost and high-performance computers, but on another
level after some years.

2 2 VISUALIZATION OF 2D DOMAINS

2 Visualization of 2D Domains

This part of the visualization package is intended to supply a simple graphical interface
for 2-dimensional finite element data structures. Furthermore, it is used as the low level
interface for certain 3D graphics (see Chapter 3).

This graphics package uses the interface of the X11 library as documented in [8], no
further extensions. Hence, it has been portable to any unix-like machine, including special
parallel computers as GCPowerPlus. No third-party libraries are required. The look and
feel of the user interface was designed to support most of the daily requirements in testing
parallel algorithms. Figure 1 shows a set of typical views for one example and most of the
menu items that are available in the graphics window.

First, we will describe the programmer’s interface.

2.1 Programmer’s Interface for 2D Visualization

From the programmer’s point of view, the complete visualization including interaction acts
as a black-box that is to be initiated by one of the following calls (Note, that this call has
to be executed locally on each of the processors in a parallel program):

call gebgraf (iDoF, nEL, ne, EL, nNod, Nod, U, W)

call gebmgraf (iDoF, nEL, ne, EL, nNod, Nod, U, Mat, W)

call firegraf (iDoF, nEL, ne, EL, nNod, Nod, U, Xi, W)

The meaning of the parameters is given in Table 1.

The program gebgraf is used in the case of layer or elasticity simulation in domains
with homogeneous material, whereas in the case of multiple materials gebmgraf may be
used. The firegraf call adds some features for the case of flow simulation.

The use of one of those graphic programs requires the programmer to write a little
subroutine that is called by the graphic program. This little subroutine (getdofs) is
intended to define the number of components in the solution vector field U and the names
of each component to appear in the DOF-menu (2.2.2) of the graphics window.

The program returns two parameters:

call getdofs (nDoF, Dofs)

nDoF : number of components that can be displayed (see notes below!)
DoFs : the names of all the components in an array character*6 DoFs(nDoF),

i.e. 6 characters for each name (for C programmers: we are using Fortran
strings, i.e. by default the strings are not \0-terminated)

For convenience, the graphics subroutines make some assumptions on the output of
getdofs. Thus, if the solution consists of k > 1 components per node then getdofs

2.1 Programmer’s Interface for 2D Visualization 3

Table 1: Parameters of the 2D graphics subroutines.

gebgraf (iDoF, nEL, ne, EL, nNod, Nod, U, W)

gebmgraf (iDoF, nEL, ne, EL, nNod, Nod, U, Mat, W)

firegraf (iDoF, nEL, ne, EL, nNod, Nod, U, Xi, W)

iDoF : preselect one component of the solution vector to be displayed by default;
iDoF=0 means that the field U contains no data, and the program will
only allow to draw the grid;

nEL : number of elements of the (local) finite element mesh;
ne : number of nodes per element; the program supports 3- and 6-node tri-

angles and 4-, 8- or 9-node quadrilaterals;
EL : integer array (in Fortran: EL(ne,nEL)) of the node numbers for each

element;
nNod : number of (local) nodes of the grid;
Nod : single precision2 real array (in Fortran: Nod(idim,nNod)) containing

x, y-coordinates (and possibly more information) for each node of the
mesh; generally, the field dimension idim is 3, but might be changed
globally by a common variable;

U : components of the solution (double precision real), stored as an array of
vectors, one vector of length nNod for each component (degree of freedom
of the problem solved), i.e. in Fortran this field is U(nNod,nDoF), where
the number nDoF and the names of the various components are obtained
from a user-supplied subroutine (named getdofs, see below);

Mat : integer array of length nEL containing one number (index of material) for
each element;

Xi : double precision vector of length nNod containing the values of the stream
function (used by a program for flow simulation);

W : scratch field of “sufficient” size3, this is used to store all the computed
pixel data, which may be essentially more than the list of nodes.

2 Single precision is sufficient for visualization, but with respect to adaptive mesh refinement this may be
changed to double precision in future versions.
3 This is buggy since nobody knows before what is sufficient. A new version of the program should use an
additional parameter indicating the available size on W to avoid crashing by memory lack.

4 2 VISUALIZATION OF 2D DOMAINS

Table 2: For firegraf some components have to be arranged in a special order.

1..nDoF-3 : arbitrary components, with velocity (x, y) as fields 1 and 2;
nDoF-2 : pressure, the last field of the array U, however, with data values

only for the corners of each element (undefined and unused entries
for inner points of edges or faces);

nDoF-1 : stream function which is not on U, but on Xi;
nDoF : a placeholder to be set in getdofs, e.g. as |U| or vector. This

menu entry does not match any single component of the solution,
but causes a vectorial (or magnitude) display of the velocity field
that is stored in the first two fields of the array U.

should return nDoF=k + 1. Why that? If there is a vector solution available – such as
velocity in flow simulation, displacement in elasticity simulation or a gradient of a scalar
solution – its components (x- and y-value) are stored as the first two fields in the array U

and the last number (nDoF) is reserved to display the vector solution (arrows or the mag-
nitude of the (x, y)-vector). Thus, U has only nDoF-1 fields of components. If firegraf is
used, there are some more assumptions as defined in Table 2.

2.2 User’s Interface for 2D Visualization

The visualization appears in an extra window together with the simple menu for interaction
(Fig. 1). The initial display may be determined by the programmer (iDoF, Table 1), but
the user may now select any options, parts of the solution and display mode. Furthermore,
it is possible to produce a postscript file for high quality printing. We will now give a
summary of the various menu options.

At the top of the window there is a menu bar with 6 entries, from left to right these
are:

Draw pull down menu to select the display mode (2.2.1). The selected mode is performed
immediately.

DoF pull down menu to select the component of the solution which is to be displayed by
the next draw command (2.2.2)

Color pull down menu to select one of various predefined color palettes (2.2.3)

Param pull down menu to set various parameters for drawing modules (2.2.4)

Option pull down menu to set or switch some additional options (2.2.5)

goon leave the interaction and return to the program.

2.2 User’s Interface for 2D Visualization 5

2.2.1 The Draw Submenu

Select a display mode.

Redraw Clear the graphics window and repeat the previous drawing, with possibly
changed other options (e.g. line color, colormap, scaling, selected component).

Bound. Draw only the boundary of the subdomains. There is an option (2.2.5) to switch
between drawing all boundaries of the coarse grid or only the boundaries of the
current distribution of subdomains to the processors. The color of the lines is green in
the case of Dirichlet boundary conditions and red for Neumann boundary conditions.

Note: We assume the information on boundary conditions to be stored in the node
field (Nod) as a bit mask indicator in the third entry behind the coordinates x and
y. If this information is not stored this display mode has no output.

Net-2D Draw the current mesh. In general, the grid lines are drawn in a standard color
(white or black). However, if Procs is selected from the DoF-submenu, the grid
lines are colored according to the processor number, and for Mater the grid line
colors correspond to the material numbers.

Vector Draw small vectors in each grid point. This menu entry replaces the previous one
as long as the vector solution is selected from the DoF-submenu – the last entry which
is supplied by the subroutine getdofs (p. 4) in the case of more than 2 components.
This menu entry appears alternately with the next one as selected from the Option-
submenu (p. 12).

Tensor Draw small orthogonal crosses in each grid point corresponding to the eigenvector
directions of a tensor solution (if one of the 2 eigenvectors is specified as a vector
solution). This menu entry replaces the Net-2D one as long as the vector solution is
selected from the DoF-submenu – the last entry which is supplied by the subroutine
getdofs (p. 4) in the case of more than 2 components. This menu entry appears
alternately with the previous one as selected from the Option-submenu (p. 12).

Net+U Show the deformation of a mesh by adding the displacement vectors to the node
coordinates and displaying the grid. The line color is the same as for isolines (see
below) and may be selected from the Param-submenu entry LinCol. The scaling for
the deformation may be changed by the Param-submenu entry Elast (p. 11). Note
that a large (scaled) deformation may exceed window bounds and will be clipped. It
is intentionally not scaled to window size in order to have a real comparison with the
undeformed mesh.

Net-3D Draw a 3-dimensional view of the grid with the solution selected from the DoF-
submenu giving the “height” of the grid points. If this drawing mode is selected there
appears a little coordinate system in the upper left corner of the window. Clicking

6 2 VISUALIZATION OF 2D DOMAINS

this coordinate system will allow to change the viewpoint by rotating via x-, y- or
z-axis (press the corresponding key, and shift-key for backwards). Other keys are
available for manipulating the viewpoint: u,v,w,p,0,1,2,3,*,h – try it. ESC will
reset to the previous view, RETURN will accept. You must redraw your current solution
explicitly to apply the new viewpoint.

Isolin Draw isolines of the current component of the solution. The background is not
changed (so you can draw different things in the same picture). Before drawing, the
number of isolines can be changed in the Param-submenu (2.2.4, LinLvl). The
color of isolines is blue by default and may be changed in the Param-submenu (2.2.4,
LinCol).

Isol-F Draw contours of the domain, filled with a standard color (white or black) and
isolines as in the previous menu point (Option→Isolin, p. 12).

Filled Fill the domain with colors of the current palette corresponding to the current
component of the solution. Coloring is done by linear interpolation between the
grid points.

PSopen Open a new file for postscript output. The file name has to be entered in the
console window where the program was started from. After opening this file you
have to redraw everything you want to see in your postscript picture. Note, that one
postscript file will contain only one image, written as EPS (encapsulated postscript).
If you need multiple pictures you will have to close the first file and open a new
one. Once a file has been opened the menu entry will be changed to PSclos .
The postscript file will be closed explicitly by selecting PSclos or automatically by
selecting goon to leave the graphics window interaction. More details on writing
and using postscript files are given in section 4.1.

2.2.2 The DoF Submenu

The first entries of this submenu are taken from the parameters supplied by the user-defined
subroutine getdofs (p. 2). As mentioned above the menu list given by getdofs will be
terminated by an entry interpreting the first two components as vector. Two more entries
may be added by the graphics subroutine itself:

ElSize Display the (2D-) element in colors corresponding to their element size. This
may be useful for adaptive mesh refinement only.

Mater. Display materials in different colors. This menu item appears if the program
gebmgraf was called with an additional vector of material indices.

Procs Display subdomains from different processors in different colors. This menu item
exists if the program is running on a parallel machine.

2.2 User’s Interface for 2D Visualization 7

Figure 1: User interface on an X terminal, menus and various views (deformation, stresses,
coarse grid, isolines, subdomains, materials, . . .) of an example.

8 2 VISUALIZATION OF 2D DOMAINS

SFB 393 - TU Chemnitz SFB 393 - TU Chemnitz

SFB 393 - TU Chemnitz
SFB 393 - TU Chemnitz

Figure 2: An example displayed using different colormaps.

