

CHEMNITZ

Professorship of Applied Mechanics and Dynamics, TUC

Dynamic Large Strain Formulation for Nematic Liquid Crystal Elastomers

Francesca Concas and Michael Groß

Professorship of Applied Mechanics and Dynamics Department of Mechanical Engineering Technische Universität Chemnitz

ACEX2023 - Heraklion, Crete, Greece

3-7 July, 2023

DFG Deutsche Forschungsgemeinschaft

Acknowledgments: This research is provided by DFG grant GR 3297/7-1.

Introduction and goals

Introduction

motivated by [Warner and Terentjev (2007)]

- distinct rotation degrees of freedom for the nematic director (β) and the bulk elastomer (α), respectively
- distinct mappings for the deformation (φ) of the bulk material and the orientation (χ) of the nematic director
- approach of widening the linear continuum theory [Warner and Terentjev (2007)] to large deformation and dynamic regime by considering invariants [Zheng (1994)] depending on B, n_t, α and β
- principle of virtual power for space-time discretization

Goals

- modeling the (isothermal) semisoft behavior of liquid crystal elastomer (LCE) films under dynamic stretch
- preserving mechanical balance laws, i.e. momentum and moment of momentum balances

TMD · 30. Juni 2023 · Francesca Concas

Energy density formulation

cf. [De Gennes (1983), Anderson et al. (1999), Warner and Terentjev (2007)]

$$\psi = \underbrace{c_1 \left(\boldsymbol{I} : \boldsymbol{C} - 3 - 2\log\left(J\right) \right) + \frac{\lambda}{2} \left(\left[\log\left(J\right) \right]^2 + \left(J - 1\right)^2 \right) + c_3 \boldsymbol{n}_0 \cdot \boldsymbol{C} \boldsymbol{n}_0}_{\text{elastic energy density}} \\ + \underbrace{c_3 \left(\boldsymbol{I} : \left(\boldsymbol{n}_t \otimes \boldsymbol{n}_t \right) - 1 \right) + c_9 \left| \boldsymbol{F}^T \boldsymbol{n}_t \right|^2 + c_{10} \left(\boldsymbol{n}_0 \cdot \boldsymbol{F}^T \boldsymbol{n}_t \right)^2}_{\text{translational interactive energy density}} \\ + \underbrace{\frac{c_{11}}{2} \text{tr} \left[\boldsymbol{B} \boldsymbol{W}_{\alpha - \beta} \left(\boldsymbol{n}_t \otimes \boldsymbol{n}_t \right) \boldsymbol{W}_{\alpha - \beta} \right] + \frac{c_{12}}{2} \left[\left(\boldsymbol{\alpha} - \beta \right) \times \boldsymbol{n}_t \right]^2}_{\text{translational interactive energy density}}$$

$$\blacktriangleright \ \boldsymbol{W}_{\alpha-\beta}\boldsymbol{n}_t = \left[-\boldsymbol{\epsilon}\cdot(\boldsymbol{\alpha}-\boldsymbol{\beta})\right]\boldsymbol{n}_t = (\boldsymbol{\alpha}-\boldsymbol{\beta})\times\boldsymbol{n}_t$$

Material parameters

$$c_1 = \frac{\mu}{2}$$

$$c_3 = \frac{\mu (r-1)}{2}$$

$$c_9 = \frac{\mu}{2} \left(\frac{1}{r} - 1\right)$$

$$c_{10} = \frac{\mu}{2} \left(2 - \frac{1}{r} - r\right)$$

http://www.tu-chemnitz.de/mb/TMD

cf. [Anderson et al. (1999), de Luca et al. (2013)]

•
$$c_{11} = -0.05\mu$$

$$\sim c_{12} = 0.05 \mu$$

$$\lambda = \frac{2}{3}\mu \left(\frac{1+\nu}{1-2\nu} - 1\right)$$

$$r = \frac{\ell_{\parallel}}{\ell_{\perp}}$$

 $\psi|_{C-B-I} =$

Translational interactive and nematic elastic energy density in the reference configuration

$$= c_{3} \left[\boldsymbol{n}_{0} \cdot \boldsymbol{C} \boldsymbol{n}_{0} + \boldsymbol{I} : (\boldsymbol{n}_{t} \otimes \boldsymbol{n}_{t}) - 1 \right] + c_{9} \boldsymbol{B} : (\boldsymbol{n}_{t} \otimes \boldsymbol{n}_{t}) + c_{10} \left(\boldsymbol{n}_{0} \boldsymbol{F}^{T} \boldsymbol{n}_{t} \right)^{2} \Big|_{\substack{\boldsymbol{C} = \boldsymbol{B} = \boldsymbol{I} \\ \boldsymbol{n}_{t} = \boldsymbol{n}_{0}}}$$
$$= \frac{\mu}{2} \left(\boldsymbol{r} - 1 \right) \left[\boldsymbol{n}_{0} \cdot \boldsymbol{n}_{0} + \boldsymbol{n}_{0} \cdot \boldsymbol{n}_{0} - 1 \right] + \frac{\mu}{2} \left(\frac{1}{r} - 1 \right) \boldsymbol{n}_{0} \cdot \boldsymbol{n}_{0} + \frac{\mu}{2} \left(2 - \frac{1}{r} - r \right) (\boldsymbol{n}_{0} \cdot \boldsymbol{n}_{0})^{2} = 0$$

