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Abstract. The focus of this paper is on conditional stability estimates for ill-
posed inverse problems in partial differential equations. Conditional stability
estimates have been obtained in the literature by a couple different methods.
In this paper we propose a method called interpolation method, which is based
on interpolation in variable Hilbert scales. We are going to work out the theo-
retical background of this method and show that optimal conditional stability
estimates are obtained. The capability of our method is illustrated by a com-
prehensive collection of different inverse and ill-posed PDE problems containing
elliptic and parabolic problems, one source problem and the problem of analytic
continuation.
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1. Introduction

Ill-posed problems for partial differential equations (PDE) arise in different
mathematical models of natural sciences and engineering and have become in-
creasingly important. In this paper we are interested in ill-posed PDE problems,
mostly expressing linear inverse problems, that can be formulated in form of an
operator equation

Af = g , (1.1)

where we assume that A : X → Y is an injective and bounded linear operator
mapping between infinite dimensional Hilbert spaces X and Y with inner products
(·, ·) and norms ‖ · ‖. Ill-posedness means that the range R(A) of the operator A
is not closed, or in other words that A−1 : R(A) ⊂ Y → X is an unbounded linear
operator. This is equivalent to the fact that ω(δ,X) = ∞ for all δ > 0, where the
quantity

ω(δ,M) = sup
{
‖f‖

∣∣ f ∈M, ‖Af‖ ≤ δ
}

(1.2)

denotes the modulus of continuity of the inverse operator A−1 on the set M ⊆ X .
As a consequence, in the ill-posed case there cannot exist continuous and non-
decreasing finite functions β(δ), δ > 0, with lim

δ→0
β(δ) = 0, which we will call index

functions, such that

‖f‖ ≤ β (‖Af‖) for all f ∈ X.

However, when restricting the domain of the operator A to certain subsets M of
X and consequently the domain of A−1 to images of M , the quantity ω(δ,M) no
longer needs to be infinite. If M is bounded with 0 ∈M , then ω(δ,M), δ ≥ 0, is
a bounded and non-decreasing function. This is also the case for unbounded M
when M is a subset of a finite-dimensional subspace of X . For further properties
of ω(δ,M) we refer, e.g., to [32, 27, 29]. Most famously, Tikhonov’s theorem (see
[63, 64]) asserts that A−1 restricted to images of relatively compact sets M is a
continuous operator and as a consequence we have the limit condition

lim
δ→0

ω(δ,M) = 0 (1.3)

whenever M is a convex set with 0 ∈M . Moreover, for such sets M the modulus
of continuity ω(δ,M) is a continuous function for 0 ≤ δ < ∞ and hence even an
index function. As the following lemma will show in such case there exist index
functions β such that

‖f‖ ≤ β (‖Af‖) for all f ∈M . (1.4)

Inequalities of the form (1.4) are conditional stability estimates on M and we call
index functions β satisfying (1.4) conditional stability functions. The derivation of
such functions β for given compact subsets M ⊂ X has attracted attention, see,
e.g., [1, 67] and the reference cited therein. For its application in regularization,
see, e. g., [12, 33, 34, 35].

Lemma 1.1. Let M ⊂ X be such that ω(δ,M) defined by (1.2) is finite and
continuous for all δ > 0 and satisfies the limit condition (1.3). Then we have the
following two properties:
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(i) The modulus of continuity ω is a conditional stability function on M , i.e.,

‖f‖ ≤ ω(‖Af‖,M) for all f ∈M.

(ii) For any other index function β that obeys (1.4) we have

ω(‖Af‖,M) ≤ β(‖Af‖) for all f ∈M.

Proof. The property (i) follows immediately from the definition (1.2) of ω. On
the other hand, the property (ii) is a consequence of the inequality chain

ω(‖Af‖,M) = sup
{
‖f̃‖

∣∣ f̃ ∈M, ‖Af̃‖ ≤ ‖Af‖
}

≤ sup
{
β(‖Af̃‖)

∣∣ f̃ ∈M, ‖Af̃‖ ≤ ‖Af‖
}

≤ β(‖Af‖),
which makes use of the inequality (1.4) together with the fact that β is a mono-
tonically non-decreasing function. �

As a consequence of the lemma all conditional stability functions β on M are
majorant functions of the corresponding modulus of continuity. Vice versa, if
ω(δ,M) is an index function, then this is the smallest possible conditional stability
function β in (1.4).

There are different techniques for deriving conditional stability functions β in-
cluding the logarithmic convexity method, weighted energy methods, Gronwall’s
lemma and maximum principles [2, 30, 48], or methods based on Carleman es-
timates [8, 37, 38, 75]. Let us explain by a simple model example the method
of logarithmic convexity as one of the most traditional methods to obtain con-
ditional stability functions β. This method is applicable to different kinds of
ill-posed PDE problems.

Model example. Consider the heat equation problem backward in time, in which
for fixed t ∈ [0, T ) the temperature f := u(·, t) is to be determined from terminal
data g such that u obeys the initial boundary value problem

ut − uxx = 0 for (x, t) ∈ (0, π)× [0, T ]
u(0, t) = u(π, t) = 0 for t ∈ (0, T )

u(x, T ) = g(x) for x ∈ (0, π)



 . (1.5)

The forward operator A = A(t) : L2(0, π) → L2(0, π) mapping f into g is smooth-
ing, and hence the problem Af = g is ill-posed. For studying conditional stability,
let us assume the solution smoothness f ∈M where

M =
{
u(·, t) ∈ L2(0, π)

∣∣u obeys (1.5), ‖u(·, 0)‖L2(0,π) ≤ E
}
. (1.6)

For this model example, the method of logarithmic convexity can be applied
for deriving a conditional stability estimate on M defined by (1.6). This method
consists in executing the following working steps:

(a) We define the energy functional F (t) := ‖u(x, t)‖2.
(b) We show that [lnF (t)]′′ =

F ′′(t)F (t)− [F ′(t)]2

F 2(t)
≥ 0.
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(c) We conclude that F (t) ≤ F 1−t/T (0)F t/T (T ) which gives, for any fixed
t ∈ (0, T ], the Hölder type conditional stability estimate

‖u(x, t)‖ ≤ β (‖u(x, T )‖) with β(δ) = E1−t/T δt/T . (1.7)

The main difficulty for obtaining an estimate (1.7) consists in proving the log-
arithmic convexity (b) of F (t) taking into account that F ′(t) = 2(u, ut) and
F ′′(t) = 4(ut, ut). These identities imply by means of the Cauchy-Schwarz in-
equality the required non-negativity of [lnF (t)]′′.

2. Conditional stability estimates by using interpolation

2.1. The interpolation method. By interpolation in variable Hilbert scales
we can estimate the intermediate norm ‖f‖ if estimates for some weaker norm
‖Af‖ and some stronger norm ‖[ϕ(A∗A)]−1/2f‖ are known. Variable Hilbert scale
inequalities have been introduced by Hegland, see [24, 25]. Such inequalities which
extend the classical interpolation inequality became a powerful tool in the analysis
of regularization under general smoothness conditions, see, e.g., [7, 26, 28, 40, 41,
42, 45, 46, 47, 56, 61]. Variable Hilbert scale interpolation is sometimes also called
interpolation with a function parameter, see [6, 44]. In this paper we use a variant
of the variable Hilbert scale approach based on Jensen’s inequality for deriving
sharp conditional stability estimates on special subsets M ⊂ X , which have the
structure

M =Mϕ,E =
{
f ∈ X

∣∣ f = [ϕ(A∗A)]1/2v, ‖v‖ ≤ E
}
, (2.1)

i.e., the admissible elements f ∈ X satisfy a general source condition generated
by some index function ϕ.

Theorem 2.1. Assume that f ∈ Mϕ,E, where Mϕ,E is given by (2.1) for some
index function ϕ : (0, a] → (0, ϕ(a)] with a = ‖A∗A‖. Assume further that the
function ̺(λ) := λϕ−1(λ), ̺ : (0, ϕ(a)] → (0, aϕ(a)] is convex. Then we have

‖f‖ ≤ β(‖Af‖) with β(δ) = E
√
̺−1(δ2/E2). (2.2)

Proof. We follow the ideas outlined in [61, Theorem 2.1]. Let Eλ the spectral
family of A∗A. Since ̺ is convex we may employ Jensen’s inequality and obtain
due to ̺(ϕ(λ))[ϕ(λ)]−1 = λ that

̺

( ‖f‖2
‖[ϕ(A∗A)]−1/2f‖2

)
≤
∫
̺(ϕ(λ))[ϕ(λ)]−1 d‖Eλf‖2

‖[ϕ(A∗A)]−1/2f‖2 =
‖Af‖2

‖[ϕ(A∗A)]−1/2f‖2 ,

or equivalently,

‖[ϕ(A∗A)]−1/2f‖2 ̺
( ‖f‖2
‖[ϕ(A∗A)]−1/2f‖2

)
≤ ‖Af‖2.