2.2.3 The Color Submenu

Select one of the predefined palettes and switch background or the window’s colormap.

ColMap Switch between default and private colormap. On pseudo-color screens there
may be a maximum of 256 entries to the default colormap which is shared by all
applications. Then the program might be unable to allocate enough colors if the
colormap entries are occupied by other applications. Clicking this switch will use a
private colormap for the graphics window. In this case the colors outside this window
will change until the mouse pointer leaves the window – then the colors inside the
window will be “wrong”. On true-color screens this switch may have no effect.

Invers Switch the colors black and white. By default the background is black and grid
lines are white. This switch does not affect the postscript output.

Detect Select a default palette which is the same as [16 Col] for pseudo-color screens
or [70 Col] for true-color screens.

16 Col An EGA-like palette of 14 colors (black and white are not used for coloring data
areas). Useful to show more contrasts. (Fig. 2, top left)

70 Col Rainbow palette: blue - green - yellow - red. Useful for a more continuous
coloring. (Fig. 2, top right)

99 Col Extended rainbow palette: magenta - blue - green - yellow - red - white.

2.2 User’s Interface for 2D Visualization 9

B & W Black and white coloring, i.e. alternating black and white areas. (Fig. 2, bottom
left)

Gray Grayscale with upto 100 levels. The user is prompted for the number of gray
levels between black and white. Grayscale is intended to use for printing on non-
color printers, since the representation of colors (e.g. of the rainbow palette) might
depend on printer drivers. (Fig. 2, bottom right)

This palette is best-suited for lighting effects if this program is used for 3D surfaces
(Fig. 3 or Fig. 7). For lighting over a coloured solution refer to Section 4.3.

2.2.4 The Param Submenu

Select and modify some parameters.

WinSiz This will prompt for new width and height of the graphics window (in pixels).
Of course, the window may be resized in the usual way using the features of the
window manager on your desktop. However, sometimes you might want to define an
exact size, e.g. to make a series of snapshots, or mpeg_encode needs a multiple of 8
or 16 pixels.

Window Start a textual dialog to manage “virtual windows” within the original graphics
window. You may split the window into 2 – 4 virtual windows of equal size (or delete
them if no longer needed). The dialog allows either horizontal or vertical arranging
of those virtual windows. Each of them can be used for a different display. Figure
3 is a screen shot of a horizontal placement of two virtual windows. Selecting any
mode from the Draw-menu will always use the active virtual window highlighted by
a frame.
Quickly switching between virtual windows is enabled by hotkeys, i.e. pressing the
corresponding key 1 · · · 4 .

LinCol Select a color from the current palette to be used for drawing isolines. The
default color is blue. A new window appears showing an array of all available
colors. Click on a color field to select it. The last field shows the complete palette
once more. If this is selected, the isoline color will be different corresponding to the
value represented by this isoline.

Note: The selected color also affects the appearance of Net-2D (2.2.1), if the mesh
has 6-point triangles or 8- or 9-point quadrilaterals, i.e. midpoints of edges for
quadratic element functions. Then the (inner) lines connecting such midpoints are
drawn in the same color that is selected for isolines. If the multi-color field was
selected, the inner lines of the grid elements are not drawn.

LinLvl This will ask in the console window for a number that indicates how many levels,
i.e. how many isolines should be drawn. The default value is 25.

10 2 VISUALIZATION OF 2D DOMAINS

Figure 3: The screenshot shows the graphics window split into two virtual windows with
different views of the same (3D) object

qu16 - Level 3 - |grad(u)|

SFB 393 - TU Chemnitz

LinInt: [0.0,1.0]

SFB 393 - TU Chemnitz

LinInt: [0.0,0.5]

SFB 393 - TU Chemnitz

LinInt: [0.0,0.005]

SFB 393 - TU Chemnitz

Figure 4: Different selection of LinInt for the isolines of a solution u (or |grad u| in this
case) with a local peak, intervals are 0 . . . 1, 0 . . . 0.5, and 0 . . . 0.005 .

2.2 User’s Interface for 2D Visualization 11

LinInt This will ask for an interval. The default interval from 0 to 1 corresponds to
the minimum and maximum of the current component of the solution. Selecting a
subinterval will concentrate all the isolines to that part of the component’s values.

This may be useful if there is a small peak in the solution which would attract most
of the isolines (Figure 4).

Scale Define a minimum and maximum value for the currently selected component of
the solution. You may enter 0, 0 for minimum and maximum to return to the default
behavior, i.e. automatic scaling from the current data values.

This facility is important for the visualization of time-dependent solutions as a series
of pictures. It ensures that at different time the same color means the same value.

Elast This menu entry yields a textual interaction in the console window. The user may
change parameters for the Net+U display (deformed grid). You may choose to set a
relative or absolute scaling factor for deformation display.
A relative factor r means that the maximum displacement of all nodes is scaled to
be r % of the maximum expansion of the domain, wih the exception that r = 100
means original deformation as supplied by the computational solution.
An absolute factor a means that the deformation is displayed a-times the real value,
i.e. a = 1.0 is the true deformation.
In this menu you may also select any two of the components of the solution (DoFs)
to be interpreted as horizontal and vertical components of a displacement vector
(components 1 and 2 are used by default).

Zoom Zoom into the picture. Left-click on a first point in the window. The mouse pointer
will change its shape and show a rectangle4. Move the mouse to a second point and
left-click again to select the rectangle for zooming in. Right-clicking will terminate
the interactive zoom selection and switch to the textual mode, where you can enter
the (world) coordinates of a center point x, y and a radius r for the zoom area. You
can enter x = y = r = 0 to leave the zoomed view and return to the default.

Note: The coordinate input mode is available by a hotkey: press z on the keyboard
(while the graphics window is focused).

2.2.5 The Option Submenu

Select additional options for special purposes.

Procs You may enter a range of processors (between 0 and nProc-1). The next draw will
only show the data of those processors.

Infos Display a few internal statistics, e.g. the total amount of pixel data that had to
be transferred.

4Sometimes this rectangle may be badly visible because of low-contrast.

12 2 VISUALIZATION OF 2D DOMAINS

Bound Switch between two modes of displaying boundaries (2.2.1). The default is to
draw only the boundaries (shapes) of subdomains (1 processor = 1 subdomain). The
alternate is to draw all initial bounds, i.e. the coarse grid. (cf note on page 5)

Isolin Switch between two modes of displaying isolines, affecting Isol-F in the Draw-
submenu (2.2.1). The major difference is how to draw the domain’s background
shape before drawing the isolines.

The default is a “quick” mode where the program tries to draw and fill each subdo-
main as a single polygon.

Since this may be incorrect if a subdomain had a hole inside (it would be filled as
the background of the domain, cf Fig. 6), you may switch to a “slow” mode where
each small element of the domain is filled one by one.

Tensor / Vector Switch to the specified drawing mode for vector solutions. This will
change the corresponding menu entry in the Draw-submenu (2.2.1)

OptFil Select an “optimized” way to draw the coloring of the domain (2.2.1, Filled).

By default, for each small triangle (or quadrilateral) a set of polygons – one for
each color – is generated. If all those very small polygons have to be drawn this
may take a while. There are implemented three different optimization algorithms
(one worse than the other). These algorithms are to reduce the number of polygons
by connecting them to larger ones. This may considerably reduce the pixel data
which has to be transferred (by 30. . . 90 percent). However, this will need a lot
of computational time, but at least, this can be done completely parallel on each
processor. It is sure that the drawing to the window will be faster if the polygons
are optimized before. But it is generally not clear if the total time can be reduced.
This depends on the number of nodes in the subdomains, the number of colors and
the current data values. The different modes are:

(1) a simple and slow sorting algorithm that produces correct output;

(2) a quick and dirty algorithm that works well in most cases, however, incorrect if
the solution in one subdomain contains a “ring” of one color with another color
inside; it may happen that the inner field is overwritten by the color of an outer
field (Figure 6);

(3) the same as (2) using XOR-mode drawing to the screen; this “repairs” the errors
mentioned above. (But it is useless for postscript output!)

(0) this selects explicitly no optimization and no re-ordering of polygons (normally
they are sorted by colors). This is equivalent to the next menu item (Patch).

Clicking OptFil the first time will ask for the optimization mode; clicking the second
time switches off the optimization.

The default case (no optimization) would lead to very large (and hence slowly load-
able) postscript files if PSopen is active. Therefore, postscript output is always

2.2 User’s Interface for 2D Visualization 13

optimized using the last mode selected with OptFil or mode 2, if none was selected
before. Thus, to avoid time-consuming optimization and accept large postscript files
instead, you must select OptFil mode 0 before.

Patch Switch on or off a so-called “patch” mode. In patch mode, all elements are drawn
one by one, otherwise all colors are drawn one by one.

This patch mode is helpful to draw 3D surfaces with elements sorted from back to
front (the simplest hidden surface method for convex bodies). For this purpose there
is also a difference in drawing grids (Net-2D or Net-3D from the Draw menu) – in
patch mode, the polygons are filled with the background color on screen or with a
light gray in postscript output (see Figure 5).

Quiet Leave the interactive graphics mode immediately and switch to a batch graphics
mode. You may decide, if the visualization should be executed or not in future
calls to the graphics subroutines. The program repeats up to two different draws
(e.g. [Filled] for one component and [IsoLin] for another one) each time. When
multiple virtual windows (2.2.4, [Window], p. 9) are active each of them repeats its
current view.

The batch mode can be finished by pressing RETURN or any other key while the
graphics window has the focus (move the mouse into the window or click on the
top bar of the window). Then the next call to gebgraf or firegraf enables the
interaction menu again.

This mode is useful if the program runs in a loop where you want to see the differ-
ences in subsequent steps (time-dependency or adaptive meshes). Together with the
xxgrab-utility (p. 38) you may create a series of image files (in GIF format) in order
to produce animations.

2.2.6 Special Effects

Color Bar: There is a small rectangle in the upper right corner of the display area
which is used to switch on or off a color bar at the right margin. This bar
shows all colors of the current palette, and the lower and upper bounds of the
numerical value of the currently displayed component of the solution.

Note that you may fix the lower and upper bounds with Param→Scale (p. 11)

Soft Interrupt: If a parallel program runs on many processors, the output of the
subdomains from each processors is displayed one by one. There is a way to
interrupt the output without killing the program: press the ESC-key (while the
graphics window is focused) or keep the middle mouse button pressed until
the cursor changes its shape (a ring of two arrows: x

x

). This interrupt is
recognized after the output of the current processor has finished.5 Thereafter,
the output of the remaining processors is ignored – saving a little bit of time.

5Therefore, there is no way to interrupt the optimization that is caused by OptFil.

