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We describe an implementation of a multi-threaded NFFT (nonequispaced fast Fourier transform)
software library and present the used parallelization approaches. Besides the NFFT kernel, the
NFFT on the two-sphere and the fast summation based on NFFT are also parallelized. Thereby, the
parallelization is based on OpenMP and the multi-threaded FFTW library. Furthermore, benchmarks
for various cases are performed. The results show that an efficiency higher than 0.50 and up to 0.79
can still be achieved at 12 threads.



1 Overview
The NFFT3 library [3] and its MATLAB interface were parallelized using OpenMP [7].
Both the non-parallel version and the multi-thread OpenMP version of the NFFT3 library provide

an identical Application Programming Interface (API). This is realized by using distinct library files
for both versions. The non-parallel version of the NFFT3 library can be found in libnfft3.so and
libnfft3.a, the multi-thread OpenMP version in libnfft3_threads.so and libnfft3_threads.a.
For the MATLAB interface, the user has to specifiy at compile time whether the non-parallel or

multi-thread OpenMP version should be built.
The following kernels of the NFFT3 library were parallelized using OpenMP:

• kernel/nfft:
– NDFT (nonequidistant discrete Fourier transform)
– NDFTà (adjoint nonequidistant discrete Fourier transform)
– NFFT (nonequidistant fast Fourier transform)
– NFFTà (adjoint nonequidistant fast Fourier transform)

• kernel/nfsft:
– NDSFT (nonequidistant discrete spherical Fourier transform, NDFT on the sphere

S2 := {x ∈ R3 : ‖x‖2 = 1})
– NDSFTà (adjoint nonequidistant discrete spherical Fourier transform)
– NFSFT (nonequidistant fast spherical Fourier transform, NFFT on the sphere S2)
– NFSFTà (adjoint nonequidistant fast spherical Fourier transform)

Furthermore, the following examples/applications, which utilize the OpenMP code, are available:

• examples/nfft/simple_test_threads (file simple_test_threads.c): simple test program
for multi-thread version of kernel/nfft

• examples/nfft/nfft_benchomp (file nfft_benchomp.c): benchmark for multi-thread version
of kernel/nfft (NFFT and NFFTà in 1D/2D/3D), which outputs speedup plots (as pgfplots)
into the LATEX file nfft_benchomp_results_plots.tex, see section 5.1 for example plots

• examples/nfsft/simple_test_threads (file simple_test_threads.c): simple test program
for multi-thread version of kernel/nfsft

• examples/nfsft/nfsft_benchomp (file nfsft_benchomp.c): benchmark for multi-thread ver-
sion of kernel/nfsft (NFSFT and NFSFTà), which outputs speedup plots (as pgfplots) into
the LATEX file nfsft_benchomp_results_plots.tex, see section 5.2 for example plots

• applications/fastsum/fastsum_test_threads (files fastsum_test.c, fastsum.c): multi-
thread version of the NFFT-based fast summation

• applications/fastsum/fastsum_benchomp (file fastsum_benchomp.c): benchmark for multi-
thread version of the NFFT-based fast summation, which outputs speedup plots (as pgfplots)
into the LATEX file fastsum_benchomp_results_plots.tex, see section 5.3 for example plots
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2 Requirements
Generally, for compiling and using the multi-thread OpenMP version of the NFFT3 library, all the
software libraries/tools as for building the non-parallel version of the NFFT3 library are required. In
addition, the FFTW library [2] version 3 with multi-thread support and a C compiler with OpenMP
2.0 [7] support have to be available.
The multi-thread OpenMP version of the NFFT3 library was tested with FFTW library version

3.3 and GCC 4.5.1, but should also work in combination with other 3.x versions of the FFTW library
and other C compilers supporting OpenMP 2.0.
When building the multi-thread OpenMP version of the MATLAB interface, a recent MATLAB

version is required. Thereby, it it strongly recommended to use MATLAB R2012a or newer.
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3 Usage

3.1 Compiling the NFFT3 library with OpenMP support
For detailed information about compiling (and installing) the NFFT3 library, we refer to the NFFT3
documentation [4].
The OpenMP support for the NFFT3 library can be enabled by running the configure script

with the option --enable-openmp. If detailed benchmarks are going to be performed, the options
--enable-measure-time and --enable-measure-time-fftw should also be added.
Then, the library can be compiled using the make command and installed using the make install

command. Afterwards, two versions of the NFFT3 library are available:

• the standard (non-parallel) version (libnfft3.so and/or libnfft3.a),

• the multi-thread OpenMP version (libnfft3_threads.so and/or libnfft3_threads.a).

3.2 Using the NFFT3 library with OpenMP support in
applications

Due to the identical API of the non-parallel and multi-thread version of the NFFT3 library, applica-
tions that already use the non-parallel version can easily switch to the multi-thread version:

1. The application must be linked against the multi-thread
OpenMP version of the NFFT3 library (libnfft3_threads.so or
libnfft3_threads.a) and the multi-thread version of the FFTW version 3.
For instance, the linking arguments may be: -lnfft3_threads -lfftw3_threads -lfftw3

2. At the beginning of the application’s main function, the FFTW function fftw_init_threads()
should be called as described in section 5 of the FFTW documentation [2].

3. If the application contains time-intensive (non-parallel) computation steps, these computation
steps should be parallelized as well.

If you intend to use the FFTW itself in your application, please note that
only FFTW plan execution is thread-safe as described in the FFTW manual! Do never
call any other FFTW functions, such as plan creation, from multi-threaded code parts of your
application as this will likely result in segmentation faults, incorrect results and strange behaviour!
As mentioned in section 1, examples which utilize the multi-thread OpenMP version of the NFFT3

library are:

• examples/nfft/simple_test_threads (file simple_test_threads.c)

• examples/nfft/nfft_benchomp (file nfft_benchomp.c)

• examples/nfsft/simple_test_threads (file simple_test_threads.c)

• examples/nfsft/nfsft_benchomp (file nfsft_benchomp.c)

• applications/fastsum/fastsum_test_threads (files fastsum_test.c, fastsum.c)

• applications/fastsum/fastsum_benchomp (file fastsum_benchomp.c)

None of these examples/applications is built unless compiling the OpenMP version has been enabled
(cf. section 3.1). Furthermore, both NFSFT examples are only compiled if the nfsft kernel has been
enabled (configure switch --enable-nfsft or --enable-all).
Please note that the configure switch --enable-all does not enable the OpenMP support.
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3.3 Compiling and using the MATLAB interface of the NFFT3
library

The MATLAB interface of the NFFT3 library currently supports the nfft and nfsft kernel. It consists
of two MATLAB Executable files (MEX-files), one for the each kernel.
Generally, for building the MATLAB interface, the option --with-matlab=MATLAB_DIR has to be

passed to the configure script, where MATLAB_DIR is the directory of the MATLAB installation.
If the MATLAB interface for the nfsft kernel should also be built, the option --enable-nfsft or
--enable-all has to be added. As mentioned before, the configure switch --enable-all does not
enable the OpenMP support.
In order to build the multi-thread OpenMP version of the MATLAB interface instead of the non-

parallel version, the option --enable-openmp has to be added, i.e. the NFFT3 library has to be
built with OpenMP support.
An example for compiling and installing the MATLAB interface of the NFFT3 library for the

nfft and nfsft kernel with OpenMP support, where the installation directory is /usr/local and the
MATLAB directory is /usr/shared/packages/matlabr2012a, may be:

1. ./configure --prefix=/usr/local --enable-nfsft --enable-openmp
--with-matlab=/usr/shared/packages/matlabr2012a

2. make

3. make install

When running the make install command, the NFFT3 library files and the MAT-
LAB interface files are installed in the directory INSTALL_DIR/lib, where INSTALL_DIR is
the installation directory (/usr/local per default if the configure option --prefix has
not been specified). MATLAB scripts demonstrating the usage of the MATLAB in-
terface are installed in INSTALL_DIR/share/nfft/matlab/nfft for the nfft kernel and in
INSTALL_DIR/share/nfft/matlab/nfsft for the nfsft kernel.
For running the example MATLAB scripts, the following steps can be completed:

1. Start MATLAB.

2. Run the command: addpath INSTALL_DIR/lib
where INSTALL_DIR is the installation directory as describe above

3. Change either to the
INSTALL_DIR/share/nfft/matlab/nfft or
INSTALL_DIR/share/nfft/matlab/nfsft directory (in MATLAB)

4. Execute the MATLAB script simple_test
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4 Implementation details

4.1 OpenMP parallelization in general
Most of the OpenMP parallelization in the NFFT3 library was performed using the OpenMP work-
sharing construct omp for (see [7, section 2.4.1]). In order to apply the construct omp for without
further helper constructs (e.g. synchronization mechanisms), certain conditions should be fulfilled:

• One for loop with one loop variable should exist and should increment/decrement this variable
between a lower and upper boundary. Alternatively in case of several nested for loops, this
should apply to the outer for loop.

