D Hinweise zur Durchfiihrung einer Fehlerbetrachtung

Die Durchfuhrung einer normgerechten Fehlerbetrachtung wird durch umfangreiche
DIN-Vorschriften festgelegt, deren vollstandige Behandlung jeden Rahmen sprengen
wirde und ermidend ist.

Die folgenden Hinweise sollen lhnen eine Einfuhrung in diese Problematik vermitteln,
wobei bewusst auf jegliche Art von Herleitungen verzichtet wurde.

Ziel dieses Abschnittes ist es, Ihnen einen gewissen Algorithmus, der aber nicht als
ein absolutes Dogma verstanden werden soll, bereitzustellen, mit dessen Hilfe Sie
die erforderlichen Fehlerbetrachtungen im physikalischen Grundpraktikum
durchfuhren koénnen. Erst durch dessen standige Anwendung auf konkrete
Versuchsbedingungen werden Sie getroffene Festlegungen bzw. Definitionen
verstehen und in der Lage sein, eine zu dem jeweiligen Versuch gehoérende
Fehlerbetrachtung durchzufiihren. Aus diesem Grunde verlieren Sie bei lhren ersten
Praktikumsversuchen nicht gleich den Mut, wenn die Fehlerbetrachtung nicht auf
Anhieb akzeptiert wird. Auch hier gilt: Ubung macht den Meister.

1. Fehlerquellen und Fehlerarten
Trotz standiger Weiterentwicklung der Zuverlassigkeit von Messgeréaten treten bei
der quantitativen Bestimmung einer physikalischen Gro3e unvermeidbare Fehler auf,
[edes Messergebnis ist fehlerbehaftet.
Ein Ergebnis einer Messung lasst sich daher erst dann richtig beurteilen, wenn zu
einem Messwert bzw. zu einem aus mehreren Messwerten berechneten Wert der
zugehdrige Fehler bekannt ist. Um Messfehler zu erkennen und zu ermitteln bzw.
durch geeignete Mallnahmen verringern zu kénnen, muissen die Fehlerquellen
bekannt sein. Nach den Ursachen der Fehler unterscheidet man zwischen groben,
systematischen und zufalligen Fehlern.
Grobe Fehler beruhen auf Irrtimern, falschen oder nachlassigen Ablesungen, auf
einem ungeeigneten Mess- oder Auswerteverfahren oder auf starken aufl3eren
Storeinflissen. Gegen solche Fehler helfen nur &ullerste Sorgfalt sowie
Uberpriifungen und Kontrollen bei der Messung. Grobe Fehler lassen sich daher
vermeiden, die Messunsicherheit eines Ergebnisses sollte keine Anteile von groben
Fehlern enthalten! In den folgenden Ausfihrungen werden daher grobe Fehler nicht
weiter betrachtet.
Systematische Fehler beeinflussen das Messergebnis bei Wiederholung der
Messung unter gleichen Bedingungen stets in der gleichen Richtung und in gleicher
Grole. lhre Ursachen liegen in der Unvollkommenheit der

- verwendeten Mal3e (z. B. Abweichungen von Eichnormalen)

- eingesetzten Messgerate (z. B. fehlerhafte Skaleneinteilung eines Lineals)

- Messverfahren (z. B. gleichzeitiges Messen von Strom und Spannung)




- Messgegenstande (z. B. infolge der Verformbarkeit des Werkstoffes des
Messobjektes) sowie
- in Einflissen der Umgebung, die messtechnisch oder rechnerisch erfasst
werden kdnnen.
Durch ein vertieftes theoretisches Verstandnis des Messvorganges und durch
gezielte experimentelle Maflinahmen konnen systematische Fehler prinzipiell
entdeckt, vermieden oder wenigstens vermindert werden.
Zufallige Fehler treten vollig regellos nach Betrag und Richtung auf. Ihre Ursachen
liegen in messtechnisch nicht erfassbaren Anderungen der
- Messobjekte,
- Messgeréte,
- Umwelteinflisse sowie

- des Beobachters.
Zufallige Fehler sind prinzipiell unvermeidbar. Sie bewirken, dass die
Einzelergebnisse einer Messreihe streuen und der wahre Wert der zu messenden
Grol3e nicht beliebig genau angegeben werden kann.

