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Abstract. In this paper we present different regularity conditions that equivalently
characterize various ε-duality gap statements (with ε ≥ 0) for constrained optimiza-
tion problems and their Lagrange and Fenchel-Lagrange duals in separated locally convex
spaces, respectively. These regularity conditions are formulated by using epigraphs and
ε-subdifferentials. When ε = 0 we rediscover recent results on stable strong and total
duality and zero duality gap from the literature.
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1 Preliminaries

Motivated by recent results on stable strong and total duality for constrained convex
optimization problems in [3, 6, 8, 9, 12, 13, 17] and the ones on zero duality gap in [15, 16]
we introduce in this paper several regularity conditions which characterize ε-duality gap
statements (with ε ≥ 0) for a constrained optimization problem and its Lagrange and
Fenchel-Lagrange dual problems, respectively. The regularity conditions we provide in
Section 2 are based on epigraphs, while the ones in Section 3 on ε-subdifferentials. In
this way we extend many of the results in the mentioned papers, which are recovered as
special cases when ε = 0, delivering thus generalizations of the classical Farkas-Minkowski
and basic constraint qualifications. Moreover some statements in [5, 8, 9, 15, 16], which
arise from our results in the special case ε = 0, are extended by removing convexity and
topological hypotheses, while various assertions from [15, 16] are improved by working in
locally convex spaces instead of Banach spaces and removing the continuity and nonempty
domain interior assumptions of the involved functions.

Consider two separated locally convex vector spaces X and Y and their continuous
dual spaces X∗ and Y ∗, endowed with the weak∗ topologies w(X∗, X) and w(Y ∗, Y )
respectively. Some of the following notions and results, as well as the statements we prove
within in this paper, can be given in the more general framework of linear spaces, but in
order to avoid juggling with spaces we decided to consider only locally convex spaces. Let
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400084 Cluj-Napoca, Romania, e-mail: horatiuboncea@yahoo.com.
†Department of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany, e-mail:

grad@mathematik.tu-chemnitz.de.

1



the nonempty closed convex cone C ⊆ Y and its dual cone C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0
∀y ∈ C} be given, where we denote by 〈y∗, y〉 = y∗(y) the value at y of the continuous
linear functional y∗. On Y we consider the partial ordering induced by C, “5C”, defined
by z 5C y ⇔ y−z ∈ C, z, y ∈ Y . To Y we attach a greatest element with respect to “5C”
denoted by∞C which does not belong to Y and let Y • = Y ∪{∞C}. Then for any y ∈ Y •
one has y 5C ∞C and we consider on Y • the following operations: y+∞C =∞C+y =∞C

and t∞C =∞C for all y ∈ Y and all t ≥ 0. Moreover, for y∗ ∈ C∗ we set 〈y∗,∞C〉 = +∞.
Given a subset U of X, by clU we denote its closure in the corresponding topology,

while its indicator function δU : X → R = R ∪ {±∞} and respectively support function
σU : X∗ → R are defined as follows

δU (x) =

{
0, if x ∈ U,
+∞, otherwise,

and σU (x∗) = sup
x∈U
〈x∗, x〉.

We define in the following a notion that extends the one of a closed set, needed for being
able to provide generalized closedness type characterizations via epigraphs for ε-duality
gap statements. Note that the notion of a ε-closed set was considered in the literature in
different instances that have nothing in common with our research, see for instance [1,14],
while in [18, Definition 3.2] one can find the definition of a vertically closed set.

Definition 1 Let ε ≥ 0. A set U ⊆ X × R is said to be ε-vertically closed if clU ⊆
U − (0, ε).

For a function f : X → R we have its domain and epigraph defined by dom f = {x ∈
X : f(x) < +∞} and epi f = {(x, r) ∈ X × R : f(x) ≤ r}, respectively. We say that f is
proper if f(x) > −∞ for all x ∈ X and dom f 6= ∅. The conjugate of f regarding the set
U ⊆ X is f∗U : X∗ → R, given by f∗U (x∗) = sup{〈x∗, x〉 − f(x) : x ∈ U}.

When U = X the conjugate regarding the set U is the classical (Fenchel-Moreau)
conjugate function of f denoted by f∗. One can easily notice that δ∗U = σU . Between a
function f : X → R and its conjugate regarding some set U ⊆ X, the Young-Fenchel’s
inequality holds, namely

f∗U (x∗) + f(x) ≥ 〈x∗, x〉 ∀x ∈ U ∀x∗ ∈ X∗.

Let f : X → R, x ∈ X with f(x) ∈ R and ε ≥ 0. The set ∂εf(x) = {x∗ ∈ X∗ :
f(u) − f(x) + ε ≥ 〈x∗, u − x〉 ∀u ∈ X} is called the ε-subdifferential of f at x. When
f(x) /∈ R or ε < 0 we take by convention ∂εf(x) = ∅.

Given a proper function f : X → R, for all ε ≥ 0, x ∈ X and x∗ ∈ X∗ one has

x∗ ∈ ∂εf(x)⇔ f∗(x∗) + f(x) ≤ 〈x∗, x〉+ ε.

For ε = 0, the ε-subdifferential turns out to be the classical (convex) subdifferential. For
U = X, the set N ε

U (x) = ∂εδU (x) is called the ε-normal set of U at x ∈ X. When ε = 0,
NU (x) is actually the (convex) normal cone of U at x.