• Two distinct (outer) loop iterations should not update or write to one and the same value /
array entry.

• Temporary variables defined outside the (outer) for loop should only be scalars.

• The final result should not depend on the order in which the loop iterations are executed.
Especially, results in one loop iteration should not depend on temporary variables / results
from another loop iteration.

4.2 nfft kernel
4.2.1 Notation and NFFT algorithm
Subsequently, we give a brief summary of the description of the nonequidistant fast
Fourier transform (NFFT) and its adjoint version (NFFTà) from [4, appendix B].
Let d ∈ N be the dimensionalilty, N := (N0, . . . , Nd−1)> ∈ 2Nd the multibandlimit and
IN := {−N0

2 , . . . ,
N0
2 − 1} × . . .× {−Nd−1

2 , . . . , Nd−1
2 − 1} a multi-index set with cardinality

|IN | =
∏d−1
t=0 Nt. We consider the NFFT, i.e. the fast evaluation of the trigonometric poly-

nomial
f(x) =

∑
k∈IN

f̂ke−2πikx

at nonequispaced (sampling) nodes xj := (xj, 0, . . . , xj, d−1)> ∈ Td, j = 0, . . . ,M − 1, for given
Fourier coefficients f̂k ∈ C, k ∈ IN ,

fj := f(xj) =
∑

k∈IN

f̂ke−2πikxj , j = 0, . . . ,M − 1, (4.1)

as well as the NFFTà, i.e. the fast evaluation of the adjoint problem

ĥk := h(k) =
M−1∑
j=0

fje2πikxj , k ∈ IN , (4.2)

for given coefficients fj ∈ C, j = 0, . . . ,M − 1.
Let σ > 1 be the oversampling factor, n := (n0, . . . , nd−1)> = σN ∈ 2Nd the oversampled multi-

bandlimit, In := {−n0
2 , . . . ,

n0
2 − 1} × . . .× {−nd−1

2 , . . . , nd−1
2 − 1} a multi-index set with cardinality

|In| =
∏d−1
t=0 nt, m the cut-off parameter,

In,m(xj) := {l ∈ In : n� xj −m1d ≤ l ≤ n� xj +m1d}
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Input: d, M ∈ N, N ∈ 2Nd, xj ∈ [− 1
2 , 1

2 )d, j = 0, . . . , M − 1, and f̂k ∈ C, k ∈ IN .

1: For k ∈ IN compute ĝk := |In|−1 · f̂k/ck(ϕ̃).

2: For l ∈ In compute gl :=
∑

k∈IN
ĝk e−2πik(n−1�l) by a d-variate FFT.

3: For j = 0, . . . , M − 1 compute fj :=
∑

l∈In,m(xj ) gl ϕ̃(xj − n−1 � l).

Output: Approximate function values fj , j = 0, . . . , M − 1.
Arithmetic cost: |IN |+ |In| log |In|+ 2(2m + 1)dM + evaluations of the window function.

Algorithm 1: Nonequispaced fast Fourier transform (NFFT).

Input: d, M ∈ N, N ∈ 2Nd, xj ∈ [− 1
2 , 1

2 )d, and fj ∈ C, j = 0, . . . , M − 1.

1: For l ∈ In compute gl :=
∑

j∈I>n,m(l)
fj ϕ̃(xj − n−1 � l).

2: For k ∈ IN compute ĝk :=
∑

l∈In

gl e+2πik(n−1�l) by d-variate (backward) FFT.

3: For k ∈ IN compute ĥk := |In|−1 · ĝk/ck(ϕ̃).

Output: Approximate coefficients ĥk, k ∈ IN .
Arithmetic cost: |IN |+ |In| log |In|+ 2(2m + 1)dM + evaluation of the window function.

Algorithm 2: Adjoint nonequispaced fast Fourier transform (adjoint NFFT, NFFTà).

an index set and

I>n,m(l) := {j = 0, . . . ,M − 1 : l−m1d ≤ n� xj ≤ l +m1d}

its transposed index set. Furthermore, let a window function ϕ : Rd → Rd be given, such
that its one-periodic version ϕ̃ (x) :=

∑
r∈Zd ϕ (x + r) has a uniformly convergent Fourier series

ϕ̃ (x) =
∑

k∈Zd ck (ϕ̃) e−2πikx with the Fourier coefficients

ck (ϕ̃) :=
∫
Td

ϕ̃ (x) e2πikx dx =
∫
Rd

ϕ (x) e2πikx dx =: ϕ̂ (k) , k ∈ Z,

and is well localized in the time/spatial domain Td and in the frequency domain Zd. We define the
truncated version ψ of the window function ϕ with suppψ =×d−1

t=0 [−m
nt
, mnt

] by

ψ (x) :=
{
ϕ (x) x ∈×d−1

t=0 [−m
nt
, mnt

],
0 else,

and the corresponding one-periodic version by ψ̃ (x) :=
∑

r∈Zd ψ (x + r).
As described in [4, appendix B], the trigonometric sums (4.1) and (4.2) can be evaluated fast using

algorithm 1 (NFFT) and 2 (NFFTà), respectively. The NFFT consists of three major steps and these
steps can be written in matrix-vector-notation in the form Af̂ = BF Df̂ . Thereby, D ∈ R|In|×|IN |

(step 1) is a “diagonal” matrix defined by

D :=
d−1⊗
t=0

(
Ot | diag(1/ckt

(ϕ̃))kt∈INt
| Ot

)>
with zero matrices Ot of size Nt × nt−Nt

2 , F ∈ C|In|×|In| (step 2) is the ordinary Fourier matrix,

F :=
(

e−2πk(N−1�j)
)

j,k∈In

,

and B ∈ R|M |×|In| (step 3) is a sparse matrix with at most
(
2(m+ 2)dM

)
non-zero entries,

B :=
(
ψ̃(xj − n−1 � l)

)
j=0,...,M−1; l∈In

.
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Type Name Size Description
int d 1 Spatial dimension d

int* N d Multibandwidth N
int N_total 1 Number of coefficients |IN |
int M_total 1 Number of nodes M

double complex* f_hat |IN | Fourier coefficients f̂ or
adjoint coefficients ĥ

double complex* f M Samples f

double* x dM Sampling set X := {xj}M−1
j=0

Table 4.1: Most important members of the structure nfft_plan from [4, section 3].

Correspondingly, the NFFTà consists of three major steps and these steps can be written in matrix-
vector-notation in the form Aàf = D>F àB>f .
Table 4.1 shows the most important members of the data structure nfft_plan, accessed by the

user.

4.2.2 Flag NFFT_SORT_NODES

In the non-parallel and parallel version of the NFFT3 library, the nfft_plan flag NFFT_SORT_NODES
was added. If set, the sampling nodes x[j], j = 0, . . . ,M − 1, are internally sorted as described
subsequently, which can result in a performance increase as observed in the benchmarks in section 5.1.
Therefor, the pointer int *index_x was added to the data structure nfft_plan in the header file

include/nfft3.h. When calling the initializing the NFFT/NFFTà with the flag NFFT_SORT_NODES
set, an int array of size (2M) is allocated (but not yet initialized with values) and the pointer index_x
is set to the beginning of this array. The array index_x will contain alternately a (non-unique) sort
key ∈ {0, . . . , |In| − 1} and a unique index ∈ {0, . . . ,M − 1} which refers to exactly one sampling
node xj , j = 0, . . . ,M − 1.
When the internal function static void nfft_sort_nodes(const nfft_plan *ths) is called, it

first checks if the flag NFFT_SORT_NODES is set in the given data structure nfft_plan. If positive, the
array index_x is initialized as follows. The sort key index_x[2*j], j = 0, . . . ,M − 1, is the lowest
index

uj := (uj, 0, . . . , uj, d−1)> := bn� xj −m1dc

of the multi-index set In,m(xj) in the linearized form

index_x[2*j]=(. . . (((uj, 0 n1) + uj, 1)n2 + uj, 2) . . .) nd−1 + uj, d−1

(row-major indexing). The unique indices index_x[2*j+1] refering to the sampling nodes xj ,
j = 0, . . . ,M − 1, are set index_x[2*j+1]=j. Then, the array is sorted by the sort key using a
least significant digit radix sort [5] which reorders the sort key along with the corresponding unique
index refering to a sampling node.
In the third step of the NFFT (multiplication with matrix B in matrix-vector-notation), the result

values f[j]=f(xj) are evaluated in a different order,
for k = 0→ (M − 1) do
j ← index_x[2 · k + 1]
f[j] ←

