
D Hinweise zur Durchführung einer Fehlerbetrachtung 
 

Die Durchführung einer normgerechten Fehlerbetrachtung wird durch umfangreiche 
DIN-Vorschriften festgelegt, deren vollständige Behandlung jeden Rahmen sprengen 
würde und ermüdend ist. 
Die folgenden Hinweise sollen Ihnen eine Einführung in diese Problematik vermitteln, 
wobei bewusst auf jegliche Art von Herleitungen verzichtet wurde.  
Ziel dieses Abschnittes ist es, Ihnen einen gewissen Algorithmus, der aber nicht als 
ein absolutes Dogma verstanden werden soll, bereitzustellen, mit dessen Hilfe Sie 
die erforderlichen Fehlerbetrachtungen im physikalischen Grundpraktikum 
durchführen können. Erst durch dessen ständige Anwendung auf konkrete 
Versuchsbedingungen werden Sie getroffene Festlegungen bzw. Definitionen 
verstehen und in der Lage sein, eine zu dem jeweiligen Versuch gehörende 
Fehlerbetrachtung durchzuführen. Aus diesem Grunde verlieren Sie bei Ihren ersten 
Praktikumsversuchen nicht gleich den Mut, wenn die Fehlerbetrachtung nicht auf 
Anhieb akzeptiert wird. Auch hier gilt: Übung macht den Meister. 
 

1. Fehlerquellen und Fehlerarten 
Trotz ständiger Weiterentwicklung der Zuverlässigkeit von Messgeräten treten bei 
der quantitativen Bestimmung einer physikalischen Größe unvermeidbare Fehler auf, 
jedes Messergebnis ist fehlerbehaftet.  
Ein Ergebnis einer Messung lässt sich daher erst dann richtig beurteilen, wenn zu 
einem Messwert bzw. zu einem aus mehreren Messwerten berechneten Wert der 
zugehörige Fehler bekannt ist. Um Messfehler zu erkennen und zu ermitteln bzw. 
durch geeignete Maßnahmen verringern zu können, müssen die Fehlerquellen 
bekannt sein. Nach den Ursachen der Fehler unterscheidet man zwischen groben, 
systematischen und zufälligen Fehlern. 
Grobe Fehler beruhen auf Irrtümern, falschen oder nachlässigen Ablesungen, auf 
einem ungeeigneten Mess- oder Auswerteverfahren oder auf starken äußeren 
Störeinflüssen. Gegen solche Fehler helfen nur äußerste Sorgfalt sowie 
Überprüfungen und Kontrollen bei der Messung. Grobe Fehler lassen sich daher 
vermeiden, die Messunsicherheit eines Ergebnisses sollte keine Anteile von groben 
Fehlern enthalten! In den folgenden Ausführungen werden daher grobe Fehler nicht 
weiter betrachtet. 
Systematische Fehler beeinflussen das Messergebnis bei Wiederholung der 
Messung unter gleichen Bedingungen stets in der gleichen Richtung und in gleicher 
Größe. Ihre Ursachen liegen in der Unvollkommenheit der 

- verwendeten Maße (z. B. Abweichungen von Eichnormalen) 
- eingesetzten Messgeräte (z. B. fehlerhafte Skaleneinteilung eines Lineals) 
- Messverfahren (z. B. gleichzeitiges Messen von Strom und Spannung) 
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- Messgegenstände (z. B. infolge der Verformbarkeit des Werkstoffes des   
Messobjektes) sowie 

- in Einflüssen der Umgebung, die messtechnisch oder rechnerisch erfasst  
werden können. 

Durch ein vertieftes theoretisches Verständnis des Messvorganges und durch 
gezielte experimentelle Maßnahmen können systematische Fehler prinzipiell 
entdeckt, vermieden oder wenigstens vermindert werden.  
Zufällige Fehler treten völlig regellos nach Betrag und Richtung auf. Ihre Ursachen 
liegen in messtechnisch nicht erfassbaren Änderungen der 

- Messobjekte, 
- Messgeräte, 
- Umwelteinflüsse sowie  
- des Beobachters. 

Zufällige Fehler sind prinzipiell unvermeidbar. Sie bewirken, dass die 
Einzelergebnisse einer Messreihe streuen und der wahre Wert der zu messenden 
Größe nicht beliebig genau angegeben werden kann. 
 