2. Ermittlung systematischer Fehler
2.1  Dbeidirekter Messung
Falls systematische Fehler nicht auf messtechnischem oder rechnerischem Wege
erfasst werden konnen, ist es ublich, eine obere Grenze fir den systematischen
Fehler abzuschatzen. Der Zahlenwert fur diese obere Grenze ergibt sich unter
Berucksichtigung der Versuchsbedingungen durch Addition der maximal méglichen
Beitrage der einzelnen systematischen Fehler:
- vorgegebene Fehler der Messgerate und Male (z.B. Giteklasse
elektrischer Messgerate),
- abgeschatzte Fehlereinflisse der verwendeten Messverfahren (z. B.
Strahlungsverluste bei kalorischen Messungen),
- Ungenauigkeit der zur Auswertung benutzten Formeln (z.B.
Vernachlassigung des Auftriebes bei der Wagung).
Die Fehler der Messgerate und MaRe sind durch Standards oder durch
Garantiefehlergrenzen bzw. durch Eichfehlergrenzen festgelegt und durch Aushang
im Praktikum dokumentiert.

2.2  Dbeiindirekter Messung
In vielen Fallen ergibt sich die gesuchte GréRe F als Funktion von n verschiedenen,

direkt gemessenen physikalischen GréBen f; (i=1....n). Durch Einsetzen der mit

systematischen Fehlern A f; behafteten Messwerte f; in die Funktion F( f;) erhalt



man ein fehlerbehaftetes Ergebnis F. Der zugehorige systematische Fehler wird mit
Hilfe des Eehlerfortpflanzungsgesetzes fur systematische Fehler

AF = i@f—FjA :

i=1 i
errechnet. Da fiir erkannte systematische Fehler Vorzeichen und GroRe der A f,

bekannt sind, erhdlt man einen nach Vorzeichen und Zahlenwert definierten
Gesamtfehler A F .

3. Ermittlung zufalliger Fehler

3.1  bei direkter Messung

3.1.1 fOr Einzelmessungen

Bei einer Einzelmessung kann der zufallige Fehler nur abgeschatzt werden. Im
einfachsten Fall ist er gleich der Ablesegenauigkeit der Skale (z.B. bei
Vielfachmessern, Thermometer, Messschieber etc.). Dazu ist eventuell ein durch die
Einstellgenauigkeit gegebener Einstellfehler zu addieren.

3.1.2 fur Messreihen (Fehlerrechnung)

Liegen sehr viele Messungen (Messreihe) vor, so werden positive und negative
Fehler, also positive und negative Abweichungen vom ,wahren Wert* vorkommen
(Abb. 1).
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Abb. 1: Darstellung der n Einzelmessungen

An Stelle des nicht zu ermittelnden wahren Wertes X einer Messgrof3e kann im

einfachsten Fall der wahrscheinlichste Wert X (Mittelwert) aus den vorliegenden,

gleich zuverlassigen n Messwerten X, X, ....X, bestimmt werden

- 1
Xn —Hin .

Der wahrscheinlichste Wert einer MessgréRe - auch Erwartungswert genannt -
errechnet sich somit als arithmetisches Mittel einer Messreihe. Das bedeutet



aber auch, dass jede zusatzliche Einzelmessung diesen wahrscheinlichsten Wert
verandert, wenn auch umso weniger, je mehr Einzelmessungen bereits vorliegen. Es
bleibt also immer unsicher, wie viel der Mittelwert vom wahren Wert abweicht. Die
Fehlerrechnung dient dazu, den Grad dieser Unsicherheit abzuschatzen.