Since ϕ is an index function, ϕ−1(t) := t−1̺(t) is increasing. Hence, t→ t̺(1/t) is
decreasing. Consequently, since ‖[ϕ(A∗A)]−1/2f‖ ≤ E, the above estimate gives

E2̺(‖f‖2/E2) ≤ ‖Af‖2.
By rearranging terms this yields ‖f‖ ≤ β (‖Af‖) with β(δ) = E

√
̺−1(δ2/E2).

�
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Remark 2.2. Since the index function ϕ in Theorem 2.1 is defined on (0, a] it
follows that the index function ρ(λ) := λϕ−1(λ), which could also implicitly be
defined by ̺(ϕ(λ)) := λϕ(λ), is defined on (0, ϕ(a)]. The range of ̺ is (0, aϕ(a)].
Consequently, ̺−1 : (0, aϕ(a)] → (0, ϕ(a)]. Hence, for the stability function β we

have β : (0, c] → (0, d] with c = E
√
aϕ(a) and d = E

√
ϕ(a). Since for f ∈ Mϕ,E

we have ‖Af‖2 = (A∗Aϕ(A∗A)v, v) ≤ E2aϕ(a), there follows that ‖Af‖ belongs
to the domain of β for all elements f ∈Mϕ,E.

Let us give some comment on Theorem 2.1. In many inverse partial differential
equation problems this theorem makes it possible to derive explicit or implicit
formulae for conditional stability functions β on special sets M that arise by
imposing a bound on a part of the solution of the partial differential equation.
In the next sections we apply Theorem 2.1 for obtaining conditional stability
estimates for a collection of different ill-posed PDE problems. Our way can be
summarized as follows:

Interpolation method for deriving conditional stability estimates. Assuming the
solution smoothness f ∈ M ⊂ X , execute the following four steps:

(i) Reformulate the ill-posed PDE problem as an operator equation (1.1).
(ii) Derive the function ϕ such that the set M coincides with the set Mϕ,E

given by (2.1). Verify that ϕ is an index function.
(iii) Derive the function ̺(λ) := λϕ−1(λ) and verify its convexity.
(iv) Derive a formula for β as given in (2.2).

Let us illustrate these working steps by the model example discussed in the
introduction. For the working step (i) we use the method of separation of variables
and obtain the operator equation

Af = g with A(t)f(t) =
∞∑

i=1

(f(t), ui) e
−i2(T−t)ui, (2.3)

where ui =
√
2/π sin ix. That is, A(t) is an self-adjoint operator with eigenvalues

e−i2(T−t) and eigenelements ui. For the working step (ii) one shows that the set
M defined by (1.6) has the equivalent form

M =

{
u(·, t) ∈ L2(0, π)

∣∣u(·, t) = A(t)pv, ‖v‖ ≤ E, p =
t

T − t

}
,

that is, the set M coincides with the set Mϕ,E given by (2.1) where ϕ is given by

ϕ(λ) = λt/(T−t), ϕ : (0, e−2(T−t)] → (0, e−2t].

In the working step (iii) we verify ̺(λ) := λϕ−1(λ) as ̺(λ) = λT/t, which is always
convex. Then we can find in the final working step (iv) according to (2.2) the
required conditional stability function as

β(δ) = E1−t/T δt/T .

This function coincides with the conditional stability function obtained by the
method of logarithmic convexity as outlined in the introduction.
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2.2. Removing convexity. Theorem 2.1 requires convexity of the function ̺,
which for special problems is sometimes difficult to check or even violated. Our
next theorem does not require this convexity assumption. The proof is based
on cross-connections between the best possible worst case error on M and the
modulus of continuity of the inverse A−1 on M and requires following notations:

(a) Let R : Y → X be an arbitrary operator and R(gδ) be an approximate
solution for the solution f † of equation (1.1) from noisy data gδ that obey
‖g − gδ‖ ≤ δ. Then the quantity

∆(δ,R) = sup
{
‖R(gδ)− f‖

∣∣ ‖Af − gδ‖ ≤ δ, f ∈M
}

(2.4)

is called worst case error of the method R on the set M . This quantity
characterizes the accuracy of the method R in the worst case sense.

(b) An optimal method Ropt is characterized by

∆(δ,Ropt) = inf
R

∆(δ,R) (0 < δ ≤ δ0) (2.5)

and this quantity is called best possible worst case error on the set M .

Theorem 2.3. Assume that f ∈ Mϕ,E where Mϕ,E is given by (2.1) for some
index function ϕ : (0, a] → (0, ϕ(a)] with a = ‖A∗A‖, and let ̺(λ) := λϕ−1(λ).
Then we have

‖f‖ ≤ β(‖Af‖) with β(δ) =
√
2E
√
̺−1(δ2/E2). (2.6)

Proof. In analogy to Vainikkos result [65, Lemma 2.2] which is based on a minimax
property given in [43] we obtain for linear methods Rα : Y → X that the worst
case error on Mϕ,E obeys

∆2(δ, Rα) = inf
0<ξ<1

∥∥∥∥
E2

ξ
(I − RαA)ϕ(A

∗A)(I −RαA)
∗ +

δ2

1− ξ
RαR

∗
α

∥∥∥∥ .

For standard regularization methods Rαg
δ = gα(A

∗A)A∗gδ we obtain (compare
also [61, formula (4.6)]) that

∆2(δ, Rα) = inf
0<ξ<1

sup
0<λ≤a

(
E2

ξ
(1− λgα(λ))

2ϕ(λ) +
δ2

1− ξ
λg2α(λ)

)
.

For methods that obey 0 ≤ 1− λgα(λ) ≤ 1 we choose ξ = 1− λgα(λ) and obtain

∆2(δ, Rα) ≤ sup
0<λ≤a

(
E2(1− λgα(λ))ϕ(λ) + δ2gα(λ)

)
.

Choosing for gα the spectral method with gα(λ) = 1/λ for λ ≥ α and gα(λ) = 1/α
for λ < α we obtain that the best possible worst case error on Mϕ,E obeys

∆2(δ,Ropt) ≤ inf
α>0

sup
t∈[0,1]

(
E2(1− t)ϕ(αt) + δ2/α

)
. (2.7)

We use the estimate supt∈[0,1](1− t)ϕ(αt) ≤ ϕ(α) and obtain

∆2(δ,Ropt) ≤ inf
α>0

(
E2ϕ(α) + δ2/α

)
. (2.8)
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For further estimating we use a special α for which both summands on the right-
hand side of (2.8) are equal, that is, we choose α as the unique solution of the
equation αϕ(α) = δ2/E2, or equivalently ̺(ϕ(α)) = δ2/E2, and obtain

∆2(δ,Ropt) ≤ 2E2̺−1(δ2/E2). (2.9)

Furthermore, from [32, 66] we know that for arbitrary centrally symmetric and
convex sets M ⊂ X there holds the estimate ω(δ,M) ≤ ∆(δ,Ropt). From this
estimate and (2.9) we obtain that

ω2(δ,Mϕ,E) ≤ 2E2̺−1(δ2/E2) (2.10)

for all δ := ‖Af‖, f ∈ Mϕ,E. Since ω is a conditional stability function, that is,
there holds ‖f‖ ≤ ω(‖Af‖,Mϕ,E), we obtain the result of the theorem. �

Remark 2.4. We should note that in the special case of polynomial index func-
tions ϕ(λ) = λp in (2.1), the inf-sup problem (2.7) can be solved analytically.
Solving the inner sup problem shows that the sup is attained at t0 = p

p+1
. The

remaining outer inf problem is then to minimize g(α) := E2ppαp/(p+1)p+1+δ2/α.

The inf is attained at α0 =
p+1
p

(
δ
E

) 2

p+1 and leads to the estimate

∆2(δ,Ropt) ≤ E
2

p+1 δ
2p

p+1 = E2̺−1(δ2/E2).

2.3. About the sharpness of the stability estimate. Our next theorem tells
us that the stability estimate of Theorem 2.1 is sharp, that is, there exist elements
f ∈ Mϕ,E for which we have equality in (2.2). This result does not require the
convexity assumption for the function ̺(λ) := λϕ−1(λ).

Theorem 2.5. Let Mϕ,E be given by (2.1) for some index function ϕ : (0, a] →
(0, ϕ(a)] with a = ‖A∗A‖, let ̺(λ) := λϕ−1(λ) and assume that δ2/E2 ∈ σ(H)
where σ(H) denotes the spectrum of H = A∗Aϕ(A∗A). Then,

ω(δ,Mϕ,E) ≥ β(δ) with β(δ) = E
√
̺−1(δ2/E2). (2.11)

Proof. The first part of the proof is borrowed from [61, proof of Theorem 2.1].
For M =Mϕ,E, the function ω defined by (1.2) may be rewritten as

ω(δ,Mϕ,E) = sup
{
‖[ϕ(A∗A)]1/2v‖

∣∣ ‖v‖ ≤ E, ‖A[ϕ(A∗A)]1/2v‖ ≤ δ
}
.