Given two proper functions f, h : X → R, their infimal convolution is

f�h : X → R, f�h(a) = inf{f(x) + h(a− x) : x ∈ X},

and it is called exact at some a ∈ X when there is an x ∈ X such that f�h(a) =
f(x) + h(a− x).
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There are notions given for functions with extended real values that can be formulated
also for vector functions as follows.

For a function g : X → Y • one has its domain dom g = {x ∈ X : g(x) ∈ Y }. We say
that g is proper if dom g 6= ∅ and C-convex if g(tx + (1− t)y) 5C tg(x) + (1− t)g(y) for
all x, y ∈ X and all t ∈ [0, 1]. For λ ∈ C∗, we define (λg) : X → R, (λg)(x) = 〈λ, g(x)〉 for
all x ∈ X. The C-epigraph of g is defined by epiC g = {(x, y) ∈ X × Y : y ∈ g(x) + C}.
We say that g is C-epi-closed if epiC g is closed. If (λg) is lower semicontinuous for all
λ ∈ C∗ we say that g is positively C-lower semicontinuous (also known as star C-lower
semicontinuous in the literature).

Let U be a nonempty subset of X and g : X → Y • a proper vector function. De-
note A = {x ∈ U : g(x) ∈ −C} and assume this set non-empty. For a proper function
f : X → R fulfilling A ∩ dom f 6= ∅ consider the optimization problem

(P ) inf
x∈A

f(x).

We denote by v(P ) the optimal objective value of the optimization problem (P ). In
the following we will write min(max) instead of inf(sup) when the corresponding infimum
(supremum) is attained. Let us recall some results, needed later.

Lemma 1 (cf. [2]) Let f, h : X −→ R be proper convex lower semicontinuous functions,
with the intersection of their domains nonempty. Then

epi(f + h)∗ = cl epi(f∗�h∗) = cl(epi f∗ + epih∗).

Lemma 2 (cf. [8, 9]) If U is closed convex and g C-convex and C-epi-closed, one has

epiσA = cl
(

epiσU + ∪
λ∈C∗

epi(λg)∗
)

= cl ∪
λ∈C∗

epi(λg)∗U .

The hypotheses of Lemma 2 are sufficient to guarantee that A is a closed convex set.
When f and δA are proper convex lower semicontinuous functions, one has by Lemma
1 epi(f + δA)∗ = cl(epi f∗ + epiσA). By Lemma 2, this is further equal to cl(epi f∗ +
cl∪λ∈C∗ epi(λg)∗U ), which is actually cl(epi f∗ + ∪λ∈C∗ epi(λg)∗U ). Analogously, one can
show that under these hypotheses there holds epi(f + δA)∗ = cl(epi f∗+∪λ∈C∗ epi(λg)∗+
epiσU ).

For x∗ ∈ X∗ we also consider the linearly perturbed optimization problem

(Px∗) inf
x∈A

[f(x) + 〈x∗, x〉].

To (Px∗) one can attach the Lagrange dual problem

(DL
x∗) sup

λ∈C∗
inf
x∈U

[f(x) + 〈x∗, x〉+ (λg)(x)],

which can be equivalently written as

(DL
x∗) sup

λ∈C∗
−
(
f + (λg)

)∗
U

(−x∗).
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For a λ ∈ C∗, the inner minimization problem that appears in the first formulation of
(DL

x∗) can be rewritten as

inf
x∈X

[f(x) + 〈x∗, x〉+ δU (x) + (λg)(x)].

To this problem one can attach different Fenchel type dual problems, obtaining via (DL
x∗)

some Fenchel-Lagrange type dual problems to (Px∗). The name Fenchel-Lagrange is given
to the folowing dual problems because they are thus “combinations” of the classical Fenchel
and Lagrange dual problems. Keeping together δU and (λg) one gets the following Fenchel-
Lagrange type dual problem to (Px∗)

(Dx∗) sup
λ∈C∗,
β∈X∗

{−f∗(β)− (λg)∗U (−x∗ − β)}.

When f , (λg) and δU are separated, the following Fenchel-Lagrange type dual problem to
(Px∗) is obtained

(Dx∗) sup
λ∈C∗,
β,α∈X∗

{−f∗(β)− (λg)∗(α)− σU (−x∗ − α− β)}.

When x∗ = 0 these duals to (P ) are denoted simply by (DL), (D) and (D), respectively.
Note that when f and δU are put together, one can obtain a third Fenchel-Lagrange dual
to (Px∗), namely

(D̃x∗) sup
λ∈C∗,
β∈X∗

{−f∗U (β)− (λg)∗(−x∗ − β)}.

We will not use it further, but the results given in this paper can be easily adapted for
it, too.

Between (P ) and (D) one always has weak duality, i.e. v(P ) ≥ v(D). When v(P ) =
v(D) we say that there is zero duality gap between (P ) and (D) and if (D) has moreover
an optimal solution, the situation is called strong duality. If v(P )− v(D) ≤ ε, with ε ≥ 0,
we have ε-duality gap for (P ) and (D). If one of these situations holds for (Px∗) and (Dx∗)
for all x∗ ∈ X∗, it will be called stable.

2 ε-duality gap statements involving epigraphs for Lagrange
and Fenchel-Lagrange duality

Motivated by the characterizations of the stable strong duality from [8, 9] we begin this
section with several equivalent representations of different instances of ε-duality gap for
(P ) and its duals by means of epigraphs.