Um die Glte der benutzten Messverfahren beurteilen zu kénnen, geht man von der
Streuung der einzelnen Messwerte um den Mittelwert aus. Ein Mal} flr die Streuung

der Einzelmessung an die Standardabweichung S, (auch als mittlerer quadratischer

Fehler der Einzelmessung bezeichnet, Srf ist die Varianz der Einzelmessung)

2

V: _

S, :i,/L mit v, =X — Xa
n-1

Die Abweichungen vom Mittelwert gehen also nicht mit gleichem Gewicht in die
Formel zur Ermittlung der Standardabweichung ein. Grol3e Abweichungen haben
einen starkeren Einfluss als kleinere. Dadurch wird eine Messreihe mit stark
streuenden Messwerten deutlich als unzuverlassig gekennzeichnet, da die
Standardabweichung sehr grol3 wird (Abb. 2).
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Abb. 2: Streuung der Messwerte um den Mittelwert,
a) Messung mit geringer Zuverlassigkeit, d.h. die Standardabweichung
wird grol3 sein
b) Messung mit hoher Zuverlassigkeit, d.h. die Standardabweichung
wird klein sein

Die Standardabweichung der Einzelmessung ist somit ein Maf3 dafir, wie weit im
Mittel ein Messpunkt der Messreihe vom Mittelwert abweicht, sie stellt also den
mittleren Fehler der Einzelmessung dar (Abb. 3).
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Abb.3: Darstellung der Standardabweichung der Einzelmessung als Fehlerbaken

Von der bisher besprochenen Standardabweichung der Einzelmessung ist die
Standardabweichung des Mittelwertes zu unterscheiden. Sie liefert eine Aussage
Uber die Zuverlassigkeit des Mittelwertes und berechnet sich wie folgt:

Zn:Viz
i=1

n(n-1)

L= - t-s . . )
Der Bereich Xn £t S, bzw. Xn = " wird als Vertrauensbereich des Mittelwertes

N

Xn und o, =1ls_  als Vertrauensabweichung bezeichnet. Der Vertrauensbereich gibt

den Bereich um den Mittelwert an, innerhalb dessen der wahre Wert mit einer
bestimmten statistischen Sicherheit P zu erwarten ist. Der Zahlenwert t hangt von
der gewahlten statistischen Sicherheit und der Zahl der Messungen N ab. Fir oft
verwendete statistische Sicherheiten P sind in Tabelle 1 die Zahlenwerte t in

Abhangigkeit von der Anzahl der Messungen zusammengestellt.
Die durch den Vertrauensbereich festgelegten Grenzen

Shbhaw, Xe—ton
Jn -

nennt man obere bzw. untere Vertrauensgrenze des Mittelwertes.

Xn +1



Tabelle 1

Anzahl der t )
Einzelmessun- Werte t und 7 far
gen i
n P =68,30% P =95,00% P =99,73%
3 1,32 0,762 4,30 2,48 19,21 11,00
4 1,20 0,600 3,18 1,59 9,22 4,61
5 1,15 0,514 2,78 1,24 6,62 2,96
10 1,06 0,334 2,26 0,72 4,09 1,29
20 1,03 0,230 2,08 0,47 3,45 0,77
30 1,02 0,186 2,05 0,37 3,28 0,60
100 1,00 0,100 2,00 0,20 3,10 0,31

Eine statistische Sicherheit von 95% bedeutet, dass bei einer Normalverteilung von
z. B. 100 Einzelmesswerten 95 in dem Bereich

Sn
Jn

Fir diesen Fall ist die Vertrauensabweichung o, =0,2s, und wir benutzen diesen

Xn+2S  bZW. X0 %2 (N =100, d. h. t = 2) liegen.

Wert AX,, =0,2s, auch als zufalligen Fehler des Mittelwertes.

Hinweise:
. Taschenrechner berechnen meist S, statt S, , obwohl es anders auf den
Tasten steht! Zur Uberprifung sollten fiir eine (kurze) Messreihe diese

beiden Grol3en entsprechend der angegebenen Formeln berechnet und mit
den Werten des Taschenrechners verglichen werden.

. Statistische Fehlerbetrachtungen werden im physikalischen Praktikum
durchgefthrt, wenn mindestens 10 Einzelmessungen vorliegen.
. Im Praktikum soll in der Regel mit einer statistischen Sicherheit von

P=95% gerechnet werden.