1st Piola-Kirchhoff stress tensor

$$\frac{\partial \psi}{\partial F}\Big|_{\substack{\boldsymbol{C}=\boldsymbol{B}=\boldsymbol{I}\\\boldsymbol{n}_{t}=\boldsymbol{n}_{0}}} = 2c_{3}\boldsymbol{F}\left(\boldsymbol{n}_{0}\otimes\boldsymbol{n}_{0}\right) + 2c_{9}\left(\boldsymbol{n}_{0}\otimes\boldsymbol{n}_{0}\right)\boldsymbol{F} + 2c_{10}\left(\boldsymbol{n}_{0}\boldsymbol{F}^{T}\boldsymbol{n}_{t}\right)\left(\boldsymbol{n}_{t}\otimes\boldsymbol{n}_{0}\right)\Big|_{\substack{\boldsymbol{C}=\boldsymbol{B}=\boldsymbol{I}\\\boldsymbol{n}_{t}=\boldsymbol{n}_{0}}}$$
$$= 2\frac{\mu}{2}\left(r-1\right)\left(\boldsymbol{n}_{0}\otimes\boldsymbol{n}_{0}\right) + 2\frac{\mu}{2}\left(\frac{1}{r}-1\right)\left(\boldsymbol{n}_{0}\otimes\boldsymbol{n}_{0}\right)$$
$$+ 2\frac{\mu}{2}\left(2-\frac{1}{r}-r\right)\boldsymbol{n}_{0}\cdot\boldsymbol{n}_{0}\left(\boldsymbol{n}_{0}\otimes\boldsymbol{n}_{0}\right) = \mathbf{0}$$

Translational interactive and nematic elastic energy density in the reference configuration

$$\begin{aligned} \psi |_{\substack{\boldsymbol{C}=\boldsymbol{B}=\boldsymbol{I}\\\boldsymbol{n}_{t}=\boldsymbol{n}_{0}}} &= \\ &= c_{3} \left[\boldsymbol{n}_{0} \cdot \boldsymbol{C} \boldsymbol{n}_{0} + \boldsymbol{I} : \left(\boldsymbol{n}_{t} \otimes \boldsymbol{n}_{t} \right) - 1 \right] + c_{9} \boldsymbol{B} : \left(\boldsymbol{n}_{t} \otimes \boldsymbol{n}_{t} \right) + c_{10} \left(\boldsymbol{n}_{0} \boldsymbol{F}^{T} \boldsymbol{n}_{t} \right)^{2} \Big|_{\substack{\boldsymbol{C}=\boldsymbol{B}=\boldsymbol{I}\\\boldsymbol{n}_{t}=\boldsymbol{n}_{0}}} \\ &= \frac{\mu}{2} \left(r-1 \right) \left[\boldsymbol{n}_{0} \cdot \boldsymbol{n}_{0} + \boldsymbol{n}_{0} \cdot \boldsymbol{n}_{0} - 1 \right] + \frac{\mu}{2} \left(\frac{1}{r} - 1 \right) \boldsymbol{n}_{0} \cdot \boldsymbol{n}_{0} + \frac{\mu}{2} \left(2 - \frac{1}{r} - r \right) \left(\boldsymbol{n}_{0} \cdot \boldsymbol{n}_{0} \right)^{2} = 0 \end{aligned}$$

Stress vector work conjugated to n_t

$$\frac{\partial \psi}{\partial n_t} \bigg|_{\substack{\boldsymbol{C} = \boldsymbol{B} = \boldsymbol{I} \\ \boldsymbol{n}_t = \boldsymbol{n}_0}} = \frac{2\boldsymbol{c}_3 \boldsymbol{n}_t + 2\boldsymbol{c}_9 \boldsymbol{B} \boldsymbol{n}_t + 2\boldsymbol{c}_{10} \left(\boldsymbol{n}_0 \boldsymbol{F}^T \boldsymbol{n}_t \right) (\boldsymbol{F} \boldsymbol{n}_0) \bigg|_{\substack{\boldsymbol{C} = \boldsymbol{B} = \boldsymbol{I} \\ \boldsymbol{n}_t = \boldsymbol{n}_0}} = 2\frac{\mu}{2} \left(r - 1 \right) \boldsymbol{n}_0 + 2\frac{\mu}{2} \left(\frac{1}{r} - 1 \right) \boldsymbol{n}_0 + 2\frac{\mu}{2} \left(2 - \frac{1}{r} - r \right) \left(\boldsymbol{n}_0 \cdot \boldsymbol{n}_0 \right) \boldsymbol{n}_0 = \boldsymbol{0}$$