∑
l∈In,m(xj) gl ϕ(xj − l � n−1)

end for
instead of
for j = 0→ (M − 1) do
f[j] ←

∑
l∈In,m(xj) gl ϕ(xj − l � n−1)

end for
Thereby, the (inner) summation order when calculating f[j] remains unchanged, such that the
numerical results are identical regardless of whether the flag NFFT_SORT_NODES is set or not.
Correspondingly, in the first step of the NFFTà (multiplication with matrix B> in matrix-vector-

notation), the new evaluation order of gl, l ∈ In, is
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for k = 0→ (M − 1) do
j ← index_x[2 · k + 1]
for l ∈ In,m(xj) do
gl ← gl+f[j] ϕ(xj − l � n−1)

end for
end for

instead of
for j = 0→ (M − 1) do
for l ∈ In,m(xj) do
gl ← gl+f[j] ϕ(xj − l � n−1)

end for
end for

This modification results in a different summation order, which typically leads to (slightly) different
numerical results due to the usage of floating point numbers. As mentioned in section 5.1.3 and as
it is noticeable in the plots in section 5.1.2 and 5.1.3, this modified summation order can result a
distinct reduction of the computation time for both the non-parallel and the OpenMP version of the
NFFT/NFFTà due to CPU cache effects.
If the nfft_plan is initialized with one of the flags PRE_PSI, PRE_FULL_PSI or PRE_FG_PSI,

the function nfft_sort_nodes(nfft_plan *) will be called from the corresponding precompute
function nfft_precompute_psi(nfft_plan *), nfft_precompute_full_psi(nfft_plan *)
and nfft_precompute_fg_psi(nfft_plan *), respectively. Otherwise, the func-
tion nfft_sort_nodes(nfft_plan *) will be called each time the NFFT (function
nfft_trafo(nfft_plan *)) or NFFTà (function nfft_adjoint(nfft_plan *)) is executed.

4.2.3 OpenMP parallelization NDFT and NDFTà

The NDFT, i.e. the direct evaluation of the trigonometric sums (4.1),

fj := f(xj) =
∑

k∈IN

f̂ke−2πikxj , j = 0, . . . ,M − 1,

and the NDFTà, i.e. the direct evaluation of the trigonometric sums (4.2),

ĥk := h(k) =
M−1∑
j=0

fje2πikxj , k ∈ IN ,

are available through the functions nfft_trafo_direct(nfft_plan *ths) and
nfft_adjoint_direct(nfft_plan *ths), respectively. Thereby, both functions are imple-
mented using macros, the NDFT via the macro MACRO_ndft(trafo) and the NDFTà via the macro
MACRO_ndft(adjoint). For the OpenMP parallelization, these two macro calls were unrolled.

NDFT

The NDFT function nfft_trafo_direct(nfft_plan *ths) contains a distinction of cases for the
one- and multi-dimensional case. In both cases, there exists an outer loop

for (j = 0; j < ths->M_total; j++)

which considers each sampling node xj , calculates the value f(xj) and writes the resulting value to
ths->f[j]. The statements inside the for loop do not write to variables outside the outer for loop
except ths->f[j]. Therefore, the for loop can be parallelized by adding the OpenMP pragma

#pragma omp parallel for default(shared) private(j)
and moving all temporary variable definitions inside the outer for loop.

NDFTà

Similarly to the NDFT implementation, the NDFTà function
nfft_trafo_direct(nfft_plan *ths) contains the distinction of cases and an outer for loop
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over the sampling nodes xj . In contrast to before, several loop iterations may update one and the
same result entry ths->f_hat[k], which corresponds to ĥk. For example, the one-dimensional case
reads as follows:

int j;
for (j = 0; j < ths->M_total; j++)
{

int k_L;
for(k_L = 0; k_L < ths->N_total; k_L++)
{

double omega = (k_L - (ths->N_total/2)) * K2PI * ths->x[j];
ths->f_hat[k_L] += ths->f[j]*cexp(+( 1.0iF)*omega);

}
}

Furthermore, in the multi-dimensional case, intermediate results are used, i.e. the statements inside
the outer for loop use temporary variables which change from one outer loop iteration to the next
one and depend on the previous iteration. Each of these two issues causes a problem for the OpenMP
parallelization.
In both the one- and multi-dimensional case, the inner and outer loops are exchanged for the

OpenMP parallelization, whereas the non-OpenMP code remains unchanged if the non-OpenMP
version of the NDFTà is used.
For the one-dimensional case with OpenMP enabled, the resulting code is:

int k_L;
#pragma omp parallel for default(shared) private(k_L)
for(k_L = 0; k_L < ths->N_total; k_L++)
{

int j;
for (j = 0; j < ths->M_total; j++)
{

double omega = (k_L - (ths->N_total/2)) * K2PI * ths->x[j];
f_hat[k_L] += f[j]*cexp(+( 1.0iF)*omega);

}
}

Furthermore, the dependencies between loop iterations have been removed in the multi-dimensional
case.

4.2.4 OpenMP parallelization NFFT
As mentioned in section 4.2.1, the NFFT, which calculates a fast approximation to the problem (4.1),
consists of three major steps, which can be written in matrix-vector-notation as Af̂ = BF Df̂ . These
steps were parallelized as follows.

First step (diagonal matrix D)

The code of the first NFFT step (ĝk := f̂k/ck(ϕ̃), k ∈ IN ) resides inside the function nfft_trafo_1d,
nfft_trafo_2d and nfft_trafo_3d for the one-/two-/three-dimensional case and in its own function
nfft_D_A for higher dimensions. In the one-dimensional case, there exists one for loop which can be
easily parallelized.
In the two- and three-dimensional case, the code contains two and three nested loops, respectively.

For instance, the two-dimensional case (without precomputing the values ϕ̂(k � n−1), k ∈ IN ) reads
as follows:

for(k0 = 0; k0 < N0/2; k0++)
{

ck01 = K(1.0)/(PHI_HUT(k0-N0/2,0));
ck02 = K(1.0)/(PHI_HUT(k0,0));
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for(k1=0;k1<N1/2;k1++)
{

ck11 = K(1.0)/(PHI_HUT(k1-N1/2,1));
ck12 = K(1.0)/(PHI_HUT(k1,1));
g_hat[(n0-N0/2+k0)*n1+n1-N1/2+k1] = f_hat[k0*N1+k1] * ck01 * ck11;
g_hat[k0*n1+n1-N1/2+k1] = f_hat[(N0/2+k0)*N1+k1] * ck02 * ck11;
g_hat[(n0-N0/2+k0)*n1+k1] = f_hat[k0*N1+N1/2+k1] * ck01 * ck12;
g_hat[k0*n1+k1] = f_hat[(N0/2+k0)*N1+N1/2+k1] * ck02 * ck12;

}
}

Due to this code structure, only the outer loop (for (k0 ...)) was parallelized using an OpenMP for
pragma. Therefore, only up to N0/2 threads can be used by OpenMP limiting the possible speedup
for the current step to N0/2.
In the higher dimensional case (d > 3), the non-OpenMP implementation uses a single loop

for (k_L = 0; k_L < ths->N_total; k_L++), ths->N_total = |IN |, and internally calculates
and increments the multi-index k, i.e. one loop iteration uses (temporary) values from the previous
iteration.
Therefore, the OpenMP code was rewritten based on the existing code. Instead of incrementing

the multi-index k, k is re-calculated each loop iteration from the loop variable k_L. The advantage of
this approach is clearly that the (theoretically) usable number of threads is ths->N_total. However,
the disadvantage of this implementation is that the multi-index k has to be calculated for each loop
iteration and this calculation particularly uses integer division and modulo operations, which may
be more time-consuming than increment and compare operations.
The original function nfft_D_A containing the non-OpenMP code was renamed to

nfft_D_serial_A, the OpenMP implementation was written to the function nfft_D_openmp_A. A
new function nfft_D_A was implemented that calls either nfft_D_serial_A or nfft_D_openmp_A.

Second step (Fourier matrix F)

Since the FFTW library is used for executing this step, the multi-threaded version of the FTTW is
simply used if the NFFT is compiled with OpenMP support. Thereby, only FFTW plan execution
is thread-safe as described in [2, section 5].
By default, the multi-threaded FFTW will only use one thread for the FFT unless a higher

number of threads is specified. For changing the number of threads to be used, the function
fftw_plan_with_nthreads(int) has to be called before a planning function. All FFTW plans
created afterwards will use the specified number of threads, whereas already created FFTW plans
will use the number of threads valid at their respective creation time.
The FFT in this step uses the same number of threads as available in the first and third step. This

is achieved by calling the following helper function

int nfft_get_omp_num_threads()
{

int nthreads_return_value;
#pragma omp parallel default(shared)
{

int nthreads = omp_get_num_threads();
#pragma omp master
{

nthreads_return_value = nthreads;
}

}
return nthreads_return_value;

}

FFTW plan creation in the internal NFFT function nfft_init_help uses a critical section to
set the number of FFTW threads and create the internal FFTW plans. This ensures that the init
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functions of the nfft kernel can be called concurrently from several threads. In particular, it is possible
to concurrently initialize and run several nfft plans with a different number of threads.
The code in the internal NFFT function nfft_init_help looks as follows.