3.2  Beiindirekter Messung (quadratisches Fehlerfortpflanzungsgesetz)

Bei indirekter Messung sind die Standardabweichungen s, S ... der Mittelwerte

Xn, ym, ....der einzelnen MessgréRen X, V,....... bekannt, so kann man die

Standardabweichung des Funktionswertes F(Qn,ym,....) mit Hilfe des

guadratischen Fehlerfortpflanzungsgesetzes



berechnen.
Voraussetzungen dafur sind, dass bei den Messungen keine systematischen
sondern nur zufallige Fehler auftreten (was im Praktikum im allgemeinen nicht

erflllbar ist), die Messgro3en unabhangig voneinander sind und die Werte fir S

klein gegen die Mittelwerte ;n, ym, ...... sind.

Bei der Ableitung dieser Beziehung wurde berlcksichtigt, dass infolge der
Doppelvorzeichen der zufalligen Fehler eine gewisse Wahrscheinlichkeit flr einen
teilweisen gegenseitigen Ausgleich der Fehler der einzelnen GroRen besteht.

4. Messunsicherheit

Die Messunsicherheit U eines Messergebnisses umfasst die entsprechend Punkt 3
berechneten zufalligen Fehler und die nicht erfassbaren, entsprechend Punkt 2
abgeschatzten, systematischen Fehler. Nicht erfassbare systematische Fehler
konnen z.B. dadurch entstehen, dass ein Messgerat einen unbekannten
systematischen Fehler besitzt oder bei dem verwendeten Messverfahren
unvermeidbare Storeinflisse (z. B. bei kalorimetrischen Messungen
Warmeaustausch mit der Umgebung) existieren.

Eine Aufklarung dber nicht erfassbare systematische Fehler kénnte u.a. die
Anwendung andersartiger Messsysteme und Messverfahren bringen. Dieser Weg ist
im physikalischen Grundpraktikum jedoch nicht gangbar, so dass nur eine
Abschatzung des Einflusses dieser Fehlerquellen auf das Messergebnis bleibt.

Mit Hilfe der Messunsicherheit U wird das Messergebnis in folgender Weise
angegeben: X=X+U.
Die Messunsicherheit wird meist additiv aus der Vertrauensabweichung

o,=ts,/ \/ﬁ des Mittelwertes und dem abgeschétzten Betrag des systematischen

AX

Fehlers |AX,,

zusammengesetzt,

ts
u=

L +‘Ax

Jn

Der durch den systematischen Fehler bedingte Antell ‘AX

Sys

&s| Wird anhand des

verwendeten Messverfahren, der eigenen Sorgfalt beim Experimentieren und der
Fehlergrenzen des eingesetzten Messgerdtes abgeschéatzt (Begrindung fur die

gegenuber den

abgeschéatzten Werte angeben!). Ist der systematische Fehler ‘A Xsys
zufélligen Fehlern vernachlassigbar, dann ist die Messunsicherheit gleich der
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Vertrauensabweichung des Mittelwertes. Gilt dagegen ‘Axsys

»o, kann auf die
X

Bericksichtigung und damit auf die Auswertung der zufélligen Fehler verzichtet
werden. Im Falle einer Gro3tfehlerberechnung ergibt sich die Messunsicherheit aus
der Summe des systematischen Fehlers und des abgeschéatzten zufélligen Fehlers
(Ablesefehler).

5. Grotfehlerberechnung

In der experimentellen Praxis liegt haufig der Fall vor, dass zur Bestimmung einer
physikalischen GroBe X nur wenige Messungen (teilweise sogar nur
Einzelmessungen) durchgefihrt werden, die direkt oder indirekt zum Endergebnis
fuhren. In diesen Féllen wird zur Ermittlung der Messunsicherheit eine Obergrenze
fur den Messfehler berechnet. Diese Obergrenze bezeichnen wir als Grof3tfehler, im
ungunstigsten Fall kann er bei der durchgefiihrten Messung aufgetreten sein. Sie
liefert einen nach oben abgeschéatzten GroRtfehler fur die Messung.