Let δ2/E2 be an eigenvalue of the operator H = A∗Aϕ(A∗A) and v0 the corre-
sponding eigenelement with ‖v0‖ = E. Then we have

A∗Aϕ(A∗A)v0 = (δ2/E2)v0.

Consequently, ‖A[ϕ(A∗A)]1/2v0‖2 = (δ2/E2)(v0, v0) = δ2. That is, the element v0
obeys the side conditions in the function ω(δ,Mϕ,E). Hence,

ω2(δ,Mϕ,E) ≥ ‖[ϕ(A∗A)]1/2v0‖2 = (ϕ(A∗A)v0, v0) .

From ̺(ϕ(λ)) = λϕ(λ) we have ̺(ϕ(A∗A))v0 = Hv0 = (δ2/E2)v0. Consequently,
ϕ(A∗A)v0 = ̺−1(δ2/E2)v0, which gives ω2(δ,Mϕ,E) ≥ E2̺−1(δ2/E2). From this
estimate we obtain (2.11) in case that δ2/E2 is an eigenvalue of the operator H .
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In the second part we treat the case if δ2/E2 belongs to the limit spectrum
σl(H) of the operator H , which is the spectrum of H excluding eigenvalues. From
Weyl [68], see also [58, Section 133], we have the equivalence result

λ0 ∈ σl(A
∗A) ⇔

{
∃ sequence (vn)

∣∣ ‖vn‖ = 1, vn ⇀ 0, A∗Avn − λ0vn → 0
}
.

Clearly, in Weyl’s result, the norm condition ‖vn‖ = 1 may be replaced by the
norm condition ‖vn‖ = E with arbitrary E > 0, since also Evn converges weakly
to 0 and A∗A(Evn) − λ0(Evn) → 0. Let ψ be an arbitrary index function. We
use that ψ(A∗A) =

∫ a

0
ψ(λ)dEλ and obtain that Weyl’s result attains the form

ψ(λ0) ∈ σl(ψ(A
∗A)) ⇔

{
∃ (vn)

∣∣ ‖vn‖ = E, vn ⇀ 0, ψ(A∗A)vn − ψ(λ0)vn → 0
}
.

Now we assume that δ2/E2 ∈ σl(H) where H = A∗Aϕ(A∗A). It follows that

ψ(δ2/E2) ∈ σl(ψ(H)). We use the notation ̺−1/2(t) :=
√
̺−1(t) where ̺−1 is the

inverse of ̺, apply the above equivalence result with ψ(λ) = λ1/2 and ψ(λ) =
ϕ1/2(λ) = ̺−1/2(λϕ(λ)), respectively, and obtain that there exists some sequence
(vn) with ‖vn‖ = E such that

(I) ‖H1/2vn − (δ/E)vn‖ → 0,

(II) ‖[ϕ(A∗A)]1/2vn − ̺−1/2(δ2/E2)vn‖ → 0.

We note that for different index functions ψ one may use the same sequence (vn)
as for the function ψ(λ) = λ. This can easily be checked for power functions
ψ(λ) = λp, therefore it also holds for polynomials, and consequently for any index
functions since index functions can be approximated by polynomials. From (I)
and (II) we conclude that for arbitrary ε > 0 there is an index n = n(ε) such that

(I)′ ‖H1/2vn‖ ≤ (δ/E)‖vn‖+ ε = δ + ε,

(II)′ ‖[ϕ(A∗A)]1/2vn‖ ≥ ̺−1/2(δ2/E2)‖vn‖ − ε = E̺−1/2(δ2/E2)− ε.

From both estimates (I)′, (II)′ and the equality ‖H1/2vn‖ = ‖A[ϕ(A∗A)]1/2vn‖ we
conclude that

ω(δ + ε,Mϕ,E) = sup
{
‖[ϕ(A∗A)]1/2v‖

∣∣ ‖v‖ ≤ E, ‖A[ϕ(A∗A)]1/2v‖ ≤ δ + ε
}

≥ E̺−1/2(δ2/E2)− ε.

Since ε > 0 is arbitrary, we obtain ω(δ,Mϕ,E) ≥ E̺−1/2(δ2/E2). �

Remark 2.6. For compact operators A∗A with eigenvalues λi and corresponding
eigenelements ui, i = 1, 2, . . . , the proof of the first part of Theorem 2.5 shows

following: There exists a sequence (fi), given by (fi) =
(
E
√
ϕ(λi)ui/‖ui‖

)
, with

properties fi ∈Mϕ,E , ‖Afi‖ → 0 for i→ ∞ and

‖fi‖2 = E2̺−1
(
‖Afi‖2/E2

)
,

that is, the conditional stability estimate given by (2.2) is sharp.

Our next proposition tells us that in special situations the modulus of continuity
is smaller than E

√
̺−1(δ2/E2). However, such special situations cannot occur if

A∗A has pure continuous spectrum.
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Proposition 2.7. Let ϕ be an index function, let ̺(λ) := λϕ−1(λ) be convex, let
ψ(λ) := ̺(ϕ(λ)) = λϕ(λ), let A be compact and let λ1 > λ2 > . . . be the distinct
eigenvalues of A∗A. Then,

ω(δ,Mϕ,E) = E
√
s(δ2/E2) for 0 < δ2/E2 ≤ ψ(λ1) (2.12)

where s is the linear spline that interpolates the points (ψ(λi), ϕ(λi)), i = 1, 2, . . . .
If δ2/E2 ∈ (ψ(λi+1), ψ(λi)) and ̺ is stricly convex on this interval, then

ω(δ,Mϕ,E) < E
√
̺−1(δ2/E2). (2.13)

Proof. The statement (2.12) can be concluded from [31], see also [41, Theorem 1].
For δ2/E2 ∈ (ψ(λi+1), ψ(λi)) there exists t ∈ (0, 1) such that

δ2/E2 = tψ(λi) + (1− t)ψ(λi+1).

From (2.12) we conclude that for these δ-values we have

ω(δ,Mϕ,E) = E
√
tϕ(λi) + (1− t)ϕ(λi+1) . (2.14)

From the strict convexity of ̺ we have

̺ (tϕ(λi) + (1− t)ϕ(λi+1)) < t̺ (ϕ(λi)) + (1− t)̺ (ϕ(λi+1))

= tψ(λi) + (1− t)ψ(λi+1) = δ2/E2. (2.15)

Now (2.13) follows from (2.14) and (2.15). �

Remark 2.8. To summarize, concerning upper and lower bounds of ω we know:

(i) If ̺ is convex, then we have from Theorem 2.1 and Theorem 2.5

(i1) ω(δ,Mϕ,E) = E
√
̺−1(δ2/E2) for δ2/E2 ∈ σ(H) withH = A∗Aϕ(A∗A).

(i2) ω(δ,Mϕ,E) ≤ E
√
̺−1(δ2/E2) for δ2/E2 6∈ σ(H) where, due to Propo-

sition 2.7, for strictly convex functions ̺ and compact operators A∗A
the left-hand side is properly smaller.

(ii) If ̺ is not necessarily convex, then by Theorems 2.3 and 2.5 we have

(ii1) E
√
̺−1(δ2/E2) ≤ ω(δ,Mϕ,E) ≤

√
2E
√
̺−1(δ2/E2) for δ2/E2 ∈ σ(H),

and we do not know sharper bounds of ω.
(ii2) ω(δ,Mϕ,E) ≤

√
2E
√
̺−1(δ2/E2) for δ2/E2 6∈ σ(H).

From part (ii1) of Remark 2.8 we conclude that for δ → 0 the rate ω2(δ,Mϕ,E) =
o (̺−1(δ2/E2)) cannot hold. From parts (i2) and (ii2) of Remark 2.8 there arises
the question concerning lower bounds for ω(δ,Mϕ,E) in the case δ2/E2 6∈ σ(H).
In the paper [41, Corollary 1], some lower bound is given provided ̺ is convex and
certain weak assumptions on the decay rate of the eigenvalues λi of the operator
A∗A and on the index function ϕ are valid. Our next proposition shows that some
lower bounds for ω(δ,Mϕ,E) hold also true in situations where ̺ is not necessarily
convex. We divide the δ-interval into subintervals

δ1 > δ2 > ... > δi > δi+1 > ... with δ2i = E2λiϕ(λi)

and obtain following lower bounds for ω(δ,Mϕ,E):

Proposition 2.9. Let ϕ be an index function, let ̺(λ) := λϕ−1(λ), let A∗A be
compact and let λ1 > λ2 > ... be the ordered distinct eigenvalues of A∗A, then:



10 U. TAUTENHAHN, U. HÄMARIK, B. HOFMANN, AND Y. SHAO

(i) The modulus of continuity obeys the estimate

ω2(δ,Mϕ,E) ≥ E2 (δ
2 − δ2i+1)ϕ(λi) + (δ2i − δ2)ϕ(λi+1)

δ2i − δ2i+1

for δ ∈ [δi+1, δi]. (2.16)

(ii) Let ci be positive constants with ϕ(λi+1) ≥ ciϕ(λi), then

ω2(δ,Mϕ,E) ≥ ciE
2̺−1(δ2/E2) for δ ∈ [δi+1, δi]. (2.17)

(iii) If there exists some constant k > 0 such that ci ≥ k for all i ∈ N, then

ω2(δ,Mϕ,E) ≥ kE2̺−1(δ2/E2) for δ ∈ (0, δ1]. (2.18)

Proof. For the eigenvalues λi of the operatorA
∗A, let ui the corresponding eigenele-

ments with length ‖ui‖ = E. We construct the element v by

v = αui + βui+1 with α2 =
δ2 − δ2i+1

δ2i − δ2i+1

and β2 =
δ2i − δ2

δ2i − δ2i+1

.