2. Ermittlung systematischer Fehler 
2.1 bei direkter Messung 
Falls systematische Fehler nicht auf messtechnischem oder rechnerischem Wege 
erfasst werden können, ist es üblich, eine obere Grenze für den systematischen 
Fehler abzuschätzen. Der Zahlenwert für diese obere Grenze ergibt sich unter 
Berücksichtigung der Versuchsbedingungen durch Addition der maximal möglichen 
Beiträge der einzelnen systematischen Fehler: 

- vorgegebene Fehler der Messgeräte und Maße (z. B. Güteklasse 
elektrischer Messgeräte),  

- abgeschätzte Fehlereinflüsse der verwendeten Messverfahren (z. B. 
Strahlungsverluste bei kalorischen Messungen), 

- Ungenauigkeit der zur Auswertung benutzten Formeln (z. B. 
Vernachlässigung des Auftriebes bei der Wägung). 

Die Fehler der Messgeräte und Maße sind durch Standards oder durch 
Garantiefehlergrenzen bzw. durch Eichfehlergrenzen festgelegt und durch Aushang 
im Praktikum dokumentiert. 
 

2.2 bei indirekter Messung 
In vielen Fällen ergibt sich die gesuchte Größe F als Funktion von n verschiedenen, 

direkt gemessenen physikalischen Größen ( )1....if i n= . Durch Einsetzen der mit 

systematischen Fehlern ifΔ  behafteten Messwerte if  in die Funktion ( )iF f  erhält 
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man ein fehlerbehaftetes Ergebnis F. Der zugehörige systematische Fehler wird mit 
Hilfe des Fehlerfortpflanzungsgesetzes für systematische Fehler 

    
1

n

i
i i

FF f
f=

⎛ ⎞∂
Δ = Δ⎜ ⎟∂⎝ ⎠

∑  

errechnet. Da für erkannte systematische Fehler Vorzeichen und Größe der ifΔ  

bekannt sind, erhält man einen nach Vorzeichen und Zahlenwert definierten 
Gesamtfehler  . FΔ
 

3. Ermittlung zufälliger Fehler 
3.1 bei direkter Messung 
3.1.1  für Einzelmessungen 
Bei einer Einzelmessung kann der zufällige Fehler nur abgeschätzt werden. Im 
einfachsten Fall ist er gleich der Ablesegenauigkeit der Skale (z. B. bei 
Vielfachmessern, Thermometer, Messschieber etc.). Dazu ist eventuell ein durch die 
Einstellgenauigkeit gegebener Einstellfehler zu addieren. 
3.1.2  für Messreihen (Fehlerrechnung) 
Liegen sehr viele Messungen (Messreihe) vor, so werden positive und negative 
Fehler, also positive und negative Abweichungen vom „wahren Wert“ vorkommen 
(Abb. 1). 

    
 
 Abb. 1: Darstellung der n Einzelmessungen 
 
An Stelle des nicht zu ermittelnden wahren Wertes x  einer Messgröße kann im 

einfachsten Fall der wahrscheinlichste Wert nx  (Mittelwert) aus den vorliegenden, 

gleich zuverlässigen n Messwerten 1 2,, .... nx x x  bestimmt werden 

     
1 .n ix x
n

= ∑  

Der wahrscheinlichste Wert einer Messgröße - auch Erwartungswert genannt - 
errechnet sich somit als arithmetisches Mittel einer Messreihe. Das bedeutet  
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aber auch, dass jede zusätzliche Einzelmessung diesen wahrscheinlichsten Wert 
verändert, wenn auch umso weniger, je mehr Einzelmessungen bereits vorliegen. Es 
bleibt also immer unsicher, wie viel der Mittelwert vom wahren Wert abweicht. Die 
Fehlerrechnung dient dazu, den Grad dieser Unsicherheit abzuschätzen. 
Um die Güte der benutzten Messverfahren beurteilen zu können, geht man von der 
Streuung der einzelnen Messwerte um den Mittelwert aus. Ein Maß für die Streuung 
der Einzelmessung an die Standardabweichung ns (auch als mittlerer quadratischer 

Fehler der Einzelmessung bezeichnet, 2
ns  ist die Varianz der Einzelmessung) 

