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Let zj := efj with fj ∈ C and 0 < |zj | ≤ 1 be distinct nodes for j =
1, . . . ,M . Let h(x) := c1 ef1 x + . . . + cM efM x (x ≥ 0) be a nonincreasing
exponential sum with complex coefficients cj 6= 0. Many applications in
electrical engineering, signal processing and mathematical physics lead to the
following problem: Determine all parameters of h, if 2N sampled values h(k)
(k = 0, . . . , 2N − 1; N ≥ M) are given. This parameter estimation problem
is a nonlinear inverse problem. For noiseless sampled data, we describe the
close connections between Prony–like methods, namely the classical Prony
method, the matrix pencil method and the ESPRIT method. Further we
present a new efficient algorithm of matrix pencil factorization based on QR
decomposition of a rectangular Hankel matrix. The algorithms of parameter
estimation are also applied to sparse Fourier approximation and nonlinear
approximation.
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1 Introduction

Let M ≥ 1 be an integer. Let fj ∈ C (j = 1, . . . ,M) be distinct complex numbers with
Re fj ≤ 0 and Im fj ∈ [−π, π). Further let cj ∈ C \ {0} (j = 1, . . . ,M). Assume that
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|cj | are not too small. In the following, we consider a nonincreasing exponential sum of
order M

h(x) :=
M∑
j=1

cj efjx (x ≥ 0). (1.1)

The real part Re fj ≤ 0 is the damping factor of the exponential efjx such that |efjx|
is nonincreasing for x ≥ 0. If Re fj < 0, then efjx (x ≥ 0) is a damped exponential.
If Re fj = 0, then efjx (x ≥ 0) is an undamped exponential. The imaginary part
Im fj ∈ [−π, π) is the angular frequency of the exponential efjx. The nodes zj := efj

(j = 1, . . . ,M) do not vanish and are distinct values in the unit disk D := {z ∈ C : |z| ≤
1}.

In the following, we recover all parameters of a nonincreasing exponential sum (1.1), if
noiseless sampled data

h(k) =

M∑
j=1

cj efjk =

M∑
j=1

cj z
k
j ∈ C (k = 0, . . . , 2N − 1) (1.2)

with N ≥M are given. This problem is known as frequency analysis problem, which is
important within many disciplines in sciences and engineering (see [18]). For a survey
of the most successful methods for the data fitting problem with linear combinations
of complex exponentials, we refer to [17]. The aim of this paper is to present a unified
approach to Prony–like methods for parameter estimation, namely the classical Prony
method, the matrix pencil method and the ESPRIT method. In the Sections 2 and 3,
we present our main results. First we discuss the parameter estimation of nonincreasing
exponential sums in the case of known order M . Our starting point is the useful relation

HM (0)CM (p) = HM (1) (1.3)

between the Hankel matrices HM (s) :=
(
h(s + r + m)

)M−1
m,r=0

(s = 0, 1) and the com-

panion matrix CM (p), where p is the monic polynomial of degree M with p(zj) = 0
(j = 1, . . . , M). In the following, p is called Prony polynomial. It is well known that
the eigenvalues of the companion matrix CM (p) are the nodes zj (j = 1, . . . , M). The
Algorithm 2.2 is the classical Prony method, which is based on the solution of a square
Yule–Walker system. From the property (1.3), it follows immediately that the eigenval-
ues of the square matrix pencil

zHM (0)−HM (1) (z ∈ C)

are exactly the nodes zj (j = 1, . . . , M). The advantage of the matrix pencil method
is the fact that there is no need to compute the coefficients of the Prony polynomial p.

Using QR decomposition of the rectangular Hankel matrix HM,M+1 :=
(
h(l+m)

)M−1,M
l,m=0

,
we obtain the new Algorithm 2.3 of the matrix pencil factorization. Using singular value
decomposition (SVD) of HM,M+1, we obtain a short approach to the Algorithm 2.4
of the ESPRIT method (ESPRIT = Estimation of Signal Parameters via Rotational
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Invariance Techniques) proposed in [24, 25]. Finally one has to determine the coefficients
cj (j = 1, . . . , M) via a Vandermonde system.

In Section 3, we consider the more general case of unknown order M for the exponential
sum (1.1), where L with M ≤ L ≤ N is a given upper bound of M . In many practical
applications one has to deal with the ill-conditioning of the Hankel and Vandermonde
matrices. We show that one can attenuate this problem by using more sampled data (1.2)
with N �M . But then one has to deal with rectangular Hankel matrices H2N−L,L(s) :=(
h(s+ r +m)

)2N−L−1,L−1
m,r=0

. Based on the fact that the relation

H2N−L,L(0)CL(q) = H2N−L,L(1)

between the rectangular Hankel matrices H2N−L,L(s) (s = 0, 1) and the companion ma-
trix CL(q) is still valid, where q is a polynomial of degree L with q(zj) = 0 (j = 1, . . . ,M),
we use standard methods from numerical linear algebra (such as QR decomposition,
SVD, and least squares problems) in order to compute the nodes zj (j = 1, . . . ,M).
Furthermore we are in position to determine the order M of the exponential sum (1.1).
The Algorithm 3.4 is a slight generalization of the classical Prony method, which is now
based on the least squares solution of a rectangular Yule–Walker system. We observe
again that the rectangular matrix pencil

zH2N−L,L(0)−H2N−L,L(1) (z ∈ C)

has the nodes zj (j = 1, . . . , M) as eigenvalues. The new Algorithm 3.5 is based on
a common QR decomposition of the rectangular Hankel matrices H2N−L,L(s) (s =
0, 1), which can be realized by QR decomposition of the augmented Hankel matrix

H2N−L,L+1 :=
(
h(r+m)

)2N−L−1,L
m,r=0

. With Algorithm 3.5 we simplify essentially a matrix

pencil method proposed in [9]. The Algorithm 3.6 is based on a common SVD of the
Hankel matrix H2N−L,L+1, which follows the same ideas as the Algorithm 3.5, but
leads to the known ESPRIT method, suggested in [24, 25]. In contrast to [24, 25], our
approach is only based on simple properties of matrix computation without use of the
rotational invariance property (see Remark 3.7). Note that a variety of papers compare
the statistical properties of the different algorithms, see e.g. [12, 1, 2]. We stress again
that our aim is a simple unified approach to Prony–like methods, such that the algorithms
can be simple implemented, if routines for the SVD, QR decomposition, least squares
problems, and computation of eigenvalues of a square matrix are available. Furthermore
we mention that the Prony–like methods can be generalized to nonequispaced sampled
data of (1.1) (see [8] and [19, Section 6]) as well as to multivariate exponential sums
(see [22]). But all this extensions are based on parameter estimation of the univariate
exponential sum (1.1) as described in this paper.

