TU Chemnitz, Fakultät für Mathematik: Fakultät für Mathematik
Daniel Potts, Manfred Tasche: Parameter estimation for nonincreasing exponential sums by Prony-like methods
Daniel Potts, Manfred Tasche: Parameter estimation for nonincreasing exponential sums by Prony-like methods
- Author(s):
-
Daniel Potts
Manfred Tasche
-
Title:
-
Daniel Potts, Manfred Tasche: Parameter estimation for nonincreasing exponential sums by Prony-like methods
- Electronic source:
-
application/pdf
- Preprint series:
-
Technische Universität Chemnitz,
Fakultät für Mathematik (Germany). Preprint
04, 2012
- Mathematics Subject Classification:
-
| 65D10
| [Smoothing, curve fitting]
|
| 41A45
| [Approximation by arbitrary linear expressions]
|
| 65F15
| [Eigenvalues, eigenvectors]
|
| 65F20
| [Overdetermined systems, pseudoinverses]
|
| 94A12
| [Signal theory (characterization, reconstruction, filtering, etc.)]
|
- Abstract:
-
Let $z_j:={\mathrm e}^{f_j}$ with $f_j \in {\mathbb C}$ and $0 < |z_j| \le 1$
be distinct nodes for $j=1,\ldots, M$.
Let $h(x) := c_1\,{\mathrm e}^{f_1\,x} +\, \ldots\,+ c_M\,{\mathrm
e}^{f_M\,x}$ $(x\ge 0)$ be a nonincreasing exponential sum
with complex coefficients $c_j \neq 0$.
Many applications in electrical engineering, signal processing and
mathematical physics lead to the
following problem: Determine all parameters of $h$, if $2\,N$
sampled values $h(k)$ $(k=0,\ldots,2N-1;\, N\ge M)$ are given. This parameter
estimation problem
is a nonlinear inverse problem.
For noiseless sampled data, we describe the close connections between Prony--
like methods, namely the classical Prony method, the matrix pencil method and
the ESPRIT method.
Further we present a new efficient algorithm of matrix pencil factorization
based on QR decomposition of a rectangular Hankel matrix. The algorithms of
parameter estimation are also applied to sparse Fourier approximation and
nonlinear approximation.
- Keywords:
-
Parameter estimation,
nonincreasing exponential sum,
Prony--like method,
exponential fitting problem,
ESPRIT,
matrix pencil factorization,
companion matrix,
Prony polynomial,
eigenvalue problem,
rectangular Hankel matrix,
nonlinear approximation,
parse trigonometric polynomial,
sparse Fourier approximation
- Language:
- English
-
Publication time:
- 04/2012