14 2 VISUALIZATION OF 2D DOMAINS

Hotkeys: There are some hotkeys for selecting certain menu items by a single key
of the keyboard. It is unlikely that they will resist in future versions, so they
are generally undocumented. Useful keys may be:

z to enter a “Zoom” area using real world coordinates.

1 · · · 4 to select one of the previously established “virtual windows” (p. 9).

Other “secret” hotkeys are, e.g.,

u draw the 3D profile of the current solution (Net3D),

U draw the current solution as colored area (Filled),

x draw the first component as (Net3D),

X draw the first component as (Filled),

y draw the second component as (Net3D),

Y draw the second component as (Filled),

i specify an interval for isolines (LinInt),

l draw isolines for the current solution (Isol-F),

0 (zero): draw the boundary of the domain (Bound),

Q switch to batch graphics mode (Quiet),

and some more for special components used in firegraf (O,F,P,R,S,V).

2.2 User’s Interface for 2D Visualization 15

default mode

SFB 393 - TU Chemnitz

patch mode

SFB 393 - TU Chemnitz

SFB 393 - TU Chemnitz SFB 393 - TU Chemnitz

Figure 5: Two examples for drawing in default or patch mode:
Net-3D for a 2D domain and Net-2D for a 3D surface

krei2 - Level 3 - 4 proc.

SFB 393 - TU Chemnitz

krei2 - Level 3 - 4 proc.

SFB 393 - TU Chemnitz

Figure 6: Difference of “OptFil=1” (left) and “OptFil=2” (right)
where, erroneously, inner areas are filled if their bound-
ary is completely inside one processor

16 2 VISUALIZATION OF 2D DOMAINS

X

Y

Z

O

X

Y

Z

O

SFB 393 - TU Chemnitz SFB 393 - TU Chemnitz

Figure 7: Projection of 3D vectors, left: displacement vectors in a cut plane, right: surface

plot with Net+U (scaled 2D projection (uxE
, uyE

) of displacement (ux, uy, uz) added to the
projection of node coordinates), above: auxiliary display of cut plane and bounding box

z20dr - Level 3

 -1.23E-04

 1.23E-04

 u_x

SFB 393 - TU Chemnitz

Figure 8: Cut off the intersection of two half spaces

17

3 Visualization of 3D Domains

3.1 Notes on Finite Element Data Structures

3.1.1 Assembled Matrices

Generally, the Finite Element Method leads to a system matrix K ∈ IRN×N which is
assembled from the element matrices Ke ∈ IRr×r

K =
numel∑
e=1

HeKeH
>
e ,

where N is the number of nodes in the mesh consisting of numel finite elements, r is the
number of nodes per element (e.g. 4 or 10 for tetrahedra), and He ∈ IRN×r is a Boolean
matrix which rules the mapping of local indices in the element to global indices in the
mesh, while H>

e extracts the components for element e from a global vector.

For parallel computation using domain decomposition the assembly procedure may be
done locally on each of the P processors for the corresponding subdomain s = 0, . . . , P −1,
getting P local matrices Ks and again a global mapping

K =
P−1∑
s=0

HsKsH
>
s =

P−1∑
s=0

Hs

(
numels∑

e=1

H(s)
e K(s)

e H(s)
e

>
)

H>
s .

However, K is never computed explicitly. All computation is performed in parallel using
the local matrices Ks with only a minimum of communication between the processors for
the nodes which are shared on subdomain boundaries ([4, 6, 3]). For example consider the
matrix-vector multiplication y = Kx. On each processor we have the local part xs of the
global vector x, i.e. xs = H>

s x. Then

ys = Ksxs

may be computed without communication, and ys is the contribution of subdomain s to
the global vector y =

∑
s

Hsys. Consequently, the dot product 〈y, x〉 can be computed as

〈y, x〉 =
P−1∑
s=0

〈ys, xs〉

which requires a simple global sum of local results only.

We denote this as our (classic) FE data structure (I). Each finite element is defined
by a list of references (indices) to the nodes belonging to it. The list of elements is stored
in an array (parameter Vol in 3.2.1). Corresponding to the assembled matrix K or local
matrices Ks we have a set of vectors for the degrees of freedom per node. The nodes
belonging to edges or faces of subdomain boundaries (or, more general, of the coarse grid)
are placed within the list of all nodes as continuous “chains” defined by Ket1D, Ket2D.
This placement requires a little bit more effort in mesh refinement but yields much less
effort in communication ([1]).

18 3 VISUALIZATION OF 3D DOMAINS

3.1.2 Element-by-Element Computation

For adaptive mesh refinement in parallel computation it is very hard to rebalance the com-
putational effort by redistribution of the mesh. If the matrices are assembled as described
above it is almost impossible to rebalance without loss of information and restarting the
assembly process for the whole mesh.

The better alternative is to keep element data together including the element matrix Ke.
In order to enable a quiet simple implementation of the redistribution of elements or clusters
of elements among the processors, it is convenient as well to keep nodes and corresponding
degrees of freedom together. However, numerical operations have to be executed using
the small matrices Ke which is more expensive but may have advantages with respect to
cache utilization. The most important advantage is to assemble new matrices only for new
elements after an adaptive refinement step.

Denoting this as data structure (II) we may take advantage of some additional
information for our purpose of visualization. Elements are defined by both lists of nodes and
lists of faces. Faces are given as lists of edges and edges by nodes. Additional information
may be included in the lists, e. g. a material indicator for each element, or a flag for
boundary faces.

3.2 Programmer’s Interface for 3D Visualization

Since our quick-and-dirty visualization for 3D meshes is based on (or reduced to) the
previously described user interface for 2D, we have an additional interaction before calling
the 2D-graphics module. This interaction may select a view point and/or a clipping plane
or other parameters. At the moment, there exist three different programming interfaces
for the visualization of 3D FEM data. They correspond to the two kinds of data structures
of the previous section and three different user interfaces:

(1) The user may choose between surface and intersection. (cf. 3.3.1)

(2) Only the surface is displayed, but the user may clip away whole elements of a half
space and display the surface of the remaining part of the domain. (cf. 3.3.2)

(3) Data transfer to an external high performance 3D graphics program (3.3.3).

The user interfaces will be discussed in Section 3.3. First consider the interfaces at the pro-
grammer’s side. The following subroutines are available for the appropriate applications:

data user parameter
subroutine structrue interface description
draw3d (I) (1) (3.2.1)
x3dgraph (II) (2) (3.2.2)
o3dgraph (I) (2) (3.2.3)
out3dexpl (I,II) (3) (3.2.4)

For parallel programs the parameters of those subroutines refer to the local subdomain on
each processor.

3.2 Programmer’s Interface for 3D Visualization 19

3.2.1 Subroutine draw3d

call draw3d (iDoF, nVol, nNode, Node, Vol, U, NodesInVol,

W, LngW, Ket1D, Ket2D, Mat)

iDoF : preselect one component of the solution to be displayed by default;
iDoF=0 means that the field U contains no data, and the program
will only allow to draw the grid;

nVol : number of elements of the (local) finite element mesh;
nNode : number of (local) nodes of the grid;
Node : single precision real array (in Fortran: Nod(idim,nNode)) con-

taining x, y, z-coordinates (and possibly more information) for each
node of the mesh; generally, the field dimension idim is 3, but might
be changed globally by a common variable;

Vol : list of finite elements, each defined by nVol node numbers, i.e. the
array is Integer Vol(NodesInVol, nVol)

U : components of the solution (double precision real), stored as an
array of vectors, one vector of length nNode for each component
(degree of freedom of the problem solved), i.e. in Fortran this field
is U(nNode,nDoF), where the number nDoF and the names of the
various components are obtained from a user-supplied subroutine
(named getdofs, see below);

NodesInVol : number of nodes per element; the program supports 4- and 10-node
tetrahedra and 8-, 20- or 27-node hexahedra;

W : scratch field of LngW double words, this is used to store temporary
arrays and, finally, all the computed pixel data.

LngW : length of the scratch array in double words
Ket1D : data structure that defines all nodes belonging to boundary edges
Ket2D : data structure similar to Ket1D, but for inner nodes of boundary

faces
For the structure of the Ket1D and Ket2D field see [1] and [3]

Mat : integer array of length nEL containing one integer number (material
indicator) per element

The structure of Ket1D and Ket2D is defined in the source code using
include ’include/net3ddat.inc’

include ’include/com prob.inc’

by the following declaration
Integer Ket1D(K1DDIM,NanzK1D), Ket2D(K2DDIM,NanzK2D)

and Ket1D(pkzeig,k), Ket2D(pkzeig,j) are pointers to the first node of a boundary
chain, and Ket1D(pkleng,k), Ket2D(pkleng,j) define the lengths of those chains (k =
1, . . . , NanzK1D, j = 1, . . . , NanzK2D).

20 3 VISUALIZATION OF 3D DOMAINS

3.2.2 Subroutine x3dgraph

call x3dgraph (nDoF, nFaceInVol, nNodeInVol, VolF, VolN,
mVol, nVol, iMaterial, Face, mFace, nFace,
iBound, mBound, Edge, mEdge, nEdge,
Node, mNode, nNode, H, maxH, IER)

nDoF : number of components of the solution (per node)
mFaceInVol : number of faces per volume element(4 or 6)
nNodeInVol : number of nodes per volume element(4, 10, 8, 20, or 27)
VolF : volume elements listed by face numbers6,

Integer VolF(mVol,nVol)
VolN : volume elements listed by node numbers6,

Integer VolN(mVol,nVol)
mVol : leading dimension of the arrays VolF, VolF
nVol : number of volume elements
iMaterial : index of the material indicator such that VolF(iMaterial,k) is a

number refering to the material description of volume element k.
Face : faces listed by their bounding edges; obviously the number of edges

per face is 3 for tetrahedra (nFaceInVol=4) or 4 for hexahedra
(nFaceInVol=6)
Integer Face(mFace,nFace)

mFace : leading dimension of the array Face
nFace : total number of faces
iBound,mBound : index and bitmask for a flag word such that

IAND(Face(iBound,k),mBound) is mBound if face k belongs to the
boundary of the domain and zero for inner faces.