The outline of this paper is as follows. In Section 2, we collect some useful properties
of the Hankel and Vandermonde matrices as well as of the companion matrix of the
Prony polynomial. Further we formulate the algorithms, if the order M is known and
if N = M is chosen, i.e., only 2M sampled data (1.2) are given. As a matter of fact
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we have to deal with square matrices. In Section 3, we present results on Prony–like
methods for unknown order M and given upper bound L with M ≤ L ≤ N . Here we
consider rectangular Vandermonde and Hankel matrices as well as companion matrices of
modified Prony polynomials. Further we present a unified approach to three Prony–like
algorithms. Finally we present some numerical experiments in Section 4, where we apply
our methods to the parameter estimation problems, to sparse Fourier approximation as
well as to nonlinear approximation by exponential sums.

In the following we use standard notations. By C, we denote the set of all complex
numbers, and N is the set of all positive integers. The complex unit disk is denoted
by D. The Kronecker symbol is δk. The linear space of all column vectors with N
complex components is denoted by CN , where ‖ · ‖2 is the Euclidean norm and o is the
corresponding zero vector. The linear space of all complex M -by-N matrices is denoted
by CM×N , where OM,N is the corresponding zero matrix. For a matrix AM,N ∈ CM×N ,
its transpose is denoted by AT

M,N , its conjugate–transpose by A∗M,N , and its Moore–

Penrose pseudoinverse by A†M,N . A square matrix AM,M is abbreviated to AM . By
IM we denote the M -by-M identity matrix. For the spectral norm and the Frobenius
norm of AM,N ∈ CM×N , we write ‖AM,N‖2 and ‖AM,N‖F . By nullAM,N we denote
the null space of a matrix AM,N . Further we use the known submatrix notation. Thus
AM,M+1(1 : M, 2 : M + 1) is the submatrix of AM,M+1 obtained by extracting rows 1
through M and columns 2 through M + 1, and AM,M+1(1 : M, M + 1) means the last
column vector of AM,M+1. Definitions are indicated by the symbol :=. Other notations
are introduced when needed.

2 Prony–like methods for known order

The classical Prony method works with known order M in the case N = M . We introduce
the Prony polynomial

p(z) :=
M∏
j=1

(z − zj) =
M−1∑
r=0

pr z
r + zM (2.1)

and the corresponding coefficient vector p := (pr)
M−1
r=0 . Further we explain the square

Hankel matrices HM (s) ∈ CM×M of the given sampled data by

HM (s) :=


h(s) h(s+ 1) . . . h(s+M − 1)

h(s+ 1) h(s+ 2) . . . h(s+M)
...

...
...

h(s+M − 1) h(s+M) . . . h(s+ 2M − 2)


=

(
h(s+ r +m)

)M−1
m,r=0

(s = 0, 1) . (2.2)

For the vector z := (zj)
M
j=1, we define the square Vandermonde matrix

V M (z) :=
(
zk−1j

)M
k,j=1

. (2.3)

4



Note that V M (z)T is a Krylov matrix, since

V M (z)T =
(
1, (diag z) 1, . . . , (diag z)M−11

)
with 1 := (1)Mj=1. By

detV M (z) =
M∏

j,k=1
j>k

(zj − zk)

the square Vandermonde matrix is nonsingular. The Hankel matrices (2.2) and the
Vandermonde matrix (2.3) are closely related, since

HM (s) = V M (z) (diag c) (diag z)s V M (z)T .

Further we introduce the companion matrix CM (p) ∈ CM×M of the Prony polynomial
(2.1), which is defined by

CM (p) :=


0 0 . . . 0 −p0
1 0 . . . 0 −p1
0 1 . . . 0 −p2
...

...
...

...
0 0 . . . 1 −pM−1

 . (2.4)

It is known that the companion matrix (2.4) has the property

det
(
z IM −CM (p)

)
= p(z) (z ∈ C) ,

where IM denotes the M -by-M identity matrix.

Lemma 2.1 (see [14]) The singular values of the companion matrix (2.4) are τ2 = . . . =
τM−1 = 1,

τ1 =
(1 + ‖p‖22

2
+

1

2

√
(1 + ‖p‖22)2 − 4 |p0|2

)1/2
,

τM =
(1 + ‖p‖22

2
− 1

2

√
(1 + ‖p‖22)2 − 4 |p0|2

)1/2
.

The spectral norm of CM (p) is equal to τ1 and the condition number is equal to τ1/τM .

We sketch the proof. Using

CM (p)∗CM (p) =


1 0 . . . 0 −p1
0 1 . . . 0 −p2
...

...
...

...
0 0 . . . 1 −pM−1
−p̄1 −p̄2 . . . −p̄M−1 ‖p‖22

 ,
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we can see that at least M − 2 eigenvalues of CM (p)∗CM (p) are equal to 1. The two
remaining eigenvalues τ21 and τ2M can be computed from the trace

tr
(
CM (p)∗CM (p)

)
= τ21 + τ2M + (n− 2) · 1 = ‖p‖22 + (n− 1) · 1

and the determinant

det
(
CM (p)∗CM (p)

)
= τ21 · τ2M · 1n−2 = ‖p‖22 −

M−1∑
j=1

|pj |2 = |p0|2

such that from τ21 + τ2M = ‖p‖22 + 1 and τ21 · τ2M = |p0|2 it follows the conclusion.

The transposed companion matrix CM (p)T and the Vandermonde matrix (2.3) are
closely related by

V M (z) diag z = CM (p)T V M (z) .

Thus we see that by

detCM (p) =
M∏
j=1

zj 6= 0

the companion matrix (2.4) is nonsingular.

After these preliminaries we observe that for m = 0, . . . ,M − 1

M−1∑
r=0

pr h(r +m) + h(M +m) =

M∑
j=1

cj z
m
j p(zj) = 0.

This is expressible as the linear Yule–Walker system for the unknown coefficients pr of
the Prony polynomial (2.1):

HM (0)p = −
(
h(M +m)

)M−1
m=0

.

Thus we obtain:

Algorithm 2.2 (Classical Prony method)
Input: h(k) ∈ C (k = 0, . . . , 2M − 1), M ∈ N order of the exponential sum (1.1).

1. Solve the square Yule–Walker system

HM (0)p = −
(
h(M +m)

)M−1
m=0

.

2. Determine the simple roots zj ∈ D (j = 1, . . .M) of the Prony polynomial (2.1),
i.e., compute all eigenvalues zj ∈ D (j = 1, . . .M) of the companion matrix (2.4). Form
fj := log zj (j = 1, . . . ,M), where log is the principal value of the complex logarithm.
3. Compute cj ∈ C (j = 1, . . . ,M) as solution of the square Vandermonde system

V M (z) c =
(
h(k)

)M−1
k=0

with z := (zj)
M
j=1 and c := (cj)

M
j=1.

Output: Re fj ≤ 0, Im fj ∈ [−π, π), cj ∈ C \ {0} (j = 1, . . . ,M).
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Now we show that a matrix pencil method follows directly from the Prony method. In
other words, the matrix pencil method is a simplified Prony method. First we observe
that

HM (0) = V M (z) (diag c)V M (z)T .