Rotational interactive energy density in the reference configuration

$$\begin{split} \psi^{c_{11}} |_{\substack{\boldsymbol{B}=\boldsymbol{I}\\\boldsymbol{n}_{t}=\boldsymbol{n}_{0}}} &= \frac{c_{11}}{2} \operatorname{tr}[\boldsymbol{B}\boldsymbol{W}_{\alpha-\beta} \left(\boldsymbol{n}_{t}\otimes\boldsymbol{n}_{t}\right)\boldsymbol{W}_{\alpha-\beta}] \Big|_{\substack{\boldsymbol{B}=\boldsymbol{I}\\\boldsymbol{n}_{t}=\boldsymbol{n}_{0}}} = 0\\ \psi^{c_{12}} |_{\substack{\boldsymbol{n}_{t}=\boldsymbol{n}_{0}\\\boldsymbol{\alpha}=\boldsymbol{\beta}}} &= \frac{c_{12}}{2} \left[(\boldsymbol{\alpha}-\boldsymbol{\beta})\times\boldsymbol{n}_{t} \right]^{2} \Big|_{\substack{\boldsymbol{n}_{t}=\boldsymbol{n}_{0}\\\boldsymbol{\alpha}=\boldsymbol{\beta}}} = 0\\ \boldsymbol{W}_{\alpha-\beta} \Big|_{\boldsymbol{\alpha}=\boldsymbol{\beta}} = \left[-\boldsymbol{\epsilon} \cdot (\boldsymbol{\beta}-\boldsymbol{\beta}) \right] = \mathbf{0} \end{split}$$

Stress tensor and vectors work conjugated to ${m F}$, ${m n}_t$, ${m lpha}$ and ${m eta}$ for $\psi^{c_{11}}$

$$\frac{\partial \psi^{c_{11}}}{\partial F} \Big|_{\substack{B=I\\ n_t=n_0\\ \alpha=\beta}} = c_{11} W_{\alpha-\beta} (n_t \otimes n_t) W_{\alpha-\beta} F \Big|_{\substack{B=I\\ n_t=n_0\\ \alpha=\beta}} = 0$$

$$\frac{\partial \psi^{c_{11}}}{\partial n_t} \Big|_{\substack{B=I\\ n_t=n_0\\ \alpha=\beta}} = c_{11} W_{\alpha-\beta} B W_{\alpha-\beta} n_t \Big|_{\substack{B=I\\ n_t=n_0\\ \alpha=\beta}} = 0$$

$$\frac{\partial \psi^{c_{11}}}{\partial \alpha} \Big|_{\substack{B=I\\ n_t=n_0\\ \alpha=\beta}} = -\frac{\partial \psi^{c_{11}}}{\partial \beta} \Big|_{\substack{B=I\\ n_t=n_0\\ \alpha=\beta}} = c_{11} (\epsilon \cdot n_t) B \left[(\epsilon \cdot \beta) - (\epsilon \cdot \alpha) \right] n_t \Big|_{\substack{B=I\\ n_t=n_0\\ \alpha=\beta}} = 0$$

• as quadratic function of $(\alpha - \beta)$, the condition is also fulfilled for $\psi^{c_{12}}$

Dissipative process for β

Clausius-Planck inequality

$$\blacktriangleright \left(\boldsymbol{N} - \frac{\partial \psi}{\partial \boldsymbol{F}} \right) : \dot{\boldsymbol{F}} + \boldsymbol{\eta} \cdot \dot{\boldsymbol{\chi}} - \frac{\partial \psi}{\partial \boldsymbol{\chi}} \cdot \dot{\boldsymbol{\chi}} - \frac{\partial \psi}{\partial \boldsymbol{\alpha}} \cdot \dot{\boldsymbol{\alpha}} - \frac{\partial \psi}{\partial \boldsymbol{\beta}} \cdot \dot{\boldsymbol{\beta}} \ge 0$$

- Continuum rotation mapping of the bulk elastomer
 - $\blacktriangleright \dot{\alpha} = -\frac{1}{2} \boldsymbol{\epsilon} : \dot{\boldsymbol{F}} \boldsymbol{F}^{-1}$
- Coleman-Noll procedure

$$\mathbf{N} = \frac{\partial \psi}{\partial F} - \frac{1}{2} \frac{\partial \psi}{\partial \alpha} \cdot \boldsymbol{\epsilon} \cdot F^{-T}$$

$$\mathbf{\eta} = \frac{\partial \psi}{\partial \chi}$$

Dissipation inequality

$$\mathcal{D}^{\text{int}} = -\frac{\partial \psi}{\partial \beta} \cdot \dot{\beta} \ge 0$$
$$\mathcal{D}^{\text{int}} \stackrel{!}{=} \mathbf{\Sigma}_{\beta} \cdot \dot{\beta} \text{ with } \mathbf{\Sigma}_{\beta} = \mathbf{V}_{\beta} \dot{\beta}$$