Edge : edges listed by node numbers; this program expects to find starting
and ending point of an edge as the first two entries; further entries
(e.g. a middle point) are ignored.
Integer Edge(mEdge,nEdge)

mEdge : leading dimension of the array Edge
nEdge : total number of edges
Node : coordinates of the nodes, Real Node(mNode,nNode)
mNode : leading dimension of the array Node
nNode : total number of nodes
H : scratch array
maxH : length of scratch array counted in integer words
IER : error indicator; a nonzero return value indicates an error

1 – no X server found to display
2 – not enough memory on scratch array H
3 – probably wrong parameter values

6 VolF and VolN may be different entries of a contiguous field Vol(mVol,nVol) where
mVol≥nFaceInVol+nNodeInVol.

3.2 Programmer’s Interface for 3D Visualization 21

3.2.3 Subroutine o3dgraph

call o3dgraph (nDoF, VolN, nNodeInVol, mVol, nVol,

Node, mNode, nNode, U, Mat, H, maxH, IER)

nDoF : number of components of the solution (degrees of freedom
per node)

VolN : volume elements listed by node numbers,
Integer VolN(mVol,nVol)

nNodeInVol : number of nodes per volume element(4, 10, 8, 20, or 27)
mVol : leading dimension of the arrays VolF, VolF

nVol : number of volume elements
Node : coordinates of the nodes, Real Node(mNode,nNode)

mNode : leading dimension of the array Node

nNode : total number of nodes
U : components of the solution (double precision real), stored as

an array of vectors, one vector of length nNode for each
component of the solution (degree of freedom of the problem
solved), i.e. in Fortran this field is U(nNode,nDoF), where
the number nDoF and the names of the various components
are obtained from a user-supplied subroutine (named
getdofs, see below);

Mat : field of material indicators (integer numbers) for each
volume elementk.

H : scratch array
maxH : length of scratch array counted in integer words
IER : error indicator; a nonzero return value indicates an error

1 – no X server found to display
2 – not enough memory on scratch array H

3 – probably wrong parameter values

22 3 VISUALIZATION OF 3D DOMAINS

3.2.4 Subroutine out3dexpl

call out3dexpl (nDoF, nVol, mVol, VolN, nNode, mNode,

Node, U, iUmode, Ket1, Ket2, H, maxH)

nDoF : number of components of the solution (degrees of freedom per
node)

nVol : number of volume elements
mVol : number of nodes per volume element(4, 10, 8, 20, or 27)
VolN : volume elements listed by node numbers,

Integer VolN(mVol,nVol)

nNode : total number of nodes
mNode : leading dimension of the array Node

Node : coordinates of the nodes, Real Node(mNode,nNode)

U : components of the solution (double precision real), stored as an
array of vectors, either
nDoF vectors of length nNode, one per component of the solution,
or
nNode vectors of length nDoF, one per node.

iUmode : indicates the storage scheme of the field of solutions
iord=1 means: U(nDoF,nNode) and
iord=nNode means: U(nNode,nDoF)

Ket1D : boundary edges
Ket2D : boundary faces (see notes on page 19)
H : scratch array
maxH : length of scratch array counted in integer words

The purpose of this program is to write one of three different data structures to a file or
send this data via TCP/IP socket to a remote program. The ASCII file format is very
simple. The details of the file structure is given in Section 3.3.3.

Note the special case:

This program written for the first kind of our data structures may handle the second
kind with the following modifications in the meaning of parameters:

mVol : is the leading dimension of the VolN field, different from the
special numbers mentioned above

iUmode : is the number of nodes per Volume
mNode : is larger than 3, since:
Node : contains x, y, z, u1, . . . , unDoF for each node
U,Ket1D,Ket2D : are dummy arguments

The initial indicator for the alternate data structure is the condition mNode > 3. In this
case, however, the surface mode described below is momentary not supported.

3.2 Programmer’s Interface for 3D Visualization 23

3.2.5 Subroutine getdofs for 3D problems

As in the case of the 2D program, we have a user defined subroutine getdofs which returns
the names for the different components of the solution. This subroutine has to satisfy all
the different interfaces and appears slightly more complicated. Consider an example of
this routine (in Table 3) which may be used as a default:

With this default routine and the calling sequence

user’s main program → 3D graphics → 2D graphics → getdofs

the DoFs-submenu may appear in one of the following forms

scalar solution vectorial solution
dU/dxE U u xE u x

dU/dyE dU/dx u yE u y

dU/dzE dU/dy u zE u z

U dU/dz |u| |u|

dU/dx |dU| u x sig 11

dU/dy **** u y sig 22

dU/dz ElSize u z sig 33

|dU| Procs. sig 11 sig 12

dU [E] Mater. sig 22 sig 23

ElSize sig 33 sig 13

Procs. sig 12 |sig|

Mater. sig 23 ****

sig 13 ElSize

|sig| Procs.

vector Mater.

ElSize

Procs.

Mater.

Here we assume that the user’s main program has computed the components

• scalar solution U , grad U = (dU/dx, dU/dy, dU/dz) and |grad U |
(i.e. nDoF=5 for subroutines x3dgraph, o3dgraph or out3dexpl), or

• vectorial solution u = (ux, uy, uz), stresses σ = (σ11, σ22, σ33, σ12, σ23, σ13), and

|σ| =
√∑

σ2
ij (i.e. nDoF=10 for those subroutines).

The other components are added by the 3D graphics subroutine automatically, de-
pending on the interface being used. The component names with a trailing letter ’E’
refer to transformed (rotated) vector coordinates with respect to the current view point,
e.g. (uxE

, uyE
) is the displacement in the screen plane or the projection of the 3D vector

24 3 VISUALIZATION OF 3D DOMAINS

Table 3: Subroutine getdofs (default example)

SUBROUTINE GETDOFS (nDoFs,DoFs)
integer nDoFs
character*6 DoFs(*)
include ’include/net3ddat.inc’
include ’include/Graf3D.inc’
nDoFs = NDF ! NDF is input from COMMON ’net3ddat.inc’
i0=0
if (NDF .EQ. 1) then ! scalar solution
if (act_3d2d) then ! act_3d2d and act_o3d are set in ’Graf3D.inc’
DoFs(1)="dU/dxE" ! vectors transformed to screen coordinates
DoFs(2)="dU/dyE"
DoFs(3)="dU/dzE"
i0=3

endif
DoFs(1+i0)=" U"
DoFs(2+i0)="dU/dx" ! gradient was computed additionally
DoFs(3+i0)="dU/dy"
DoFs(4+i0)="dU/dz"
DoFs(5+i0)=" |dU|"
if (act_3d2d) then
DoFs(6+i0)="dU [E]" ! projection of vectors to screen plane

else
DoFs(6+i0)=" **** " ! useless for 3D

endif
nDoFs=6+i0

else ! vectorial solution
DoFs(4)=" |u|"
if (act_3d2d) then
DoFs(1)=" u_xE" ! vectors transformed to screen coord.
DoFs(2)=" u_yE"
DoFs(3)=" u_zE"
i0=4
nDoFs=nDoFs+3

endif
DoFs(1+i0)=" u_x" ! vectors in original coordinates
DoFs(2+i0)=" u_y"
DoFs(3+i0)=" u_z"
if ((.not. act_3d2d) .or. act_o3d) i0=1
DoFs(4+i0)="sig_11" ! stress tensor values
DoFs(5+i0)="sig_22"
DoFs(6+i0)="sig_33"
DoFs(7+i0)="sig_12"
DoFs(8+i0)="sig_23"
DoFs(9+i0)="sig_13"
DoFs(10+i0)="|sig|"
nDoFs=10+i0

endif
if (NDF .GE. 3 .AND. (act_3d2d .OR. act_o3d)) then
nDoFs = nDoFs+1
if (act_o3d) then
DoFs(nDoFs) = " **** " ! useless for 3D

else
DoFs(nDoFs) = "vector" ! first 2 components as 2D vector

endif
endif
END

3.3 User’s Interface for 3D Visualization 25

(ux, uy, uz) to the screen (Figure 7). Thus, in the 3D case the 2D operation Net+U makes
sense only for such a vector mapping.

Finally, we have a short schematic view on the calling hierarchy of the programs:

3.3 User’s Interface for 3D Visualization

3.3.1 First User Interface for 3D: Surface or Intersection

This was our first implementation of a 3D visualization frame around the 2D visualization
program based on the classic FEM data structure (I) (page 17). If the programmer decided
to call the subroutine draw3d (3.2.1), the user will be prompted to select among some
options for mapping the 3D data to the 2D screen. Consider the following example (Table
4).

In line 1 we select ’s’ to get a surface plot. Next in line 11 we could select to invoke
one of the actions

x,y,z – change the specified component of the normal vector
X,Y,Z – rotate around the specified axis (angle is requested)

d – for d > 0 you will get a perspective projection
M – rotate the view coordinate system by mouse dragging
L – switch on/off some lighting effects for a more natural view
s – specify a scaling factor for adding computed elastic deformations
P – write a postscript file from the auxiliary window (coordinate system)

v,F – create a sequence of views (either rotating or scaling)
ENTER – finish input, call the 2D graphics program gebgraf

26 3 VISUALIZATION OF 3D DOMAINS

Table 4: Example 1 of a user’s dialog

1 surface / cutting plane / quit ([s]/p/q) s
2 Specify a normal vector from the plane towards the viewer,
3 and a positive distance for perspective view:
4
5 current view 3D bounding box
6 nx= 1.000 x: -40.00 .. 165.00
7 ny= -1.000 y: -29.97 .. 29.97
8 nz= 0.500 z: -50.00 .. 50.00
9 d= 0.000
10
11 Select component ! ({x,y,z,d,M,L}; {[P]S-3D-Box,mo[v]ie}; {ENTER})
12
13 distance from origin= 0. (=parallel projection)
14 normal vector screen -> eye:
15 0.666666687 -0.666666687 0.333333343
16 2d x-axis: 0.707106769 0.707106769 0.
17 2d y-axis: -0.235702261 0.235702261 0.942809045
18
19 grafische Darstellung ? - [j]/n :
20
21 Select new view point ? (ENTER/n) or cut (p)lane :p
22 Select component ! ({x,y,z,d}; {[P]S-3D-Box,mo[v]ie}; {ENTER})
23
24 distance from origin= 0.
25 normal vector screen -> eye:
26 0. 0. 1.
27 2d x-axis: 1. 0. 0.
28 2d y-axis: 0. 1. 0.
29
30 grafische Darstellung ? - [j]/n :

Any change of parameters is displayed in the auxiliary graphics window showing the
bounding box as a cuboid in the current view coordinate system.

In the example we did not change anything. Finally, pressing the RETURN key causes
the program to compute a 2D FEM data structure representing the projected 3D surface
and calls gebgraf.

In line 19 we have to confirm that the result may be displayed in the graphics window.
Now we have the same interaction as described for 2D problems in Section 2.2. Finishing
this 2D visualization (clicking on goon) returns to our simple 3D dialog having the alter-

natives shown in line 21. Typing ’p’ (for plane, or ’e’ for Ebene) switches to the cutting
plane mode. The auxiliary window shows the bounding box from a default view point and
the current position of the cutting plane (upper left picture in Figure 7). The next line
(22) is similar to line11 described above. Here we may specify the normal vector of the
cutting plane and its distance from the origin. Note that the normal vector is signed and
points to the viewer. In the auxiliary display the front side of the plane will appear red
and the back side is blue. So one may verify the local coordinates within the cutting plane.