     
2

mit .
1
i

nn i

v
is v x x

n
= ± = −

−
∑  

Die Abweichungen vom Mittelwert gehen also nicht mit gleichem Gewicht in die 
Formel zur Ermittlung der Standardabweichung ein. Große Abweichungen haben 
einen stärkeren Einfluss als kleinere. Dadurch wird eine Messreihe mit stark 
streuenden Messwerten deutlich als unzuverlässig gekennzeichnet, da die 
Standardabweichung sehr groß wird (Abb. 2). 
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 Abb. 2:   Streuung der Messwerte um den Mittelwert, 
      a)  Messung mit geringer Zuverlässigkeit, d.h. die Standardabweichung 
   wird groß sein 

    b)  Messung mit hoher Zuverlässigkeit, d.h. die Standardabweichung           
  wird klein sein 

 

Die Standardabweichung der Einzelmessung ist somit ein Maß dafür, wie weit im 
Mittel ein Messpunkt der Messreihe vom Mittelwert abweicht, sie stellt also den 
mittleren Fehler der Einzelmessung dar (Abb. 3). 
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 Abb.3: Darstellung der Standardabweichung der Einzelmessung als Fehlerbaken 
 
Von der bisher besprochenen Standardabweichung der Einzelmessung ist die 
Standardabweichung des Mittelwertes zu unterscheiden. Sie liefert eine Aussage 
über die Zuverlässigkeit des Mittelwertes und berechnet sich wie folgt: 
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∑
 

Der Bereich n x nx t s±  bzw. n
n

t sx
n
⋅

±  wird als Vertrauensbereich des Mittelwertes 

nx  und x x nt sσ =  als Vertrauensabweichung bezeichnet. Der Vertrauensbereich gibt 

den Bereich um den Mittelwert an, innerhalb dessen der wahre Wert mit einer 
bestimmten statistischen Sicherheit P zu erwarten ist. Der Zahlenwert t  hängt von 
der gewählten statistischen Sicherheit und der Zahl der Messungen  ab. Für oft 

verwendete statistische Sicherheiten P sind in Tabelle 1 die Zahlenwerte  in 
Abhängigkeit von der Anzahl der Messungen zusammengestellt. 

n
t

Die durch den Vertrauensbereich festgelegten Grenzen  

                          .n n
n n

s sx t bzw x t
n n

+ −  

nennt man obere bzw. untere Vertrauensgrenze des Mittelwertes. 
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Tabelle 1 
 

Anzahl der  
Einzelmessun-
gen 

Werte t und  
t
n

   für 

n P = 68,30% P = 95,00% P = 99,73% 
3 1,32 0,762 4,30 2,48 19,21 11,00 

4 1,20 0,600 3,18 1,59 9,22 4,61 

5 1,15 0,514 2,78 1,24 6,62 2,96 

10 1,06 0,334 2,26 0,72 4,09 1,29 

20 1,03 0,230 2,08 0,47 3,45 0,77 

30 1,02 0,186 2,05 0,37 3,28 0,60 

100 1,00 0,100 2,00 0,20 3,10 0,31 

 
Eine statistische Sicherheit von 95% bedeutet, dass bei einer Normalverteilung von 
z. B. 100 Einzelmesswerten 95 in dem Bereich 

  2 bzw. 2
n

n
n nx

sx s x
n

± ±   (n = 100, d. h. t = 2) liegen. 

Für diesen Fall ist die Vertrauensabweichung x 0,2 nsσ =   und wir benutzen diesen 

Wert zuf 0,2 nx sΔ =   auch als zufälligen Fehler des Mittelwertes. 
 

Hinweise:  
•  Taschenrechner berechnen meist ns  statt 

nxs , obwohl es anders auf den  

 Tasten steht! Zur Überprüfung sollten für eine (kurze) Messreihe diese 
 beiden Größen entsprechend der angegebenen Formeln berechnet und mit   

  den Werten des Taschenrechners verglichen werden. 
•  Statistische Fehlerbetrachtungen werden im physikalischen Praktikum 

 durchgeführt, wenn mindestens 10 Einzelmessungen vorliegen. 
•  Im Praktikum soll in der Regel mit einer statistischen Sicherheit  von 

 P=95% gerechnet werden. 
 