Principle of virtual power

$$\delta_{*}\dot{\mathcal{T}}\left(\dot{\boldsymbol{\varphi}},\dot{\mathbf{v}},\dot{\mathbf{p}}\right) + \delta_{*}\dot{\mathcal{T}}_{n}\left(\dot{\boldsymbol{\chi}},\dot{\mathbf{v}}_{\chi},\dot{\mathbf{p}}_{\chi}\right) + \delta_{*}\dot{\Pi}^{\mathsf{ext}}\left(\dot{\boldsymbol{\varphi}},\boldsymbol{R}\right) + \delta_{*}\dot{\Pi}^{\mathsf{ext}}_{n}\left(\dot{\boldsymbol{\chi}}\right) + \delta_{*}\dot{\Pi}^{\mathsf{int}}\left(\dot{\boldsymbol{\varphi}},\dot{\boldsymbol{\chi}},\dot{\boldsymbol{\alpha}},\dot{\boldsymbol{\beta}},\boldsymbol{\tau}_{\chi},\boldsymbol{w}_{\tau}\right) := 0$$

External deformational and orientational power

cf. [Anderson et al. (1999)]

- Functional of the external deformational power $\dot{\Pi}^{\text{ext}} \left(\dot{\boldsymbol{\varphi}}, \boldsymbol{R} \right) \quad := -\int_{\mathscr{B}_0} \rho_0 \boldsymbol{B}_{\varphi} \cdot \dot{\boldsymbol{\varphi}} \, \mathrm{d}V - \int_{\partial_T \mathscr{B}_0} \boldsymbol{T} \cdot \dot{\boldsymbol{\varphi}} \, \mathrm{d}A - \int_{\partial_{\varphi} \mathscr{B}_0} \boldsymbol{R} \cdot \left(\dot{\boldsymbol{\varphi}} - \dot{\boldsymbol{\varphi}} \right) \, \mathrm{d}A$
- Virtual external deformational power

$$\begin{split} \delta_* \dot{\Pi}^{\mathsf{ext}} \left(\dot{\boldsymbol{\varphi}}, \boldsymbol{R} \right) & := -\int_{\mathscr{B}_0} \rho_0 \boldsymbol{B}_{\varphi} \cdot \delta_* \dot{\boldsymbol{\varphi}} \, \mathrm{d}V - \int_{\partial_T \mathscr{B}_0} \boldsymbol{T} \cdot \delta_* \dot{\boldsymbol{\varphi}} \, \mathrm{d}A - \int_{\partial_{\varphi} \mathscr{B}_0} \boldsymbol{R} \cdot \delta_* \dot{\boldsymbol{\varphi}} \, \mathrm{d}A \\ & - \int_{\partial_{\varphi} \mathscr{B}_0} \delta_* \boldsymbol{R} \cdot \left[\dot{\boldsymbol{\varphi}} - \dot{\boldsymbol{\varphi}} \right] \, \mathrm{d}A \end{split}$$

- Functional of the external orientational power $\dot{\Pi}_{n}^{\mathsf{ext}}\left(\dot{\boldsymbol{\chi}},\dot{\boldsymbol{\beta}}\right) \quad := -\int_{\mathscr{B}_{0}} \rho_{0}\boldsymbol{B}_{\boldsymbol{\chi}}\cdot\dot{\boldsymbol{\chi}}\,\mathrm{d}V - \int_{\partial_{W}\mathscr{B}_{0}} \boldsymbol{W}\cdot\dot{\boldsymbol{\chi}}\,\mathrm{d}A + \int_{\mathscr{B}_{0}} \boldsymbol{\Sigma}_{\boldsymbol{\beta}}\cdot\dot{\boldsymbol{\beta}}\,\mathrm{d}V$
- ► Virtual external orientational power $\delta_* \dot{\Pi}_n^{\text{ext}} \left(\dot{\boldsymbol{\chi}}, \dot{\boldsymbol{\beta}} \right) \quad := -\int_{\mathscr{B}_0} \rho_0 \boldsymbol{B}_{\chi} \cdot \delta_* \dot{\boldsymbol{\chi}} \, \mathrm{d}V - \int_{\partial_W \mathscr{B}_0} \boldsymbol{W} \cdot \delta_* \dot{\boldsymbol{\chi}} \, \mathrm{d}A + \int_{\mathscr{B}_0} \boldsymbol{\Sigma}_{\boldsymbol{\beta}} \cdot \delta_* \dot{\boldsymbol{\beta}} \, \mathrm{d}V$