For this element v we have

‖v‖2 = α2E2 + β2E2 = E2 and ‖A[ϕ(A∗A)]1/2v‖2 = δ2i α
2 + δ2i+1β

2 = δ2.

Hence, this element v obeys the both side conditions of the function

ω2(δ,Mϕ,E) = sup
{
‖[ϕ(A∗A)]1/2v‖2

∣∣ ‖v‖2 ≤ E2, ‖A[ϕ(A∗A)]1/2v‖2 ≤ δ2
}
.

Consequently,

ω2(δ,Mϕ,E) ≥ ‖[ϕ(A∗A)]1/2v‖2 = E2α2ϕ(λi) + E2β2ϕ(λi+1),

and the proof of estimate (2.16) is complete. Next, let us prove (2.17). Since ϕ is
monotonically increasing we have ϕ(λi) ≥ ϕ(λi+1). Consequently,

ω2(δ,Mϕ,E) ≥ E2
(
α2 + β2

)
ϕ(λi+1) = E2ϕ(λi+1).

We use that ϕ(λi+1) ≥ ciϕ(λi), take into account that ̺
−1(δ2i /E

2) = ̺−1(λiϕ(λi)) =
ϕ(λi), use that ̺−1 is increasing and obtain

ω2(δ,Mϕ,E) ≥ E2ciϕ(λi) = E2ci̺
−1(δ2i /E

2) ≥ E2ci̺
−1(δ2/E2).

The proof of part (iii) follows from part (ii). �

Remark 2.10. The assumption in part (iii) of the proposition is satisfied if the
eigenvalues λi of the operator A∗A tend to zero not too fast. Let us discuss two
examples where ϕ is given by ϕ(λ) = λp with p > 0, then:

(i) In case λi = 1/iν with some constant ν > 0, for the constants ci we have
ci =

(
i

i+1

)νp ≥
(
1
2

)νp
. Hence, the assumption in part (iii) of Proposition

2.9 is satisfied with k = 2−νp.
(ii) In case λi = exp(−iν), for the constants ci we have ci = exp(piν−p(i+1)ν).

Hence, the assumption in part (iii) of Proposition 2.9 is satisfied for ν ≤ 1,
but violated for ν > 1.

Some sufficient conditions which guarantee that the assumption in part (iii) of
Proposition 2.9 is satisfied are that

(i) there exists some constant γ > 0 with λi+1/λi ≥ γ (i = 1, 2, ...) and
(ii) ϕ satisfies a ∆2-condition, that is, there holds ϕ(2t) ≤ c2ϕ(t) for t ∈ (0, a

2
].
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The ∆2-condition has been introduced in [41] and implies the existence of some

cγ > 0 such that ϕ(γt) ≥ cγϕ(t). Hence, ϕ(λi) = ϕ
(

λi+1

λi
λi

)
≥ ϕ(γλi) ≥ cγϕ(λi),

which yields the assumption from part (iii) of Proposition 2.9 with k = cγ.

3. Preliminaries on verifying convexity

3.1. Convexity for a first class of functions. We consider the following func-
tion ̺(λ), λ ∈ (0, λ(ξ0)], which is given in parameter representation by

λ(ξ) = c1

[
cosh(yξ)

(c2 + ξ2)p/2 cosh ξ

]2

̺(ξ) = c1

[
1

(c2 + ξ2)p/2 cosh ξ

]2





(ξ0 ≤ ξ <∞). (3.1)

The functions ̺ of the forthcoming Sections 4 - 6 can all be rewritten into the
equivalent form (3.1) with constants

c1 > 0, c2 ≥ 0, ξ0 ≥ 0, y ∈ (0, 1] and p ≥ 0.

Our aim consists in finding necessary and sufficient conditions under which the
function ̺(λ), λ ∈ (0, λ(ξ0)], is convex. In our study we use the standard notations

̺′ = d
dλ
̺(λ), λ̇ = d

dξ
λ(ξ), ˙̺ = d

dξ
̺(ξ). In addition, our study is based on following

two auxiliary functions

r(ξ) := cosh2(yξ) and h(ξ) :=
2p ξ

c2 + ξ2
+ 2 tanh ξ. (3.2)

Proposition 3.1. The function ̺(λ), defined in parameter representation by
(3.1), is convex if and only if

h2 + ḣ ≥ hr̈/ṙ for all ξ ∈ [ξ0,∞). (3.3)

Proof. Since ξ → tanh ξ is monotonically increasing it can be verified that

λ̇ = −2λ(ξ)

[
p ξ

c2 + ξ2
+ tanh ξ − y tanh(yξ)

]
< 0.

Consequently, since ̺′′ = (¨̺λ̇ − ˙̺λ̈)/λ̇3 we obtain that ̺′′ ≥ 0 is equivalent to

¨̺λ̇ ≤ ˙̺λ̈. We note that λ(ξ) = ̺(ξ)r(ξ) with r given by (3.2). Hence, from

λ̇ = ˙̺r + ̺ṙ and λ̈ = ¨̺r + 2 ˙̺ṙ + ̺r̈ we obtain that ¨̺λ̇ ≤ ˙̺λ̈ is equivalent to
ṙ[̺ ¨̺− 2 ˙̺2] ≤ ̺ ˙̺r̈. Since ṙ > 0, this inequality is equivalent to

̺ ¨̺− 2 ˙̺2 ≤ ̺ ˙̺r̈/ṙ for all ξ ∈ [ξ0,∞). (3.4)

We compute ˙̺ and obtain ˙̺(ξ) = −̺(ξ)h(ξ) < 0 with h given by (3.2). For ¨̺ we

have ¨̺ = −( ˙̺h + ̺ḣ). We substitute ˙̺ = −̺h and ¨̺ = −( ˙̺h + ̺ḣ) into (3.4),
collect terms and obtain (3.3). �

Proposition 3.2. The function ̺(λ), defined in parameter representation by
(3.1), is convex if and only if

p2 + ψ1(ξ, y) · p+ ψ2(ξ, y) ≥ 0 for all ξ ∈ [ξ0,∞) (3.5)
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where ψ1 and ψ2 are given by

ψ1(ξ, y) =
c2 + ξ2

ξ
[2 tanh ξ − y coth(2yξ)] +

c2 − ξ2

2ξ2
, (3.6)

ψ2(ξ, y) =
(c2 + ξ2)2

ξ2
tanh ξ [coth(2ξ)− y coth(2yξ)] . (3.7)

Proof. For ḣ we have ḣ = 2p(c2 − ξ2)/(c2 + ξ2)2 + 2− 2 tanh2 ξ. We substitute h

and ḣ into (3.3), rearrange terms and obtain

p2 · 2ξ2

(c2 + ξ2)2
+ p ·

[
4ξ

c2 + ξ2
tanh ξ +

c2 − ξ2

(c2 + ξ2)2

]
+ 1 + tanh2 ξ

≥
[
p · ξ

c2 + ξ2
+ tanh ξ

]
· r̈
ṙ
. (3.8)

From ṙ = y sinh(2yξ) and r̈ = 2y2 cosh(2yξ) we have r̈/ṙ = 2y coth(2yξ). We
substitute this into (3.8), rearrange terms, use in addition that 1 + tanh2 ξ =
2 tanh ξ coth(2ξ) and obtain the statement of the proposition. �

Let us discuss some monotonicity properties of the functions ψ1(ξ, y) and ψ2(ξ, y):

(a) The function y → y coth y is monotonically increasing. It follows that for
any fixed ξ > 0, both ψ1(ξ, y) and ψ2(ξ, y) are monotonically decreasing
with respect to y ∈ (0, 1].

(b) For any fixed y ∈ (0, 1], both ψ1(ξ, y) and ψ2(ξ, y) are monotonically in-
creasing with respect to ξ ∈ (0,∞).

From these properties and Proposition 3.2 we have

Corollary 3.3. The function ̺(λ), defined in parameter representation by (3.1),
is convex if and only if

p2 + ψ1(ξ0, y) p+ ψ2(ξ0, y) ≥ 0. (3.9)

This convexity condition is valid

(i) for all y ∈ (0, 1] if and only if p2 + p · ψ1(ξ0, 1) ≥ 0,

(ii) for all p ≥ 0 if and only if ψ1(ξ0, y) + 2
√
ψ2(ξ0, y) ≥ 0,

(iii) for all p ≥ 0 and all y ∈ (0, 1] if and only if ψ1(ξ0, 1) ≥ 0.