3.2 Bei indirekter Messung (quadratisches Fehlerfortpflanzungsgesetz)  
Bei indirekter Messung sind die Standardabweichungen 

nxs  , mys  … der Mittelwerte 

nx , my , ….der einzelnen Messgrößen x , ,.......bekannt, so kann man die 

Standardabweichung des Funktionswertes 

y

( ), ,....n mF x y  mit Hilfe des 

quadratischen Fehlerfortpflanzungsgesetzes 
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2 2

2 2 .....
n m

n m

F x y
x y

F Fs s s
x Y

∂ ∂⎛ ⎞ ⎛ ⎞= ± + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 

berechnen. 
Voraussetzungen dafür sind, dass bei den Messungen keine systematischen 
sondern nur zufällige Fehler auftreten (was im Praktikum im allgemeinen nicht 
erfüllbar ist), die Messgrößen unabhängig voneinander sind und die Werte für 

nxs  , 

mys ,……  klein gegen die Mittelwerte nx , my ,…… sind. 

Bei der Ableitung dieser Beziehung wurde berücksichtigt, dass infolge der 
Doppelvorzeichen der zufälligen Fehler eine gewisse Wahrscheinlichkeit für einen 
teilweisen gegenseitigen Ausgleich der Fehler der einzelnen Größen besteht. 
 

4.  Messunsicherheit 
Die Messunsicherheit u eines Messergebnisses umfasst die entsprechend Punkt 3 
berechneten zufälligen Fehler und die nicht erfassbaren, entsprechend Punkt 2 
abgeschätzten, systematischen Fehler. Nicht erfassbare systematische Fehler 
können z. B. dadurch entstehen, dass ein Messgerät einen unbekannten 
systematischen Fehler besitzt oder bei dem verwendeten Messverfahren 
unvermeidbare Störeinflüsse (z. B. bei kalorimetrischen Messungen 
Wärmeaustausch mit der Umgebung) existieren. 
Eine Aufklärung über nicht erfassbare systematische Fehler könnte u. a. die 
Anwendung andersartiger Messsysteme und Messverfahren bringen. Dieser Weg ist 
im physikalischen Grundpraktikum jedoch nicht gangbar, so dass nur eine 
Abschätzung des Einflusses dieser Fehlerquellen auf das Messergebnis bleibt. 
Mit Hilfe der Messunsicherheit u wird das Messergebnis in folgender Weise 

angegeben:    .x x u= ±          

Die Messunsicherheit wird meist additiv aus der Vertrauensabweichung 

/x nt s nσ =   des Mittelwertes und dem abgeschätzten Betrag des systematischen 

Fehlers sysxΔ  zusammengesetzt, 

   sys .nt su x
n

= + Δ  

Der durch den systematischen Fehler bedingte Anteil sysxΔ  wird anhand des 

verwendeten Messverfahren, der eigenen Sorgfalt beim Experimentieren und der 
Fehlergrenzen des eingesetzten Messgerätes abgeschätzt (Begründung für die 

abgeschätzten Werte angeben!). Ist der systematische Fehler sysxΔ  gegenüber den 

zufälligen Fehlern vernachlässigbar, dann ist die Messunsicherheit gleich der 
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Vertrauensabweichung des Mittelwertes. Gilt dagegen sysxΔ » xσ  kann auf die 

Berücksichtigung und damit auf die Auswertung der zufälligen Fehler verzichtet 
werden. Im Falle einer Größtfehlerberechnung ergibt sich die Messunsicherheit aus 
der Summe des systematischen Fehlers und des abgeschätzten zufälligen Fehlers 
(Ablesefehler). 
 

5. Größtfehlerberechnung 
In der experimentellen Praxis liegt häufig der Fall vor, dass zur Bestimmung einer 
physikalischen Größe  nur wenige Messungen (teilweise sogar nur 
Einzelmessungen) durchgeführt werden, die direkt oder indirekt zum Endergebnis 
führen. In diesen Fällen wird zur Ermittlung der Messunsicherheit eine Obergrenze 
für den Messfehler berechnet. Diese Obergrenze bezeichnen wir als Größtfehler, im 
ungünstigsten Fall kann er bei der durchgeführten Messung aufgetreten sein. Sie 
liefert einen nach oben abgeschätzten Größtfehler für die Messung. 

x

 

5.1 bei direkter Messung 
Die Messgenauigkeit xΔ wird auch hier durch die Summe der beiden Anteile 

      zufxΔ (zufälliger Messfehler) 
      sysxΔ (systematischer Messfehler) bestimmt. 
 