Principle of virtual power

$$\delta_{*}\dot{\mathcal{T}}\left(\dot{\boldsymbol{\varphi}},\dot{\mathbf{v}},\dot{\mathbf{p}}\right) + \delta_{*}\dot{\mathcal{T}}_{n}\left(\dot{\boldsymbol{\chi}},\dot{\mathbf{v}}_{\chi},\dot{\mathbf{p}}_{\chi}\right) + \delta_{*}\dot{\boldsymbol{\Pi}}^{\mathsf{ext}}\left(\dot{\boldsymbol{\varphi}},\boldsymbol{R}\right) + \delta_{*}\dot{\boldsymbol{\Pi}}_{n}^{\mathsf{ext}}\left(\dot{\boldsymbol{\chi}}\right) + \delta_{*}\dot{\boldsymbol{\Pi}}^{\mathsf{int}}\left(\dot{\boldsymbol{\varphi}},\dot{\boldsymbol{\chi}},\dot{\boldsymbol{\alpha}},\dot{\boldsymbol{\beta}},\boldsymbol{\tau}_{\chi},\boldsymbol{w}_{\tau}\right) := 0$$

Internal power

 $\blacktriangleright \ \, {\sf Functional of the internal power} \qquad \dot{\Pi}^{\sf int}\left(\dot{\boldsymbol{\varphi}},\dot{\boldsymbol{\chi}},\dot{\boldsymbol{\alpha}},\dot{\boldsymbol{\beta}},\boldsymbol{\tau}_{\chi},\boldsymbol{w}_{\tau}\right):=\mathcal{P}^{\sf int}$

$$\mathcal{P}^{\mathsf{int}} := \int_{\mathscr{B}_0} \left[\frac{\partial \psi}{\partial F} : \dot{F} + \frac{\partial \psi}{\partial \chi} \cdot \dot{\chi} + \frac{\partial \psi}{\partial \alpha} \cdot \dot{\alpha} + \frac{\partial \psi}{\partial \beta} \cdot \dot{\beta} \right] \mathrm{d}V \\ + \int_{\mathscr{B}_0} \boldsymbol{\tau}_{\chi} \cdot \left[\dot{\chi} - (\dot{\alpha} \times \boldsymbol{\chi}) + \left(\dot{\boldsymbol{\beta}} \times \boldsymbol{\chi} \right) \right] \mathrm{d}V + \int_{\mathscr{B}_0} \boldsymbol{w}_{\tau} \cdot \left[\frac{1}{2} \boldsymbol{\epsilon} : \dot{F} F^{-1} + \dot{\alpha} \right] \mathrm{d}V$$

Virtual internal power

$$\begin{split} \delta_* \mathcal{P}^{\mathsf{int}} &:= \int_{\mathscr{B}_0} \frac{\partial \psi}{\partial F} : \frac{\partial F}{\partial \varphi} \cdot \delta_* \dot{\varphi} \, \mathrm{d}V + \int_{\mathscr{B}_0} \frac{1}{2} \boldsymbol{w}_\tau \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{F}^{-t} : \frac{\partial F}{\partial \varphi} \cdot \delta_* \dot{\varphi} \, \mathrm{d}V + \int_{\mathscr{B}_0} \frac{\partial \psi}{\partial \chi} \cdot \delta_* \dot{\chi} \, \mathrm{d}V \\ &+ \int_{\mathscr{B}_0} \boldsymbol{\tau}_{\chi} \cdot \delta_* \dot{\chi} \, \mathrm{d}V - \int_{\mathscr{B}_0} \delta_* \dot{\boldsymbol{\alpha}} \cdot (\boldsymbol{\chi} \times \boldsymbol{\tau}_{\chi}) \, \mathrm{d}V + \int_{\mathscr{B}_0} \boldsymbol{w}_\tau \cdot \delta_* \dot{\boldsymbol{\alpha}} \, \mathrm{d}V \\ &+ \int_{\mathscr{B}_0} \frac{\partial \psi}{\partial \boldsymbol{\alpha}} \cdot \delta_* \dot{\boldsymbol{\alpha}} \, \mathrm{d}V + \int_{\mathscr{B}_0} \delta_* \dot{\boldsymbol{\beta}} \cdot (\boldsymbol{\chi} \times \boldsymbol{\tau}_{\chi}) \, \mathrm{d}V + \int_{\mathscr{B}_0} \frac{\partial \psi}{\partial \boldsymbol{\beta}} \cdot \delta_* \dot{\boldsymbol{\beta}} \, \mathrm{d}V \\ &+ \int_{\mathscr{B}_0} \frac{\partial \psi}{\partial \boldsymbol{\alpha}} \cdot \delta_* \dot{\boldsymbol{\alpha}} \, \mathrm{d}V + \int_{\mathscr{B}_0} \delta_* \dot{\boldsymbol{\beta}} \cdot (\boldsymbol{\chi} \times \boldsymbol{\tau}_{\chi}) \, \mathrm{d}V + \int_{\mathscr{B}_0} \frac{\partial \psi}{\partial \boldsymbol{\beta}} \cdot \delta_* \dot{\boldsymbol{\beta}} \, \mathrm{d}V \\ &+ \int_{\mathscr{B}_0} \delta_* \boldsymbol{\tau}_{\chi} \cdot \left[\dot{\boldsymbol{\chi}} - (\dot{\boldsymbol{\alpha}} \times \boldsymbol{\chi}) + \left(\dot{\boldsymbol{\beta}} \times \boldsymbol{\chi} \right) \right] \, \mathrm{d}V + \int_{\mathscr{B}_0} \delta_* \boldsymbol{w}_\tau \cdot \left[\frac{1}{2} \boldsymbol{\epsilon} : \dot{\boldsymbol{F}} \boldsymbol{F}^{-1} + \dot{\boldsymbol{\alpha}} \right] \, \mathrm{d}V \end{split}$$