Proof. The proof of (3.9) follows from Proposition 3.2 and the monotonicity prop-
erty (b). The proof of part (i) follows from part (3.9), the monotonicity property
(a) and ψ2(ξ0, 1) = 0. For the proof of (ii) we consider (3.9) and distinguish two
cases ψ1(ξ0, y) ≥ 0 and ψ2(ξ0, y) < 0. In the first case, convexity of ̺ is guaranteed
for all p ≥ 0 (since ψ2 ≥ 0). In the second case, convexity of ̺ is guaranteed for
all p ≥ 0 if and only if ψ2

1 ≤ 4ψ2, or equivalently, ψ1 + 2
√
ψ2 ≥ 0. From both

cases we obtain (ii). The final part (iii) follows from part (i). �

Since λ̇(ξ) < 0, the domain λ ∈ (0, λ(ξ0)] of the function ̺(λ) is largest for
ξ0 = 0. In this case we conclude from Corollary 3.3 the following
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Corollary 3.4. Let ξ0 = 0. Then, the function ̺(λ) defined in parameter repre-
sentation by (3.1) is convex if and only if

p2 + p
[
2c2
(
1− y2/3

)
− 1
]
+ 2c22

(
1− y2

)
/3 ≥ 0. (3.10)

This inequality is valid

(i) for all y ∈ (0, 1] if and only if p2 + p [4c2/3− 1] ≥ 0,

(ii) for all p ≥ 0 if and only if c2

[
1− y2/3 +

√
2(1− y2)/3

]
≥ 1/2,

(iii) for all p ≥ 0 and all y ∈ (0, 1] if and only if c2 ≥ 3/4.

Proof. The convexity condition (3.10) follows from (3.9) and the limit relations

lim
ξ→0

ψ1(ξ, y) = 2c2
(
1− y2/3

)
− 1 and lim

ξ→0
ψ2(ξ, y) = 2c22

(
1− y2

)
/3.

From (3.10) we obtain (i), (ii) and (iii). �

3.2. Convexity for a second class of functions. We consider the following
function ̺(λ), λ ∈ (0, λ(ξ0)], which is given in parameter representation by

λ(ξ) = c1 (c2 + ξc3)−p e−zξ

̺(ξ) = c1 (c2 + ξc3)−p e−ξ

}
(ξ0 ≤ ξ <∞). (3.11)

The functions ̺ of the forthcoming Sections 7, 8, 9, 11, 13 can all be rewritten
into the equivalent form (3.11) with constants

c1 > 0, c2 ≥ 0, c3 ≥ 1, ξ0 ≥ 0, z ∈ [0, 1) and p ≥ 0.

Our aim consists in finding necessary and sufficient conditions under which the
function ̺(λ), λ ∈ (0, λ(ξ0)], is convex.

Proposition 3.5. The function ̺(λ), defined in parameter representation by
(3.11), is convex if and only if

p2ψ2(ξ) + p
[
(z + 1)ψ(ξ) + ψ̇(ξ)

]
+ z ≥ 0 for all ξ ∈ [ξ0,∞) (3.12)

where ψ(ξ) is given by

ψ(ξ) =
c3ξ

c3−1

c2 + ξc3
. (3.13)

Proof. Computing λ̇ yields λ̇ = −λ(ξ) [pψ(ξ) + z] < 0. We note that the argument
λ = λ(ξ) possesses the representation λ(ξ) = ̺(ξ)r(ξ) with r given by

r(ξ) := e(1−z)ξ.

We proceed as in the proof of Proposition 3.1 and obtain that ̺(λ), λ ∈ (0, λ(ξ0)],
is convex if and only if

̺ ¨̺− 2 ˙̺2 ≤ ̺ ˙̺r̈/ṙ for all ξ ∈ [ξ0,∞). (3.14)

Computing ˙̺ and ¨̺ yields ˙̺ = −(pψ + 1)̺ < 0 and ¨̺ = −(pψ + 1) ˙̺ − pψ̺̇. We
substitute this into (3.14), observe that r̈/ṙ = 1− z and obtain

(pψ + 1)2 + pψ̇ ≥ (pψ + 1)(1− z).

Rearranging terms yields (3.12). �
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From (3.12) we conclude that ̺(λ) is convex for all z ∈ [0, 1) in the cases p = 0

and p ≥ 1. The second result follows from (3.12) and ψ̇ = ψ [(c3 − 1)/ξ − ψ] ≥
−ψ2. Hence, non-convexity cannot hold for smoothness situations with p = 0 and
p ≥ 1. From Proposition 3.5 we have

Corollary 3.6. The function ̺(λ), defined in parameter representation by (3.11),
is convex for all z ∈ [0, 1) and all p ≥ 0 if and only if

c2 ≥ sup
ξ∈[ξ0,∞)

g(ξ) with g(ξ) =
ξc3(1− ξ)

ξ + c3 − 1
. (3.15)

Proof. The left hand side of (3.12) is monotonically increasing with respect to
z ∈ [0, 1). It follows that the convexity condition (3.12) holds true for all z ∈ [0, 1)

if and only if p2ψ2(ξ) + p
[
ψ(ξ) + ψ̇(ξ)

]
≥ 0 for all ξ ∈ [ξ0,∞). From this we

conclude that ̺(λ) is convex for all z ∈ [0, 1) and all p ≥ 0 if and only if

ψ(ξ) + ψ̇(ξ) ≥ 0 for all ξ ∈ [ξ0,∞).

Using that ψ̇ = ψ [(c3 − 1)/ξ − ψ] we obtain by rearranging terms that this con-
vexity condition is valid if and only if (3.15) holds. �

4. Cauchy problems for elliptic equations

This problem is taken from [49, 53, 59]. Problems of this kind are ill-posed and
arise in several fields of physics and engineering such as hydrodynamics, tomogra-
phy, theory of electronic signals, non-destructive testing, geophysics, seismology
and others.

System equation formulation of the problem: Determine, for any fixed y ∈ (0, 1],
the function f(x) := u(x, y), x ∈ Ω ⊂ Rn, from the data function g(x) := u(x, 0)
where u(x, y) obeys the following Cauchy problem

−Lu+ uyy = 0 for x ∈ Ω ⊂ Rn, 0 < y < 1
u(x, 0) = g(x) for x ∈ Ω ⊂ Rn

uy(x, 0) = 0 for x ∈ Ω ⊂ Rn



 (4.1)

and L : D(L) ⊂ X → X denotes a linear densely defined self adjoint and positive
definite operator in X = L2(Ω) with eigenvalues

1 = l1 ≤ l2 ≤ ... ≤ li ≤ ... , li → ∞ for i→ ∞
and eigenelements {ui} that form an orthonormal basis in X .

Special case: An example for (4.1) is the Laplace equation in two dimensions

uxx + uyy = 0 for x ∈ (0, π), y ∈ (0, 1)
u(0, y) = u(π, y) = 0 for y ∈ [0, 1]

u(x, 0) = g(x) for x ∈ [0, π]
uy(x, 0) = 0 for x ∈ [0, π]





(4.2)

in which the eigenvalues li and eigenelements ui of L : H1
0 (0, π) ∩ H2(0, π) ⊂

X → X with X = L2(0, π) are given by li = i2, ui =
√

2
π
sin(ix) (i = 1, 2, ... ).

Under the smoothness assumption ‖u(x, 1)‖ ≤ E, this example has been treated
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in [35] by using the method of logarithmic convexity. We will treat more general
smoothness. However, we do not know if our more general solution smoothness
could also be treated by the method of logarithmic convexity.

Smoothness assumption: For studying conditional stability, we assume the solu-
tion smoothness ‖Lp/2u(x, 1)‖ ≤ E with some E > 0 and p ≥ 0 in case y ∈ (0, 1)
and p > 0 in case y = 1, that is,

u(·, y) ∈M =
{
u(·, y) ∈ X

∣∣ u obeys (4.1), ‖Lp/2u(·, 1)‖ ≤ E
}
, (4.3)

and ask for a stability estimate ‖f‖ ≤ β(‖g‖).
Step 1 (Operator equation formulation of the problem): By the method of sep-

aration of variables we have for problem (4.1) the unique solution

u(x, y) =
∞∑

i=1

(u(x, 0), ui) cosh(
√
liy) ui,

consequently, (u(x, 0), ui) = (u(x, y), ui)/ cosh(
√
liy), which shows us that the op-

erator A = A(y) : X → X of the operator equation Af = g has the representation

A(y)u(x, y) =
∞∑

i=1

(u(x, y), ui)

cosh(
√
liy)

ui.

We realize that A(y) : X → X is a linear self-adjoint compact operator with
eigenvalues si = 1/ cosh(

√
liy) and eigenelements ui. Since the eigenvalues si

of the operator A(y) decay exponentially fast we realize that the problem is a
severely ill-posed problem. The ill-posedness becomes worse as y increases.