#ifdef _OPENMP
{

int nthreads = nfft_get_omp_num_threads();

#pragma omp critical (nfft_omp_critical_fftw_plan)
{

fftw_plan_with_nthreads(nthreads);
ths->my_fftw_plan1 = fftw_plan_dft(ths->d, ths->n, ths->g1, ths->g2,

FFTW_FORWARD, ths->fftw_flags);
ths->my_fftw_plan2 = fftw_plan_dft(ths->d, ths->n, ths->g2, ths->g1,

FFTW_BACKWARD, ths->fftw_flags);
}

}
#else

ths->my_fftw_plan1 = fftw_plan_dft(ths->d, ths->n, ths->g1, ths->g2,
FFTW_FORWARD, ths->fftw_flags);

ths->my_fftw_plan2 = fftw_plan_dft(ths->d, ths->n, ths->g2, ths->g1,
FFTW_BACKWARD, ths->fftw_flags);

#endif

Third step (sparse matrix B)

The code for the third step of the NFFT (f(xj) =
∑

l∈In,m(xj) gl ϕ(xj − l � n−1), j = 0, . . . ,M − 1)
resides in the functions nfft_trafo_1d_B, nfft_trafo_2d_B, nfft_trafo_3d_B and nfft_B_A for
the one-/two-/three-dimensional case and for the case d ≥ 4, respectively. In each of these func-
tions, the implementation has a distinction of cases for the NFFT flags PRE_FULL_PSI, PRE_PSI,
PRE_FG_PSI, FG_PSI, PRE_LIN_PSI and if none of the aforementioned flags is set. In each case, there
exists an outer loop of the form

for (k = 0; k < M; k++)
{

int j = (ths->nfft_flags & NFFT_SORT_NODES) ? ths->index_x[2*k+1] : k;

...
}

which iterates over the sampling nodes xj and which contains one or several inner loop(s)
iterating over the index set In,m(xj). Thereby, the computation in one outer loop itera-
tion does not depend on another one. Therefore, the definitions of all (temporary) variables
used inside the outer loop were moved from the beginning of the functions into the outer
loop and then, the outer loop could be simply parallelized by adding the OpenMP pragma
#pragma omp parallel for default(shared) private(k) in front.

4.2.5 OpenMP parallelization NFFTà

The NFFTà consists of three major steps, Aàf = D>F àB>f , as described in section 4.2.1. These
steps were parallelized similar to the NFFT with special attention to the first calculation step.

First step (sparse matrix B>)

The code for this step resides in the functions nfft_adjoint_1d_B, nfft_adjoint_2d_B,
nfft_adjoint_3d_B and nfft_B_T for the cases d = 1, d = 2, d = 3 and d ≥ 4, respectively.
Similarly, to the original implementation of the NDFTà as described in section 4.2.3, there exists

an outer loop iterating over the the sampling nodes xj and several loop iterations may update one
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and the same entry in the array ths->g of the corresponding nfft_plan *ths. In pseudo code, this
step calculates:
for j = 0→ (M − 1) do
for l ∈ In,m(xj) do
gl ← gl+f[j] ϕ(xj − l � n−1)

end for
end for
However, it is problematic to exchange the inner and outer loops this time, since determining

the adjoint I>n,m(l) := {j = 0, . . . ,M − 1 : l−m1d ≤ n� xj ≤ l +m1d} of the index set In,m(xj)
is more difficult.
One simple modification is to parallelize the outer loop iterating over the sampling nodes xj , while

ensuring that the update operations to the array ths->g from within the inner loops are performed
atomically. This can be achieved using the OpenMP statement atomic which creates a critical section
for the updates.
Another implementation is available via the nfft_plan flag NFFT_OMP_BLOCKWISE_ADJOINT. If set,

the array ths->g (values gl) is “distributed” among the threads, i.e. each thread is responsible for
updating a (continuous) portion of the array ths->g.
Therefor, gl is (almost) uniformly divided along its first dimension. Let T ∈ N be the number of

OpenMP threads, i(r)
u0 ∈ {0, . . . , n0 − 1} the lower index boundary (in the first dimension) of thread

r and i(r)
o0 ∈ {0, . . . , n0 − 1} the upper index boundary (in the first dimension) of thread r, whereat

i(r)
o0
− i(r)

u0
∈ {bn0/T c, bn0/T c+ 1} (r ∈ {0, . . . , T − 1}),

i(r)
u0

> i(r−1)
o0

(r ∈ {1, . . . , T − 1}),
T−1∑
r=0

i(r)
o0
− i(r)

u0
= n0, i(0)

u0
:= 0, i(T−1)

o0
:= n0 − 1.

Then, thread r, r ∈ {0, . . . , T − 1}, (and only this thread) is responsible for calculating the coefficients

gl′ , l′ := (l′0, . . . , l′d−1)> ∈ In ∩
(
{i(r)

u0
, . . . , i(r)

o0
} × Zd−1

)
,

and for updating the entries ths->g[i(r)
u0

∏d−1
t=1 nt . . . (i(r)

o0 + 1)(
∏d−1
t=1 nt)− 1]. Each thread has to

determine the corresponding sampling nodes

xj′ , j
′ ∈ IX (r) :=

⋃
l′:=(l′0,...,l

′
d−1)>∈In

l′0∈{(i
(r)
u0 ,... ,i

(r)
o0 }

I>n,m (l′) .

Using the definition of the lowest index

uj := (uj, 0, . . . , uj, d−1)> := bn� xj −m1dc

of the multi-index set In,m(xj) from section 4.2.2, we get

IX (r) =
{
j ∈ {0, . . . ,M − 1} : 0 ≤

(
(uj,0 − i(r)

u0
) mod n0

)
≤ 2m+ 1

}
.

Next, we can use the sort index index_x[2*k] from section 4.2.2 and perform a binary search for
the lowest index uj in the entries of the array index_x. Let

min_u_a(r) := max{0, (i(r)
u0
− 2m− 1)

d−1∏
t=1

nt},

max_u_a(r) := min{(
d−1∏
t=0

nt)− 1 , (i(r)
o0

+ 1)(
d−1∏
t=1

nt)− 1},

min_u_b(r) := (i(r)
u0
− 2m− 1)

d−1∏
t=1

nt,

max_u_b(r) := (
d−1∏
t=0

nt)− 1,
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IX (r)
a

:=
{
k ∈ {0, . . . ,M − 1} : min_u_a(r) ≤ index_x[2 ∗ k] ≤ max_u_a(r)

}
,

IX (r)
b

:=
{{

k ∈ {0, . . . ,M − 1} : min_u_b(r) ≤ index_x[2 ∗ k] ≤ max_u_b(r)} if 2m+ 1 ≤ i(r)
u0

∅ otherwise.

Then, IX (r)
a
∩ IX (r)

b
= ∅ and IX (r) = IX (r)

a
∪ IX (r)

b
. We determine

k(r)
amin

:= min
{

k ∈ {0, . . . ,M − 1} : min_u_a(r) ≤ index_x[2 ∗ k]
}

and get
IX (r)

a
=
{

index_x[2 ∗ k + 1] : k(r)
amin
≤ k ≤ k(r)

amax

}
with k(r)

amax := max
{

k ∈ {0, . . . ,M − 1} : index_x[2 ∗ k] ≤ max_u_a(r)}. In the case IX (r)
b
6= ∅, we

also determine

k
(r)
bmin

:= min
{
k ∈ {0, . . . ,M − 1} : min_u_b(r) ≤ index_x[2 ∗ k]

}
.

and get
IX (r)

b
=
{

index_x[2 ∗ k + 1] : k(r)
bmin
≤ k ≤ k(r)

bmax

}
with k(r)

bmax
:= max

{
k ∈ {0, . . . ,M − 1} : index_x[2 ∗ k] ≤ max_u_b(r)}.

Based on these definitions, the non-parallel implementation of this first step was modified for the
one-/two-/three-dimensional case as follows.
If the OpenMP version is built and the nfft_plan flag NFFT_OMP_BLOCKWISE_ADJOINT

is not set, an outer for loop iterating over the sampling nodes xj is used and the sub-
function nfft_adjoint_1d_compute_omp_atomic, nfft_adjoint_2d_compute_omp_atomic
or nfft_adjoint_3d_compute_omp_atomic is called inside the outer loop (in-
stead of nfft_adjoint_1d_compute_serial, nfft_adjoint_2d_compute_serial or
nfft_adjoint_3d_compute_serial in the non-OpenMP version). Inside this sub-function,
the entries of the array ths->g are updated using the OpenMP statement atomic.
Otherwise, if the nfft_plan flag NFFT_OMP_BLOCKWISE_ADJOINT is set, the values i

(r)
u0 ,

i
(r)
o0 , min_u_a(r), max_u_a(r), min_u_b(r) and max_u_b(r) are determined for each thread
r calling the helper function nfft_adjoint_B_omp_blockwise_init from within an OpenMP
parallel section and the index array index_x of the sampling nodes xj is sorted as de-
scribed above. Then, each (participating) thread performs a binary search for the low-
est k

(r)
amin and, if IX (r)

b
6= ∅, for k

(r)
bmin

. For each k ∈ IX (r)
a

and k ∈ IX (r)
a

, the sub-
function nfft_adjoint_1d_compute_omp_blockwise, nfft_adjoint_2d_compute_omp_blockwise
or nfft_adjoint_3d_compute_omp_blockwise is called with the corresponding sampling node xj ,
j = index_x[2 ∗ k], as function argument.
For the case d ≥ 4, the original non-OpenMP function nfft_B_T was renamed to nfft_B_serial_T

and the OpenMP version was implemented inside the function nfft_B_openmp_T. The function
nfft_B_T calls either nfft_B_serial_T for the non-OpenMP version or nfft_B_openmp_T for the
OpenMP version of the NFFT3 library.
The implementation of nfft_B_openmp_T currently ignores the nfft_plan flag

NFFT_OMP_BLOCKWISE_ADJOINT and only supports atomic updates of the entries in the array
ths->g.