TMD · 30. Juni 2023 · Francesca Concas

Weak balance of linear momentum

$$\int_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \delta_{*}\dot{\boldsymbol{\varphi}}\cdot\left[\dot{\mathbf{p}}-\rho_{0}\boldsymbol{B}_{\varphi}\right] \,\mathrm{d}V \,\mathrm{d}t + \iint_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \frac{1}{2}\boldsymbol{w}_{\tau}\cdot\boldsymbol{\epsilon}\cdot\boldsymbol{F}^{-T}: \frac{\partial\boldsymbol{F}}{\partial\boldsymbol{\varphi}}\cdot\delta_{*}\dot{\boldsymbol{\varphi}} \,\mathrm{d}V \,\mathrm{d}t \\
+ \iint_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \frac{\partial\boldsymbol{\psi}}{\partial\boldsymbol{F}}: \frac{\partial\boldsymbol{F}}{\partial\boldsymbol{\varphi}}\cdot\delta_{*}\dot{\boldsymbol{\varphi}} \,\mathrm{d}V \,\mathrm{d}t - \iint_{\mathcal{T}_{n}\times\partial_{T}\mathscr{B}_{0}} \delta_{*}\dot{\boldsymbol{\varphi}}\cdot\boldsymbol{T} \,\mathrm{d}A \,\mathrm{d}t - \iint_{\mathcal{T}_{n}\times\partial_{\varphi}\mathscr{B}_{0}} \delta_{*}\dot{\boldsymbol{\varphi}}\cdot\boldsymbol{R} \,\mathrm{d}A \,\mathrm{d}t = 0$$

Weak balance of orientational momentum

$$\int_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \delta_{*}\dot{\boldsymbol{\chi}} \cdot \left[\dot{\boldsymbol{p}}_{\chi} - \rho_{0}\boldsymbol{\gamma}\right] \, \mathrm{d}V \, \mathrm{d}t + \iint_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \frac{\partial\psi}{\partial\boldsymbol{\chi}} \cdot \delta_{*}\dot{\boldsymbol{\chi}} \, \mathrm{d}V \, \mathrm{d}t \\
+ \iint_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \delta_{*}\dot{\boldsymbol{\chi}} \cdot \boldsymbol{\tau}_{\chi} \, \mathrm{d}V \, \mathrm{d}t - \iint_{\mathcal{T}_{n}\times\partial_{W}\mathscr{B}_{0}} \delta_{*}\dot{\boldsymbol{\chi}} \cdot \boldsymbol{W} \, \mathrm{d}A \, \mathrm{d}t = 0$$

Weak balance of reorientation stress

$$\iint_{\mathcal{P}_{n}\times\mathscr{B}_{0}} \delta_{*} \dot{\boldsymbol{\alpha}} \cdot \left[\boldsymbol{w}_{\tau} - \left(\boldsymbol{\chi} \times \boldsymbol{\tau}_{\chi} \right) + \frac{\partial \psi}{\partial \boldsymbol{\alpha}} \right] \, \mathrm{d}V \, \mathrm{d}t = 0$$

Weak balance of orientation rates

$$\iint_{\mathcal{T}_{\mathbf{n}} \times \mathscr{B}_{\mathbf{0}}} \delta_{*} \boldsymbol{\tau}_{\chi} \cdot \left[\dot{\boldsymbol{\chi}} - (\dot{\boldsymbol{\alpha}} \times \boldsymbol{\chi}) + \left(\dot{\boldsymbol{\beta}} \times \boldsymbol{\chi} \right) \right] \, \mathrm{d}V \, \mathrm{d}t = 0$$

Weak balance of rotation stress

$$\iint_{\mathscr{P}_{\mathbf{n}}\times\mathscr{B}_{\mathbf{0}}} \delta_{*}\dot{\boldsymbol{\beta}} \cdot \left[\left(\boldsymbol{\chi} \times \boldsymbol{\tau}_{\boldsymbol{\chi}} \right) + \frac{\partial \psi}{\partial \boldsymbol{\beta}} + \boldsymbol{\Sigma}_{\boldsymbol{\beta}} \right] \, \mathrm{d}V \, \mathrm{d}t = 0$$

Weak continuum rotation equation

$$\iint_{n \times \mathscr{B}_{0}} \delta_{*} \boldsymbol{w}_{\tau} \cdot \left[\dot{\boldsymbol{\alpha}} + \frac{1}{2} \boldsymbol{\epsilon} : \dot{\boldsymbol{F}} \boldsymbol{F}^{-1} \right] \, \mathrm{d}V \, \mathrm{d}t = 0$$