3.3 User’s Interface for 3D Visualization 27

3.3.2 Second User Interface for 3D – Surface and Clipping Planes

This implementation is based on the extended finite element data structure (II) (page
18). It appears if the programmer decided to call either x3dgraph (3.2.2) or o3dgraph

(3.2.3). The prompting is similar to that previously described (but not exactly the same).
Therefore, consider one more example (Table 5).

First (at Line 10) we may select among several options to modify the 3D view.

x,y,z – change the specified component of the normal vector (view vector)
X,Y,Z – rotate around the specified axis (angle is requested)

d – for d > 0 you will get a perspective projection
M – rotate the view coordinate system by mouse dragging
L – switch on/off some lighting effects for a more natural view
C – define or modify clipping planes
R – reset to the default view
P – write a postscript file from the auxiliary window (coordinate system)
? – display a short help message

ENTER – finish input, call the 2D graphics program gebgraf

In the example we define two clipping planes (lines 16 and 24) and choose to cut off the
intersection of the two half spaces above those two planes (line 33, Figure 8). The input
of ’L’ (line 35) switches on the lighting effects of the program yielding a more realistic 3D
impression of the pictures written to postscript files (not on the screen display).

3.3.3 Third User Interface for 3D – File or Socket

Refering to an example7 demonstrating the visualization of FEM data by means of the IRIS
Explorer [17] on Silicon Graphics workstations, we implemented an appropriate simple
external file data structure as an interface to any external visualization program.

A header defines the type of data (“2”=faces, “3”=tetrahedra, “4”=hexahedra) and
the three counters: number of elements, number of nodes, number of data values per node.

The data structures are either

• volume structure: a list of elements (tetrahedra or hexahedra) by node numbers, or

• face structure: a list of all faces (triangles or quadrangles) as 3D polygons by node
numbers, or

• surface: a reduced list of faces (only the surface polygons of the 3D domain),

each followed by a list of nodes (k, xk, yk, zk) and a list of data values for each node
(k, f1k, . . . , fmk).

7by Loris Renggli, Swiss Federal Institute of Technology, Lausanne (Switzerland), 1993

28 3 VISUALIZATION OF 3D DOMAINS

Table 5: Example 2 of a user’s dialog

1 enter components of the view vector directed from screen plane to viewer,
2 specify a positive distance for a perspective view:
3
4 current state :
5 nx= 1.000 x: 0.00 .. 3.00
6 ny= -1.000 y: 0.00 .. 3.00
7 nz= 0.500 z: 0.00 .. 3.00
8 d= 0.000
9
10 Select: ({x,y,z,d,M,C,L,R}; {{P}S-3D-Box}; {{H}elp}; {{N}o/{Q}uit})c
11 **** Define clipping planes ****
12 planes so far: 0
13 "n" = new plane : n
14 normal vector <x,y,z>
15 (pointing into the half space to be cut off, <0,0,0> = remove this plane)
16 and distance from origin (x,y,z,d):1 0 0 1.5
17 **** Define clipping planes ****
18 planes so far: 1
19 No. normal vector distance
20 1 1.0000 0.0000 0.0000 1.500
21 "n" = new plane or index of plane to be modified : n
22 normal vector <x,y,z>
23 (pointing into the half space to be cut off, <0,0,0> = remove this plane)
24 and distance from origin (x,y,z,d):0 -1 0 -1.5
25 **** Define clipping planes ****
26 planes so far: 2
27 No. normal vector distance
28 1 1.0000 0.0000 0.0000 1.500
29 2 0.0000-1.0000 0.0000 -1.500
30 "n" = new plane or index of plane to be modified :
31 Each plane defines a half space.
32 You may choose to cut off the intersection or the union of those half spaces.
33 ([I]/U): i
34
35 Select: ({x,y,z,d,M,C,L,R}; {{P}S-3D-Box}; {{H}elp}; {{N}o/{Q}uit})L
36 lighting effects switched on.
37
38 enter components of the view vector directed from screen plane to viewer,
39 specify a positive distance for a perspective view:
40
41 current state :
42 nx= 1.000 x: 0.00 .. 3.00
43 ny= -1.000 y: 0.00 .. 3.00
44 nz= 0.500 z: 0.00 .. 3.00
45 d= 0.000
46
47 Select: ({x,y,z,d,M,C,L,R}; {{P}S-3D-Box}; {{H}elp}; {{N}o/{Q}uit})
48 1888 boundary faces visible.
49 grafische Darstellung ? - [j]/n :

3.3 User’s Interface for 3D Visualization 29

Table 6: Contents of a data file for external postprocessing
line(s) contents

1 identification string: PFEMread 1.0

2 type information (an integer value: 1, 2, 3, or 4), where
1 = 2D polygons
2 = 3D polygons (faces, surface plot)
3 = tetrahedra (4 vertices each)
4 = hexahedra (8 vertices each)

3 np, nv, nd (3 integers), where:
np = number of polygons or polyhedra
nv = number of vertices
nd = number of data values per vertex

4. . . np+3 first data block containing polygons or polyhedra, 1 per line:
polygons: i n v1 ...vn (n=3 or 4)
tetrahedra: i v1 ...v4

tetrahedra: i v1 ...v8

where i=index of polygon/polyhedron, vj=indices of vertices
np+4 . . . second data block containing vertices, 1 per line:
np+nv+3 i x y z (index and 3D-coordinates, for type 1 only i x y)

np+nv+4 . . . third data block containing data values related to vertices:
np+2·nv+3 i f1 ... fnd

The general format of the file is given in Table 6. As an example consider simply
a cube consisting of only one hexahedral element. The program out3dexpl will offer to
select which type of data file should be written: the complete hexahedra (tetrahedra) mesh,
otherwise all faces as 3D polygons, or only the polygons of the surface. So we may obtain
one of the following data files:

Type 4 (hexahedra)

FERead 1.0
4

1 8 5
1 1 2 3 4 5 6 7 8
1 0.000000E+00 0.000000E+00 0.000000E+00
2 0.100000E+02 0.000000E+00 0.000000E+00
3 0.100000E+02 0.100000E+02 0.000000E+00
4 0.000000E+00 0.100000E+02 0.000000E+00
5 0.000000E+00 0.000000E+00 0.100000E+02
6 0.100000E+02 0.000000E+00 0.100000E+02
7 0.100000E+02 0.100000E+02 0.100000E+02
8 0.000000E+00 0.100000E+02 0.100000E+02
1 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
2 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
3 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00

30 3 VISUALIZATION OF 3D DOMAINS

4 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
5 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
6 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
7 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
8 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00

The header is followed by a single line describing the (only) hexahedron by its node num-
bers, 8 lines with node coordinates and further 8 lines with data values for each node.

Type 2 (3D polygons)

FERead 1.0
2

6 8 5
1 4 1 2 3 4
2 4 5 6 7 8
3 4 1 2 6 5
4 4 2 3 7 6
5 4 3 4 8 7
6 4 4 1 5 8
1 0.000000E+00 0.000000E+00 0.000000E+00
2 0.100000E+02 0.000000E+00 0.000000E+00
3 0.100000E+02 0.100000E+02 0.000000E+00
4 0.000000E+00 0.100000E+02 0.000000E+00
5 0.000000E+00 0.000000E+00 0.100000E+02
6 0.100000E+02 0.000000E+00 0.100000E+02
7 0.100000E+02 0.100000E+02 0.100000E+02
8 0.000000E+00 0.100000E+02 0.100000E+02
1 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
2 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
3 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
4 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
5 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
6 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
7 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
8 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00

The data columns of the last section are the components of the computational solution,

here: u,
∂u

∂x
,
∂u

∂y
,
∂u

∂z
, |grad u|.

For a tetrahedral mesh of the same cube we obtain similar files which differ only in the
header and the first data section (since vertices are the same), e.g.

Type 3 (tetrahedra)

FERead 1.0
3

6 8 5

3.3 User’s Interface for 3D Visualization 31

1 1 2 3 4
2 2 1 5 4
3 1 6 5 4
4 7 1 3 4
5 7 1 6 4
6 8 6 7 4
1 0.100000E+02 0.000000E+00 0.000000E+00
2 0.100000E+02 0.100000E+02 0.000000E+00
3 0.000000E+00 0.100000E+02 0.000000E+00
4 0.000000E+00 0.100000E+02 0.100000E+02
5 0.100000E+02 0.100000E+02 0.100000E+02
6 0.100000E+02 0.000000E+00 0.100000E+02
7 0.000000E+00 0.000000E+00 0.000000E+00
8 0.000000E+00 0.000000E+00 0.100000E+02
1 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
2 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
3 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
4 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
5 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
6 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
7 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00
8 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+00 0.10000E+00

Such data files may be postprocessed by any separate tool, possibly after reformatting
the file structure or adapting an input module. As an example we used the IRIS Explorer
[17] which includes a lot of postprocessing modules to be placed, connected and controlled
on a graphical desktop. Figure 9 shows an example where the module placed in the upper
left corner of the map editor is used to read a data stream (similar to the contents of the
data file) directly from the FEM program via internet socket.

The subroutine out3dexpl will use the socket data stream if the user specifies the sin-
gle character "#" as filename for data output. In this case the program will function as
server, i.e. waiting for requests from any client to get data. The subroutine out3dexpl

returns to normal computation mode after the client’s “request” to continue. In the follow-
ing PFEM denotes the parallel FEM server functionality which is realized by the subroutine
out3dexpl as described in Section 3.2.4.

The user interface for the Explorer visualization is determined by various modules.
There are two separate modules written for the IRIS Explorer to work as client with the
PFEM server.

PFEMread: Establish a connection to PFEM (host address of the server is input for this
module). There are several buttons (Fig. 10) where the user may select one of three
modes to request the 3D FEM mesh (polygons of the surface only, polygons of all
faces, or volume data of tetrahedrons or hexahedrons) or “go on” to close the server
connection and finish the server mode of out3dexpl. The shrink and explode options
are related to the subdomains to visualize the domain decomposition on the parallel
computer. For shrinking of single elements there is a standard module available from
the Explorer module library.

32 3 VISUALIZATION OF 3D DOMAINS

Figure 9: The Map Editor of the IRIS Explorer

PFEMdata: This module presumes the module PFEMread to have already received the
mesh data as well as the number and names of the data components available on
PFEM. In the map editor the corresponding output and input links of PFEMread
and PFEMdata must be connected. The user may choose to receive one particular
component of the solution or all components at once.

Another module may be connected for data arising from elasticity problems:

PFEMelast: Suitable for a solution where the first three components are x-, y- and z-
components of a displacement to be added to the coordinates of the grid points. The
user may vary a scaling factor to visualize the displacement. This module does not
connect to PFEM.