Second step (Fourier matrix Fà)

Since the FFTW library is used for executing this step, the FFTW is called as described for the
second step of the NFFT in section 4.2.4.

Third step (diagonal matrix D>)

For the one-/two-/three-dimensional case, the code of the last NFFTà step resides inside the functions
nfft_adjoint_1d, nfft_adjoint_2d and nfft_adjoint_3d, for higher dimensions in the function
nfft_D_T.
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flag enabled description
PRE_PHI_HUT yes pre-compute ck(ϕ̃), k ∈ IN , during initialization
MALLOC_X yes allocate array double *x of

sampling nodes xj during initialization
MALLOC_F_HAT yes allocate array double complex *f_hat of

Fourier coefficients f̂k, k ∈ IN ,
during initialization

MALLOC_F yes allocate array double complex *f of
sampling values f(xj), j = 0, . . . ,M − 1,
during initialization

FFTW_INIT yes create FFTW plans for NFFT and NFFTà
during initialization

FFT_OUT_OF_PLACE yes out-of-place FFT (different arrays for the
input and output values of the FFT)

PRE_PSI yes use pre-computed values of ψ(xj − n−1 � l) in
third step of NFFT (matrix B) /
first step of NFFTà (matrix B>)

NFFT_SORT_NODES d ≥ 2 sort sampling nodes as described in section 4.2.2
NFFT_OMP_BLOCKWISE_ADJOINT d ≥ 2 special multi-thread implementation of the

OpenMP first step of NFFTà as described in section 4.2.5

Table 4.2: NFFT/NFFTà flags set when one of the initialization functions nfft_init_1d,
nfft_init_2d, nfft_init_3d or nfft_init is called.

The OpenMP parallelization was performed corresponding to the the first step of the NFFT as
described in section 4.2.4. Therefore, the possible speedup of this step is limited to N0/2 in the
one-/two-/three-dimensional case.
The original function nfft_D_T containing the non-OpenMP code was renamed to

nfft_D_serial_T, the OpenMP implementation was written to the function nfft_D_openmp_T. A
new function nfft_D_T was implemented that calls either nfft_D_serial_T or nfft_D_openmp_T.

4.2.6 Default flags for NFFT and NFFTà

When the data structure nfft_plan is initialized using the simple API, i.e. when one
of the initialization functions nfft_init_1d, nfft_init_2d, nfft_init_3d or nfft_init is
called, the NFFT/NFFTà flags PRE_PHI_HUT, MALLOC_X, MALLOC_F_HAT, MALLOC_F, FFTW_INIT,
FFT_OUT_OF_PLACE and PRE_PSI are always set. Furthermore, in the multi-dimensional case (d ≥ 2),
the flag NFFT_SORT_NODES is also set. If the multi-thread OpenMP version of the NFFT3 library is
built, the flag NFFT_OMP_BLOCKWISE_ADJOINT is additionally set in the multi-dimensional case. Table
4.2.6 summarizes the enabled flags and gives a short description of these flags.
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4.3 nfsft kernel
In this section, the OpenMP parallelization of the NFSFT (nonequidistant fast spherical Fourier
transform, NFFT on the sphere, cf. [9, 6]) and of the adjoint problem NFSFTà are described.
Thereby, the NFSFT denotes the fast evaluation of a function f ∈ L2(S2) with the finite orthogonal
expansion

f(ϑ, ϕ) =
N∑
k=0

k∑
n=−k

ankY
n
k (ϑ, ϕ), N ∈ N0,

in terms of spherical harmonics Y nk for given spherical Fourier coefficients ank ∈ C at arbitrary nodes
(ϑj , ϕj) ∈ S2 := {x ∈ R3 : ‖x‖2 = 1}, j = 0, . . . ,M − 1, M ∈ N, in spherical coordinates,

f(ϑj , ϕj) =
N∑
k=0

k∑
n=−k

ankY
n
k (ϑj , ϕj), j = 0, . . . ,M − 1, (4.3)

and the NFSFTà the fast evaluation of the sums

ãnk :=
M−1∑
j=0

f (ϑj , ϕj)Y nk (ϑj , ϕj), k = 0, . . . , N, n = −k, . . . , k. (4.4)

for given function values f (ϑj , ϕj) ∈ C, j = 0, . . . ,M − 1, M ∈ N.

4.3.1 OpenMP parallelization NDSFT and NDSFTà

The NDSFT, i.e. the direct evaluation of the problem (4.3), resides in the function
nfsft_trafo_direct and the NDSFTà, i.e. the direct evaluation of the problem (4.4), resides
in the function nfsft_adjoint_direct. Both were parallelized by adding the OpenMP pragma
#pragma omp parallel for in front of the outer for loop, which iterates over the sampling nodes in
case of the NDSFT and over the coefficients ãnk in case of the NDSFTà, since the calculations inside
the outer for loop are independent and update distinct result entries at each loop iteration.

4.3.2 OpenMP parallelization NFSFT
The NFSFT consists of three major steps

1. (2N + 1) discrete/fast polynomial transforms (DPT/FPT),

2. conversion of Chebyshev coefficients to Fourier coefficients (c2e),

3. two-dimensional NDFT/NFFT with multibandlimit (2N + 2, 2N + 2)>,

and resides in the function nfsft_trafo.

DPT/FPT

Due to the (2N+1) independent DPTs/FPTs called in this step, one obvious parallelization approach
would be to concurrently execute the DPTs/FPTs by the available threads with minor modifications
to the DPT/FPT code itself.
With the current implementation of the DPT/FPT, it is not possible to concurrently run sev-

eral DPTs/FPTs with one and the same instance of the data structure fpt_set. Therefore, the
element fpt_set set inside the internal NFSFT data structure nfsft_wisdom has to be dupli-
cated by the number of threads and each thread has to initialize its fpt_set inside the function
nfsft_precompute. As a consequence, each thread performing a DPT/FPT plans its own discrete
cosine transform (DCT). The modification to the NFSFT struct nfsft_wisdom looks like:

struct nfsft_wisdom
{

...
#ifdef _OPENMP
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int nthreads;
fpt_set *set_threads;

#else
fpt_set set;

#endif
};

Since the DPT/FPT internally uses the FFTW for performing DCTs, it must be ensured, as men-
tioned in section 3.2, that FFTW plan creation/destroying functions are not concurrently executed.
This is realized by enclosing all non plan-executing FFTW function in an OpenMP critical section
with the identifier nfft_omp_critical_fftw_plan, which is the same identifier like in section 4.2.4.
Although each thread plans its own DCT one after the other, the FFTW library internally performs
the time-consuming parts of planning operations only once, since all DCTs are planned using identical
parameters and the FFTW library internally memorizes planning results (cf. [2, section 4.3]).

c2e

This step was not parallelized, since it only requires a small part of the total computation time as
benchmarks show.

2D NDFT/NFFT

The OpenMP implementation of the NDFT/NFFT from section 4.2 is called.

4.3.3 OpenMP parallelization NFSFTà

The NFSFTà consists of three major steps

1. two-dimensional NDFTà/NFFTà with multibandlimit (2N + 2, 2N + 2)>,

2. conversion of Fourier coefficients to Chebyshev coefficients (c2e>),

3. (2N + 1) transposed discrete/fast polynomial transforms (DPT>/FPT>),

and resides in the function nfsft_adjoint.

2D NDFTà/NFFTà

The OpenMP implementation of the NDFTà/NFFTà from section 4.2 is called.

c2e>

This step was not parallelized, since it only requires a small part of the total computation time as
benchmarks show.