5.1 bei direkter Messung
Die Messgenauigkeit AX wird auch hier durch die Summe der beiden Anteile

AX, ;s (zufélliger Messfehler)

AxsyS (systematischer Messfehler) bestimmt.

Der zufallige Fehler ist im einfachsten Falle die Ablesegenauigkeit einer Skale. Dies
soll am Beispiel eines Quecksilberthermometers erlautert werden (Abb. 4).
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Abb. 4: Quecksilberthermometer

Die Temperatur wird am Ende des Quecksilberfadens abgelesen, z. B. befindet er
sich hier zwischen den Skalenwerten 25 °C und 26 °C. Teilt man in Gedanken den
Bereich zwischen den beiden Marken in zwei gleich grof3e Teile ein, so kann man
abschatzen, dass der Messwert zwischen 25,5 °C und 26,0 °C liegen muss. Man
kann also in diesem Fall den Messwert mit einer Genauigkeit von etwa

AX,; =+ 0,3K angeben. Ohne Hilfsmittel (wie z.B. Nonius oder Ableselupe)

lassen sich Ablesegenauigkeiten bis zu 20% eines Skalenwertes erreichen.

Eine weitere Moglichkeit zur Abschatzung des zufélligen Fehlers besteht in der
Ermittlung des Kleinst- und GréR3twertes. Dazu liest man, unabhangig voneinander,
bis zu vier Werte ab und bildet die Differenz zwischen dem gréf3ten und dem
kleinsten Wert. Diese Differenz kann dann als zweifacher Wert des zufalligen
Messfehlers verwendet werden.



Der mogliche systematische Messfehler wird im Allgemeinen vom Hersteller als
Garantiefehlergrenze angegeben. Auf speziellen Tafeln sind die Garantie-
fehlergrenzen fur die im physikalischen Grundpraktikum eingesetzten Messmittel
zusammengestellt und in den Praktikumsraumen ausgehangt.

Im Falle des obigen Beispiels wirde der systematische Fehler AXSyS:iO,SK

betragen. Damit garantiert der Hersteller, dass die wahre Temperatur weniger als
0,5 K von der angezeigten Temperatur abweicht. Der maximale Messfehler ergibt

sich dann aus der Summe der Betréage beider Fehleranteile, zu ‘AX‘ = ‘szuf ‘ + ‘AxsyS

Im angegebenen Beispiel ware dann ‘AX‘ +0,8K.

Neben dem Ablesefehler ist oft auch ein Einstellfehler (z. B. Briickenabgleich oder
Scharfeinstellungen einer optischen Anordnung) als zufélliger Fehler zu addieren.

5.2  beiindirekter Messung
Im Fall der indirekten Messung setzt sich die zu bestimmende physikalische Grélie

F= F(Xi,xz,...) funktionell aus mehreren voneinander unabhangig gemessenen
GroBBen X, X,,.. zusammen. Die zugehdrigen maximalen Messfehler dieser gemes-

senen GrolRen AX;,AX,,... seien bekannt. Sie werden in der Regel analog 5.1

ermittelt.
Zur Berechnung des GroRtfehlers A F der gesuchten GréRBe F geht man von der

Entwicklung der Funktion F =F(X,,X,,...) in eine Taylor-Reihe aus, die man nach

den linearen Gliedern abbricht.

oF oF
F (X £AX, X, £ AX,,...) = F(xl,xz,..)ia—xle1 J_ra—szx2 Foe,

Mit AF = F (X, £ AX, X, £ AX,...) = F (X, X,,...) erhalt man firr den GroBtfehler einer

indirekt gemessenen physikalischen Groéle:

oF oF

AF = |—AX |+ |—AX, | +...
ox, X 2

OX2
Diese Néaherung ist nur dann zulassig, wenn die Messfehler nicht zu grof3 sind oder
wenn die Funktion linear ist. Da der Grof3tfehler berechnet werden soll, muss man
alle Summanden betragsmalfiig addieren.