The internal protocol for this client-server dialog is not necessary to be described here.
A short description is given as Appendix.

An unsolved problem is the handling of large FEM data structures. Explorer modules
run out of memory very soon. Thus, the performance of our machine (SGI O2) is sufficient
for 50,000 . . . 100,000 grid points only.

Another example for postprocessing from the file data is a small tool fem_ogl [11].
This program reads data of such a file and displays grid and solution in different ways
based on OpenGL (Figure 12). In [7, 10] we discussed another method for interactively
connecting a FEM program and an external visualization program based on the Graphical
Programming Environment GRAPE [12].

Summarizing, we have to state that up to now several external viewers are well suited
for a nearly perfect 3D rendering, but for small problem sizes only. Their difficulty is the
missing support of parallelism. Our hand-coded X11 based visualization interface is still

3.3 User’s Interface for 3D Visualization 33

Figure 10: Explorer module interfaces PFEMread, PFEMdata and PFEMelast

Figure 11: PFEM modules connected in the map editor of Explorer

Figure 12: A small tool for OpenGL based visualization

34 3 VISUALIZATION OF 3D DOMAINS

the only way to show results of a massively parallel computation within a reasonable time
(still large enough in relation to the computational time for the numerical solution), and
without saving masses of data before knowing the worthiness of saving them.

3.4 Additonal Tools: Java Applets

There are two Java applets available. They can be used to visualize the objects described
by the original 2D or 3D mesh files:

• http://www-usercgi.tu-chemnitz.de/~pester/meshes/shownets.cgi

for 2D mesh files (Fig. 13), shows nodes, edges, faces, and source text of data files.

Figure 13: Snapshot of the 2D mesh viewer Java applet

• http://www-usercgi.tu-chemnitz.de/~pester/meshes/showstd.cgi

for 3D mesh files (Fig. 14) with many features including cut planes to view inside.

Figure 14: Snapshot of the 3D mesh viewer Java applet

http://www-usercgi.tu-chemnitz.de/~pester/meshes/shownets.cgi
http://www-usercgi.tu-chemnitz.de/~pester/meshes/showstd.cgi

35

4 Special Features

4.1 Postscript Output

If you need a better quality than obtained by a screen snapshot you should produce a
postscript file. This is supported by the graphics program with the menu item PSopen

(2.2.1, p. 6). The procedure is very simple but may take a long time for a high level of
mesh refinement.

How to write a postscript file:

1. If necessary select optimization level 1 or 0 (the default is 2, cf OptFil, p. 12)

2. Select Draw→PSopen.

3. Enter a name for the output file (.ps is appended if not typed in). Be sure to have
write permission. The program will refuse to overwrite an existing file.

(You may press the Return-key without typing a name to return to the graphics
menu without opening a postscript file.)

4. Everything you draw to the screen from now on will also be written to the postscript
file, i.e. as vector graphic, and with a higher resolution for the coordinates (about
30000×30000 dots instead of a few hundred pixels on the screen). Writing to the file
takes a little bit more time than only drawing to the screen. Preparing the output,
however, may take much more time because of a slow optimization to reduce the size
of the output file and speed-up later loading times for the postscript file (cf notes on
OptFil, p. 12).

5. Select Draw→PSclos.
(This is implicitly done if you select [goon] from the top menu).

How to use the postscript file:

The postscript file is written in EPS format (Encapsulated Postscript). Thus, it is easy to
embed into LATEX, e.g.:

\usepackage{graphicx}

...

\begin{center}

\includegraphics[width=0.6\textwidth]{mysolution}

\end{center}

An important row within the postscript file is that defining the bounding box. It looks
somewhat like this:

36 4 SPECIAL FEATURES

%%BoundingBox: 30 150 500 660

The \includegraphics (or \epsfig) command may need this bounding box to check the
space to be reserved for the figure. All the other data of the postscript file is only needed
by dvips.

Thus, you can substantially improve the performance of the LATEX compile step, if the
bounding box definition is placed at the beginning of the file. However, the program may
calculate the bounding box only at the end of all output, so you will (if you want) have to
change the file manually8, i.e. replace the line

%%BoundingBox: (atend)

at the top of the file by the correct line from the bottom of the file.

Some remarks on PDF:

The \includegraphics command as specified above will search for mysolution.eps or
mysolution.ps if it is invoked by the command latex, it will search for mysolution.pdf
(or *.bmp, *.png, *.tif, *.jpg, *.mps) if you compile the LATEX file by pdflatex.

The postscript files written by our graphics program can be converted to PDF (Portable
Document Format) easily using the command

epstopdf mysolution.ps

Simple modifications in the postscript file:

It might happen that you want to make little changes in the postscript file such as
changing a comment, removing the frame border, changing line thickness or colors. There-
fore, let’s have a short excurse to the user interface within the postscript file:

At the top of the file you will find a section like this

%%

% Switch visibility of bounding box:

/Border { true } def

% Switch visibility of caption text:

/Capt { true } def

% Text and text height [pt] for caption:

/CaptText (qu16 - Level 3 - 4 proc.) def

/CaptSize 16 def

% Width for grid lines:

/wGrd { 0.1 SC div w } def

% Width and colors for boundary lines:

/wBnd { 0.5 SC div w } def

8I wrote a small shell script BBtop for this purpose.

4.1 Postscript Output 37

/cBnD { 0 1 0 sc } def % Dirichlet

/cBnN { 1 0 0 sc } def % Neumann

% Width for isolines:

/wIso { 1.2 SC div w } def

% patch background color:

/cpat { 0.96 sg } def

% enable clipping (for Net+U or Zoom):

/Clip { true } def

% lighting effects (shadows)

/Shfact { 1.0 } def % range 0.0 (bright) ... 1.0 (dark)

/Shsq { true } def % use a quadratic scale

%%%%%%%%%% END OF PARAMETER SECTION %%%%%%%%%%

This section is what you can modify without being an expert in postscript writing. The
numerical and Boolean values in braces may be changed, other text should stay unmodified.
In detail, this means in the following lines:

/Border : Change true to false, if you want no border line around the picture. The
border line has just the size of the bounding box.

/Capt : Change true to false if no text is to be displayed within the picture.

/CaptText : The caption text which is displayed at the bottom of the picture (only if
Capt=true). By default this is the name of the data file (the user’s coarse grid file),
the number of refinement steps (levels), and the number of processors that were used
for computation. You may change only the text inside the brackets (. . .).

/CaptSize : The text height which is specified in points (pt). Note, however, that this may
be a relative value if the figure is scaled by \includegraphics[width=...]{...} or
\includegraphics[height=...]{...}.

/wGrd, /wBnd, /wIso : Line width specified in points (pt) for the different kinds of lines
in a picture: grid lines, boundary lines, isolines. The line width is also scaled by
\includegraphics[...]{...}.

/cBnD, /cBnN, /cpat : Define some special colors for boundary lines with Dirichlet bound-
ary conditions (green by default), or with Neumann boundary conditions (red by
default), or the background color for the patch mode (p. 13).

The color definition is either in RGB mode (e.g. “0 1 0 sc” means green, and “0.54
0.27 0.08 sc” means saddle brown), or in gray scale, where 0 is black and 1 is white
(e.g. “0.96 sg” is a light gray as in Figure 5).

/Clip : false will disable clipping of Net+U display at domain bounds.

/Shfact, /Shsq : You may modify those numbers to find the best view of a 3D picture
with light and shadow.

38 4 SPECIAL FEATURES

4.2 Video Sequences

Although computer performance is growing to “ infinity”, fluid dynamics simulation cannot
be done in real-time. On current high-performance parallel computers a few seconds have
to be spent to calculate one time-step of 10−1 . . . 10−3 s. However, a single picture of any
solution at a certain time-step or a few such pictures at different time-steps on a sheet of
paper are worth nothing compared with an animated video sequence that shows the time-
dependent behavior of the simulated process. Thus, one should be able to save pictures of
the solution for all time-steps. Since this may be a few hundred or thousand single pictures,
it must be able to run automatically for a while (i.e. without manual interaction).

Our graphics tools are supporting this purpose with the help of a little external tool
xxgrab9. The general situation is that you may use three computers in the following way.
Of course, any two or all three may be physically the same machine, but you might find it
better to distribute the work to remote computers.

Computer A: This may be the front-end of a high performance parallel computer or the
interacting processor “0” of your parallel virtual machine or whatever you use for
computation.

Computer B: This may be any compute server where you can run the program xxgrab.
This program will (only in certain intervals) need a little bit of CPU time when it
grabs a new image from your screen to save it to disk. Grabbing takes less than one
second, but saving may take a few seconds more. But while saving an image the
grabbed window may be already used to display the next image. That’s why it can
be efficient to use different computers for displaying and saving the image.

Computer C: Your desktop computer running the X-server. Here you have telnet ses-
sions to any other computers, and you can view the graphical output of the parallel
program running on computer A.

Both A and B must have access to your X-server on host C (environment variable DISPLAY).

Any action of xxgrab is invoked by a signal from the program on the compute server
(A). Therefore, a small package of subroutines is available to be used in your (parallel)
program. If the program is running as a real parallel application, only one processor has
to call those subroutines:

call grabinit(iwin,ierr)

Open a socket connection from computer A to computer B where the program xxgrab

must already run at this time (xxgrab acts as server to which grabinit may connect).
The parameter iwin is the “handle” of the graphics window managed by your X-
server (see [5]). If B and C are different computers you will be prompted for the
hostname (or internet address) of computer B at this point.

9written by Michael Seibt

4.2 Video Sequences 39

Figure 15: Configuration scheme for saving image sequences

call grabname

This will ask the user to type in the base of a filename, and will send it to xxgrab.
The program xxgrab will extend this filename by a sequence number (4 digits) and
the file extension (.gif).

call grabimage

Tell xxgrab to grab the current contents of the window specified by GrabInit and
wait for a response by xxgrab that allows to use that window for output again. The
filename sequence number is increased by 1.
Known bugs:
Overlapping the graphics window by another window will result in bad contents of
the grabbed image. Although the program automatically raises the window to the
top just before grabbing, it could happen that you were faster with the mouse . . .
If the graphics window is not completely on your screen (i.e. partially outside the
screen borders or iconified) then xxgrab may crash without any possibility to restart
and reconnect to the same running program on computer A.

call grabimagenr (nr)

This is an alternate call similar to grabimage, but you can specify your own sequence
number nr as an integer value, e.g. the number of the time-step or any other indication
of the real simulation time.

call grabdone

Close the connection to xxgrab if no more grabimage is to be done. The program
xxgrab is terminated by this signal.

What do you have to do to generate a video sequence?