DPT>/FPT>

The same (modified) nfsft_wisdom as in the first step of section 4.3.2 is used and the (2N + 1)
adjoint DPTs/FPTs are concurrently executed by the threads.
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4.4 NFFT-based fast summation (fastsum)
In this section, we consider the OpenMP parallelization of the NFFT-based fast summation (cf.
[8, 1]) in applications/fastsum, i.e. the fast approximate evaluation of the sums

f(yj) :=
L−1∑
`=0

α`K(yj − x`), j = 0, . . . ,M − 1,

where K : Rd → C is a special kernel function, yj ∈ Rd are the target nodes, x` ∈ Rd the source
nodes and α` ∈ C coefficients associated with the source nodes.
Let N := (N0, . . . , Nd−1)> ∈ 2Nd be the multibandlimit, σ > 1 the oversampling factor,

n := σN ∈ 2Nd the oversampled multibandlimit, p ∈ N the smoothness parameter, εI < 1/4 the near
field size (/ size of the inner regularization region) and εB < 1/4 the size of the outer regularization
region. The kernel K is regularized near the boundaries of the d-dimensional torus Td := [−1/2, 1/2)d
and (in case of a singularity at the origin) near the origin in order to obtain a smooth 1-periodic version
KR ∈ Cp−1(Rd), which is identical to the kernel K at

{
x ∈ Td : εI ≤ ‖x‖2 ≤ 1/2− εB

}
. Therefor, a

two-point Taylor interpolation (cf. [1, section V.2.2]) of degree p, i.e. a polynomial of at most degree
(2p− 1), is used for the inner and outer regularization region, respectively. Then, the regularized
kernel KR is approximated by the trigonometric polynomial

KRF(x) :=
∑

k∈In

bk e2πikx

with the Fourier coefficients bk ∈ C given by

bk := 1
|In|

∑
l∈In

KR
(
l� n−1) e2πik(l�n−1), k ∈ In. (4.5)

Since K = KRF + (K −KR) + (KR −KRF) ≈ KRF + (K −KR), we obtain

f(yj) ≈
L−1∑
`=0

α`KRF(yj − x`) +
L−1∑
`=0

α` (K −KR)(yj − x`)

=
L−1∑
`=0

α`
∑

k∈In

bk e2πik(yj−x`) +
L−1∑
`=0

‖yj−x`‖2<εI

α` (K −KR)(yj − x`)

=
∑

k∈In

(
bk

L−1∑
`=0

α` e−2πikx`

)
e2πikyj

︸ ︷︷ ︸
=:fRF(yj)

+
L−1∑
`=0

‖yj−x`‖2<εI

α` (K −KR)(yj − x`)

︸ ︷︷ ︸
=:fNE(yj)

. (4.6)

In the current implementation, the kernel K : Rd → C may be an arbitrary function without sin-
gularities except for the origin in the one-dimensional case and a radial function without singularities
except for the origin in the multi-dimensional case, respectively. Furthermore, the target nodes yj
and source nodes x` must be from the ball

{
x ∈ Rd : ‖x‖2 ≤ 1/4− εB/2

}
.
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The NFFT-based fast summation consists of the following (major) steps.

1. Precomputing step:
a) node independent: calculate Fourier coefficients bk by (4.5),
b) (source and target node) dependent: precompute entries of (NFFT) matrix B for source

and target nodes,
c) source node dependent: initialize internal data structures for the efficient evaluation of

the sums in fNE(yj), i.e. either build a search tree for the source nodes x` or sort x` into
boxes of edge length εI that partition the box [−1/4 + εB/2, 1/4− εB/2]d.

2. Calculation step (see equation (4.6)):
a) NFFTà of the coefficients α` at the source nodes x`,
b) multiplication of the resulting Fourier coefficients from sub-step 2a and the Fourier coef-

ficients bk from sub-step 1a,
c) obtain fRF(yj) by NFFT of resulting coefficients from sub-step 2b at the target nodes yj ,
d) near field correction, evaluate fNE(yj) and obtain approximation

f(yj) ≈ fRF(yj) + fNE(yj).

In the node independent sub-step 1a, the regularized kernel KR is evaluated for all l ∈ In. Since
the function evaluations are independent from one another, the OpenMP pragma

#pragma omp parallel for default(shared) private(l)
was added without further modifications. Afterwards, the parallel FFTW is executed.
In sub-step 1b, either the function nfft_precompute_lin_psi, nfft_precompute_psi or

nfft_precompute_full_psi is called, which all were already parallelized as described in section 4.2.
The initialization of the internal data structures in sub-step 1c was not parallelized due to heavy

data dependencies and since this sub-step only requires a small part of the total computation time
as benchmarks show.
For the sub-steps 2a and 2c, the parallel version of the nfft kernel from section 4.2 is used. The

multiplication in sub-step 2b is parallelized by adding an OpenMP pragma as for sub-step 1a.
The near field correction in sub-step 2d consists of an outer for loop iterating over the target

nodes yj , y = 0, . . . ,M − 1, and a call to a helper function, which efficiently determines one of
the values fNE(yj) in each iteration using either the search tree or the partitioning of the box
[−1/4 + εB/2, 1/4− εB/2]d from sub-step 1c. As in previous sub-steps, the OpenMP pragma

#pragma omp parallel for default(shared) private(j)
was added.
Furthermore, a function call to the FFTW function fftw_init_threads() was added at the begin-

ning of the main() function in applications/fastsum/fastsum_test.c as described in section 3.2.
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4.5 MATLAB interface
Subsequently, the modifications to the MATLAB interface for adding the OpenMP support are
described.
The current implementation of the MATLAB interface for both the nfft and nfsft kernel overwrite

the memory allocation and deallocation functions nfft_malloc and nfft_free of the NFFT3 library
via function hooking. When the nfft_malloc function is called, it calls the nfft_mex_malloc
function provided by the MATLAB interface instead of using the FFTW memory allocation function
(fftw_malloc for FFTW with double precision). Likewise, when the nfft_free function is called,
it calls the nfft_mex_free function instead of using the FFTW memory deallocation function. The
functions nfft_mex_malloc and nfft_mex_free internally call the MATLAB memory functions
mxMalloc and mxFree, respectively.
However, the MATLAB memory functions mxMalloc and mxFree are not thread-safe. Calling

these functions from parallelized code will likely cause MATLAB to exit abnormally. For instance,
in the current implementation of the nfsft kernel (see section 4.3), several FPTs may be initial-
ized in the nfsft_precompute function from OpenMP threads, where the functions fpt_init and
fpt_precompute both contain many calls to the nfft_malloc function. Therefore, OpenMP critical
sections were added to the nfft_mex_malloc and nfft_mex_free functions in matlab/malloc.c.
Thereby, the resulting code of the nfft_mex_malloc function looks like:

void *nfft_mex_malloc(size_t n)
{

void *p;
#pragma omp critical (nfft_omp_matlab)
{

p = mxMalloc(n);

if (!p)
mexErrMsgTxt("Not enough memory.");

mexMakeMemoryPersistent(p);
}
return p;

}

The remaining code of the MATLAB interface was not modified.
Furthermore, two options were added to the configure script, these options are described in

table 4.3. For instance, the following configure options prepare building the multi-thread OpenMP
version of the NFFT3 library and the non-parallel version of the MATLAB interface (with MATLAB
installed in /usr/shared/packages/matlabr2012a):

./configure --with-matlab=/usr/shared/packages/matlabr2012a
--enable-nfsft --enable-openmp --disable-matlab-threads

option description
--with-matlab-fftw3-libdir=DIR compile the MATLAB interface with the FFTW library

from the directory DIR instead of using the FFTW library
from MATLAB or the system

--enable-matlab-threads compile the MATLAB interface with OpenMP support,
set per default if multi-thread OpenMP version of the
NFFT3 library is built (option --enable-openmp),
--disable-matlab-threads allows building the
non-parallel version of the MATLAB interface when the
multi-thread version of the NFFT3 library is built

Table 4.3: Options added to the configure script concerning the MATLAB interface.
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5 Benchmark results
All tests were performed on a computer named riemann with two Intel Xeon X5690 3.47GHz
CPUs (12MB CPU cache and 6 physical CPU cores each, 12 physical CPU cores total), 144GB
DDR3/PC1333 RAM and running openSUSE Linux 11.4. Computation time measurements were
repeated five times and the average computation time was used.

5.1 nfft kernel
Let N := (N0, . . . , Nd−1)> ∈ 2Nd be the multibandlimit, N := N0 = N1 = . . . = Nd−1,
σ > 1 the oversampling factor, M the number of sampling nodes and m the cut-off parame-
ter. The Fourier coefficients are chosen uniform-randomly from [0, 1] + i[0, 1] and the sampling nodes
from Td.
For the benchmarks performed in this section, the entries of the matrix B (last step of the NFFT)

and of the matrix B> (first step of the NFFTà) are not precomputed. This is denoted by “nopsi” in
the plots. If the NFFT precomputation flag PRE_PSI was used and the precomputing time was also
taken into consideration, the total NFFT/NFFTà computation time would be almost identical with
and without precomputation.
In this section, the speedup of the OpenMP parallelization is determined. Furthermore, the

effects of sorting the sampling nodes (flag NFFT_SORT_NODES, see section 4.2) and of using the
flag NFFT_OMP_BLOCKWISE_ADJOINT (cf. section 4.2) for the NFFTà are determined. Thereby,
“unsorted” denotes the NFFT/NFFTà runs without setting the flags NFFT_SORT_NODES and
NFFT_OMP_BLOCKWISE_ADJOINT, “sorted” the runs with flag NFFT_SORT_NODES set, and “blockwise
adjoint” the runs with both flags set.
The performance gain of the parallel implementation is compared with the fastest (available) serial

implementation of the NFFT and NFFTà, respectively. Therefore, as base time for calculating the
speedup, the lowest (non-parallel) computation time from “unsorted” / “sorted” is used for the NFFT
and from “unsorted” / “sorted” / “blockwise adjoint” for the NFFTà. For calculating the speedup
at one thread, the non-parallel computation times are used, i.e. the lowest of the two / three (non-
parallel) computation times is divided by the respective (non-parallel) computation time, resulting
in a speedup of exactly one (at one thread) for the fastest algorithm and of not greater than one for
the remaining algorithms.
The code for performing benchmarks and creating plots similar to the ones in this section can

be found in examples/nfft/nfft_benchomp.c (performs all benchmarks and creates plots) and in
examples/nfft/nfft_benchomp_detail.c (runs single benchmark).