Der zufällige Fehler ist im einfachsten Falle die Ablesegenauigkeit einer Skale. Dies 
soll am Beispiel eines Quecksilberthermometers erläutert werden (Abb. 4). 

•  
•      ϑ  = (25,7 ± 0

20°C 25°C 30°C

,3) °C 
•  
•  • 

Abb. 4:  Quecksilberthermometer 

Die Temperatur wird am Ende des Quecksilberfadens abgelesen, z. B. befindet er 
sich hier zwischen den Skalenwerten 25 °C und 26 °C. Teilt man in Gedanken den 
Bereich zwischen den beiden Marken in zwei gleich große Teile ein, so kann man 
abschätzen, dass der Messwert zwischen 25,5 °C und 26,0 °C liegen muss. Man 
kann also in diesem Fall den Messwert mit einer Genauigkeit von etwa 

 angeben. Ohne Hilfsmittel (wie z. B. Nonius oder Ableselupe) 

lassen sich Ablesegenauigkeiten bis zu 20% eines Skalenwertes erreichen.  
zuf 0,3 KxΔ = ±

Eine weitere Möglichkeit zur Abschätzung des zufälligen Fehlers besteht in der 
Ermittlung des Kleinst- und Größtwertes. Dazu liest man, unabhängig voneinander, 
bis zu vier Werte ab und bildet die Differenz zwischen dem größten und dem 
kleinsten Wert. Diese Differenz kann dann als zweifacher Wert des zufälligen 
Messfehlers verwendet werden. 
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Der mögliche systematische Messfehler wird im Allgemeinen vom Hersteller als 
Garantiefehlergrenze angegeben. Auf speziellen Tafeln sind die Garantie-
fehlergrenzen für die im physikalischen Grundpraktikum eingesetzten Messmittel 
zusammengestellt und in den Praktikumsräumen ausgehängt. 
Im Falle des obigen Beispiels würde der systematische Fehler K 

betragen. Damit garantiert der Hersteller, dass die wahre Temperatur weniger als 
0,5 K von der angezeigten Temperatur abweicht. Der maximale Messfehler ergibt 

sich dann aus der Summe der Beträge beider Fehleranteile, zu 

sys 0,5xΔ = ±

zuf sysx x xΔ = Δ + Δ . 

Im angegebenen Beispiel wäre dann 0,8xΔ ± K. 

Neben dem Ablesefehler ist oft auch ein Einstellfehler (z. B. Brückenabgleich oder 
Scharfeinstellungen einer optischen Anordnung) als zufälliger Fehler zu addieren. 
 

5.2 bei indirekter Messung 
Im Fall der indirekten Messung setzt sich die zu bestimmende physikalische Größe 

( )1 2, ,...F F x x=  funktionell aus mehreren voneinander unabhängig gemessenen 

Größen 1 2, ,..x x  zusammen. Die zugehörigen maximalen Messfehler dieser gemes-

senen Größen  seien bekannt. Sie werden in der Regel analog 5.1 

ermittelt. 
1 2, , ...x xΔ Δ

Zur Berechnung des Größtfehlers FΔ der gesuchten Größe geht man von der 

Entwicklung der Funktion 

F

( )1 2, , ...F F x x=  in eine Taylor-Reihe aus, die man nach 

den linearen Gliedern abbricht. 

( ) ( )1 1 2 2 1 2 1 2
1 2

, ,... , ,.. .......F FF x x x x F x x x x
x x
∂ ∂

± Δ ± Δ = ± Δ ± Δ ±
∂ ∂

 

Mit ( )1 1 2 2 1 2( , , ...) , ,...F F x x x x F x xΔ = ± Δ ± Δ −  erhält man für den Größtfehler einer 

indirekt gemessenen physikalischen Größe: 

  1 2
1

...
2

F FF x x
x x
∂ ∂

Δ = Δ + Δ +
∂ ∂

 . 

Diese Näherung ist nur dann zulässig, wenn die Messfehler nicht zu groß sind oder 
wenn die Funktion linear ist. Da der Größtfehler berechnet werden soll, muss man 
alle Summanden betragsmäßig addieren. 