Theorem 3 Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. Then the
condition

(RCE) epi (f + δA)∗ ⊆ ∪
λ∈C∗

(epi f∗ + epi(λg)∗ + epiσU )− (0, ε)
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holds if and only if for all x∗ ∈ X∗ there exist λ ∈ C∗ and α, β ∈ X∗ such that

v(Px∗) ≤ −f∗(β)− (λg)∗(α)− σU (−x∗ − β − α) + ε. (1)

Proof. “⇒” Let x∗ ∈ X∗. We have v(Px∗) = − (f + δA)∗ (−x∗), thus (−x∗,−v(Px∗)) ∈
epi (f + δA)∗. From (RCE) there exist λ ∈ C∗ and α, β ∈ X∗ such that (β, f∗(β)) ∈ epi f∗,
(α, (λg)∗(α)) ∈ epi(λg)∗, (−x∗ − α− β, σU (−x∗ − α− β)) ∈ epiσU fulfilling

f∗(β) + (λg)∗(α) + σU (−x∗ − α− β)− ε ≤ −v(Px∗),

which yields (1).
“⇐” Take now (−x∗, u) ∈ epi(f + δA)∗. This is equivalent to (f + δA)∗(−x∗) ≤ u and

further to −u ≤ v(Px∗). Because of (1), there are some λ ∈ C∗ and α, β ∈ X∗ such that

−u ≤ −f∗(β)− (λg)∗(α)− σU (−x∗ − α− β) + ε,

which is equivalent to

f∗(β) + (λg)∗(α) + σU (−x∗ − α− β) ≤ u+ ε.

But
(β, f∗(β)) + (α, (λg)∗(α)) + (−x∗ − α− β, σU (−x∗ − α− β)) =

(−x∗, f∗(β) + (λg)∗(α) + σU (−x∗ − α− β)).

So,
(−x∗, u) ∈ epi f∗ + epi(λg)∗ + epiσU − (0, ε).

As (−x∗, u) ∈ epi (f + δA)∗ was arbitrarily chosen, the validity of (RCE) follows. �

Analogously, one can prove the following similar statement concerning the dual (Dx∗).

Corollary 4 Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The
condition

(RCE) epi (f + δA)∗ ⊆ ∪
λ∈C∗

(epi f∗ + epi(λg)∗U )− (0, ε)

holds if and only if for all x∗ ∈ X∗ there exist λ ∈ C∗ and β ∈ X∗ such that

v(Px∗) ≤ −f∗(β)− (λg)∗U (−x∗ − β) + ε.

Moreover, for the Lagrange dual one has the following characterization.

Corollary 5 Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The
condition

(RCEL) epi (f + δA)∗ ⊆ ∪
λ∈C∗

epi(f + (λg))∗U − (0, ε)

holds if and only if for all x∗ ∈ X∗ there exists λ ∈ C∗ such that

v(Px∗) ≤ −
(
f + (λg)

)∗
U

(−x∗) + ε.
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Remark 1 The quantity in the right-hand side of (1) is not necessarily v(Dx∗)+ε, as the
suprema in (Dx∗) are not shown to be attained at λ, α and β, respectively. Though, (1)
implies v(Px∗) ≤ v(Dx∗) + ε and (λ, α, β) is an ε-optimal solution to (Dx∗). This applies
to Corollary 4 and Corollary 5, with the corresponding modifications.

If we take f(x) = 0 for all x ∈ X, (RCE) becomes

(RCE0) epiσA ⊆ ∪
λ∈C∗

epi(λg)∗ + epi(σU )− (0, ε).

From Theorem 3 we obtain the following result.

Corollary 6 The condition (RCE0) holds if and only if for each x∗ ∈ X∗ there exist
λ ∈ C∗ and α ∈ X∗ such that

−σA(x∗) ≤ −σU (−x∗ − α)− (λg)∗(α) + ε.

Using it, one can show the following statement.

Corollary 7 The condition (RCE0) holds if and only if when the constraint set A is
closed convex for each proper convex lower semicontinuous function f : X → R which
satisfies A ∩ dom f 6= ∅ and

(CC) epi f∗ + epiσA is closed,

for each x∗ ∈ X∗ there exist λ ∈ C∗ and α, β ∈ X∗ such that

v(Px∗) ≤ −f∗(β)− (λg)∗(α)− σU (−x∗ − α− β) + ε.

Proof. The sufficiency follows from the previous corollary by taking f linear and con-
tinuous.

To prove the necessity, note that since −v(Px∗) = (f + δA)∗ (−x∗), we have (−x∗,
−v(Px∗)) ∈ epi (f + δA)∗. From Lemma 1 and (CC) there is a β ∈ X∗ such that
(β, f∗(β)) ∈ epi f∗, (−x∗ − β, σU (−x∗ − β)) ∈ epiσA fulfilling f∗(β) + σA(−x∗ − β) =
−v(Px∗). By Corrolary 6, relation (RCE0) yields that there are some λ ∈ C∗ and
α ∈ X∗ such that −σA(−x∗ − β) ≤ −σU (−x∗ − α) − (λg)∗(α − β) + ε. Consequently,
v(Px∗) ≤ −f∗(β)− σU (−x∗ − α)− (λg)∗(α− β) + ε. �

Remark 2 When f(x) = 0 for all x ∈ X both (RCE) and (RCEL) collapse into the same
condition, for which statements similar to Corollary 6 and Corollary 7 can be analogously
proven.

Adding convexity and topological hypotheses to the functions and sets considered in
Theorem 3, one obtains the following statement. Analogously, one can derive similar
statements from its consequences and analogous assertions for the other duals presented
above.

