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Galerkin-based multi-scale time integration for nonlinear structural
dynamics
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This paper deals with a GALERKIN-based multi-scale time integration of a viscoelastic rope model. Using HAMILTON’s
dynamical formulation, NEWTON’s equation of motion as a second-order partial differential equation is transformed into
two coupled first order partial differential equations in time. The considered finite viscoelastic deformations are described
by means of a deformation-like internal variable determined by a first order ordinary differential equation in time. The
corresponding multi-scale time-integration is based on a PETROV-GALERKIN approximation of all time evolution equations,
leading to a new family of time stepping schemes with different accuracy orders in the state variables. The resulting nonlinear
algebraic time evolution equations are solved by a multi-level NEWTON-RAPHSON method. Realizing this transient numerical
simulation, we also demonstrates a parallelized solution of the viscous evolution equation in CUDA c©.
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1 Introduction
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Fig. 1: The viscoelastic rope model

We consider finite motions of a viscoelastic rope (cp. KRUPA ET AL. [2] for fur-
ther details). As shown in Fig. 1, we have to distinguish between the reference
configuration B0 ∈ R2 and the current configuration Bt at a fixed time t ≥ 0.
Here, R and r denote the position vectors in the reference and current configu-
ration, respectively. Considering an open dynamical system with external forces
q, the local form of NEWTON’s equations of motion is given by

%(S)A(S)r̈(S, t) = N,S(S, t) + q(S, t)

N,S(S, t) = N(S, t)
r,S(S, t)
‖r,S(S, t)‖

where N describes the viscoelastic constitutive law of the internal forces. According to [4, 5], this material model is based on
the following viscoelastic coupled free energy function and viscous evolution equation, respectively:

ψ(c, ci) = ψcom(c) + ψvis(c, ci) and ċi = − 4
Vvol

(ci)2
∂ ψ

∂ ci

2 Discretization
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Fig. 2: The space-time FE-mesh

The equations of motion and the viscous evolution equation are discretized by a space-
time FE-approximation (see also [1]). Using the HAMILTONian formulation based on
the generalized momentuum p (see GONZALEZ [3]), the equations of motion arise as a
system of first order ordinary differential equations. Denoting by (•̃)h the approxima-
tion of a trial function and by δ(•̃)h an approximated test function, we obtain∫ T

0

∫ L

0

δp̃h(S, t) ·
[

˙̃rh(S, t)− 1
ρ(S)A(S)

p̃h(S, t)
]

dS dt = 0∫ T

0

∫ L

0

[
δr̃h,S(S, t) ·N(S, t) + δr̃h(S, t) ·

[
˙̃ph(S, t)− q̄(S, t)

]]
dS dt = 0 .

At this point, we apply the BUBNOV-GALERKIN method with LAGRANGE finite ele-
ments in space. LAGRANGE’s shape functions are also used for the discretization in
time, but here we utilize the PETROV-GALERKIN method for an exact fulfillment of
the inital conditions. In Fig. 2, an exemplarily obtained space-time FE-mesh is shown.
Each integral is transformed to the corresponding reference element, where the interval [−1, 1] denotes the reference element
in space and [0, 1] the reference element in time. The time step size in the physical mesh is designated by hκ,i.
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The differences ∆t1 := t1 − t0 = hκ,1 and ∆t2 := t2 − t1 = hκ,2 are so-called macro time steps. However, for higher
order shape functions in time, we also arrive at micro time steps like t20, t30 or t40. Starting from t0, we calculate all micro
time steps simultaneously in each macro time step. According to this, the start solution for the next macro time step is the last
micro time step of this first macro time step. For instance, we show in Fig. 2 an approximation with a polynomial degree of
four.

3 Parallelization

After a consistent linearization, the obtained system of nonlinear algebraic equations is solved by a multi-level NEWTON-
RAPHSON method. The global part of the NEWTON-RAPHSON method is the calculation of the equations of motion. For
every spatial element, the entries of the tangent matrix can be calculated in parallel. The local part of the NEWTON-RAPHSON
method consists of the discrete viscous evolution equation. This calculation is also processed in parallel with CUDA c©. As
expected, the CPU time difference between the sequential C code and the parallelized CUDA c© code depends on the number
of spatial elements. For a small number of spatial elements, the C code is faster due to the overhead caused by the data
transfer between CPU and GPU. For a relatively large number of elements, the CUDA c© code reveals an increased computing
performance compared to the C code. The speedup for the calculation of the whole system is about 12% for a chosen number
of elements from 500 to about 8000 elements. This relatively small speedup results from the fact that the calculation of the
global linear equation system is more time consuming than the parallelized parts. In detail, we performed the calculations on
an INTEL c© I7 3820 CPU and a NVIDIA c© Tesla C2075 GPU.

4 Numerical example

We denote by kr and kp the polynomial degrees in the discrete equations of motion, and by kci the polynomial degree in the
discrete viscous evolution equation. Our example demonstrates the convergence order of the position vector at time T = 20 s.
First, we consider equal polynomial degrees. As it is obvious in Fig. 3, the theoretical convergence order is reached by
2 · ki ∀i ∈ [r, p, ci]. It is worth pointing out that larger time steps may be used for reaching the same relative error εrel. Now,
we show the results for different polynomial degrees. With a fixed polynomial degree kci = 3 and variating degrees in the
equations of motion, the convergence order for the position vector is shown in Fig. 4. The important point to note here is
that the convergence order of the position vector is not bounded by a lower approximation of the evolution equation. The
convergence reaches a value of about 8 for the equation of motion with kr = kp = 4 and reaches a value of about 10 with
kr = kp = 5.
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Fig. 3: Convergence plot for equal polynomial degrees
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Fig. 4: Convergence plot for unequal polynomial degrees
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