TMD · 30. Juni 2023 · Francesca Concas

Linear momentum

$$\delta_*\dot{arphi}=c= ext{const.}$$

$$\boldsymbol{L}(t_{n+1}) - \boldsymbol{L}(t_n) = \iint_{\mathscr{T}_n \times \mathscr{B}_0} \rho_0 \boldsymbol{B}_{\varphi} \, \mathrm{d}V \, \mathrm{d}t + \iint_{\mathscr{T}_n \times \partial_T \mathscr{B}_0} \boldsymbol{T} \, \mathrm{d}A \, \mathrm{d}t + \iint_{\mathscr{T}_n \times \partial_{\varphi} \mathscr{B}_0} \boldsymbol{R} \, \mathrm{d}A \, \mathrm{d}t$$

Orientational momentum

$$\delta_* \dot{\boldsymbol{\chi}} = \boldsymbol{c} = \text{const.}$$

$$\boldsymbol{L}_{n}(t_{n+1}) - \boldsymbol{L}_{n}(t_{n}) = \iint_{\mathcal{T}_{n} \times \mathscr{B}_{0}} \rho_{0} \boldsymbol{B}_{\chi} \, \mathrm{d}V \, \mathrm{d}t + \iint_{\mathcal{T}_{n} \times \partial_{W} \mathscr{B}_{0}} \boldsymbol{W} \, \mathrm{d}A \, \mathrm{d}t - \iint_{\mathcal{T}_{n} \times \mathscr{B}_{0}} \left[\boldsymbol{\tau}_{\chi} + \frac{\partial \psi}{\partial \boldsymbol{\chi}} \right] \, \mathrm{d}V \, \mathrm{d}t$$

Moment of linear momentum

 $\delta_*\dot{oldsymbol{arphi}}=oldsymbol{c} imesoldsymbol{arphi},\,\delta_*\dot{oldsymbol{lpha}}=oldsymbol{c},\,\delta_*\dot{oldsymbol{eta}}=oldsymbol{c}$

$$\begin{split} \boldsymbol{J}\left(t_{n+1}\right) - \boldsymbol{J}\left(t_{n}\right) &= -\iint\limits_{\mathcal{T}_{n}\times\mathcal{B}_{0}} \left(\boldsymbol{F}\times\frac{\partial\psi}{\partial\boldsymbol{F}}\right) \,\mathrm{d}V \,\mathrm{d}t + \iint\limits_{\mathcal{T}_{n}\times\mathcal{B}_{0}} \left[\boldsymbol{\varphi}\times\rho_{0}\boldsymbol{B}_{\varphi}\right] \,\mathrm{d}V \,\mathrm{d}t \\ &+ \iint\limits_{\mathcal{T}_{n}\times\partial_{T}\mathcal{B}_{0}} \left[\boldsymbol{\varphi}\times\boldsymbol{T}\right] \,\mathrm{d}A \,\mathrm{d}t + \iint\limits_{\mathcal{T}_{n}\times\partial\varphi\mathcal{B}_{0}} \left[\boldsymbol{\varphi}\times\boldsymbol{R}\right] \,\mathrm{d}A \,\mathrm{d}t \\ &+ \iint\limits_{\mathcal{T}_{n}\times\mathcal{B}_{0}} \frac{\partial\psi}{\partial\beta} \,\mathrm{d}V \,\mathrm{d}t + \iint\limits_{\mathcal{T}_{n}\times\mathcal{B}_{0}} \boldsymbol{\Sigma}_{\beta} \,\mathrm{d}V \,\mathrm{d}t + \iint\limits_{\mathcal{T}_{n}\times\mathcal{B}_{0}} \frac{\partial\psi}{\partial\alpha} \,\mathrm{d}V \,\mathrm{d}t \end{split}$$

TMD · 30. Juni 2023 · Francesca Concas

Moment of orientational momentum

$$\delta_*\dot{oldsymbol{\chi}}=oldsymbol{c} imesoldsymbol{\chi}$$

$$\begin{aligned} \boldsymbol{J}_{\chi}\left(t_{n+1}\right) - \boldsymbol{J}_{\chi}\left(t_{n}\right) &= -\iint\limits_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \left(\boldsymbol{\chi}\times\frac{\partial\psi}{\partial\boldsymbol{\chi}}\right) \,\mathrm{d}V \,\mathrm{d}t - \iint\limits_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \left(\boldsymbol{\chi}\times\boldsymbol{\tau}_{\chi}\right) \,\mathrm{d}V \,\mathrm{d}t \\ &+ \iint\limits_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \left[\boldsymbol{\chi}\times\rho_{0}\boldsymbol{B}_{\chi}\right] + \,\mathrm{d}V \,\mathrm{d}t \iint\limits_{\mathcal{T}_{n}\times\partial\boldsymbol{W}\mathscr{B}_{0}} \left[\boldsymbol{\chi}\times\boldsymbol{W}\right] \,\mathrm{d}A \,\mathrm{d}t \end{aligned}$$