In der Praxis bildet man von der Funktion ( )1 2, , ...F F x x=  das totale Differential 

1 2
1 2

d d dF FF x x
x x
∂ ∂

= + +
∂ ∂

...,  ersetzt die Differentiale d ix  durch die Fehler ixΔ  und 

addiert die Beträge der Summanden. Eine einfache Rechenmöglichkeit ergibt sich, 
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wenn  eine Potenzfunktion z. B. der Veränderlichen F a bF B x y= , ,...x y  ist. Dann 

kann mit Hilfe der logarithmischen Differentiation der relative Größtfehler  in 
einfacher Weise berechnet werden. Man bildet dabei zunächst von den 
natürlichen Logarithmus ln , und berechnet dann das totale 

Differential 

/F FΔ
F

ln ln lnF B a x b= + + y

( )d ln F  dieses Ausdruckes: 

    
1 1 1d dF a x b y
F x y

= + d .  

Es erfolgt nun ebenfalls der Übergang von den Differentialen zu den entsprechenden 
Messfehlern, anschließend werden dann auch die Beträge der einzelnen Summan-
den addiert: 

    .F xa b
F x y
Δ Δ Δ

= +
y

 

Die Ermittlung des Größtfehlers soll an zwei Beispielen demonstriert werde: 
1. Beispiel: Bestimmung der Fallbeschleunigung mit dem Fadenpendel 

     2
24 .g

T
π=  

Die Messgrößen sind  und T, die zugehörigen Messunsicherheiten  und , 
wobei beide die Summe aus systematischem und zufälligem Fehler darstellen. 

Δ TΔ

a: totales Differential 

    d dg gg T
T

∂ ∂
= +
∂ ∂

d  

    2 2
2 3

1d 4 d 8 dg T
T T

π π= −  

    2 2
2 3

14 8g T
T T

π πΔ = Δ + Δ  

Die beiderseitige Division durch g ergibt den relativen Fehler 

             2g T
g T
Δ Δ Δ

= +  

 

b: logarithmische Differentiation 
      

    ln ln 4 2ln ln 2lng Tπ= + + −  

    
d d d2g T
g T
= −  
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    2g T
g T
Δ Δ Δ

= +  

 

2. Beispiel: Bestimmung der Brennweite einer dünnen Linse 

    
1 1 1 .

'f a a
= +  

 

Dieses Beispiel soll zeigen, dass die Fehlerberechnung auch davon abhängt, wie  
die durchzuführenden Messungen ausgeführt werden. 
Zunächst könnte man nacheinander  und a a′  unabhängig von einander mit 

Messfehlern   und  messen. Die Anwendung der obigen Formel führt dann 
auf  

aΔ a′Δ

   
( ) ( )

2 2

2 2
' ' .

' '
a af a a

a a a a
Δ = Δ +

+ +
Δ  

 

Die Division durch 
'
'

a af
a a

=
+

 liefert 
' ' .

' '
'

'
f a a a a
f a a a a a a
Δ Δ Δ

= +
+ +

 

 
Oft misst man statt dessen auf einer gemeinsamen Skala unabhängig von einander 
den Gegenstandsort , den Linsenort und den Bildort mit den jeweiligen 

Messfehlern  und . 
1 2 3

1,Δ Δ 2 3Δ

In diesem Falle gilt 
( ) ( )

( )
2 1 3 2

3 1

' .
'

a af
a a

− −
= =

+ −
 

 

a: Rechnung über Bildung des totalen Differentials 

 1 2
1 2 3

d d df f ff ∂ ∂ ∂
= + +
∂ ∂ ∂ 3d

 ( ) ( )
( )

( ) ( )( )
( )

( )
( )

2 2
3 2 2 13 2 3 2 2 1

1 22 2
3 13 1 3 1

d d df
− −− − − −

= + +
−− −

3d . 

     

Nach dem Ersetzen der Differentiale durch ihre Messfehler d i iΔ , Umformen der 

Summanden und Addition der Beträge erhält man: 

 
( ) ( )

2 2

1 22 2
' ' .

'' '
a a a af

a aa a a a
−

Δ = Δ + Δ + Δ
++ +

3   
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Die beidseitige Division durch 
'
'

a af
a a

=
+

 ergibt den relativen Fehler 

 1 22 2

' .
' '

f f a a f
f a a a a
Δ −

= Δ + Δ + Δ 3   

 
b: logarithmische Differentiation 
Unter Beachtung spezieller Rechenregeln kann dieses Verfahren auch hier 
angewandt werden. Man erhält zunächst:  
 

            
( ) ( ) ( )3 2 3 12 1

2 1 3 2 3 1

d ddd .f
f

− −−
= + −

− − −
 

 

An dieser Stelle dürfen noch keine Betragsstriche gesetzt werden. Es muss 
unbedingt zuvor nach den Differentialen der unmittelbar gemessenen Größen 

geordnet werden. Es ist dabei zu beachten, dass z. B. ( )2 1 2d d 1d− = −  gilt. 