In der Praxis bildet man von der Funktion F = F(Xl,xz, ) das totale Differential

oF oF
dF =—dx, + —dx, +..., ersetzt die Differentiale dx, durch die Fehler AX, und

0%, OX,
addiert die Betrdge der Summanden. Eine einfache Rechenmdglichkeit ergibt sich,



wenn F eine Potenzfunktion z. B. F = Bxaybder Veranderlichen X,Y,... ist. Dann

kann mit Hilfe der logarithmischen Differentiation der relative GroRtfehler AF/F in
einfacher Weise berechnet werden. Man bildet dabei zunachst von F den
natirlichen Logarithmus InF =InB+alnx+blIny, und berechnet dann das totale

Differential d(In F) dieses Ausdruckes:

Lar—atax+blay.
F X y

Es erfolgt nun ebenfalls der Ubergang von den Differentialen zu den entsprechenden
Messfehlern, anschlieRend werden dann auch die Betrage der einzelnen Summan-
den addiert:
AX|
a +
x|

‘AF | _ b AY|

F | y |

Die Ermittlung des Groltfehlers soll an zwei Beispielen demonstriert werde:
1. Beispiel: Bestimmung der Fallbeschleunigung mit dem Fadenpendel

12
g :472'2_]_—2.

Die MessgroRen sind ¢ und T, die zugehdrigen Messunsicherheiten A? und AT ,
wobei beide die Summe aus systematischem und zufalligem Fehler darstellen.
a: totales Differential

dg = a—gdﬁ +a—ng
or oT

14

dg :4n2Ti2de—8ﬂ2T—3dT

47r2TiA£ 87r2£AT ‘

+ T3

|Ag|=

2

Die beiderseitige Division durch g ergibt den relativen Fehler
Ag AT
g T

=‘A—£+2
1

b: logarithmische Differentiation

Ing=In4+2Inz+Inl-2InT
dg _d¢_,dT
g / T

10



2. Beispiel: Bestimmung der Brennweite einer diinnen Linse
1 1 1
+

f a a'

Dieses Beispiel soll zeigen, dass die Fehlerberechnung auch davon abhangt, wie
die durchzufuihrenden Messungen ausgefihrt werden.

Zunachst konnte man nacheinander a und a’ unabh&ngig von einander mit

Messfehlern Aa und Aa' messen. Die Anwendung der obigen Formel fiihrt dann

auf

a|2

Af=—5 —Aa+—"—Aa'.
(a+a') (a+a')
a' Af A " Aad'
Die Division durch f = liefert — = a a+ a a )
a+a' f a+a' a a+a' a'

Oft misst man statt dessen auf einer gemeinsamen Skala unabhangig von einander
den Gegenstandsort ¢,, den Linsenort /,und den Bildort /,mit den jeweiligen

Messfehlern Al,, Al, und AZ,.

In diesem Falle gilt f = aa = (62 _Kl)(gs _gz) .
a+a' (L,—10,)

a: Rechnung uber Bildung des totalen Differentials
df = o dl, + o d£2+ﬂd£3
ol, ol, ol,
(¢, - —0.) C,—0,)(0, ¢ —0. Y
o =~ (L EZ)(&Z t) d€1+(( ) 1))d£2+(€2 £1)2d£3.
(a=1,) (43-14,) (L,—1,)

Nach dem Ersetzen der Differentiale d/;durch ihre Messfehler A/,, Umformen der

Summanden und Addition der Betrage erhalt man:

1 2
a—a

——AY,
at+a

al2
mAfl +

a

Af| = + > AL,

(a+a')

11



Die beidseitige Division durch f =

ergibt den relativen Fehler

a+a
Af f a—a’ f
‘T = gAfl + TAEZ + ?Af:g .

b: logarithmische Differentiation
Unter Beachtung spezieller Rechenregeln kann dieses Verfahren auch hier
angewandt werden. Man erhalt zunachst:

df_d(t=0)  d(f=0) d(-t)

f o 0,— 0,—1, 0,— 1,

An dieser Stelle durfen noch keine Betragsstriche gesetzt werden. Es muss
unbedingt zuvor nach den Differentialen der unmittelbar gemessenen Grof3en

geordnet werden. Es ist dabei zu beachten, dass z. B. d(/, —¢,) =d/, —d/, gilt.