Theorem 8 Let f : X → R be a proper convex lower semicontinuous function, g : X →
Y • a proper C-convex and C-epi-closed vector function and U ⊆ X a closed convex set
fulfilling A ∩ dom f 6= ∅, and ε ≥ 0. Then the set ∪λ∈C∗(epi f∗ + epi(λg)∗ + epiσU ) is
ε-vertically closed if and only if for all x∗ ∈ X∗ there exist λ ∈ C∗ and α, β ∈ X∗ such
that (1) holds.
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Remark 3 If ε = 0, Theorem 8 turns out to be [8, Theorem 1]. Adding the necessary
topological and convexity hypotheses to Corollary 4, one rediscovers in case ε = 0 [8,
Theorem 2], while after the same treatment Corollary 5 collapses into [9, Theorem 1].
Moreover, Corollary 7 rediscovers and extends towards stable strong duality [8, Theorem
4] and analogously one can rediscover and sometimes generalize the similar statements
from [8,9] for the other considered duals to (P ).

Inspired by [15,16] we give other regularity conditions which characterize ε-duality gap
statements for (P ) and its duals. For this, let us define the functions h�, h�U : X∗ → R
by h�(x∗) = infλ∈C∗(λg)∗(x∗) and h�U (x∗) = infλ∈C∗(λg)∗U (x∗), for x∗ ∈ X∗. From the
definitions it follows that ∪λ∈C∗ epi(λg)∗ ⊆ epih�, respectively ∪λ∈C∗ epi(λg)∗U ⊆ epih�U .

Lemma 9 If g is C-convex and U is convex, the function h�U is proper convex. Moreover,
if g is also C-epi closed and U additionally closed, it holds epiσA = cl epih�U .

Proof. The properness and convexity of h�U follow analogously to the properties corre-
sponding of h� shown in [15, Theorem 3.1]. As ∪λ∈C∗ epi(λg)∗U ⊆ epih�U , by Lemma 2
yields epiσA ⊆ cl epih�U .

On the other hand, for any λ ∈ C∗ we have δA(x) ≥ (λg)(x)+δU (x) for all x ∈ X, which
implies σA(x∗) ≤ (λg)∗U (x∗) for all x∗ ∈ X∗, followed by σA(x∗) ≤ infλ∈C∗(λg)∗U (x∗) =
h�U (x∗). This implies that epiσA ⊇ cl epih�U . �

Using Lemma 9, for f proper convex lower semicontinuous, g moreover C-convex and
C-epi closed and U also closed convex, we get

epi(f + δA)∗ = cl(epi f∗ + epih�U ) = cl epi(f∗�h�U ) = cl epi(f∗�h��σU ). (2)

Now let us give some other ε-duality gap characterizations by means of h� and h�U .

Theorem 10 Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The
condition

(RCI) epi(f + δA)∗ ⊆ epi(f∗�h��σU )− (0, ε)

holds if and only if there is stable ε−duality gap for the problems (P ) and (D), i.e. one
has ε−duality gap for the pair of problems (Px∗) and (Dx∗) for all x∗ ∈ X∗.

Proof. “⇒” Let x∗ ∈ X∗. We have v(Px∗) = − (f + δA)∗ (−x∗), thus (−x∗,−v(Px∗)) ∈
epi (f + δA)∗. From (RCI) we have

(f∗�h��σU )(−x∗) = inf
α,β∈X∗

{f∗(β) + h�(α) + σU (−x∗ − α− β)} − ε ≤ −v(Px∗)⇐⇒

inf
α,β∈X∗

{ inf
λ∈C∗

(f∗(β) + (λg)∗(α) + σU (−x∗ − α− β))} − ε ≤ −v(Px∗)⇐⇒

− sup
λ∈C∗,
α,β∈X∗

{−f∗(β)− (λg)∗(α)− σU (−x∗ − α− β)} ≤ −v(Px∗) + ε⇐⇒

−v(Dx∗) ≤ −v(Px∗) + ε⇐⇒ v(Px∗) ≤ v(Dx∗) + ε.

So, we get ε-duality gap for the pair of problems (Px∗) and (Dx∗).
“⇐” Let x∗ ∈ X∗. The ε−duality gap inequality for (Px∗) and (Dx∗) is equivalent to

(f∗�h�� σU )(−x∗) − ε ≤ −v(Px∗) = (f + δA)∗ (−x∗). As x∗ ∈ X∗ was arbitrarily taken
one gets epi(f + δA)∗ ⊆ epi(f∗�h��σU )− (0, ε). �
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One can give a similar statement for (D).

Corollary 11 Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The
condition

(RCI) epi(f + δA)∗ ⊆ epi(f∗�h�U )− (0, ε)

holds if and only if there is stable ε−duality gap for the problems (P ) and (D), i.e. one
has ε−duality gap for the pair of problems (Px∗) and (Dx∗) for all x∗ ∈ X∗.

Remark 4 If X and Y are Fréchet spaces, f is proper convex lower semicontinuous, g is
C-convex and positively C-lower semicontinuous, U closed convex and 0 ∈ sqri(dom f −
dom g∩U), where by sqri one denotes the strong quasi relative interior of the corresponding
set, then the condition (RCI) is satisfied if and only if there is stable ε-duality gap for
the problems (P ) and (DL).

A characterization of the Lagrange ε−duality gap without the additional hypotheses
from Remark 4 follows.