5.1.1 1d
Figures 5.1 and 5.2 show the measured computation times for each step of the one-dimensional NFFT
and NFFTà with unsorted sampling nodes. Thereby, the computation times of the third step of the
NFFT (multiplication matrix B) and of the first step of the NFFTà (multiplication matrix B>) are
significantly higher than the computation times of the other steps. Furthermore, the computation
times of the aforementioned steps and the total computation times considerably decrease for an
increasing number of computation threads until 8 threads, the computation times of the FFTW
considerably decrease until 4 threads. It is important to mention that only third step of the NFFT
and the first step of the NFFTà depend on the number of sampling nodesM and the cut-off parameter
m and each of these both steps has a computational complexity of O

(
(2m+ 2)dM

)
arithmetic

operations. Therefore, the computation times of the aforementioned steps can be drastically lower or
higher than shown in the plots. For instance, if the number of sampling nodesM was only 1/10 of the
value in the plots, the second step of the NFFT/NFFTà (FTTW) would be the most time-consuming
step.
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Figure 5.1: Computation times of 1d NFFT with multibandlimit N = 221 = 2097152 = |IN |, over-
sampling factor σ = 2, number of sampling nodes M = 221 = 2097152, cut-off parameter
m = 6 and without precomputation of matrix B for unsorted sampling nodes.
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Figure 5.2: Computation times of 1d NFFTà with multibandlimit N = 221 = 2097152 = |IN |, over-
sampling factor σ = 2, number of sampling nodes M = 221 = 2097152, cut-off parameter
m = 6 and without precomputation of matrix B for unsorted sampling nodes.
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Figure 5.3: Speedup of 1d NFFT with multibandlimit N = 221 = 2097152 = |IN |, oversampling fac-
tor σ = 2, number of sampling nodes M = 221 = 2097152, cut-off parameter m = 6 and
without precomputation of matrix B for unsorted and sorted sampling nodes.
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Figure 5.4: Speedup of 1d NFFTà with multibandlimit N = 221 = 2097152 = |IN |, oversampling fac-
tor σ = 2, number of sampling nodes M = 221 = 2097152, cut-off parameter m = 6 and
without precomputation of matrix B for atomic updates with unsorted and sorted sam-
pling nodes as well as flag NFFT_OMP_BLOCKWISE_ADJOINT set (“blockwise adjoint”).
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In addition, figure 5.3 shows the speedups for the runs of the one-dimensional NFFT, figure 5.4
for the runs of the one-dimensional NFFTà. For the chosen parameters, the results show that with
12 threads a speedup of 7.26 (efficiency 0.61) for the NFFT and of about 6.37 (efficiency 0.53) can
be reached. Furthermore, not sorting the sampling nodes seems to be faster for the NFFT at all
considered thread numbers and for the NFFTà at 12 threads. The cause for this is very likely the
time required sorting the nodes.

5.1.2 2d
Figure 5.5 shows the speedups for the runs of the two-dimensional NFFT, figure 5.6 for the runs
of the two-dimensional NFFTà. In the two-dimensional case, sorting the sampling nodes results in
a considerably higher speedup than the “unsorted” variant for the chosen parameters. Setting the
flag NFFT_OMP_BLOCKWISE_ADJOINT (graph “blockwise adjoint”) more than doubles the speedup once
again for the NFFTà. The results show that with 12 threads a speedup of 7.51 (efficiency 0.63) for
the “sorted” variant of the NFFT and of about 7.23 (efficiency 0.60) for the “blockwise adjoint”
variant of the NFFTà can be reached.
One important cause for the higher speedup of the “sorted” runs is that the chosen sort order can

heavily reduce the cache misses in the third step of the NFFT (matrix B) and in the first step of the
NFFT NFFTà (matrix B>) when accessing the values gl, cf. section 5.1.3 for concrete numbers in
the three-dimensional case. The better speedup of the “blockwise adjoint” variant of the NFFTà is
most likely due to the removal of the (2M(2m + 2)d) synchronization operations (OpenMP atomic
operations) when updating the values gl in the first computation step (cf. section 4.2.5).
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Figure 5.5: Speedup of 2d NFFT with multibandlimit N = 210 = 1024, |IN | = 220, oversampling fac-
tor σ = 2, number of sampling nodes M = 220 = 1048576, cut-off parameter m = 6 and
without precomputation of matrix B for unsorted and sorted sampling nodes.
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Figure 5.6: Speedup of 2d NFFTà with multibandlimit N = 210 = 1024, |IN | = 220, oversampling
factor σ = 2, number of sampling nodes M = 220 = 1048576, cut-off parameter m = 6
and without precomputation of matrix B for atomic updates with unsorted and sorted
sampling nodes as well as flag NFFT_OMP_BLOCKWISE_ADJOINT set (“blockwise adjoint”).
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5.1.3 3d
Figure 5.7 shows the speedups for the runs of the three-dimensional NFFT, figure 5.8 for the
runs of the three-dimensional NFFTà. As in the two-dimensional case, the “sorted” variant has
a considerably higher speedup than the “unsorted” for the chosen parameters and setting the flag
NFFT_OMP_BLOCKWISE_ADJOINT more than doubles the speedup compared to the “sorted” variant in
case of the NFFTà. The results show that with 12 threads a speedup of 9.47 (efficiency 0.79) for the
“sorted” variant of the NFFT and of about 7.51 (efficiency 0.63) for the “blockwise adjoint” variant
of the NFFTà can be reached.
Running the valgrind module CacheGrind on the non-parallel version of the three-dimensional

NFFT showed a dramatically smaller (last-level) CPU cache miss rate of 0.1% instead of 3.3% and
a total amount of ≈ 73 millon read misses instead of ≈ 1726 million. Since only the last step of
the NFFT (matrix B) depends on the sampling nodes and the matrix B is computed on-the-fly
(“nopsi”), the most likely explaination is that the sort order of the sampling nodes heavily reduces
the number of cache misses when accessing (reading) the values gl.
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Figure 5.7: Speedup of 3d NFFT with multibandlimit N = 27 = 128, |IN | = 221, oversampling fac-
tor σ = 2, number of sampling nodes M = 221 = 2097152, cut-off parameter m = 6 and
without precomputation of matrix B for unsorted and sorted sampling nodes.
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Figure 5.8: Speedup of 3d NFFTà with multibandlimit N = 27 = 128, |IN | = 221, oversampling fac-
tor σ = 2, number of sampling nodes M = 221 = 2097152, cut-off parameter m = 6 and
without precomputation of matrix B for atomic updates with unsorted and sorted sam-
pling nodes as well as flag NFFT_OMP_BLOCKWISE_ADJOINT set (“blockwise adjoint”).
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5.2 nfsft kernel
Let N be the multibandlimit, σ := 2 the oversampling factor of the NFFT,M the number of sampling
nodes andm the cut-off parameter of the NFFT The Fourier coefficients are chosen uniform-randomly
from [0, 1] + i[0, 1] and the sampling nodes from the sphere S2.
For the benchmarks performed in this section, the entries of the matrix B (last step of the NFFT)

and of the matrix B> (first step of the NFFTà) are not precomputed in the NFFT/NFFTà step.
This is denoted by “nopsi” in the plots. The NFFT is executed with the flag NFFT_SORT_NODES and
the NFFTà with additionally with the flag NFFT_OMP_BLOCKWISE_ADJOINT (cf. section 4.2).
In this section, the computation times of the three main steps of the NFSFT/NFSFTà and the

total speedup are determined. As base time for calculating the speedup and for the computation
time at one thread, the computation time for the non-parallel version of the NFSFT / NFSFTà is
used such that the speedup for one thread is one per definition.
The code for performing benchmarks and creating plots similar to the ones in this section can be

found in examples/nfsft/nfsft_benchomp.c (performs all benchmarks and creates plots) and in
examples/nfsft/nfsft_benchomp_detail.c (runs single benchmark).
In the histogram of the NFSFT computation times in figure 5.10, the FPT and NFFT show approx-