Step 2 (Deriving the index function ϕ): Now we ask the question if the set M
from (4.3) is equivalent to some general source set

Mϕ,E =
{
u(·, y) ∈ X

∣∣ u(·, y) = [ϕ(A∗A)]1/2v , ‖v‖ ≤ E
}

(4.4)

with some index function ϕ = ϕ(λ). Some formal computations show that both
sets (4.3) and (4.4) are equal for ϕ : (0, 1/ cosh2 y] → (0, cosh2 y/ cosh2 1] implicitly
given by

ϕ
(
1/ cosh2(

√
ly)
)
= l−p cosh2(

√
ly)/ cosh2(

√
l), 1 ≤ l <∞. (4.5)

In analogy to [59, Proposition 3.2] it can be shown that the function ϕ defined by
(4.5) is an index function.

Step 3 (Deriving the function ̺ and verifying its convexity): From (4.5) we
obtain that the function ̺ : (0, cosh2 y/ cosh2 1] → (0, 1/ cosh2 1] is implicitly
given by

̺
(
l−p cosh2(

√
ly)/ cosh2(

√
l)
)
= l−p/ cosh2(

√
l), 1 ≤ l <∞. (4.6)

We substitute in (4.6)
√
l = ξ and see that ̺ defined by (4.6) has the special form

(3.1) with constants

c1 = 1, c2 = 0 and ξ0 = 1. (4.7)

From Corollary 3.3 we have
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Proposition 4.1. Let ψ1(ξ, y) and ψ2(ξ, y) be defined by (3.6), (3.7) with constant
c2 = 0. Then, the function ̺(λ), defined in parameter representation by (3.1) with
constants (4.7), is convex if and only if (y, p) ∈ (0, 1]× [0,∞) obey

p2 + ψ1(1, y) p+ ψ2(1, y) ≥ 0. (4.8)

This inequality is valid

(i) for all y ∈ (0, 1] if and only if p = 0 or p ≥ −ψ1(1, 1) ≈ 0.0141264,
(ii) for all p ≥ 0 if and only if y ≤ y∗ with y∗ ≈ 0.999926.

Step 4 (Deriving the conditional stability estimate): Due to the preparatory
steps 1− 3 we are now able to apply Theorem 2.1 and Theorem 2.3 and obtain

Theorem 4.2. Let the convexity assumption (4.8) hold. Then, on the set M
given by (4.3) we have for any fixed y ∈ (0, 1) an improved Hölder type condi-
tional stability estimate and for y = 1 some logarithmic type conditional stability
estimate ‖f‖ ≤ β(‖g‖) with

β(δ) = El
−p/2
0 cosh

√
l0y/ cosh

√
l0 (4.9)

where l0 is the unique solution of the equation lp/2 cosh
√
l = E/δ. For δ → 0

there holds the asymptotic representation

β(δ) = Ey

(
δ

2

)1−y (
ln

1

δ

)−py

(1 + o(1)). (4.10)

If the convexity assumption (4.8) is violated, then (4.9) and (4.10) hold true with
an additional factor

√
2 on the right hand side.

Proof (sketch). From (4.6) we obtain that ̺−1 is implicitly given by

̺−1
(
l−p/ cosh2(

√
l)
)
= l−p cosh2(

√
ly)/ cosh2(

√
l), 1 ≤ l <∞. (4.11)

The proof of (4.9) follows from (4.11) and Theorem 2.1. Further, from (4.11) we
obtain that ̺−1 possesses the asymptotic representation

̺−1(λ) = (λ/4)1−y
(
− ln

√
λ
)−2py

(1 + o(1)) for λ→ 0.

From this representation and Theorem 2.1 we obtain (4.10). �

5. Cauchy problem for the Laplace equation in a strip

Problems of this type have been under consideration, e. g., in the papers [11,
20, 39, 53].

System equation formulation of the problem: Determine, for any fixed y ∈ (0, 1],
the function f(x) := u(x, y) from the data function g(x) := u(x, 0) where u(x, y)
obeys the following Cauchy problem for the two-dimensional Laplace equation in
the strip 0 < y ≤ 1:

uxx + uyy = 0 for x ∈ R, 0 < y ≤ 1
u(x, 0) = g(x) for x ∈ R

uy(x, 0) = 0 for x ∈ R



 . (5.1)
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Smoothness assumption: Let X = L2(R) with norm ‖ · ‖. For studying condi-
tional stability, we assume for some E > 0 and p ≥ 0 in case y ∈ (0, 1) and p > 0
in case y = 1 the solution smoothness

u(·, y) ∈M =
{
u(·, y) ∈ X

∣∣ u obeys (5.1), ‖u(·, 1)‖p ≤ E
}
, (5.2)

where ‖ · ‖p is the norm in the Sobolev space Hp(R) of order p ≥ 0, that is,

‖h‖p :=
(∫

R

|ĥ(ξ)|2(1 + ξ2)p dξ

)1/2

with ĥ(ξ) =
1√
2π

∫

R

h(x)e−ixξ dx. (5.3)

In (5.3), ĥ(ξ) = F(h(x)) is the Fourier transform of the function h(x). Now our

aim is to find a stability estimate ‖f‖ ≤ β(‖g‖), or equivalently, ‖f̂‖ ≤ β(‖ĝ‖).
Step 1 (Operator equation formulation of the problem): By the method of

Fourier transform we obtain in the frequency space the operator equation

Âf̂ = ĝ with Âf̂ :=
1

cosh(yξ)
f̂(ξ).

Step 2 (Deriving the index function ϕ): Now we ask the question if our smooth-
ness assumption is equivalent to

u(·, y) ∈Mϕ,E =
{
u(·, y) ∈ X

∣∣ u(·, y) = [ϕ(A∗A)]1/2v , ‖v‖ ≤ E
}

(5.4)

with some index function ϕ = ϕ(λ). Some formal computations show that there
holds equality if ϕ : (0, 1] → (0, 1] is implicitly given by

ϕ
(
1/ cosh2(ξy)

)
=
(
1 + ξ2

)−p
cosh2(ξy)/ cosh2 ξ, 0 ≤ ξ <∞. (5.5)

For showing that ϕ is an index function we rewrite (5.5) into parameter repre-

sentation λ(ξ) = 1/ cosh2(ξy), ϕ(ξ) = (1 + ξ2)
−p

cosh2(ξy)/ cosh2 ξ, 0 ≤ ξ < ∞,

verify that λ̇(ξ) < 0 and ϕ̇(ξ) < 0 and obtain that ϕ′(λ) > 0. Since in addition
lim
ξ→∞

ϕ(ξ) = 0 we conclude that ϕ is an index function.

Step 3 (Deriving the function ̺ and verifying its convexity): From (5.5) we
obtain that the function ̺ : (0, 1] → (0, 1] is implicitly given by

̺
((

1 + ξ2
)−p

cosh2(ξy)/ cosh2 ξ
)
=
(
1 + ξ2

)−p
/ cosh2 ξ, 0 ≤ ξ <∞. (5.6)

This function ̺ can be rewritten into parameter representation (3.1) with

c1 = 1, c2 = 1 and ξ0 = 0. (5.7)

From Corollary 3.4 we have

Proposition 5.1. The function ̺(λ), defined in parameter representation by (3.1)
with constants (5.7), is convex for all (y, p) ∈ (0, 1]× [0,∞).

Step 4 (Deriving the conditional stability estimate): Due to the preparatory
steps 1− 3 we are now able to apply the general Theorem 2.1 and obtain
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Theorem 5.2. On the set M given by (5.2) we have for y ∈ (0, 1) an improved
Hölder type conditional stability estimate and for y = 1 some logarithmic type
conditional stability estimate ‖f‖ ≤ β(‖g‖) with

β(δ) = E
(
1 + ξ20

)−p/2
cosh(ξ0y)/ cosh ξ0 = δ cosh(ξ0y) (5.8)

where ξ0 is the unique solution of the equation (1 + ξ2)
−p/2

/ cosh ξ = δ/E. For
δ → 0 there holds the asymptotic representation

β(δ) = Ey

(
δ

2

)1−y (
ln

1

δ

)−py

(1 + o(1)). (5.9)

Proof (sketch). From (5.6) we obtain that the inverse ̺−1 is given by

̺−1
((

1 + ξ2
)−p

/ cosh2 ξ
)
=
(
1 + ξ2

)−p
cosh2(ξy)/ cosh2 ξ, 0 ≤ ξ <∞. (5.10)

Hence, (5.8) follows. From (5.10) we obtain that the inverse ̺−1 possesses the
asymptotic (explicit) representation

ρ−1(λ) = (λ/4)1−y
(
− ln

√
λ
)−2py

(1 + o(1)) for λ→ 0. (5.11)

From (5.11) and (2.2) we obtain (5.9). �

6. Cauchy problem for the Helmholtz equation

Problems of this kind have been considered, e. g., in [9, 20, 56, 69]. They arise,
e. g., in optoelectronics, and in particular in laser beam models, see [4, 54, 55, 57].