( ) ( ) ( )1 2
2 1 3 1 2 1 3 2 3 2 3 1

d 1 1 1 1 1 1d df
f

⎛ ⎞ ⎛ ⎞ ⎛
= + + − + +⎜ ⎟ ⎜ ⎟ ⎜− − − − − −⎝ ⎠ ⎝ ⎠ ⎝

3d .
⎞
⎟
⎠

    

Ersetzt man nun in diesem Falle ebenfalls die Differentiale durch die Messfehler, 
führt wieder  und f ein und summiert die Beträge der Summanden, so erhält 
man folgendes Endresultat für den relativen Fehler: 

, 'a a

 

  1 22 2

' .
' '

f f a a f
f a a a a
Δ −

= Δ + Δ + Δ 3  

 

6. Fehlerkennzeichnung in grafischen Darstellungen 
Eine grafische Darstellung dient zur Veranschaulichung des funktionellen 
Zusammenhangs zweier Größen und zur quantitativen Auswertung einer Messreihe.  
Bei der Anfertigung einer grafischen Darstellung sind zunächst folgende Punkte zu 
beachten: 

• Wahl der Koordinatenmaßstäbe und -nullpunkte nach Möglichkeit so, dass der 
ganze auf dem Blatt zur Verfügung stehende Achsenbereich ausgenützt wird und 
ein bequemer Umrechnungsfaktor verwendet werden kann. 

•  Korrekte Beschriftung der Achsen (Abb. 5). 

•  Sorgfältiges Eintragen der Messpunkte (kleine Kreuze) und Zeichnen einer   
Kurve unter Berücksichtigung eventuell zu erwartender funktioneller 
Zusammenhänge (Gerade, Parabel, usw.). 

• Die Darstellung sollte mindestens das Format DIN A5 haben. 
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Abb. 5 :  Beschriftung der Achse (a)  Zeichnen der Geraden (b) 

 

Häufig besteht die Aufgabe, Messergebnisse in Kurvenform darzustellen, z. B. U-T-

Kennlinie eines Bauelementes. Man geht hier so vor, dass die Werte  in ein 

Diagramm grafisch dargestellt werden. Die zugehörigen Messunsicherheiten 

( K K,T U )

KTΔ  

und  sind entsprechend dem angegebenen Verfahren zu ermitteln und an den 

zugehörigen Messpunkten beidseitig abzutragen (Fehlerbalken). Die dadurch 

festgelegte Fläche bestimmt die Größe der Fehlerfläche eines einzelnen 

Messpunktes (Abb. 6).  

KUΔ

          
Abb.6:  Fehlerkennzeichnung in einer grafischen Darstellung 
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Aus den durch die Fehlerflächen begrenzenden einhüllenden Kurven beiderseits der 

Messkurve erhält man die Grenzen des Streubereiches für die Messkurve. Der so 

erhaltene Kurvenverlauf  kann auch eine Kalibrierungskurve eines Mess-

gerätes (z. B. Anzeige der Temperatur eines Thermoelementes) darstellen. Benutzt 

man dann ein so kalibriertes Messgerät, so erhält man aus dem abgelesenen Wert 

 den gesuchten, zugehörigen Wert . Der Größtfehler der Größe  ergibt 

sich, indem man die Messunsicherheit 

( )U U T=

mU mT mTΔ

mUΔ  an der Stelle  abträgt und die so 

gefundenen Werte  derart an den beiden Begrenzungskurven des 

Streubereiches spiegelt, dass sich ein maximaler Wert für 

mU

mU U± Δ m

mTΔ  ergibt. 