On compute server (A) you must run your program which contains something like this:

40 4 SPECIAL FEATURES

include ’include/Grafics.inc’

...

C initialize the graphics window (connect to your X-server)

call gxinit(0,IER)

if (IER .NE. 0) goto ... ! no X-server found ?

DO (< for all time steps >)

C ...

C ... ! compute your solution

C ...

call firegraf (...) ! and display it

if (< first loop >) then

call grabinit(han,IER) ! han is defined by gxinit

if (IER .NE. 0) call grabname ! in Grafics.inc

endif

if (IER .NE. 0) call grabimage

ENDDO

On computer (B) you should change to an empty directory where you want to place all
the grabbed images, and from here you start the program xxgrab.

On your desktop (C) you may control everything. After you have selected all parameters
in your graphics window that is displayed by the call of firegraf, you should select
Option→Quiet, and sit and enjoy what happens for the next hours or days.

When you have finished because you lost your patience or your compute server crashed
or you are pleased with the result (stop the quiet mode by pressing any key in the focused
graphics window), or at any time in between, you can use

xanim *.gif &

to view the animation of the stored sequence of images. You may also use animate from
the ImageMagick package ([16]).

Finally, you may learn how to use mpeg encode ([13]) or other tools to generate MPEG
or Quicktime movies. Suitable tools for producing animated GIF files are e.g. gifmerge

([15]), or gifsicle .

4.3 More Realistic 3D View

There are at least two effects to improve the ”‘reality”’ of a 3D plot by giving an impression
of space depth:

• foreshortening for a realistic perspective view,

• light and shadow to give more feeling for angles and directions in 3D.

Both of them are implemented in our graphics interface.

http://www.imagemagick.org
http://www-vis.lbl.gov/multimedia/mpeg/
http://www.the-labs.com/GIFMerge/
http://www.lcdf.org/~ediietwo/gifsicle/

4.3 More Realistic 3D View 41

crank - surface mesh

SFB 393 - TU Chemnitz

crank - light and shadow

SFB 393 - TU Chemnitz

Figure 16: Light and shadow using a grayscaled view

hollow cylinder - some hidden lines are visible

SFB 393 - TU Chemnitz

hollow cylinder - correct view

SFB 393 - TU Chemnitz

Figure 17: Patch mode for a non-convex solid

Hantel - Level 3 - face related light model

SFB 393 - TU Chemnitz

Hantel - Level 3 - node related light model

SFB 393 - TU Chemnitz

Figure 18: Face related light (left) or interpolation of node related light (right)

42 4 SPECIAL FEATURES

fichera corner - Level 3 (parallel projection)

SFB 393 - TU Chemnitz

fichera corner - Level 3 - perspective projection

SFB 393 - TU Chemnitz

Figure 19: Parallel and perspective projection of a 3D object

crank - pure colors for |u|

SFB 393 - TU Chemnitz

crank - shaded colors for |u|

SFB 393 - TU Chemnitz

Figure 20: Pure colors for a solution (left) and overlaying shadows (right)

4.3 More Realistic 3D View 43

Perspective View

The user interfaces described in Sections 3.3.1 and 3.3.2 have an option to select both
the direction (x, y, z)> and the distance d of the viewer’s position. The default distance
d = 0 is used for parallel projection of the 3D object to the screen plane. A positive
value of d indicates a perspective projection (in Figure 19 d = 8 for an object of size 1).
The distance should be selected large enough to place the viewer outside the object to be
viewed. The prompt for the selection of d includes a suggestion for a minimum value. A
very large value for d will approach the parallel projection again.

Light, Shadow and Visibility

In the Sections about the user’s interface for 3D we shortly mentioned the option ’L’

for lightening the object. This effect may be switched on and off by entering this option
successively. If switched on the behavior of this option is the following:

• For each 2D polygon (projected face of the 3D object) there is stored a “ma-
terial” value for brightness which can be displayed as described in Section 2.2.2
(DoF→Mater). The best impression will be obtained chosing Gray from the color
menu (2.2.3).

• The 2D elements are sorted by space depth. Hence, the option Patch (2.2.5) may
be selected to draw the elements in sequence (instead of ordering the polygons by
colors). This depth sort method should be used for non-convex solids to obtain a
better representation of hidden surfaces (Figures 17 and 16). For convex solids this
method is unnecessary.

However, for parallel computations there was not implemented any global comparison
between subdomains to decide which faces are visible. Each processor operates on
its local subdomain only. Thus, an absolutely correct handling of visibility may be
expected either for a convex solid or if the program runs on a single processor.

Smoothening of the Surface by Light Effects

The previously described method to show light effects is related to faces, i. e. each face
has a constant brightness. So one may identify each patch of a curved surface by its own
color (Figure 18). But the user may define a special “degree of freedom”. Then this value
is related to nodes and may be interpolated across the faces yielding a very smooth view
of the surface.

Shadows On a Colored Surface

As shown above, the “light effect” of our graphics programs give a nice view on the
screen for a grayscale. Moreover, those shadows may overlay the colors that represent any
numerical solution on the surface (Figure 20). But this is implemented only for postscript
output – the screen colors are always fixed and have no overlaying shadows.

44 REFERENCES

References

[1] T. Apel, G. Haase, A. Meyer, and M. Pester. Parallel solution of finite element
equation systems: efficient inter-processor communication. Preprint SPC 95 5, TU
Chemnitz-Zwickau, Februar 1995.
file://ftp.tu-chemnitz.de/pub/Local/mathematik/SPC/spc95_5.ps.Z 17, 19

[2] T. Apel and U. Reichel. SPC-PM Po 3D V 3.3, User’s Manual. Preprint SFB393/99-
06, TU Chemnitz, February 1999.
http://www.tu-chemnitz.de/sfb393/Files/PS/ssfb99-06.ps.gz

[3] Thomas Apel, Frank Milde, and Uwe Reichel. SPC-PM Po 3D v 4.0 - Programmers
manual II. Preprint SFB393/99-37, TU Chemnitz, December 1999.
http://www.tu-chemnitz.de/sfb393/Files/PS/ssfb99-37.ps.gz 17, 19

[4] U. Groh. Lokale Realisierung von Vektoroperationen auf Parallelrechnern. Preprint
SPC 94 2, TU Chemnitz-Zwickau, März 1994.
file://ftp.tu-chemnitz.de/pub/Local/mathematik/SPC/spc94_2.ps.gz 17

[5] M. Pester. Bibliotheken zur Entwicklung paralleler Algorithmen – Basisroutinen für
Kommunikation und Grafik. Preprint SFB 02-01, TU Chemnitz, Januar 2002. (updated
from SPC 95 20).
http://www.tu-chemnitz.de/sfb393/Files/PDF/sfb02-01.pdf 38

[6] M. Meisel and A. Meyer. Kommunikationstechnologien beim parallelen vorkondition-
ierten Schur-Komplement CG-Verfahren. Preprint SPC 95 19, TU Chemnitz-Zwickau,
Juni 1995.
file://ftp.tu-chemnitz.de/pub/Local/mathematik/SPC/spc95_19.ps.gz 17

[7] M. Meyer. Grafik-Ausgabe vom Parallelrechner für 3D-Gebiete. Preprint SPC 95 4,
TU Chemnitz-Zwickau, Januar 1995.
file://ftp.tu-chemnitz.de/pub/Local/mathematik/SPC/spc95_4.ps.gz 1, 32

[8] A. Nye. Xlib programming manual for version X11. Technical report, O’Reilly &
Associates, Inc., 1990. 2

[9] M. Pester. Grafik-Ausgabe vom Parallelrechner für 2D-Gebiete. Preprint SPC 94 24,
TU Chemnitz-Zwickau, November 1994.
file://ftp.tu-chemnitz.de/pub/Local/mathematik/SPC/spc94_24.ps.gz 1

[10] M. Pester. On-line visualization in parallel computations. In W. Borchers, G. Domick,
D. Kröner, R. Rautmann, and D. Saupe, editors, Visualization Methods in High Per-
formance Computing and Flow Simulation, Proceedings of the International Workshop
on Visualization, Paderborn, 18-21 January 1994, pages 91–98. VSP Utrecht and TEV
Vilnius, 1996. 1, 32

file://ftp.tu-chemnitz.de/pub/Local/mathematik/SPC/spc95_5.ps.Z
http://www.tu-chemnitz.de/sfb393/Files/PS/ssfb99-06.ps.gz
http://www.tu-chemnitz.de/sfb393/Files/PS/ssfb99-37.ps.gz
file://ftp.tu-chemnitz.de/pub/Local/mathematik/SPC/spc94_2.ps.gz
http://www.tu-chemnitz.de/sfb393/Files/PDF/sfb02-01.pdf
file://ftp.tu-chemnitz.de/pub/Local/mathematik/SPC/spc95_19.ps.gz
file://ftp.tu-chemnitz.de/pub/Local/mathematik/SPC/spc95_4.ps.gz
file://ftp.tu-chemnitz.de/pub/Local/mathematik/SPC/spc94_24.ps.gz

REFERENCES 45

[11] R. Ruhmer. 3D-Finite-Elemente-Rechnungen und ihre Visualisierung mit Hilfe von
OpenGL. Diplomarbeit, TU Chemnitz, 2000. 32

[12] Andreas Wierse and Martin Rumpf. GRAPE Eine objektorientierte Visualisierungs-
und Numerikplattform. Informatik Forsch. Entw., 7:145–151, 1992. 1, 32

[13] Berkeley Multimedia Research Center. MPEG Tools.
http://www-vis.lbl.gov/multimedia/mpeg/. 40

[14] E. Kohler. Gifsicle: Animated GIFs for UNIX.
http://www.lcdf.org/~ediietwo/gifsicle/

[15] The Labs: GIFMerge - Merge GIFs to a GIF animation.
http://www.the-labs.com/GIFMerge/ 40

[16] ImageMagick - Convert, Edit and Compose Images.
http://www.imagemagick.org. 40

[17] NAG. IRIS Explorer Documentation.
http://www.nag.co.uk/visual/IE/iecbb/DOC/Index.html. 1, 27, 31

http://www-vis.lbl.gov/multimedia/mpeg/
http://www.lcdf.org/~ediietwo/gifsicle/
http://www.the-labs.com/GIFMerge/
http://www.imagemagick.org
http://www.nag.co.uk/visual/IE/iecbb/DOC/Index.html

46 Appendix

Appendix: Socket Interface for IRIS Explorer

This is a short description of the internal protocol used for socket communication between
out3dexpl and the interface modules PFEMread and PFEMdata (Section 3.3.3). Messages
are sent as packages of varying size either as ASCII strings or in binary mode. One package
is organized in this way:

length : data

The data part may consist of multiple logical partitions separated by a delimiter. After
establishing the connection by a client the server accepts any request message. Requests
may have the following data format:

request
ID arguments description of the request
0[B] send surface polygons
1[B] send all face polygons
2[B] send volume elements
3 go on, finish server mode
4 s e set shrink and explode parameters (0 < s ≤ 1, 1 ≤ e < 2) for

subdomains
6 send names for each component of the solution (to be placed

in the pull down menu of the module PFEMdata)
9[B] n send data vector for the n-th component of the solution (where

n = 0 means: all components)

The optional extension ’B’ in the request code indicates to open an extra binary socket
for data response which is much faster than ASCII conversion and transfer.