Corollary 12 Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The
condition

(RCIL) epi(f + δA)∗ ⊆ epi inf
λ∈C∗

(f + λg)∗U − (0, ε)

holds if and only if there is stable ε−duality gap for the problems (P ) and (DL), i.e. one
has ε-duality gap for the pair of problems (Px∗) and (DL

x∗) for all x∗ ∈ X∗.

If we take f(x) = 0 for all x ∈ X, (RCI) becomes

(RCI0) epi(σA) ⊆ epi(h��σU )− (0, ε)

and we obtain the following results.

Corollary 13 The condition (RCI0) holds if and only if for each x∗ ∈ X∗

−σA(x∗) ≤ sup
α∈C∗

{−σU (−x∗ − α)− h�(α)}+ ε.

Corollary 14 The condition (RCI0) holds if and only if when A is closed convex for each
proper convex lower semicontinuous function f : X → R which satisfies A∩dom f 6= ∅ and

f∗�δ∗A is a lower semicontinuous function,

for all x∗ ∈ X∗ one has

v(Px∗) ≤ sup
λ∈C∗,
α,β∈X∗

{−f∗(β)− (λg)∗(α)− σU (−x∗ − α− β)}+ ε.
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Adding convexity and topological hypotheses to the functions and sets considered in
Theorem 10, one obtains the following statement. Analogously, one can derive similar
statements from its consequences and analogous assertions for the other duals presented
above.

Theorem 15 Let f : X → R be a proper convex lower semicontinuous function, g : X →
Y • a proper C-convex and C-epi-closed vector function and U ⊆ X a closed convex set
fulfilling A ∩ dom f 6= ∅, and ε ≥ 0. Then the set epi(f∗�h��σU ) is ε-vertically closed if
and only if there is stable ε-duality gap for the problems (P ) and (D).

Remark 5 In case ε = 0 and U = X, Theorem 15 and the similar statement obtained
when adding convexity and topological hypotheses to Corollary 11 extend the Fenchel-
Lagrange analogous of [16, Theorem 3.1], while Remark 4 and Corollary 12 (with the
corresponding convexity and topological hypotheses) show that [16, Theorem 3.1] actu-
ally holds in a more general framework, i.e. without taking the function g continuous.
Analogously, Corollary 14 extends and improves, respectively, by dropping the strong
nonempty domain interior and continuity hypotheses on the involved functions, state-
ments like [15, Theorem 4.1] and [16, Corollary 3.1].

Now, let us give other stable ε-duality gap statements for (P ) and its duals, by making
use of other regularity conditions inspired by (2).

Theorem 16 Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The
condition

(RCP ) epi (f + δA)∗ ⊆ epi f∗ + epih� + epiσU − (0, ε)

holds if and only if for all x∗ ∈ X∗ there exist α, β ∈ X∗ such that

v(Px∗) ≤ sup
λ∈C∗

{
−f∗(β)− (λg)∗(α)− σU (−x∗ − β − α)

}
+ ε. (3)

Proof. Let x∗ ∈ X∗. We have v(Px∗) = − (f + δA)∗ (−x∗), thus (−x∗,−v(Px∗)) ∈
epi (f + δA)∗. From (RCP ) there exist α, β ∈ X∗ such that (β, f∗(β)) ∈ epi f∗, (α, h�(α)) ∈
epih�, (−x∗ − α− β, σU (−x∗ − α− β)) ∈ epiσU fulfilling

f∗(β) + h�(α) + σU (−x∗ − α− β)− ε ≤ −v(Px∗) (4)

and we obtain

v(Px∗) ≤ −f∗(β)− h�(α)− σU (−x∗ − β − α) + ε⇐⇒

v(Px∗) ≤ −f∗(β) + sup
λ∈C∗

{−(λg)∗(α)} − σU (−x∗ − β − α) + ε⇐⇒

v(Px∗) ≤ sup
λ∈C∗

{
−f∗(β)− (λg)∗(α)− σU (−x∗ − β − α)

}
+ ε.

Viceversa, as the hypothesis means that (4) holds for all x∗ ∈ X∗, the validity of (RCP )
follows. �

A similar statement can be given for (D), too.
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Corollary 17 Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The
condition

(RCP ) epi (f + δA)∗ ⊆ epi f∗ + epih�U − (0, ε)

holds if and only if for all x∗ ∈ X∗ there exists β ∈ X∗ such that

v(Px∗) ≤ sup
λ∈C∗

{
−f∗(β)− (λg)∗U (−x∗ − β)

}
+ ε.

Note that the analogous result for (DL) collapses into Corollary 12 and when ε = 0 it
and both Theorem 16 and Corollary 17 become “pure” stable zero duality gap statements.

Adding convexity and topological hypotheses to the functions and sets considered in
Theorem 16, one obtains the following statement. Analogously, one can derive similar
statements from its consequences and analogous assertions for the other duals.

Theorem 18 Let f : X → R be a proper convex lower semicontinuous function, g : X →
Y • a proper C-convex and C-epi-closed vector function and U ⊆ X a closed convex set
fulfilling A ∩ dom f 6= ∅, and ε ≥ 0. Then the set epi f∗ + epih� + epiσU is ε-vertically
closed if and only if for all x∗ ∈ X∗ there exist α, β ∈ X∗ such that (3) holds.

3 ε-duality gap statements involving ε−subdifferentials for
Lagrange and Fenchel-Lagrange duality

We introduce regularity conditions to characterize ε-duality gap statements, using ε-
subdifferentials, too, when the existence of an ε-optimal solution to the primal problem is
assumed. Recall that, for x∗ ∈ X∗, x ∈ A∩ dom f is an ε-optimal solution to (Px∗) if and
only if 0 ∈ ∂ε(f + x∗ + δA)(x), which is equivalent to −x∗ ∈ ∂ε(f + δA)(x).