System equation formulation of the problem: Denote by r = (x, y) the first two
variables, let ∆u := uxx + uyy + uzz, and let k > 0 denote the wave number.
Determine, for any fixed z ∈ [0, d), the function f(r) := u(r, z) from the data
function g(r) := u(r, d) where u(r, z) obeys the following Cauchy problem for the
Helmholtz equation

∆u+ k2u = 0 for (r, z) ∈ R2 × (0, d)
u(r, d) = g(r) for r = (x, y) ∈ R2

u(·, z) ∈ L2(R2) for z ∈ (0, d]



 . (6.1)

Smoothness assumption: Let X = L2(R2) with norm ‖ · ‖. For studying condi-
tional stability, we assume for some E > 0 and p ≥ 0 in case z ∈ (0, d) and p > 0
in case z = 0 the solution smoothness

u(·, z) ∈M =
{
u(·, z) ∈ X

∣∣ u obeys (6.1), ‖u(·, 0)‖p ≤ E
}

(6.2)

where ‖ · ‖p is the norm in the Sobolev space Hp(R2) of order p ≥ 0, that is,

‖w‖p :=
(∫

R2

|ŵ(ξ)|2(1 + |ξ|2)p dξ
)1/2

with ŵ(ξ) =
1

2π

∫

R2

w(r)e−i r·ξ dr (6.3)

where ŵ(ξ) = F (w(r)) is the Fourier transform of the 2D function w(r) with
respect to the variable r = (x, y) and F ∈ L(X,X) is the Fourier operator. Our

aim is to find a stability estimate ‖f‖ ≤ β(‖g‖), or equivalently, ‖f̂‖ ≤ β(‖ĝ‖).
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Step 1 (Operator equation formulation of the problem): By the method of
Fourier transform we obtain in the frequency space the following operator equation

Â(z)û(ξ, z) = û(ξ, d), or equivalently,

Âf̂ = ĝ, Âf̂ =
1

cosh
(
(d− z)

√
|ξ|2 − k2

) f̂(ξ), (6.4)

with ξ = (ξ1, ξ2), |ξ|2 = ξ21 + ξ22 and Â(z) = FA(z)F−1. For large wave numbers

k ≥ π
2(d−z)

the operator Â(z) is unbounded. For deriving conditional stability

estimates we therefore use the decomposition idea as outlined in [56, 69]. We
decompose R2 into R2 = I ∪W and call I = {ξ ∈ R2 | |ξ| ≥ k} the ill-posed part
and W = {ξ ∈ R2 | |ξ| ≤ k} the well-posed part. Next, we decompose the space X
into the direct sum

X = X1 ⊕X2 with X1 = L2(I) and X2 = L2(W ).

We introduce P1, P2 as the orthoprojections onto X1 and X2, respectively, and

decompose, for any fixed z ∈ [0, d), the element f̂(ξ) into the sum

f̂(ξ) = f̂1(ξ) + f̂2(ξ) with f̂1(ξ) = P1f̂(ξ) and f̂2(ξ) = P2f̂(ξ).

This decomposition allows to decompose the above operator equation in the fre-
quency domain into two separate problems, one ill-posed problem

Â1f̂1(ξ) :=
1

cosh
(
(d− z)

√
|ξ|2 − k2

) f̂1(ξ) = ĝ1(ξ), Â1 : X1 → X1, ĝ1 := P1ĝ,

and, by using cosh iz = cos z, one well-posed problem

Â2f̂2(ξ) :=
1

cos
(
(d− z)

√
k2 − |ξ|2

) f̂2(ξ) = ĝ2(ξ), Â2 : X2 → X2, ĝ2 := P2ĝ.

The well-posed problem is stable and, since ‖Â−1
2 ‖ ≤ 1, we have ‖f̂2‖ ≤ ‖ĝ2‖. It

remains to find a stability estimate ‖f̂1‖ ≤ β(‖ĝ1‖) for the ill-posed part.

Step 2 (Deriving the index function ϕ for the ill-posed part): Since û(·, 0) =

Â(0)−1Â(z)f̂(·) we obtain that the smoothness assumption ‖u(·, 0)‖p ≤ E is equiv-

alent to ‖(1 + | · |2)p/2Â(0)−1Â(z)f̂(·)‖L2(R2) ≤ E. We conclude that

∫

I

(
1 + |ξ|2

)p cosh2
(
d
√
|ξ|2 − k2

)

cosh2
(
(d− z)

√
|ξ|2 − k2

)
∣∣∣f̂1(ξ)

∣∣∣
2

dξ ≤ E2
1 (6.5)

where I = {ξ ∈ R2 | |ξ| ≥ k} is the ill-posed part, f̂1 = P1f̂ and E1 ≤ E. Now we

ask the question if the set of functions f̂1(ξ) that obey (6.5) is equivalent to

Mϕ,E1
=
{
f̂1(ξ) ∈ X1

∣∣
∥∥∥[ϕ(Â∗

1Â1)]
−1/2f̂1(ξ)

∥∥∥
L2(I)

≤ E1

}
(6.6)
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with some index function ϕ = ϕ(λ). Some formal computations show that both
sets are equal if ϕ : (0, 1] → (0, 1] is given (in parameter representation) by

λ(t) =
1

cosh2
(
(d− z)

√
t2 − k2

)

ϕ(t) =
cosh2

(
(d− z)

√
t2 − k2

)

(1 + t2)p cosh2
(
d
√
t2 − k2

)





(k ≤ t <∞). (6.7)

For showing that ϕ is an index function we verify that λ̇(t) < 0 and ϕ̇(t) < 0 and
obtain that ϕ′(λ) > 0. Since in addition lim

t→∞
ϕ(t) = 0 we conclude that ϕ is an

index function.

Step 3 (Deriving the function ̺ for the ill-posed part and verify its convexity):
From (6.7) we obtain that the function ̺ : (0, 1] → (0, 1] is given (in parameter
representation) by

λ(t) =
cosh2

(
(d− z)

√
t2 − k2

)

(1 + t2)p cosh2
(
d
√
t2 − k2

)

̺(t) =
1

(1 + t2)p cosh2
(
d
√
t2 − k2

)





(k ≤ t <∞). (6.8)

We substitute in (6.8) d
√
t2 − k2 = ξ and see that ̺ has the form (3.1) with

c1 = d2p, c2 = d2(1 + k2), y = (d− z)/d and ξ0 = 0. (6.9)

From Corollary 3.4 we have

Proposition 6.1. The function ̺(λ) defined in parameter representation by (6.8)
is convex if and only if (3.10) holds with (c2, y) defined by (6.9). This convexity
condition is valid for all (y, p) ∈ (0, 1]× [0,∞) if and only if d2(1 + k2) ≥ 3/4.

If the condition d2(1 + k2) ≥ 3/4 is violated, then, by Corollary 3.4, there
is some sub-range (where p is close to zero and y is close to one) of the range
(y, p) ∈ (0, 1]× [0,∞) where convexity of ̺ is violated.

Step 4 (Deriving the conditional stability estimate): Due to the preparatory
steps 1−3 we are now able to apply the general Theorems 2.1 and 2.3 and obtain

Theorem 6.2. Let ̺(λ) be convex. Then, on the set (6.6) we have for the ill-posed
part for any z ∈ (0, d) an improved Hölder type conditional stability estimate and
for z = 0 some logarithmic type stability estimate ‖f1‖ ≤ β(‖g1‖) with

β(δ) = E1

cosh
(
(d− z)

√
t20 − k2

)

(1 + t20)
p/2 cosh

(
d
√
t20 − k2

) (6.10)

where t0 is the unique solution of the equation (1+t2)p/2 cosh
(
d
√
t2 − k2

)
= E1/δ.

For δ → 0 there holds the asymptotic representation

β(δ) = E
1−z/d
1

(
δ

2

)z/d [
1

d
ln

1

δ

]−p(1−z/d)

(1 + o(1)) . (6.11)
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If ̺(λ) is not convex, then (6.10) and (6.11) hold true with an additional factor√
2 on the right hand side.

Proof (sketch). From (6.8) we obtain that the inverse ̺−1 is given by

λ(t) =
1

(1 + t2)p cosh2
(
d
√
t2 − k2

)

̺−1(t) =
cosh2

(
(d− z)

√
t2 − k2

)

(1 + t2)p cosh2
(
d
√
t2 − k2

)





(k ≤ t <∞). (6.12)

From this representation and formula (2.2) we obtain (13.7). From (6.12) we have

̺−1(λ) =

(
λ

2

)z/d(
1

2d
ln

1

λ

)−2p(1−z/d)

(1 + o(1)) for λ→ 0.

From this asymptotic representation and (2.2) we obtain (6.11). �

Remark 6.3. From the above two stability estimates (6.11) for the ill-posed part
and ‖f2‖ ≤ ‖g2‖ for the well-posed part we obtain due to the Pythagoras Theorem
that on the set M defined by (6.2) we have ‖f‖ ≤ β(‖g‖) with

β(δ) = E1−z/d

(
δ

2

)z/d [
1

d
ln

1

δ

]−p(1−z/d)

(1 + o(1)) .