Since cj 6= 0 (j = 1, . . . ,M), HM (0) has the rank M and is nonsingular. Using the
Yule–Walker system, we obtain the interesting relation

HM (0)CM (p) = HM (1) (2.5)

with the “shifted” Hankel matrix HM (1). Hence we conclude that

det (zHM (0)−HM (1)) = det (HM (0)) det (z IM −CM (p))

= det (HM (0)) p(z)

such that the eigenvalues of the square matrix pencil

zHM (0)−HM (1) (z ∈ C) (2.6)

are exactly zj ∈ D (j = 1, . . . ,M). Each eigenvalue zj of the matrix pencil (2.6) is simple
and a right eigenvector v = (vk)

M−1
k=0 has the components

vk = −zM−1−kj πk(zj) (k = 0, . . . ,M − 1)

with vM−1 = zMj , where

πk(z) :=
k∑
r=0

pr z
r (z ∈ C; k = 0, . . . ,M − 1)

are truncated Prony polynomials. The proof follows directly from the fact that

CM (p)v = zj v

and hence HM (1)v = zj HM (0)v. Consequently, the Prony method can be written as
a matrix pencil method. The advantage of the matrix pencil method is the fact that
it is not necessary to compute the coefficients of the Prony polynomial (2.1). A scaled
Prony polynomial is equal to the determinant of the matrix pencil (2.6) with two Hankel
matrices (2.2). The solution of the generalized eigenvalue problem for the matrix pencil
(2.6) can be obtained most stably by the QZ algorithm, see [10, pp. 384 – 386].

In the following, we factorize the square Hankel matrices (2.2) simultaneously. Therefore
we introduce the rectangular Hankel matrix

HM,M+1 :=
(
HM (0) HM (1)(1 : M, M)

)
=
(
h(l +m)

)M−1,M
l,m=0

(2.7)

such that conversely

HM (s) = HM,M+1(1 : M, 1 + s : M + s) (s = 0, 1) . (2.8)
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Then we compute the QR factorization of (2.7) with column pivoting and obtain

HM,M+1 ΠM+1 = QM RM,M+1

with a unitary matrix QM , a permutation matrix ΠM+1, and a trapezoidal matrix
RM,M+1, where RM,M+1(1 : M, 1 : M) is a nonsingular upper triangular matrix.
Note that the permutation matrix ΠM+1 is chosen such that the diagonal entries of
RM,M+1(1 : M, 1 : M) have nonincreasing absolute values. Using the definition

SM,M+1 := RM,M+1 ΠT
M+1 ,

we infer that by (2.8)

HM (s) = QM SM (s) (s = 0, 1) ,

where

SM (s) := SM,M+1(1 : M, 1 + s : M + s) (s = 0, 1) . (2.9)

Since QM is unitary, the generalized eigenvalue problem of the matrix pencil (2.6) is
equivalent to the generalized eigenvalue problem of the matrix pencil

z SM (0)− SM (1) = SM (0)
(
z IM −

(
SM (0)

)−1
SM (1)

)
.

Since HM (0) has the rank M and is nonsingular, we observe that SM (0) = Q∗MHM (0)
is nonsingular too. By (2.5) we obtain that

CM (p) =
(
HM (0)

)−1
HM (1) =

(
SM (0)

)−1
SM (1) .

We summarize the method:

Algorithm 2.3 (Matrix pencil factorization based on QR decomposition)

Input: h(k) ∈ C (k = 0, . . . , 2M − 1), M ∈ N order of the exponential sum (1.1).

1. Compute the QR factorization with column pivoting of the rectangular Hankel matrix
(2.7) and form the matrices (2.9).

2. Determine the eigenvalues zj ∈ D (j = 1, . . .M) of the square matrix
(
SM (0)

)−1
SM (1).

Form fj := log zj (j = 1, . . . ,M).

2. Compute the coefficients cj ∈ C (j = 1, . . . ,M) as solution of the square Vandermonde
system

V M (z) c =
(
h(k)

)M−1
k=0

with z := (zj)
M
j=1 and c := (cj)

M
j=1.

Output: Re fj ≤ 0, Im fj ∈ [−π, π), cj ∈ C \ {0} (j = 1, . . . ,M).

The generalized eigenvalue problem (2.6) for the square matrix pencil (2.6) was inves-
tigated in [4] and lower bounds for the sensitivity for the most sensitive eigenvalue of
(2.6) has been given.
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In contrast to Algorithm 2.3, we use now the SVD of the rectangular Hankel matrix (2.7)
and obtain a method which is known as the ESPRIT method. In [12, 26] a relationship
between the matrix pencil methods and several variants of the ESPRIT method [24, 25]
is derived showing comparable performance. The essence of ESPRIT method lies in the
rotational property between staggered subspaces, see [16, Section 9.6.5].
Applying the SVD to HM,M+1, we obtain

HM,M+1 = UM DM,M+1WM+1

with unitary matrices UM , WM+1 and a diagonal matrix DM,M+1, whose diagonal
entries are the ordered singular values σ1 ≥ σ2 ≥ . . . ≥ σM > 0 of HM,M+1. Introducing

DM := DM,M+1(1 : M, 1 : M) , WM,M+1 := WM+1(1 : M, 1 : M + 1) ,

we can simplify the SVD of (2.7) by

HM,M+1 = UM DM WM,M+1 .

Note that W ∗
M,M+1WM,M+1 = IM+1. Setting

WM (s) := WM,M+1(1 : M, 1 + s : M + s) (s = 0, 1) , (2.10)

it follows from (2.8) that

HM (s) = UM DM WM (s) (s = 0, 1) . (2.11)

Clearly, WM (0) = D−1M U∗M HM (0) is a nonsingular matrix by construction. Then we
infer that the generalized eigenvalue problem of the matrix pencil (2.6) is equivalent to
the generalized eigenvalue problem of the matrix pencil

zWM (0)−WM (1) = WM (0)
(
z IM −

(
WM (0)

)−1
WM (1)

)
,

since UM is unitary and DM is invertible. Therefore by (2.5) and (2.11), we obtain that

CM (p) =
(
HM (0)

)−1
HM (1) =

(
WM (0)

)−1
WM (1) .

Algorithm 2.4 (ESPRIT method)
Input: h(k) ∈ C (k = 0, . . . , 2M − 1), M ∈ N order of the exponential sum (1.1).

1. Compute the SVD of the Hankel matrix (2.7) and form the matrices (2.10).

2. Determine the eigenvalues zj ∈ D (j = 1, . . .M) of the matrix
(
WM (0)

)−1
WM (1).

Form fj := log zj (j = 1, . . . ,M).
3. Compute the coefficients cj ∈ C (j = 1, . . . ,M) as solution of the square Vandermonde
system

V M (z) c =
(
h(k)

)M−1
k=0

with z := (zj)
M
j=1 and c := (cj)

M
j=1.

Output: Re fj ≤ 0, Im fj ∈ [−π, π), cj ∈ C \ {0} (j = 1, . . . ,M).
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Remark 2.5 The last step of Algorithms 2.2 – 2.4 can be replaced by the computation of
the coefficients cj ∈ C\{0} (j = 1, . . . ,M) as least squares solution of the overdetermined
Vandermonde system

V 2M,M (z) c =
(
h(k)

)2M−1
k=0

with the rectangular Vandermonde matrix V 2M,M (z) :=
(
zk−1j

)2M,M

k,j=1
.