df 1 1 1 1 1 1
— = + de, + — de., + + ds, .
f [zz—zl (53—€1)J ! (zz—el (63—@)} 2 (@—52 (53—el)j 3

Ersetzt man nun in diesem Falle ebenfalls die Differentiale durch die Messfehler,
fuhrt wieder a,a' und f ein und summiert die Betrage der Summanden, so erhalt

man folgendes Endresultat fur den relativen Fehler:

Af f a—a' f
‘T = ¥A€1 + —a' A€2 +‘?A€3 .
6. Fehlerkennzeichnung in grafischen Darstellungen

Eine grafische Darstellung dient zur Veranschaulichung des funktionellen
Zusammenhangs zweier Grof3en und zur quantitativen Auswertung einer Messreihe.
Bei der Anfertigung einer grafischen Darstellung sind zunéchst folgende Punkte zu
beachten:

e Wahl der Koordinatenmal3stdbe und -nullpunkte nach Méglichkeit so, dass der
ganze auf dem Blatt zur Verflgung stehende Achsenbereich ausgenutzt wird und
ein bequemer Umrechnungsfaktor verwendet werden kann.

e Korrekte Beschriftung der Achsen (Abb. 5).

e Sorgféltiges Eintragen der Messpunkte (kleine Kreuze) und Zeichnen einer
Kurve unter Berlcksichtigung eventuell zu erwartender funktioneller
Zusammenhange (Gerade, Parabel, usw.).

e Die Darstellung sollte mindestens das Format DIN A5 haben.
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6 6 |- Darstellung der +
zeitlichen
vV U Spannung _ Physikal. V | Anderung der

t = Zeit }Gri)’Be Spannung
4 — 4
V = Volt - -
U 3Fs = Sekunden}Elnhelt Uus |
2 — 2 -
1 1
L L L L L L
50 100 S 150 50 100 S 150
Tt — Tt —
Abb. 5 : Beschriftung der Achse (a) Zeichnen der Geraden (b)

Haufig besteht die Aufgabe, Messergebnisse in Kurvenform darzustellen, z. B. U-T-

Kennlinie eines Bauelementes. Man geht hier so vor, dass die Werte (TK,UK) in ein
Diagramm grafisch dargestellt werden. Die zugehérigen Messunsicherheiten AT,

und AU, sind entsprechend dem angegebenen Verfahren zu ermitteln und an den

zugehdrigen Messpunkten beidseitig abzutragen (Fehlerbalken). Die dadurch
festgelegte Flache bestimmt die GroRe der Fehlerflache eines einzelnen
Messpunktes (Abb. 6).

Fehlerflache eines Messpunktes

optimale Kurve

Grenzen des Streubereiches

ATy

=T

Abb.6: Fehlerkennzeichnung in einer grafischen Darstellung
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Aus den durch die Fehlerflichen begrenzenden einhillenden Kurven beiderseits der

Messkurve erhélt man die Grenzen des Streubereiches fiur die Messkurve. Der so
erhaltene Kurvenverlauf U =U (T) kann auch eine Kalibrierungskurve eines Mess-
gerates (z. B. Anzeige der Temperatur eines Thermoelementes) darstellen. Benutzt
man dann ein so kalibriertes Messgerat, so erhéalt man aus dem abgelesenen Wert

U, den gesuchten, zugehérigen Wert T . Der Groftfehler der GroRRe AT, ergibt
sich, indem man die Messunsicherheit AU, an der Stelle U abtragt und die so
gefundenen Werte U +AU_ derart an den beiden Begrenzungskurven des

Streubereiches spiegelt, dass sich ein maximaler Wert fir AT_ ergibt.