Theorem 19 Let the proper function f : X → R, x ∈ A ∩ dom f and ε ≥ 0. Then

(RCL) ∂ε(f + δA)(x) = ∪
λ∈C∗,

εi≥0, i=1,2,3,
ε1+ε2+ε3=ε+(λg)(x)

(
∂ε1f(x) +N ε2

U (x) + ∂ε3(λg)(x)
)

holds if and only if for all x∗ ∈ X∗ for which x is an ε-optimal solution to (Px∗) there
exist λ ∈ C∗ and α, β ∈ X∗ such that

f(x) + 〈x∗, x〉 ≤ −f∗(β)− (λg)∗(α)− σU (−x∗ − β − α) + ε. (5)

Proof. “⇒” Let x∗ ∈ X∗ such that −x∗ ∈ ∂ε(f + δA)(x). Because the condition (RCL)
is satisfied at x, there are some λ ∈ C∗ and ε1, ε2, ε3 ≥ 0 such that −x∗ ∈ ∂ε1f(x) +
N ε2
U (x) + ∂ε3(λg)(x) and ε1 + ε2 + ε3 = ε+ (λg)(x).

Thus there exist β ∈ ∂ε1f(x) and α ∈ ∂ε3(λg)(x) such that −x∗ − α− β ∈ N ε2
U (x), i.e.

f(x) + f∗(β) ≤ 〈β, x〉+ ε1, (λg)∗(α) + (λg)(x) ≤ 〈α, x〉+ ε3 (6)

and
σU (−x∗ − β − α) + δU (x) ≤ 〈−x∗ − β − α, x〉+ ε2. (7)
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Summing up these inequalities we get

f(x) + f∗(β) + (λg)∗(α) + (λg)(x) + σU (−x∗ − β − α) + δU (x) ≤

−〈x∗, x〉+ ε1 + ε2 + ε3,

followed, as x ∈ U , by (5).
“⇐” Take now −x∗ ∈ ∂ε(f + δA)(x). From (5) there are some λ ∈ C∗ and α, β ∈ X∗

such that
f(x) + 〈x∗, x〉 ≤ −f∗(β)− σU (−x∗ − β − α)− (λg)∗(α) + ε.

This can be rewritten as

f(x) + f∗(β)− 〈β, x〉+ δU (x) + σU (−x∗ − β − α)− 〈−x∗ − β − α, x〉+

(λg)(x) + (λg)∗(α)− 〈α, x〉 ≤ ε+ (λg)(x).

Using also the Young-Fenchel inequality, it follows that there exist ε1, ε2, ε3 ≥ 0, with
ε1 + ε2 + ε3 = ε + (λg)(x), such that (6) and (7) hold. Consequently, β ∈ ∂ε1f(x),
α ∈ ∂ε3(λg)(x), −x∗ − β − α ∈ N ε2

U (x). Thus, the inclusion “⊆” in (RCL) holds and,
since, “⊇” is always true, we obtain the validity of (RCL). �

Similar statements can be given for (D) and (DL), too.

Corollary 20 Let the proper function f : X → R, x ∈ A ∩ dom f and ε ≥ 0. Then

(RCL) ∂ε(f + δA)(x) = ∪
λ∈C∗,

εi≥0, i=1,2,
ε1+ε2=ε+(λg)(x)

(∂ε1f(x) + ∂ε2(δU + (λg))(x))

holds if and only if for each x∗ ∈ X∗ for which x is an ε-optimal solution to (Px∗) there
exist λ ∈ C∗ and β ∈ X∗ such that

f(x) + 〈x∗, x〉 ≤ −f∗(β)− (λg)∗U (−x∗ − β) + ε.

Corollary 21 Let the proper function f : X → R, x ∈ A ∩ dom f and ε ≥ 0. Then

(RCLL) ∂ε(f + δA)(x) = ∪
λ∈C∗

∂ε+(λg)(x)(f + δU + (λg))(x)

holds if and only if for each x∗ ∈ X∗ for which x is an ε-optimal solution to (Px∗) there
exists λ ∈ C∗ such that

f(x) + 〈x∗, x〉 ≤
(
f + (λg)

)∗
U

(−x∗) + ε.

Remark 6 The quantity in the left-hand side of (5) is not necessarily v(P ), while in
the right-hand side one has something smaller than v(Dx∗) + ε. However, (5) implies
v(Px∗) ≤ v(Dx∗) + ε and (λ, α, β) is an ε-optimal solution to (Dx∗). This applies to
Corollary 20 and Corollary 21, with the corresponding modifications.

Remark 7 Taking ε = 0, Theorem 19 becomes [8, Theorem 5] without the topological
and convexity assumptions on the involved functions, Corollary 20 is [8, Theorem 6], while
Corollary 21 turns into [9, Theorem 3]. Note also that by considering (RCL) for f(x) = 0
whenever x ∈ X one can extend (analogously to Theorem 26, see also Remark 10 and
Remark 11) [8, Theorem 9] towards ε-duality gap and the same can be done for their
counterparts corresponding to the other considered duals.
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As mentioned in Remark 6, the statements given above are not “pure” characterizations
of the stable zero duality gap for (P ) and its corresponding dual problems. In the following
we provide subdifferential formulae that characterize ε-duality gap statements which have
in the right-hand side the optimal objective value of the duals plus ε.