In the case of parameter estimation of (1.1) with known order M , we have seen that
each Prony–like method determines the nodes zj (j = 1, . . . ,M) as the eigenvalues of
the companion matrix (2.4) of the Prony polynomial (2.1).

3 Prony–like methods for unknown order

Now we consider the more general case of unknown order M for the exponential sum
(1.1) and given noiseless sampled data h(k) (k = 0, . . . , 2N − 1). Let L ∈ N be a
convenient upper bound of M , i.e. M ≤ L ≤ N . In applications, such an upper bound
L is mostly known a priori. If this is not the case, then one can choose L = N . With the
2N sampled data h(k) ∈ C (k = 0, . . . , 2N −1) we form the rectangular Hankel matrices

H2N−L,L+1 :=
(
h(l +m)

)2N−L−1,L
l,m=0

, (3.1)

H2N−L,L(s) :=
(
h(s+ l +m)

)2N−L−1,L−1
l,m=0

, (s = 0, 1) . (3.2)

Then H2N−L,L(1) is the “shifted” matrix of H2N−L,L(0) and

H2N−L,L+1 =
(
H2N−L,L(0) H2N−L,L(1)(1 : 2N − L, L)

)
,

H2N−L,L(s) = H2N−L,L+1(1 : 2N − L, 1 + s : L+ s) (s = 0, 1) . (3.3)

Note that in the special case M = L = N we obtain again the matrices (2.2). Using
the coefficients pk (k = 0, . . . ,M − 1) of the Prony polynomial (2.1), we form the vector

pL := (pk)
L−1
k=0 with pM := 1, pM+1 = . . . = pL−1 := 0. By SL :=

(
δk−l−1

)L−1
k,l=0

we
denote the forward shift matrix, where δk is the Kronecker symbol. Analogously, we

introduce pL+1 := (pk)
L
k=0 with pL := 0 and SL+1 :=

(
δk−l−1

)L
k,l=0

.

Lemma 3.1 Let L, M , N ∈ N with M ≤ L ≤ N be given. Furthermore, let (1.2) be
noiseless sampled data of the exponential sum (1.1) with cj ∈ C \ {0} and distinct nodes
zj = efj ∈ D (j = 1, . . . ,M). Then

rankH2N−L,L+1 = rankH2N−L,L(s) = M (s = 0, 1) . (3.4)

If L = M , then nullH2N−M,M+1 = span {pM+1} and nullH2N−M,M (s) = {o} for
s = 0, 1. If L > M , then

nullH2N−L,L+1 = span {pL+1, SL+1pL+1, . . . ,S
L−M
L+1 pL+1} ,

nullH2N−L,L(s) = span {pL, SLpL, . . . ,SL−M−1L pL} (s = 0, 1)
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and

dim (nullH2N−L,L+1) = L−M + 1 ,

dim (nullH2N−L,L(s)) = L−M (s = 0, 1) .

Proof. 1. We introduce the rectangular Vandermonde matrix

V 2N−L,M (z) :=
(
zk−1j

)2N−L,M
k,j=1

. (3.5)

Then the rectangular Hankel matrices (3.1) and (3.2) can be factorized in the following
form

H2N−L,L+1 = V 2N−L,M (z) (diag c)V L+1,M (z)T ,

H2N−L,L(s) = V 2N−L,M (z) (diag c) (diag z)s V L,M (z)T (s = 0, 1) .

Since cj 6= 0 and since zj ∈ D (j = 1, . . . ,M) are distinct, we obtain (3.4). Using rank
estimation, we can determine the rank and thus the order M of the exponential sum
(1.1). By (3.4), the 1-dimensional null space of H2N−M,M+1 is spanned by pM+1 and
the null spaces of H2N−M,M (s) are trivial for s = 0, 1.
2. Assume that L > M . From

M∑
r=0

pr h(s+ r +m) = 0 (m = 0, . . . , 2N − 1; s = 0, 1)

it follows that
H2N−L,L+1(S

j
L+1pL+1) = o (j = 0, . . . , L−M)

and analogously

H2N−L,L(s)(SjLpL) = o (j = 0, . . . , L−M − 1; s = 0, 1) ,

where o denotes the corresponding zero vector. By pM = 1, we see that the vectors
SjL+1pL+1 (j = 0, . . . , L − M) and SjLpL (j = 0, . . . , L − M − 1), respectively, are
linearly independent and located in nullH2N−L,L+1, and nullH2N−L,L(s), respectively.
3. Let again L > M . Now we prove that nullH2N−L,L+1 is contained in the linear

span of the vectors SjL+1pL+1 (j = 0, . . . , L − M). Let u = (ul)
L
l=0 ∈ CL+1 be an

arbitrary right eigenvector of H2N−L,L+1 related to the eigenvalue 0 and let u be the
corresponding polynomial

u(z) =
L∑
l=0

ul z
l (z ∈ C) .

Using the noiseless sampled data (1.2), we obtain

0 =
L∑
l=0

h(l +m)ul =
L−1∑
l=0

ul

( M∑
j=1

cj z
l+m
j

)
=

M∑
j=1

cj z
m
j u(zj) (m = 0, . . . , 2N − L− 1)
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and hence by (3.5)

V 2N−L,M (z)
(
cj u(zj)

)M
j=1

= o .

Since zj ∈ D (j = 1, . . . ,M) are distinct by assumption, the square Vandermonde matrix
V M (z) is nonsingular. Hence we obtain u(zj) = 0 (j = 1, . . . ,M) by cj 6= 0. Thus it
follows that u(z) = p(z) r(z) with a certain polynomial

r(z) =
L−M∑
k=0

rk z
k (z ∈ C; rk ∈ C) .

But this means for the coefficients of the polynomials p, r, and u that

u = r0 pL+1 + r1 SL+1 pL+1 + . . .+ rL−M SL−ML+1 pL+1 .

Hence the vectors SjL+1 pL+1 (j = 0, . . . , L −M) form a basis of nullH2N−L,L+1 such
that dim(nullH2N−L,L+1) = L −M + 1. Similarly, one can show the results for the
other Hankel matrices (3.2). This completes the proof.

The classical Prony method (for unknown order M) is based on the following result.

Lemma 3.2 Let L, M , N ∈ N with M ≤ L ≤ N be given. Let (1.2) be noiseless
sampled data of the exponential polynomial (1.1) with cj ∈ C \ {0} and distinct nodes
zj ∈ D (j = 1, . . . ,M). Then following assertions are equivalent:
(i) The polynomial

q(z) =
L−1∑
k=0

qk z
k + zL (z ∈ C)

with complex coefficients qk has M distinct zeros zj ∈ D (j = 1, . . . ,M).
(ii) The vector q = (qk)

L−1
k=0 is a solution of the linear system

H2N−L,L(0) q = −
(
h(k)

)2N−1
k=L

.

(iii) The companion matrix CL(q) ∈ CL×L has the property

H2N−L,L(0)CL(q) = H2N−L,L(1) . (3.6)

Proof. 1. Assume that q(zj) = 0 (j = 1, . . . ,M). We compute the sums

L−1∑
k=0

h(k +m) qk (m = 0, . . . , 2N − L− 1)

by using (1.2) and obtain for m = 0, . . . , 2N − L− 1

L−1∑
k=0

h(k +m) qk =

M∑
j=1

cj z
m
j (q(zj)− zLj )

= −
M∑
j=1

cj z
m+L
j = −h(m+ L) .