Total moment of momentum

$$\begin{split} \boldsymbol{J}\left(t_{n+1}\right) &- \boldsymbol{J}\left(t_{n}\right) + \boldsymbol{J}_{n}\left(t_{n+1}\right) - \boldsymbol{J}_{n}\left(t_{n}\right) = -\iint_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \left(\boldsymbol{F}\times\frac{\partial\psi}{\partial\boldsymbol{F}}\right) \,\mathrm{d}V \,\mathrm{d}t \\ &- \iint_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \left(\boldsymbol{\chi}\times\frac{\partial\psi}{\partial\boldsymbol{\chi}}\right) \,\mathrm{d}V \,\mathrm{d}t + \iint_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \frac{\partial\psi}{\partial\boldsymbol{\alpha}} \,\mathrm{d}V \,\mathrm{d}t + \iint_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \frac{\partial\psi}{\partial\boldsymbol{\beta}} \,\mathrm{d}V \,\mathrm{d}t + \iint_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \boldsymbol{\Sigma}_{\boldsymbol{\beta}} \,\mathrm{d}V \,\mathrm{d}t \\ &- \iint_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \left(\boldsymbol{\chi}\times\boldsymbol{\tau}_{\chi}\right) \,\mathrm{d}V \,\mathrm{d}t + \iint_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \left[\boldsymbol{\chi}\times\rho_{0}\boldsymbol{B}_{\chi}\right] + \,\mathrm{d}V \,\mathrm{d}t \iint_{\mathcal{T}_{n}\times\partial W} \boldsymbol{\mathfrak{B}}_{0} \left[\boldsymbol{\chi}\times\boldsymbol{W}\right] \,\mathrm{d}A \,\mathrm{d}t \\ &+ \iint_{\mathcal{T}_{n}\times\mathscr{B}_{0}} \left[\boldsymbol{\varphi}\times\rho_{0}\boldsymbol{B}_{\varphi}\right] \,\mathrm{d}V \,\mathrm{d}t + \iint_{\mathcal{T}_{n}\times\partial T} \boldsymbol{\mathfrak{B}}_{0} \left[\boldsymbol{\varphi}\times\boldsymbol{T}\right] \,\mathrm{d}A \,\mathrm{d}t + \iint_{\mathcal{T}_{n}\times\partial\varphi\mathscr{B}_{0}} \left[\boldsymbol{\varphi}\times\boldsymbol{R}\right] \,\mathrm{d}A \,\mathrm{d}t \end{split}$$

TMD · 30. Juni 2023 · Francesca Concas

Boundary conditions

$0.0125 \times 0.125 \times 0.0005$ m, 10.000-em H1-standard

Parameters cf. [de Luca et al. (2013), Groß et al. (2022)]	
• $cG(k=2)$	
• $h_n = 0.0005 s \text{ and } t_{end} = 0.1 s$	
► $TOL = 10^{-5}$	
• convergence criterion: $\ \mathbf{R}\ < TOL$	
$\blacktriangleright E = 0.914 MPa$	
$\nu = 0.49$	
• $\rho = 1760 kg/m^3$	

TMD · 30. Juni 2023 · Francesca Concas

TMD · 30. Juni 2023 · Francesca Concas

Numerical test I: LCE film under tension ($c_{11} \neq 0$, $c_{12} = 0$)

TMD · 30. Juni 2023 · Francesca Concas

Numerical test I: LCE film under tension ($c_{11} \neq 0$, $c_{12} = 0$)

TMD · 30. Juni 2023 · Francesca Concas

Numerical test I: LCE film under tension ($c_{11} \neq 0$, $c_{12} = 0$)

TMD · 30. Juni 2023 · Francesca Concas

TMD · 30. Juni 2023 · Francesca Concas

TMD · 30. Juni 2023 · Francesca Concas

Numerical test I: LCE film under tension ($c_{11} = 0, c_{12} \neq 0$)

TMD · 30. Juni 2023 · Francesca Concas

Numerical test I: LCE film under tension ($c_{11} = 0, c_{12} \neq 0$)

TMD · 30. Juni 2023 · Francesca Concas

Numerical test I: LCE film under tension ($c_{11} = 0, c_{12} \neq 0$)

TMD · 30. Juni 2023 · Francesca Concas

Mesh and boundary conditions

$0.0125 \times 0.075 \times 0.0003$ m, 1.500-em H1-standard

TMD · 30. Juni 2023 · Francesca Concas

Conclusions

- numerical framework for including the semi-soft elastic behavior of LCEs in the context of dynamics
- semi-soft elastic response is obtained by describing the rotation of the nematic director as dissipative process
- strain energy densities from the linear elasticity theory have been chosen in order to keep invariance with respect to α and β as well
- rotational strain energy densities improve the plateau stage
- all momentum balances are preserved

Future work

- introduction of symmetry constraints for the orientational mapping in order to reduce the mesh size and thus the computational burden
- modelling based on experiments, e.g. arise of the striped pattern and rate-dependence
- modelling thermo-mechanical effects in the context of dynamic