The server responds to those requests sending the following data (the character ’#’ is
used for ASCII streams as a delimiter between certain blocks of information):

Req.ID response data description of response data
0, 1 PFEMread 1.2 filename levels # identification string and description

nproc # number of processors of the parallel
machine where PFEM runs

2 # type information (as in 3.3.3)
npol nnod ndof # number of polygons, nodes, and degrees

of freedom per node
i n k1 . . . kn # polygons defined by node numbers,
... for i = 1, . . . , npol; (restricted to n = 3

or n = 4)
j xj yj zj # coordinates of node j,
... for j = 1, . . . , nnod

Appendix 47

Req.ID response data description of response data
2 PFEMread 1.2 filename levels # identification string and description

nproc # number of processors of the parallel
machine where PFEM runs

type # type information (3 for tetrahedrons, 4
for hexahedrons)

nvol nnod ndof # number of volumes, nodes, and degrees
of freedom per node

i k1 . . . kn # volumes defined by node numbers,
... for i = 1, . . . , nvol, where type= 3 im-

plies n = 4 and type= 4 implies n = 8
j xj yj zj # coordinates of node j,
... for j = 1, . . . , nnod

3 %% EOF %% acknoledgement for closing connection
4 no response, modification will affect

next data transmission for request 0, 1
or 2

6 ndof # number of components per node in the
solution

string 1 # menu name for the first component
... (max. 6 characters each)
string ndof #

9 (for 1 ≤n≤ ndof) (n = argument of the request string)
PFEMread 1.3 # identification string (for PFEMdata)
k ukn # n-th component,
... for k = 1, . . . , nnod

9 (for n = 0)
PFEMread 1.3 # identification string (for PFEMdata)
k uk1 . . . ukndof

all components node by node
... for k = 1, . . . , nnod

9 (for n < 0 or n > ndof)

PFEMread 1.3 # only acknoledgement, no data

48 Index

Index

Numbers written in italic refer to the page where the corresponding entry is described;
numbers underlined refer to the definition; numbers in roman refer to the pages where the
entry is used.

A
animate 38, 40

B
Bound 5, 12

C
color bar 13
Color-menu 4, 8
colors 5, 9, 13

D
deformation 5
DoF-menu 4–6
Draw-menu 5, 12
draw3d 19, 25

E
Elast 11
element size 6
epstopdf 36

F
Filled 6, 12
firegraf 2, 13, 40

G
GCPowerPlus 2
gebgraf 2, 13
getdofs 2, 5, 6, 23, 24
gifmerge 40
gifsicle 40

I
Infos 11
interrupt 13
IRIS Explorer 27
Isol-F 6
Isolin 6, 12

isolines 6, 9

L
LATEX 36
lighting 9, 25, 27, 43
LinCol 9
LinInt 11
LinLvl 9

M
material 6

N
Net-2D 5, 9
Net-3D 5
Net+U 5

O
o3dgraph 21, 27
OpenGL 1
OptFil 12, 13, 35
Option-menu 4, 11
out3dexpl 22, 29

P
palette 6, 8, 9, 13
Param-menu 4, 9
Patch 13, 43
PDF 36
perspective 43
postscript . . . 4, 6, 8, 12, 35
processors 6
procs 11, 23
programmer’s interface 2, 18
pseudo-color 8
PSopen/PSclos . . . 6, 12, 35

Q
quiet mode 13, 40

R
Redraw 5
resize 9

S
Scale 11
shadow 43
shape 12
smooth surface 43
socket 31, 46

T
Tensor 5, 12
true-color 8

V
Vector 5, 12
video sequence 38, 39
viewpoint 6
virtual windows 9, 14
visibility 43

W
Window

resize 9
split 9, 14

WinSiz 9

X
X11 2
x3dgraph 20, 27
xanim 40
xxgrab 13, 38–40

Z
Zoom 11, 14

return to default 11

Other titles in the SFB393 series:

01-01 G. Kunert. Robust local problem error estimation for a singularly perturbed problem on anisotropic
finite element meshes. January 2001.

01-02 G. Kunert. A note on the energy norm for a singularly perturbed model problem. January 2001.

01-03 U.-J. Görke, A. Bucher, R. Kreißig. Ein Beitrag zur Materialparameteridentifikation bei finiten
elastisch-plastischen Verzerrungen durch Analyse inhomogener Verschiebungsfelder mit Hilfe der
FEM. Februar 2001.

01-04 R. A. Römer. Percolation, Renormalization and the Quantum-Hall Transition. February 2001.

01-05 A. Eilmes, R. A. Römer, C. Schuster, M. Schreiber. Two and more interacting particles at a
metal-insulator transition. February 2001.

01-06 D. Michael. Kontinuumstheoretische Grundlagen und algorithmische Behandlung von ausgewählten
Problemen der assoziierten Fließtheorie. März 2001.

01-07 S. Beuchler. A preconditioner for solving the inner problem of the p-version of the FEM, Part II -
algebraic multi-grid proof. March 2001.

01-08 S. Beuchler, A. Meyer. SPC-PM3AdH v 1.0 - Programmer’s Manual. March 2001.

01-09 D. Michael, M. Springmann. Zur numerischen Simulation des Versagens duktiler metallischer Werk-
stoffe (Algorithmische Behandlung und Vergleichsrechnungen). März 2001.

01-10 B. Heinrich, S. Nicaise. Nitsche mortar finite element method for transmission problems with
singularities. March 2001.

01-11 T. Apel, S. Grosman, P. K. Jimack, A. Meyer. A New Methodology for Anisotropic Mesh Refinement
Based Upon Error Gradients. March 2001.

01-12 F. Seifert, W. Rehm. (Eds.) Selected Aspects of Cluster Computing. March 2001.

01-13 A. Meyer, T. Steidten. Improvements and Experiments on the Bramble–Pasciak Type CG for mixed
Problems in Elasticity. April 2001.

01-14 K. Ragab, W. Rehm. CHEMPI: Efficient MPI for VIA/SCI. April 2001.

01-15 D. Balkanski, F. Seifert, W. Rehm. Proposing a System Software for an SCI-based VIA Hardware.
April 2001.

01-16 S. Beuchler. The MTS-BPX-preconditioner for the p-version of the FEM. May 2001.

01-17 S. Beuchler. Preconditioning for the p-version of the FEM by bilinear elements. May 2001.

01-18 A. Meyer. Programmer’s Manual for Adaptive Finite Element Code SPC-PM 2Ad. May 2001.

01-19 P. Cain, M.L. Ndawana, R.A. Römer, M. Schreiber. The critical exponent of the localization length
at the Anderson transition in 3D disordered systems is larger than 1. June 2001

01-20 G. Kunert, S. Nicaise. Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular
finite element meshes. July 2001.

01-21 G. Kunert. A posteriori H1 error estimation for a singularly perturbed reaction diffusion problem
on anisotropic meshes. August 2001.

01-22 A. Eilmes, Rudolf A. Römer, M. Schreiber. Localization properties of two interacting particles in a
quasi-periodic potential with a metal-insulator transition. September 2001.

01-23 M. Randrianarivony. Strengthened Cauchy inequality in anisotropic meshes and application to an
a-posteriori error estimator for the Stokes problem. September 2001.

01-24 Th. Apel, H. M. Randrianarivony. Stability of discretizations of the Stokes problem on anisotropic
meshes. September 2001.

01-25 Th. Apel, V. Mehrmann, D. Watkins. Structured eigenvalue methods for the computation of corner
singularities in 3D anisotropic elastic structures. October 2001.

01-26 P. Cain, F. Milde, R. A. Römer, M. Schreiber. Use of cluster computing for the Anderson model of
localization. October 2001. Conf. on Comp. Physics, Aachen (2001).

01-27 P. Cain, F. Milde, R. A. Römer, M. Schreiber. Applications of cluster computing for the Anderson
model of localization. October 2001. Transworld Research Network for a review compilation entitled
“Recent Research Developments in Physics”, (2001).

01-28 X. W. Guan, A. Foerster, U. Grimm, R. A. Römer, M. Schreiber. A supersymmetric Uq[(osp)(2—2)]-
extended Hubbard model with boundary fields. October 2001.

01-29 K. Eppler, H. Harbrecht. Numerical studies of shape optimization problems in elasticity using
wavelet-based BEM. November 2001.

01-30 A. Meyer. The adaptive finite element method - Can we solve arbitrarily accurate? November 2001.
01-31 H. Harbrecht, S. Pereverzev, R. Schneider. An adaptive regularization by projection for noisy

pseudodifferential equations of negative order. November 2001.
01-32 G. N. Gatica, H. Harbrecht, R. Schneider. Least squares methods for the coupling of FEM and

BEM. November 2001.
01-33 Th. Apel, A.-M. Sändig, S. I. Solov’ev. Computation of 3D vertex singularities for linear elasticity:

Error estimates for a finite element method on graded meshes. December 2001.
02-01 M. Pester. Bibliotheken zur Entwicklung paralleler Algorithmen - Basisroutinen für Kommunikation

und Grafik. Januar 2002.

The complete list of current and former preprints is available via
http://www.tu-chemnitz.de/sfb393/preprints.html.

http://www.tu-chemnitz.de/sfb393/preprints.html

	Introduction
	Visualization of 2D Domains
	Programmer's Interface for 2D Visualization
	User's Interface for 2D Visualization
	Submenu Draw
	Submenu DoF
	Submenu Color
	Submenu Param
	Submenu Option
	Special Effects

	Visualization of 3D Domains
	Notes on Finite Element Data Structures
	Assembled Matrices
	Element-by-Element Computation

	Programmer's Interface for 3D Visualization
	Subroutine draw3d
	Subroutine x3dgraph
	Subroutine o3dgraph
	Subroutine out3dexpl
	Subroutine getdofs for 3D problems

	User's Interface for 3D Visualization
	First User Interface for 3D: Surface or Intersection
	Second User Interface for 3D -- Surface and Clipping Planes
	Third User Interface for 3D -- File or Socket

	Additonal Tools: Java Applets

	Special Features
	Postscript Output
	Video Sequences
	More Realistic 3D View

	References
	Appendix