12



Therefore we get H2N−L,L(0) q = −
(
h(m+ L)

)2N−L−1
m=0

.

2. Assume that q = (ql)
L−1
l=0 is a solution of the linear system

H2N−L,L(0) q = −
(
h(m+ L)

)2N−L−1
m=0

.

This implies that

L−1∑
k=0

h(k +m) qk = −h(m+ L) (m = 0, . . . , 2N − L− 1) . (3.7)

Hence by (1.2) we obtain

M∑
j=1

cj z
m
j q(zj) = 0 (m = 0, . . . , 2N − L− 1) ,

i.e. by (3.5)

V 2N−L,M (z)
(
cj q(zj)

)M
j=1

= o .

Especially we conclude

V M (z)
(
cj q(zj)

)M
j=1

= o .

Since zj ∈ D (j = 1, . . . ,M) are distinct, the square Vandermonde matrix V M (z) is
nonsingular such that q(zj) = 0 (j = 1, . . . ,M) by cj 6= 0. Therefore, (i) and (ii) are
equivalent.

3. Now we show that (ii) and (iii) are equivalent too. From (3.6) it follows immediately
that

−H2N−L,L(0) q =
(
h(k)

)2N−1
k=L

,

since the last column of CL(q) reads as −q and since the last column of H2N−L(1) is

equal to
(
h(k)

)2N−1
k=L

. Conversely, by

H2N−L,L(0) (δk−j)
L−1
k=0 =

(
h(k + j)

)2N−L−1
k=0

(j = 1, . . . , L− 1) ,

−H2N−L,L(0) q =
(
h(k)

)2N−1
k=L

we obtain (3.6) column by column. This completes the proof.

We denote a monic polynomial of degree L (M ≤ L ≤ N)

q(z) =

L−1∑
k=0

qk z
k + zL (z ∈ C) (3.8)

as a modified Prony polynomial, if q = (qk)
L−1
k=0 is a solution of the linear system

H2N−L,L(0) q = −
(
h(k)

)2N−1
k=L

.

13



Then q has the same zeros zj ∈ D (j = 1, . . . ,M) as the Prony polynomial (2.1), but q
has L−M additional zeros, if L > M . For example,

q(z) = zL−M p(z)

is the simplest modified Prony polynomial of degree L. If r is an arbitrary monic
polynomial of degree L −M , then q(z) = r(z) p(z) is a modified Prony polynomial of
degree L too. A modified Prony polynomial is not uniquely determined in the case
L > M .

Remark 3.3 Previously, modified Prony polynomials of moderate degree L (M ≤ L ≤
N) were considered. A modified Prony polynomial q of higher degree 2N −L (M ≤ L ≤
N) has the form

q(z) =

2N−L−1∑
k=0

qk z
k + z2N−L (z ∈ C) ,

where the coefficient vector q = (qk)
2N−L−1
k=0 is now a solution of the underdetermined

linear system

HL,2N−L(0) q = −
(
h(k)

)2N−1
k=2N−L .

with HL,2N−L(0) = H2N−L,L(0)T. The proof follows similar lines as the proof of Lemma
3.2, see step 1.

Now we formulate Lemma 3.2 as an algorithm. Since the unknown coefficients cj (j =
1, . . . ,M) do not vanish, we can assume that |cj | > ε for convenient bound ε (0 < ε� 1).

Algorithm 3.4 (Classical Prony method)

Input: L, N ∈ N (N � 1, 3 ≤ L ≤ N , L is upper bound of the order M of (1.1)),
h(k) ∈ C (k = 0, . . . , 2N − 1), 0 < ε� 1.

1. Compute the least squares solution of the rectangular Yule–Walker system

H2N−L,L(0) q = −
(
h(m+ L)

)2N−L−1
m=0

.

2. Determine the simple roots z̃j ∈ D (j = 1, . . . , M̃) of the modified Prony polynomial
(3.8), i.e., compute all eigenvalues z̃j ∈ D (j = 1, . . . , M̃) of the companion matrix
CL(q). Note that rankH2N−L,L(0) = M ≤ M̃ .

3. Compute c̃j ∈ C (j = 1, . . . , M̃) as least squares solution of the overdetermined linear
Vandermonde–type system

V 2N,M̃ (z̃) (c̃j)
M̃
j=1 =

(
h(k)

)2N−1
k=0

with z̃ := (z̃j)
M̃
j=1.

4. Delete all the z̃l (l ∈ {1, . . . , M̃} with |c̃l| ≤ ε and denote the remaining values by zj
(j = 1, . . . ,M) with M ≤ M̃ . Form fj := log zj (j = 1, . . . ,M).
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5. Repeat step 3 and compute the coefficients cj ∈ C (j = 1, . . . ,M) as least squares
solution of the overdetermined linear Vandermonde–type system

V 2N,M (z) c = (h(k))2N−1k=0

with z := (zj)
M
j=1 and c := (cj)

M
j=1.

Output: M ∈ N, Re fj ≤ 0, Im fj ∈ [−π, π), cj ∈ C \ {0} (j = 1, . . . ,M).

Now we show that the Prony method can be simplified to a matrix pencil method. Note
that a rectangular matrix pencil may not have eigenvalues in general. But this is not
the case for our rectangular matrix pencil

zH2N−L,L(0)−H2N−L,L(1) , (3.9)

which has zj ∈ D (j = 1, . . . ,M) as eigenvalues. This follows by using (3.6) from(
zH2N−L,L(0)−H2N−L,L(1)

)
v = H2N−L,L(0)

(
z IL −CL(q)

)
v

and
det
(
z IL −CL(q)

)
= q(z) .

If z = zj (j = 1, . . . ,M), then v = (vk)
L−1
k=0 ∈ CL is an eigenvector of the square

eigenvalue problem CL(q)v = zj v with

vk = −zL−1−kj ρk(zj) (k = 0, . . . , L− 1)

and vL−1 = zLj , where

ρk(z) :=
k∑
r=0

qr z
r (z ∈ C; k = 0, . . . , L− 1)

is the truncated modified Prony polynomial of degree k and where (3.8) is a modified
Prony polynomial of degree L. The generalized eigenvalue problem of the rectangular
matrix pencil (3.9) can be reduced to a classical eigenvalue problem of a square matrix.

Therefore one can simultaneously factorize the rectangular Hankel matrices (3.2) under
the assumption 2N ≥ 3L. Then there are at least twice as many rows as there are
columns in the matrix pencil (3.9). Following [7, p. 598], one can apply a QR decompo-
sition to the matrix pair(

H2N−L,L(0) H2N−L,L(1)
)
∈ C(2N−L)×2L .