imately the same computation time whereas the step c2e requires an insignificant time. Furthermore,
the total computation time distinctly reduces at increasing number of threads until 8 threads. The
histogram of the NFSFTà in figure 5.11 looks similar despite the higher computation times of the
FPT>.
The corresponding speedup plot of the total computation time in figure 5.9 shows a nearly identical

speedup until up to 4 threads (≈ 3.5 at 4 threads) for the NFSFT and NFSFTà. At 6 threads and
above, the speedup of the NFSFTà is about 0.5 less than the speedup of the NFSFT. The measured
speedup at 12 threads is ≈ 6.5 for the NFSFT and ≈ 5.9 for the NFSFTà.
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Figure 5.9: Speedup of the NFSFT and NFSFTà with multibandlimit N = 128, oversampling fac-
tor σ = 2, number of sampling nodes M = 2097152, cut-off parameter m = 6 and with-
out precomputation of matrix B for sorted sampling nodes (NFSFT) and for flag
NFFT_OMP_BLOCKWISE_ADJOINT (NFSFTà) set.
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Figure 5.10: Computation times of the NFSFT with multibandlimit N = 1024, oversampling factor
σ = 2, number of sampling nodes M = 1000000, cut-off parameter m = 6 and without
precomputation of matrix B for sorted sampling nodes.
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Figure 5.11: Computation times of the NFSFTà with multibandlimit N = 1024, oversampling factor
σ = 2, number of sampling nodes M = 1000000, cut-off parameter m = 6 and without
precomputation of matrix B for flag NFFT_OMP_BLOCKWISE_ADJOINT (NFSFTà) set.
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5.3 NFFT-based fast summation (fastsum)
Since the pre-computation sub-step 1a of the NFFT-based fast summation (see section 4.4) does not
depend on the source nodes x`, coefficients α` or target nodes yj , the corresponding computation
times were ignored for the speedup and total computation time of the NFFT-based fast summation.
The benchmark was performed for the three dimensional case and the kernel function
K(x) = 1/‖x‖2. Thereby, L = 100000 uniformly distributed random source nodes x` and
M = 100000 uniformly distributed random target nodes yj were used. The fastsum and NFFT
parameters were chosen in such a manner that the maximal relative error for the results of the fast
summation (compared to the direct summation) is less than 10−6 and that the computation time for
the far field (sub-steps 2a-2c) is almost equal to the one for the near field (sub-step 2d), resulting
in a NFFT multibandlimit N = 128, a NFFT window cut-off parameter m = 4, fastsum smoothness
parameter p and size of regularization region εI = εB = 4/128.
Figure 5.12 shows the speedup values determined for up to 12 threads. At 2 threads, the speedup

is ≈ 1.87 and the efficiency is about 0.935. Then, the growth of the speedup decreases for 4 and
6 threads, where the speedup is about 3.12 and 4.13, respectively. The corresponding efficiency is
about 0.78 at 4 threads and 0.689 at 6 threads. The speedup at 12 threads is ≈ 6.03 and the efficiency
is ≈ 0.503.
In figure 5.13, the corresponding (total) computation times are shown as well as the computation

times for the sub-steps of the fast summation. As mentioned before, the total computation time does
not include the node-independent pre-computations of sub-step 1a. Thereby, the times for the far
field and near field computation are almost equal to one another at one thread and two threads. At
4 threads and above, the far field computation times only slightly decrease with increasing number
of threads, whereas the near field computation times show an excellent decrease. Especially at 8 and
12 threads, the total computation time is dominated by the far field. The remaining node-dependent
pre-computing sub-steps only require a small fraction of the total computation time in the considered
cases.
The computation times for sub-step 2a (NFFTà) and sub-step 2c (NFFT) were analyzed in detail

for the example of this section, the results are shown in figure 5.14 and 5.15, respectively. In contrast
to the results of section 5.1.3, the NFFTà and NFFT do not parallelize well beyond 4 threads in the
current example. For the NFFTà, the computation time of the first computation step (matrix B>)
only slightly decreases at 4 threads and above when compared to the time at 2 threads. Furthermore,
the computation times for the second step of the NFFTà and NFFT (Fourier matrix F ) show almost
no decrease for the cases with 8 and 12 threads compared to 6 threads.
These problems have not been observed in section 5.1.3, since both the number of sampling nodes

and the cut-off parameter m were chosen larger. However, if the number of source and target nodes
was increased for the fast summation, for instance by ≈ 21 to M = L = |IN |, then the near field
computation times would increase drastically by a factor of ≈ 213. Furthermore, an increase of
the cut-off parameter m would only cause higher computation times without achieving a better
approximation error unless other parameters (e.g. the multibandlimit) were increased.
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Figure 5.12: Speedup of 3d NFFT-based fast summation (fastsum) with kernel K(x) = 1/‖x‖2
and oversampling factor σ = 2 for sorted sampling nodes (NFFT) and for flag
NFFT_OMP_BLOCKWISE_ADJOINT (NFFTà) set. Computation time for node-independent
pre-computation (sub-step 1a) was ignored.
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Figure 5.13: Computation times of 3d NFFT-based fast summation (fastsum) with kernel
K(x) = 1/‖x‖2 and NFFT oversampling factor σ = 2 for sorted sampling nodes (NFFT)
and for flag NFFT_OMP_BLOCKWISE_ADJOINT (NFFTà) set. Computation time for node-
independent pre-computation (sub-step 1a) was ignored.
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Figure 5.14: Computation times of 3d NFFTà with multibandlimit N = 27 = 128, |IN | = 221,
oversampling factor σ = 2, number of (source) nodes L = 100000, cut-off pa-
rameter m = 4 and with precomputation of matrix B (“pre_psi”) for flag
NFFT_OMP_BLOCKWISE_ADJOINT set.

1 2 4 6 8 12

0

0.2

0.4

0.6

0.8

1

1.2

Number of threads

T
im

e
in

s

riemann 3d NFFT N=128 σ=2 M=100000 m=4 pre_psi sorted

D F B pre_psi total

Figure 5.15: Computation times of 3d NFFT with multibandlimit N = 27 = 128, |IN | = 221, over-
sampling factor σ = 2, number of (target) nodes M = 100000, cut-off parameter m = 4
and with precomputation of matrix B (“pre_psi”) for sorted sampling nodes.

33



Bibliography
[1] M. Fenn: Fast Fourier transform at nonequispaced nodes and applications. Dissertation, Univer-

sität Mannheim, 2006.

[2] M. Frigo and S.G. Johnson: FFTW, C subroutine library. http://www.fftw.org, 2009. http:
//www.fftw.org.

[3] J. Keiner, S. Kunis, and D. Potts: NFFT 3.0, C subroutine library.
http://www.tu-chemnitz.de/~potts/nfft. http://www.tu-chemnitz.de/~potts/nfft.

[4] J. Keiner, S. Kunis, and D. Potts: Using NFFT3 - a software library for various nonequispaced
fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19, 1 – 30, 2009.

[5] D.E. Knuth: The art of computer programming, volume 3: (2nd ed.) sorting and searching. Addi-
son Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998, ISBN 0-201-89685-0.

[6] S. Kunis and D. Potts: Fast spherical Fourier algorithms. J. Comput. Appl. Math., 161:75 – 98,
2003.

[7] OpenMP Architecture Review Board: OpenMP C and C++ Application Program Interface. Spec-
ification. http://www.openmp.org/mp-documents/cspec20.pdf, 2002. http://www.openmp.
org/mp-documents/cspec20.pdf.

[8] D. Potts and G. Steidl: Fast summation at nonequispaced knots by NFFTs. SIAM J. Sci. Comput.,
24:2013 – 2037, 2003.

[9] D. Potts, G. Steidl, and M. Tasche: Fast and stable algorithms for discrete spherical Fourier
transforms. Linear Algebra Appl., 275/276:433 – 450, 1998.

34

http://www.fftw.org
http://www.fftw.org
http://www.tu-chemnitz.de/~potts/nfft
http://www.openmp.org/mp-documents/cspec20.pdf
http://www.openmp.org/mp-documents/cspec20.pdf

	Overview
	Requirements
	Usage
	Compiling the NFFT3 library with OpenMP support
	Using the NFFT3 library with OpenMP support in applications
	Compiling and using the MATLAB interface of the NFFT3 library

	Implementation details
	OpenMP parallelization in general
	nfft kernel
	Notation and NFFT algorithm
	Flag NFFT_SORT_NODES
	OpenMP parallelization NDFT
	OpenMP parallelization NFFT
	OpenMP parallelization NFFT 
	Default flags for NFFT and NFFT 

	nfsft kernel
	OpenMP parallelization NDSFT and NDSFT 
	OpenMP parallelization NFSFT
	OpenMP parallelization NFSFT 

	NFFT-based fast summation (fastsum)
	MATLAB interface

	Benchmark results
	nfft kernel
	1d
	2d
	3d

	nfsft kernel
	NFFT-based fast summation (fastsum)