7. Geradenanpassung oder lineare Regression

In der Regel sind n Paare von Messpunkten (X,,Y;),(X,,Y,),.(X,,Y,) gegeben,
z. B. bei der Aufnahme der Temperaturabhangigkeit des elektrischen Widerstandes
eines Metalls. Innerhalb eines weiten Temperaturbereiches besteht hier ein linearer
Zusammenhang zwischen R und T. Stellt man die Messpunkte grafisch dar, dann
zeigt sich eine mehr oder weniger grof3e Streuung um eine optimale Gerade. Die

Ermittlung der optimalen Geraden y=a,, - X+b,, kann grafisch oder rechnerisch
erfolgen.
A
y
_ Y-y _ Ay
aopt - -
12 X, — X Ax
A
10
8
b
opt 6
. X
4
2 Pi(xq,v7)
v | | | | | N |
0 50 100 150 200 250 300 350 400 «

Abb. 7 : Grafische Anpassung einer Geraden
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Man stellt die Messpunkte Pi(Xi,yi) zunachst in  einem geeigneten

Koordinatensystem dar (Abb. 7), und zeichnet, z. B. mit Hilfe eines durchsichtigen
Lineals, die Gerade ein, die die Messpunkte optimal wiedergibt. Den Mal3stab der
Ordinaten- und Abszissenachse wahlt man nach Mdglichkeit dabei so, dass die
Gerade etwa unter einem Winkel von a = 45° bzw. 135° die Abszisse schneidet. Der

Ordinatenwert Y, des Schnittpunktes der optimalen Geraden mit der Ordinatenachse
ergeben bopt. Der Anstieg der optimalen Geraden ergibt sich aus dem Anstiegs-
dreieck zweier geeigneter Punkte Pl(xi , Yi) und PZ(XZ, Yz)- Um eine hohe Genauig-

keit zu erreichen, sollten die Strecken ‘yz — yl‘ und ‘Xz — X1‘ mdglichst gro3 gewahit

werden.
Aus der Theorie bekannte charakteristische Punkte, wie

o der ,Mittelpunkt‘ P_ (i,y) der Messpunkte liegt auf der optimalen Geraden,

o der Durchgang durch den Koordinatensprung
kénnen zur Bestimmung der optimalen Geraden verwendet werden.

yA

Abb. 8: Fehlerermittlung bei der grafischen Anpassung einer Geraden

Fur eine Abschatzung der Fehler fur den Anstieg und den Achsenabschnitt der
optimalen Geraden zeichnet man zwei weitere Geraden in die Darstellung ein. Fur
die eine Gerade verbindet man den Punkt der Fehleruntergrenze (d. h. des Fehler-
balkens) des kleinsten Messwertes mit dem Punkt der Fehlerobergrenze des groé3ten
Messwertes, fur die andere Gerade den Punkt der Fehlerobergrenze des kleinsten
Messwertes mit dem Punkt der Fehleruntergrenze des grof3ten Messwertes. Aus den
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berechneten Werten &, bzw. a, und b . bzw. b, fur diese beiden Geraden

erhalt man dann einen Anhaltspunkt tiber den Fehler der Koeffizienten a,, und b, .

opt
Das grafische Ausgleichsverfahren kann auch auf andere funktionelle
Zusammenhéange zwischen Yy und X angewendet werden, wenn durch eine geeignete
Transformation (z. B. Logarithmieren) ein linearer Zusammenhang zwischen Yy und X

erzeugt werden kann. Es ist dabei zu beachten, dass damit auch eine Transformation
der Koordinatenachsen verbunden ist.

7.2  rechnerische Methode
Die analytische Methode bestimmt die am besten angepasste Ausgleichsgerade,

indem die quadratische Summe aller y-Abweichungen minimiert wird (Gauf3‘che
Methode der kleinsten Fehlerquadrate). Es wird dabei vorausgesetzt, dass die

X; -Werte fehlerfrei sind. Man erhalt folgende Bestimmungsgleichungen fir a_, und

DI X M N
opt — n =

opt

b

opt

y—aX aopt = 5 2
n2. X =(2x)
Auch hier gilt, dass die Ausgleichsgerade durch den ,Mittelpunkt* P_ (;,9) geht. Die

zugehorigen Standardabweichungen koénnen mit Hilfe folgender Gleichungen
berechnet werden:

Ss:ZXiZ_Z(yi_bom_a"ptxi)z % = Z(yi_bopt_xi)z
(- (nZx-(Xx)) (- (nEx (X))
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