 

7. Geradenanpassung oder lineare Regression 
In der Regel sind n Paare von Messpunkten ( ) ( ) ( )1 1 2 2, , , ,... ,n nx y x y x y  gegeben, 

z. B. bei der Aufnahme der Temperaturabhängigkeit des elektrischen Widerstandes 
eines Metalls. Innerhalb eines weiten Temperaturbereiches besteht hier ein linearer 
Zusammenhang zwischen R und T. Stellt man die Messpunkte grafisch dar, dann 
zeigt sich eine mehr oder weniger große Streuung um eine optimale Gerade. Die 
Ermittlung der optimalen Geraden opt opty a x b= ⋅ +  kann grafisch oder rechnerisch 

erfolgen. 

            
 

Abb. 7 :  Grafische Anpassung einer Geraden 
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Man stellt die Messpunkte ( )P ,i i ix y  zunächst in einem geeigneten 

Koordinatensystem dar (Abb. 7), und zeichnet, z. B. mit Hilfe eines durchsichtigen 
Lineals, die Gerade ein, die die Messpunkte optimal wiedergibt. Den Maßstab der 
Ordinaten- und Abszissenachse wählt man nach Möglichkeit dabei so, dass die 
Gerade etwa unter einem Winkel von α = 45° bzw. 135° die Abszisse schneidet. Der 

Ordinatenwert  des Schnittpunktes der optimalen Geraden mit der Ordinatenachse 

ergeben . Der Anstieg der optimalen Geraden ergibt sich aus dem Anstiegs-

dreieck zweier geeigneter Punkte 

sy

optb

( )1P ,i ix y  und ( )2 2 2,P x y . Um eine hohe Genauig-

keit zu erreichen, sollten die Strecken 2y y1−  und 2 1x x−  möglichst groß gewählt 

werden. 
Aus der Theorie bekannte charakteristische Punkte, wie  
•    der „Mittelpunkt“ ( )P ,m x y  der Messpunkte liegt auf der optimalen Geraden, 

• der Durchgang durch den Koordinatensprung  
können zur Bestimmung der optimalen Geraden verwendet werden. 
 

                     

y

y

x x 
 

Abb. 8:   Fehlerermittlung bei der grafischen Anpassung einer Geraden 
 

Für eine Abschätzung der Fehler für den Anstieg und den Achsenabschnitt der 
optimalen Geraden zeichnet man zwei weitere Geraden in die Darstellung ein. Für 
die eine Gerade verbindet man den Punkt der Fehleruntergrenze (d. h. des Fehler-
balkens) des kleinsten Messwertes mit dem Punkt der Fehlerobergrenze des größten 
Messwertes, für die andere Gerade den Punkt der Fehlerobergrenze des kleinsten 
Messwertes mit dem Punkt der Fehleruntergrenze des größten Messwertes. Aus den 
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berechneten Werten  bzw.  und  bzw.  für diese beiden Geraden 

erhält man dann einen Anhaltspunkt über den Fehler der Koeffizienten  und . 
maxa mina maxb minb

opta optb

Das grafische Ausgleichsverfahren kann auch auf andere funktionelle 
Zusammenhänge zwischen y und x angewendet werden, wenn durch eine geeignete 

Transformation (z. B. Logarithmieren) ein linearer Zusammenhang zwischen y und x 
erzeugt werden kann. Es ist dabei zu beachten, dass damit auch eine Transformation 
der Koordinatenachsen verbunden ist. 
 

7.2 rechnerische Methode 
Die analytische Methode bestimmt die am besten angepasste Ausgleichsgerade, 
indem die quadratische Summe aller y-Abweichungen minimiert wird (Gauß‘che 
Methode der kleinsten Fehlerquadrate). Es wird dabei vorausgesetzt, dass die  

ix -Werte fehlerfrei sind. Man erhält folgende Bestimmungsgleichungen für  und 

:  

opta

optb
( )

opt
opt opt 22

i i i i i i

i i

Y a x n x y x y
b y ax a

n n x x

− −
= = − =

−
∑ ∑ ∑ ∑ ∑

∑ ∑
 

Auch hier gilt, dass die Ausgleichsgerade durch den „Mittelpunkt“ ( )P ,m x y  geht. Die 

zugehörigen Standardabweichungen können mit Hilfe folgender Gleichungen 
berechnet werden: 
 

( )
( ) ( )( )

( )
( ) ( )( )

2 22
opt opt opt2 2

b a2 22 21 1
i i i i i

i i i i

x y b a x y b x
s s

n n n x x n n x x

− − − − −
= =

− − − −

∑ ∑ ∑
∑ ∑ ∑ ∑
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