Here we simplify this idea. Without the additional assumption 2N ≥ 3L, we compute
the QR decomposition of the rectangular Hankel matrix (3.1). By (3.4), the rank of the
Hankel matrix H2N−L,L+1 is equal to M . Hence H2N−L,L+1 is rank deficient. Therefore
we apply QR factorization with column pivoting and obtain

H2N−L,L+1 ΠL+1 = Q2N−LR2N−L,L+1
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with a unitary matrix Q2N−L, a permutation matrix ΠL+1, and a trapezoidal matrix

R2N−L,L+1 =

(
R2N−L,L+1(1 : M, 1 : L+ 1)

O2N−L−M,L+1

)
,

where R2N−L,L+1(1 : M, 1 : M) is a nonsingular upper triangular matrix. By the QR
decomposition we can determine the rank M of the Hankel matrix (3.1) and hence the
order of the exponential sum (1.1). Note that the permutation matrix ΠL+1 is chosen
such that the diagonal entries of R2N−L,L+1(1 : M, 1 : M) have nonincreasing absolute
values. We denote the diagonal matrix containing these diagonal entries by DM . With

S2N−L,L+1 := R2N−L,L+1 ΠT
L+1 =

(
S2N−L,L+1(1 : M, 1 : L+ 1)

O2N−L−M,L+1

)
, (3.10)

we infer that by (3.3)

H2N−L,L(s) = Q2N−L S2N−L,L(s) (s = 0, 1)

with

S2N−L,L(s) := S2N−L,L+1(1 : 2N − L, 1 + s : L+ s) (s = 0, 1) .

Since Q2N−L is unitary, the generalized eigenvalue problem of the rectangular matrix
pencil (3.9) is equivalent to the generalized eigenvalue problem of the matrix pencil

z S2N−L,L(0)− S2N−L,L(1) (z ∈ C) .

Using the special structure of (3.10), we can simplify the matrix pencil

z TM,L(0)− TM,L(1) (3.11)

with

TM,L(s) := S2N−L,L(1 : M, 1 + s : L+ s) (s = 0, 1) . (3.12)

Here one can use the matrix DM as diagonal preconditioner and proceed with T ′M,L(s) :=

D−1M TM,L(s). Then the generalized eigenvalue problem of the transposed matrix pencil

z T ′M,L(0)T − T ′M,L(1)T

has the same eigenvalues as the matrix pencil (3.11) except for the zero eigenvalues and
it can be solved as eigenvalue problem of the M -by-M matrix

F QR

M :=
(
T ′M,L(0)T

)†
T ′M,L(1)

)T
. (3.13)

Finally we obtain the nodes zj ∈ D (j = 1, . . . ,M) as the eigenvalues of (3.13).
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Algorithm 3.5 (Matrix pencil factorization based on QR decomposition)
Input: L, N ∈ N (N � 1, 3 ≤ L < N , L is upper bound of the order M of (1.1)),
h(k) ∈ C (k = 0, . . . , 2N − 1).

1. Compute QR factorization of the rectangular Hankel matrix (3.1). Determine the
rank M of (3.1) and form the preconditioned matrices T ′M,L(s) (s = 0, 1).
2. Determine the eigenvalues zj ∈ D (j = 1, . . . ,M) of the square matrix (3.13). Form
fj := log zj (j = 1, . . . ,M).
3. Compute the coefficients cj ∈ C (j = 1, . . . ,M) as least squares solution of the
overdetermined linear Vandermonde system

V 2N,M (z) c = (h(k))2N−1k=0

with z := (zj)
M
j=1 and c := (cj)

M
j=1.

Output: M ∈ N, Re fj ≤ 0, Im fj ∈ [−π, π), cj ∈ C \ {0} (j = 1, . . . ,M).

In the following we derive the ESPRIT method by similar ideas as above, but now we
use the SVD of the Hankel matrix (3.1), which is rank deficient by (3.4). Therefore we
use the factorization

H2N−L,L+1 = U2N−LD2N−L,L+1W L+1 ,

where U2N−L and W L+1 are unitary matrices and where D2N−L,L+1 is a rectangular
diagonal matrix. The diagonal entries of D2N−L,L+1 are the singular values of (3.1)
arranged in nonincreasing order σ1 ≥ σ2 ≥ . . . ≥ σM > σM+1 = . . . = σL+1 = 0. Thus
we can determine the rank M of the Hankel matrix (3.1) which coincides with the order
of the exponential sum (1.1). Introducing the matrices

D2N−L,M := D2N−L,L+1(1 : 2N − L, 1 : M) =

(
diag (σj)

M
j=1

O2N−L−M,M

)
,

WM,L+1 := W L+1(1 : M, 1 : L+ 1) ,

we can simplify the SVD of the Hankel matrix (3.1) as follows

H2N−L,L+1 = U2N−LD2N−L,M WM,L+1 .

Note that W ∗
M,L+1WM,L+1 = IL+1. Setting

WM,L(s) = WM,L+1(1 : M, 1 + s : L+ s) (s = 0, 1) , (3.14)

it follows from (3.3) that

H2N−L,L(s) = U2N−LD2N−L,M WM,L(s) (s = 0, 1) .

Since U2N−L is unitary, the generalized eigenvalue problem of the rectangular matrix
pencil (3.9) is equivalent to the generalized eigenvalue problem of the matrix pencil

zD2N−L,M WM,L(0)−D2N−L,M WM,L(1) . (3.15)
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If we multiply the transposed matrix pencil (3.15) from the right side with(
diag (σ−1j )Mj=1

O2N−L−M,M

)
,

we obtain the generalized eigenvalue problem of the matrix pencil

zWM,L(0)T −WM,L(1)T ,

which has the same eigenvalues as the matrix pencil (3.15) except for the zero eigenvalues.
Finally we determine the nodes zj ∈ D (j = 1, . . . ,M) as eigenvalues of the matrix

F SV D
M :=

(
WM,L(0)T

)†
WM,L(1)T . (3.16)

Thus the ESPRIT algorithm reads as follows:

Algorithm 3.6 (ESPRIT method)
Input: L, N ∈ N (N � 1, 3 ≤ L ≤ N , L is upper bound of the order M of (1.1)),
h(k) ∈ C (k = 0, . . . , 2N − 1).

1. Compute the SVD of the rectangular Hankel matrix (3.1). Determine the rank M of
(3.1) and form the matrices (3.14).
2. Compute all eigenvalues zj ∈ D (j = 1, . . . ,M) of the square matrix (3.16). Set
fj := log zj (j = 1, . . . ,M).
3. Compute the coefficients cj ∈ C (j = 1, . . . ,M) as least squares solution of the
overdetermined linear Vandermonde–type system

V 2N,M (z) c =
(
h(k)

)2N−1
k=0

with z := (zj)
M
j=1 and c := (cj)

M
j=1

Output: M ∈ N, Re fj ≤ 0, Im fj ∈ [−π, π), cj ∈ C \ {0} (j = 1, . . . ,M).

Remark 3.7 The original approach to the ESPRIT method (see [24, 25]) is essentially
based on the rotational invariance property of the Vandermonde matrix (3.5), i.e.