Theorem 22 Let the proper function f : X → R, x ∈ A ∩ dom f and ε ≥ 0. Then

(RCS) ∂ε(f + δA)(x) = ∩
η>0

∪
λ∈C∗,

εi≥0, i=1,2,3,
ε1+ε2+ε3=ε+η+(λg)(x)

(
∂ε1f(x) +N ε2

U (x) + ∂ε3(λg)(x)
)

holds if and only if for each x∗ ∈ X∗ for which x is an ε-optimal solution to (Px∗) it holds

f(x) + 〈x∗, x〉 ≤ sup
λ∈C∗,
α,β∈X∗

{−f∗(β)− σU (−x∗ − β − α)− (λg)∗(α)}+ ε. (8)

Proof. “⇒” Let x∗ ∈ X∗ such that −x∗ ∈ ∂ε(f + δA)(x). Because the condition (RCS)
is satisfied at x, for each η > 0 there are some λη ∈ C∗ and ε1, ε2, ε3 ≥ 0 such that
−x∗ ∈ ∂ε1f(x) +N ε2

U (x) + ∂ε3(ληg)(x) and ε1 + ε2 + ε3 = ε+ η + (ληg)(x).
Thus there are some βη ∈ ∂ε1f(x) and αη ∈ ∂ε3(ληg)(x) such that −x∗ − αη − βη ∈

N ε2
U (x), i.e.

f(x) + f∗(βη) ≤ 〈βη, x〉+ ε1, (ληg)∗(αη) + (ληg)(x) ≤ 〈αη, x〉+ ε3

and
σU (−x∗ − βη − αη) + δU (x) ≤ 〈−x∗ − βη − αη, x〉+ ε2. (9)

Summing up these inequalities we get

f(x)+f∗(βη)+(ληg)∗(αη)+(ληg)(x)+σU (−x∗−βη−αη)+δU (x) ≤ −〈x∗, x〉+ε1+ε2+ε3,

followed, as x ∈ U , by

f(x) + 〈x∗, x〉 ≤ −f∗(βη)− (ληg)∗(αη)− σU (−x∗ − βη − αη) + ε+ η,

which implies

f(x) + 〈x∗, x〉 ≤ sup
λ∈C∗,
α,β∈X∗

{−f∗(β)− (λg)∗(α)− σU (−x∗ − β − α)}+ ε+ η.

Letting η converge towards 0, (8) follows.
“⇐” Take now −x∗ ∈ ∂ε(f + δA)(x). Let η > 0. From (8) there are some λη ∈ C∗ and

αη, βη ∈ X∗ such that

f(x) + 〈x∗, x〉 ≤ −f∗(βη)− σU (−x∗ − βη − αη)− (ληg)∗(αη) + η + ε.

As x ∈ U , this can be rewritten as

f(x) + f∗(βη) + δU (x) + σU (−x∗ − βη − αη) + (ληg)(x)+

(ληg)∗(αη) + 〈x∗, x〉 ≤ η + ε+ (ληg)(x),

12



which implies that

f(x) + f∗(βη)− 〈βη, x〉+ δU (x) + σU (−x∗ − βη − αη)− 〈−x∗ − βη − αη, x〉+

(ληg)(x) + (ληg)∗(αη)− 〈αη, x〉 ≤ η + ε+ (ληg)(x).

Using also the Young-Fenchel inequality, it follows that there exist ε1, ε2, ε3 ≥ 0, with
ε1 + ε2 + ε3 = η + ε + (ληg)(x), such that (9) holds. So, we get that βη ∈ ∂ε1f(x),

αη ∈ ∂ε3(ληg)(x), −x∗ − βη − αη ∈ N
ε2
U (x). Thus, the inclusion “⊆” in (RCS) holds and,

since, “⊇” is always true, (RCS) is valid. �

Remark 8 Relation (8) implies v(Px∗) ≤ v(Dx∗) + ε, without being a consequence of it
in general.

Similar statements can be given for (D) and (DL), too.

Corollary 23 Let the proper function f : X → R, x ∈ A ∩ dom f and ε ≥ 0. Then

(RCS) ∂ε(f + δA)(x) = ∩
η>0

∪
λ∈C∗,

εi≥0, i=1,2,
ε1+ε2=ε+η+(λg)(x)

(∂ε1f(x) + ∂ε2 (δU + (λg)) (x))

holds if and only if for each x∗ ∈ X∗ for which x is an ε-optimal solution to (Px∗) it holds

f(x) + 〈x∗, x〉 ≤ sup
λ∈C∗,
β∈X∗

{−f∗(β)− (λg)∗U (−x∗ − β)}+ ε.

Corollary 24 Let the proper function f : X → R, x ∈ A ∩ dom f and ε ≥ 0. Then

(RCSL) ∂ε(f + δA)(x) = ∩
η>0

∪
λ∈C∗

∂ε+η+(λg)(x)(f + δU + (λg))(x)

holds if and only if for each x∗ ∈ X∗ for which x is an ε-optimal solution to (Px∗) it holds

f(x) + 〈x∗, x〉 ≤ sup
λ∈C∗

inf
x∈U

[f(x) + 〈x∗, x〉+ (λg)(x)] + ε.

Remark 9 When f(x) = 0 for all x ∈ X, for x ∈ A the condition (RCS) becomes

(RCS0) N ε
A(x) = ∩

η>0
∪

λ∈C∗,
εi≥0, i=1,2,

ε1+ε2=ε+η+(λg)(x)

(
N ε1
U (x) + ∂ε2(λg)(x)

)
.