V ′2N−L,M (z) = V 2N−L,M (z) (diag z) ,

with V ′2N−L,M (z) :=
(
zkj
)2N−L,M
k,j=1

. Note that there exists a close relationship between

the Vandermonde matrix (3.5) and the transposed companion matrix C2N−L,M (q)T,
namely

V ′2N−L,M (z) = V 2N−L,M (z) (diag z) = C2N−L(q)T V 2N−L,M (z) ,

where q is a monic polynomial of degree 2N − L with q(zj) = 0 (j = 1, . . . ,M).
In contrast to [24, 25], we mainly use the relation (3.6) between the given Hankel matrices
(3.2) and the companion matrix CL(q) of a modified Prony polynomial (3.8). In this
sense, we simplify the approach to the ESPRIT method.
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In the case of parameter estimation of (1.1) with unknown order M , we have seen that
Algorithm 3.4 computes the nodes zj (j = 1, . . . , M) as eigenvalues of the L-by-L
companion matrix of a modified Prony polynomial (3.8). The Algorithms 3.5 and 3.6
determine exactly the nodes zj (j = 1, . . . , M) as eigenvalues of an M -by-M matrix
(3.13) and (3.16), respectively, which is similar to the companion matrix (2.4) of the
Prony polynomial (2.1).

4 Numerical examples

Now we illustrate the behavior of the suggested algorithms. Using IEEE standard float-
ing point arithmetic with double precision, we have implemented our algorithms in MAT-
LAB. The signal is given in the form (1.1) with complex exponents fj ∈ [−1, 0]+i [−π, π)
and complex coefficients cj 6= 0. The relative error of the complex exponents is given by

e(f) :=

max
j=1,...,M

|fj − f̃j |

max
j=1,...,M

|fj |
(f := (fj)

M
j=1) ,

where f̃j are the exponents computed by our algorithms. Analogously, the relative error
of the coefficients is defined by

e(c) :=

max
j=1,...,M

|cj − c̃j |

max
j=1,...,M

|cj |
(c := (cj)

M
j=1) ,

where c̃j are the coefficients computed by our algorithms. Further we determine the
relative error of the exponential sum by

e(h) :=
max |h(x)− h̃(x)|

max |h(x)|
,

where the maximum is built from 10 · (2N − 1) + 1 equispaced points from a grid of
[0, 2N − 1], and where

h̃(x) :=

M∑
j=1

c̃j ef̃j ·x

is the exponential sum recovered by our algorithms.

Example 4.1 We start with an example which is often used in testing system identifi-
cation algorithms (see [3]). With M = 6, cj = j (j = 1, . . . , 6), and

(
zj
)6
j=1

=



0.9856− 0.1628 i
0.9856 + 0.1628 i
0.8976− 0.4305 i
0.8976 + 0.4305 i
0.8127− 0.5690 i
0.8127 + 0.5690 i

 ,
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we form the sampled data (1.2) at the nodes k = 0, . . . , 2N − 1. Then we apply our
Algorithms 3.4, 3.5 and 3.6. For several parameters N and L, the resulting errors are
presented in Table 4.1. As the bound ε in Algorithm 3.4, we use 10−10. Note that in the
case N = L = M = 6, we have tested the Algorithms 2.2, 2.3 and 2.4 too. We see that
the classical Prony method does not work very well. Using matrix pencil factorization
or ESPRIT method, we obtain excellent parameter reconstructions for only few sampled
data. See [21] for further examples.

N L e(f) e(c) e(h)

Algorithm 3.4

6 6 4.93e+00 1.89e–01 2.41e–04

7 6 1.65e–09 9.86e–10 7.12e–13

7 7 7.27e–10 4.89e–10 6.21e–13

Algorithm 3.5

6 6 7.76e–09 4.44e–09 3.52e–14

7 6 2.23e–10 1.75e–10 5.92e–15

7 7 5.53e–10 3.62e–10 7.81e–14

Algorithm 3.6

6 6 7.44e–09 4.31e–09 6.52e–13

7 6 1.01e–10 7.73e–11 2.23e–13

7 7 5.69e–10 3.87e–10 823e–14

Table 4.1: Results of Example 4.1.

Example 4.2 Now we consider the exponential sum (1.1) of order M = 6 with the
complex exponents (fj)

6
j=1 = i

1000 (7, 21, 200, 201, 53, 1000)T and coefficients (cj)
6
j=1 =

(6, 5, 4, 3, 2, 1)T. For the 2N sampled data (1.2), we apply the Algorithms 3.4, 3.5 and
3.6. As the bound ε in Algorithm 3.4, we use again 10−10. For several parameters N and
L, the resulting errors are presented in Table 4.2. Introducing the separation distance
δ := min{|fj−fk|; j 6= k} = 0.001, all parameters of (1.1) can be recovered by results of

[20, Lemma 4.1] and [3, Equation (3.18)], if N is sufficiently large with N > π2

δ
√
3
≈ 5698

and N > 2(M−1)
δ = 10000, respectively. However we observe that much less sampled

data are sufficient for a good parameter reconstruction.

This and also the next example is related to sparse Fourier approximation, because
f(t) := h(1000 t) is a sparse trigonometric polynomial

f(t) =
M∑
j=1

cj eiωjt (t ≥ 0)
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with distinct integer frequencies ωj := −1000 fj i, see [23, 15, 13]. The aim of sparse
Fourier approximation is the efficient recovery of all parameters ωj , cj (j = 1, . . . ,M)
using as few sampled values of f as possible. Using the deterministic Algorithms 3.4,
3.5 or 3.6 for the sampled data f(k/1000) = h(k) for k = 0, . . . , 2N − 1 with N ≥ 10,
we obtain the exact frequencies ωj by rounding.

N L e(f) e(c) e(h)

Algorithm 3.4

7 7 9.47e–01 1.73e–01 1.48e–12

8 8 9.47e–01 2.86e–01 8.55e–14

9 9 6.43e–05 6.96e–02 1.02e–13

10 10 1.21e–05 1.22e–02 7.82e–14

15 15 2.83e–07 2.88e–04 1.65e–13

20 20 6.26e–09 6.37e–06 2.87e–13

30 30 5.83e–10 5.91e–07 1.23e–13

30 20 9.73e–11 1.01e–07 4.59e–12

30 10 1.80e–08 1.83e–05 1.18e–10

Algorithm 3.5

7 7 9.47e–01 1.76e–01 1.59e–13

8 8 1.79e–01 1.67e–01 2.82e–13

9 9 5.47e–05 5.80e–02 2.32e–13

10 10 5.62e–06 5.68e–03 7.68e–14

15 15 6.48e–08 6.59e–05 5.51e–13

20 20 1.96e–09 1.99e–06 1.46e–13

30 30 1.08e–10 1.09e–07 1.19e–13

30 10 7.39e–09 7.44e–06 1.21e–10

Algorithm 3.6

7 7 9.47e–01 1.76e–01 1.58e–13

8 8 1.37e–04 1.33e–01 4.01e–13

9 9 1.20e–05 1.20e–02 2.81e–13

10 10 2.20e–05 2.20e–02 2.48e–13

15 15 5.72e–08 5.81e–05 1.81e–13

20 20 1.75e–09 1.78e–06 7.88e–14

30 30 2.51e–10 2.55e–07 2.88e–13

30 10 2.02e–08 2.04e–05 9.82e–11

Table 4.2: Results of Example 4.2.
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Example 4.3 We consider the exponential sum (1.1) of order M = 6 with the com-
plex exponents (fj)

6
j=1 = i

1000 (200, 201, 203, 204, 205)T and the coefficients (cj)
6
j=1 =

(6, 5, 4, 3, 2, 1)T. For the 2N sampled data (1.2), we apply the Algorithms 3.4, 3.5 and
3.6. As the bound ε in Algorithm 3.4, we use again 10−10. The corresponding results
are presented in Table 4.3. The marker ∗ in Table 4.3 means that we could not recover
all complex exponents. However we approximate the signal very well with fewer expo-
nentials. For the separation distance δ = 0.001, we obtain the same theoretical bounds
for N as in Example 4.2. But now we need much more sampled data than in Example
4.2, since all exponents fj are clustered. This example shows that one can deal with the
ill–conditioning of the matrices by choice of higher N and L.

We note that the reconstruct of the trigonometric polynomial f(t) = h(1000 t) is much
simpler. Another possibility of reconstruction of the exponential sum (1.1) is based on
the use of random sampling sets. To this end, we rewrite (3.7) with randomly chosen
integers τm ≥ 0 (m = 0, . . . , L− 1) such that

L−1∑
k=0

qk h(k + τm) =
L−1∑
k=0

qk
L∑
j=1

cj z
k+τm
j =

L∑
j=1

cj z
τm
j

L−1∑
k=0

qk z
k
j

=
L∑
j=1

cj z
τm
j

(
q(zj)− zLj

)
= −

L∑
j=1

cj z
L+τm
j = −h(L+ τm) .

Following the lines in Section 3, we obtain the same algorithms, but instead of the
rectangular Hankel matrices (3.2) we have to work now with the matrices

H̃2N−L,L(s) :=
(
h(s+ l + τm)

)2N−L−1,L−1
l,m=0

(s = 0, 1) .

In this example we choose τm ∈ [0, 10000] (m = 0, . . . , L − 1) as distinct random inte-
gers. Then we can reconstruct the given exponential sum h with a high accuracy, using
Algorithm 3.5 or 3.6 for N = L = 40.

Example 4.4 Exponential sums are very often studied in nonlinear approximation, see
also [5, 6]. The starting point in the consideration of exponential sums is an approxima-
tion problem encountered for the analysis of decay processes in science and engineering.
A given function g : [α, β] → C with 0 ≤ α < β < ∞ is to be approximated by an
exponential sum

M∑
j=1

γj eϕjt (4.1)

of fixed order M , where the parameters ϕj , γj (j = 1, . . . ,M) are to be determined. We
set

h̃(x) := g(α+
β − α
2N

x) (x ∈ [0, 2N ]) .

For the equidistant sampled data h̃(k) (k = 0, . . . , 2N − 1), we apply the Algorithm 3.5,
where M is now known. The result of the Algorithm 3.5 is an exponential sum (1.1) of
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N L e(f) e(c) e(h)

Algorithm 3.4

300 300 ∗ ∗ 1.85e–11

400 400 ∗ ∗ 3.01e–08

500 500 ∗ ∗ 2.81e–08

600 600 ∗ ∗ 2.76e–08

Algorithm 3.5

300 300 5.94e–03 2.47e–01 5.26e–12

400 400 8.46e–05 6.87e–03 8.12e–12

500 500 2.68e–06 2.27e–04 1.25e–11

600 600 4.71e–07 4.20e–05 1.18e–11

Algorithm 3.6

300 300 ∗ ∗ 3.22e–12

400 400 4.49e–05 3.60e–03 7.61e–12

500 500 4.53e–06 3.82e–04 7.17e–12

600 600 6.26e–07 5.74e–05 1.58e–11

Table 4.3: Results of Example 4.3.

the order M . Substituting x := 2N (t − α)/(β − α) (t ∈ [α, β]) in (1.1), we obtain an
exponential sum (4.1) approximating the given function g on the interval [α, β].

First we approximate the function g(t) = 1/t (t ∈ [1, 106]) by an exponential sum of
order M = 20 on the interval [1, 106]. We choose N = 500 and L = 250. For the
103 sampled values h̃(k) = g(1 + k (106 − 1)/1000), (k = 0, . . . , 999), the Algorithm 3.5
provides an exponential sum (1.1) with negative damping factors fj , where Im fj = 0,
and coefficients cj (j = 1, . . . , 20). Finally, the substitution x = 1000 (t − 1)/(106 − 1)
in (1.1) delivers the exponential sum (4.1) approximating the function g(t) = 1/t on the
interval [1, 106], see Table 4.4. We plot the absolute error between the function g(t) = 1/t
and (4.1) in Figure 4.1, where the absolute error is computed on 107 equispaced points in
[1, 106]. We remark that the method in [11], which is based on nonequispaced sampling
and the Remez algorithm, leads to slightly better results.

Example 4.5 Finally we consider the function g(t) = J0(t) (t ∈ [0, 1000]), where J0
denotes the Bessel function of first kind of order 0, see Figure 4.3 (left). We approximate
this function by an exponential sum (4.1) of order M = 20 on the interval [0, 1000], see
[5]. Choosing N = 500 and L = 250, the linear substitution reads x = t and we apply
the Algorithm 3.5, where M = 20 is now known. For the sampled values h̃(k) = J0(k)
(k = 0, . . . , 999), we obtain the exponential sum (4.1) of order 20 with the complex
exponents ϕj (shown in Figure 4.2 (left)) and the complex coefficients γj (shown in
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j ϕj γj

1 –1.131477118248638e-02 1.007272522767242e+00
2 –3.135207069583116e-03 1.630338699249195e–03
3 –1.992050185224761e-03 8.190832864884086e–04
4 –1.346933589233963e-03 5.077389797304821e–04
5 –9.311468710314101e-04 3.383442795104141e–04
6 –6.495138717190783e-04 2.324544964268483e–04
7 –4.546022251286615e-04 1.619000817653079e–04
8 –3.184055272088167e-04 1.134465879412991e–04
9 –2.228354952207525e-04 7.970080578182607e–05
10 –1.556526041917767e-04 5.605845462805709e–05
11 –1.083789751443881e-04 3.946592554286590e–05
12 –7.507628403357719e-05 2.782732966146225e–05
13 –5.156651439477524e-05 1.967606126541986e–05
14 –3.491193584036177e-05 1.397100067893288e–05
15 –2.306126330251814e-05 9.962349111371446e–06
16 –1.460537606626776e-05 7.104216597682316e–06
17 –8.602447909553079e-06 5.001095886653157e–06
18 –3.291629375734129e-07 8.476195898630604e–07
19 –1.760073594077830e-06 2.032258842381446e–06
20 –4.445510593794362e-06 3.373949779113571e–06

Table 4.4: Damping factors ϕj and coefficients γj of the exponential sum (4.1) approx-
imating 1/t on the interval [1, 106].

Figure 4.2 (right)). The absolute error between J0 and the exponential sum (4.1) of
order 20 is shown in Figure 4.3 (right), where the absolute error is computed on 107

equispaced points in [0, 1000].
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