We also consider the condition

(RCS′0) N ε′
A (x) = ∩

η>0
∪

λ∈C∗,
εi≥0, i=1,2,

ε1+ε2=ε′+η+(λg)(x)

(
N ε1
U (x) + ∂ε2(λg)(x)

)
∀ε′ ∈ [0, ε].

We have the next result, as a direct consequence of Theorem 22, which characterizes
the ε-Fenchel-Lagrange duality gap for optimization problems consisting in minimizing
linear functionals that have an ε-minimum over A at x.
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Corollary 25 For x ∈ A, the condition (RCS0) holds if and only if for each x∗ ∈ X∗

which has an ε-minimum over A at x one has

〈x∗, x〉 ≤ sup
λ∈C∗,
α∈X∗

{−σU (−x∗ − α)− (λg)∗(α)}+ ε.

The next theorem gives via (RCS0) at some x ∈ A an ε-duality gap statement for
convex optimization problems consisting in minimizing over the set A of proper convex
lower semicontinuous functions f : X → R which attain an ε-minimum over A at x and
fulfill the condition

(FRC) f∗�δ∗A is lower semicontinuous and exact at 0,

and their Fenchel-Lagrange type dual problems.

Theorem 26 Let f : X → R be a proper convex lower semicontinuous function, A be
closed convex and ε ≥ 0. When (FRC) is fulfilled, x ∈ A∩dom f is an ε-optimal solution
to (P ) and the condition (RCS′0) holds, then

f(x) ≤ sup
λ∈C∗,
α,β∈X∗

{−f∗(β)− (λg)∗(α)− σU (−α− β)}+ ε. (10)

Proof. Take a function f as requested in the hypothesis. We have

f(x) ≤ −(f + δA)∗(0) + ε

and (FRC) guarantees that there is some β ∈ X∗ such that (f+δA)∗(0) = f∗(β)+σA(−β).
Further we get

f(x) + f∗(β) + σA(−β) + δA(x) ≤ 〈β, x〉+ 〈−β, x〉+ ε,

therefore there exist ε1, ε2 ≥ 0 with ε1+ε2 = ε such that β ∈ ∂ε1f(x) and −β ∈ N ε2
A (x). By

(RCS′0) for each η > 0 there are some λη ∈ C∗ and ε3, ε4 ≥ 0 with ε3+ε4 = ε2+(ληg)(x)+η
such that −β ∈ ∂ε3(ληg)(x) + N ε4

U (x). This implies that there exists α ∈ X∗ such that
α ∈ ∂ε3(ληg)(x) and −α− β ∈ N ε4

U (x), so we have

f(x) + f∗(β) + δU (x) + σU (−α− β) + (ληg)(x) + (ληg)∗(α)

≤ 〈β, x〉 − 〈α+ β, x〉+ 〈α, x〉+ ε1 + ε3 + ε4 + η = ε1 + ε2 + (ληg)(x) + η.

Further
f(x) ≤ −f∗(β)− (ληg)∗(α)− σU (−α− β) + ε+ η,

which yields

f(x) ≤ sup
λ∈C∗,
α,β∈X∗

{−f∗(β)− (λg)∗(α)− σU (−α− β)}+ ε+ η.

Letting η converge towards 0, the proof is complete. �

Remark 10 In the preceding theorem, the relation (10) yields the condition (RCS0),
without being implied by it in general. For the other duals one can obtain similar results
with Theorem 26, too.

Remark 11 In case ε = 0 the assertion from Theorem 26 turns, via Remark 10, into an
equivalence, improving [15, Theorem 4.2] by removing the continuity assumptions on the
functions involved.
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4 Conclusions and further research

We provided new characterizations for ε-duality gap statements (with ε ≥ 0) for a con-
strained optimization problem and its Lagrange and Fenchel-Lagrange dual problems,
respectively, by means of epigraphs and ε-subdifferentials, respectively. After formulat-
ing the results in the most general frameworks, with the functions taken only proper,
we added to them convexity and topological hypotheses, which led to extending several
recent results on stable strong and total duality for constrained optimization problems
from [5, 8, 9, 15, 16] and in some cases to improving them by removing the the continuity
and nonempty domain interior assumptions of the involved functions.

We intend to extend our investigations to other classes of optimization problems, for
instance the ones containing compositions of functions as considered in [4]. Moreover,
an extension of the notion of a set closed regarding another one (cf. [4, 7, 10]) in the
direction of ε-vertical closedness can be considered, too. Note that one can formulate also
ε-optimality conditions statements for (P ) and its considered dual problems, extending
thus the corresponding optimality conditions statements from [8, 9]. Moreover, ε-Farkas
type results can be given for the considered problem by combining the statements from this
paper with ideas from [11]. Nevertheless, by defining an (η, ε)-saddle point of a function
L : X × Y → R, where η, ε ≥ 0, to be some (x, y) ∈ X × Y for which L(x, y) − η ≤
L(x, y) ≤ L(x, y) + ε for all (x, y) ∈ X × Y , the connections between such points of the
Lagrangian functions attached to the considered dual problems to (Px∗) and the ε-duality
gap for the corresponding primal-dual pair of problems can be investigated, too. An
interesting question posed to us by Dr. R.I. Boţ refers to a possible convergence of the
ε-optimal solutions of the dual problems towards optimal solutions of theirs when ε tends
to 0. This, together with the ideas mentioned above, remains subject to future research.
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