We further remark that this asymptotic conditional stability function is indepen-
dent on the wave number k.

7. Backward heat conduction

Problems of this type have been under consideration, e. g., in the papers [16,
50, 61, 62, 72, 74] and are one of the classical ill-posed problems with various
engineering applications, see, e.g., [2, 5, 48] and the references cited there.

System equation formulation of the problem: Determine, for any fixed t ∈ [0, T ),
the function f(x) := u(x, t), x ∈ Ω ⊂ Rn, from the data function g(x) := u(x, T )
where u(x, t) obeys the following backward heat equation problem

ut + Lu = 0 for x ∈ Ω ⊂ Rn, 0 < t < T
u(x, T ) = g(x) for x ∈ Ω ⊂ Rn

}
(7.1)

and L : D(L) ⊂ X → X denotes a linear densely defined self adjoint and positive
definite operator in X = L2(Ω) with eigenvalues

1 = l1 ≤ l2 ≤ ... ≤ li ≤ ... , li → ∞ for i→ ∞
and eigenelements {ui} that form an orthonormal basis inX . For a simple example
for L, see Section 3.

Smoothness assumption: For studying conditional stability, we assume that
‖Lp/2u(x, 0)‖ ≤ E with some E > 0 and p ≥ 0 in case t ∈ (0, T ) and p > 0 in
case t = 0, that is, we assume

u(·, t) ∈M =
{
u(·, t) ∈ X

∣∣ u obeys (7.1), ‖Lp/2u(·, 0)‖ ≤ E
}

(7.2)

and ask for a stability estimate ‖f‖ ≤ β(‖g‖).
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Step 1 (Operator equation formulation of the problem): By the method of sepa-
ration of variables we obtain from (7.1) the operator equation A(t)u(·, t) = u(·, T ),
or equivalently,

Af = g with Af =
∞∑

n=1

σn(f, un)un and σn = e−(T−t)ln .

Hence, σn are the eigenvalues and un the corresponding eigenelements of the
selfadjoint and compact operator A ∈ L(X).

Step 2 (Deriving the index function ϕ): Now we ask the question if the set M
is equivalent to some general source set

Mϕ,E =
{
f ∈ X

∣∣ f = [ϕ(A∗A)]1/2v , ‖v‖ ≤ E
}

(7.3)

with some index function ϕ = ϕ(λ). Some formal computations show that both
sets M and Mϕ,E are equal if ϕ : (0, e−2(T−t)] → (0, e−2t] is implicitly given by

ϕ
(
e−2l(T−t)

)
= l−pe−2lt, 1 ≤ l <∞. (7.4)

The function ϕ defined by (7.4) is an index function and has the explicit form

ϕ(λ) = λt/(T−t)
[

1
2(T−t)

ln 1
λ

]−p

.

Step 3 (Deriving the function ̺ and verifying its convexity): From (7.4) we
obtain that the function ̺ : (0, e−2t] → (0, e−2T ] is implicitly given by

̺
(
l−pe−2lt

)
= l−pe−2lT , 1 ≤ l <∞. (7.5)

We substitute in (7.5) 2T l = ξ and see that ̺ defined by (7.5) has the special
form (3.11) with constants

c1 = (2T )p, c2 = 0, c3 = 1, ξ0 = 2T and z = t/T. (7.6)

From Proposition 3.5 we conclude

Proposition 7.1. The function ̺(λ), defined in parameter representation by
(3.11) with constants (7.6), is convex if and only if

p2 + p [2(T + t)− 1] + 4tT ≥ 0. (7.7)

This inequality is valid

(i) for all t ∈ [0, T ) if and only if p2 + p[2T − 1] ≥ 0,

(ii) for all p ≥ 0 if and only if
√
T +

√
t ≥ 1/

√
2,

(iii) for all t ∈ [0, T ) and all p ≥ 0 if and only if T ≥ 1/2.

Proof. For the function ψ defined by (3.13) we have ψ(ξ) = 1/ξ and ψ̇(ξ) = −1/ξ2.
We apply Proposition 3.5 and obtain that ̺(λ) is convex if and only if

p2 + p [ξ(z + 1)− 1] + ξ2z ≥ 0 for all ξ ∈ [ξ0,∞), (7.8)

which holds true if and only if (7.7) is valid. From (7.7) we immediately obtain
the statement (i) of the proposition. For the proof of (ii) we distinguish two cases
2(T + t) − 1 ≥ 0 and 2(T + t) − 1 < 0. In the first case, (7.7) holds true for all
p ≥ 0. In the second case with 2(T + t)− 1 < 0, (7.7) holds true if and only if

[2(T + t)− 1]2 ≤ 16tT, or equivalently,
√
T +

√
t ≥ 1/

√
2.
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From the both cases we obtain (ii). The statement (iii) follows from (ii). �

Remark 7.2. If the convexity condition (7.7) is violated, then there exists some
λ∗ < λ(ξ0) with property that

(i) ̺(λ) is convex on the restricted λ-range λ ∈ (0, λ∗] and
(ii) ̺(λ) is not convex on the λ-range λ ∈ (λ∗, λ(ξ0)].

The argument λ∗ can be computed explicitly by first computing the (unique)
positive solution ξ = ξ∗ of the equation p2 + p [ξ(z + 1)− 1] + ξ2z = 0 and then

computing λ∗ := λ(ξ∗). The both statements (i) and (ii) follow from λ̇(ξ) < 0
and the facts that the convexity condition (7.8) is satisfied for ξ ∈ [ξ∗,∞) and
violated for ξ ∈ [ξ0, ξ

∗). Let us consider the special case where t = 0. Then we
conclude from (7.8) that ̺(λ) is convex if and only if

p+ ξ − 1 ≥ 0 for all ξ ∈ [ξ0,∞).

Assume now that this convexity condition is violated. Then, computing ξ∗ and

λ∗ yields ξ∗ = 1− p and λ∗ =
(

2T
1−p

)p
< 1 = λ(ξ0).

Step 4 (Deriving the conditional stability estimate): Due to the preparatory
steps 1−3 we are now able to apply the general Theorems 2.1 and 2.3 and obtain

Theorem 7.3. Let the convexity condition (7.7) be valid. Then, on the set M
given by (7.2) we have for t ∈ (0, T ) an improved Hölder type conditional stability
estimate and for t = 0 some logarithmic type conditional stability estimate ‖f‖ ≤
β(‖g‖) with

β(δ) = El
−p/2
0 e−l0t = E1−t/T δt/T l

−p(T−t)/(2T )
0 (7.9)

where l0 is the unique positive solution of the equation l−p/2e−lT = δ/E. For δ → 0
there holds the asymptotic representation

β(δ) = E1−t/T δt/T
(
1

T
ln

1

δ

)−p(T−t)/(2T )

(1 + o(1)). (7.10)

If the convexity condition (7.7) is violated, then (7.9) and (7.10) hold true with
an additional factor

√
2 on the right hand side.

Proof (sketch). From (7.5) we obtain that the inverse ̺−1 is implicitly given by

̺−1
(
l−pe−2lT

)
= l−pe−2lt, 1 ≤ l <∞.

Hence, (7.9) follows. From l
−p/2
0 e−l0T = δ/E we have

l0 =

(
1

T
ln

1

δ

)
(1 + o(1)) for δ → 0.

From this asymptotic representation and (7.9) we obtain (7.10). �
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8. Fractional backward heat conduction in a strip

This problem is taken from [82]. For the special case α = 2 and µ = 0, see
[73]. Fractional models are required for modeling complex systems in nature with
anomalous dynamics arising in biology, chemistry, physics, geology, astrophysics or
social sciences, and in particular in transport of chemical contaminations through
water around rocks, dynamics of viscoelastic materials as polymers, diffusion of
pollution in the atmosphere, diffusion processes involving cells, signal theory, con-
trol theory or electromagnetic theory, see [36]. In most of the above-mentioned
applications, the kind of anomalous processes has a macroscopic complex behavior
and its dynamics cannot be characterized by classical derivative models.

System equation formulation of the problem: Determine, for any fixed t ∈ [0, T ),
the function f(x) := u(x, t) from the data function g(x) := u(x, T ) where u(x, t)
obeys the following fractional heat equation in the strip 0 < t < T :

ut−xD
α
µu = 0 for x ∈ R, 0 < t < T

u|x→±∞ = 0 for t ∈ (0, T ]
u(x, T ) = g(x) for x ∈ R



 . (8.1)

In (8.1), xD
α
µu is the Riesz-Feller fractional derivative of the function u (with

respect to x) of order α (0 < α ≤ 2) and skewness µ (|µ| ≤ min{α, 2−α}, µ 6= ±1),
see [23, 36], which is defined via Fourier transform by

F
(
xD

α
µh(x)

)
= −θ(ξ)ĥ(ξ), θ(ξ) = |ξ|αei sgn(ξ)µπ/2.

We note that for α = 2 and µ = 0 we have xD
α
µh(x) =

d2

dx2h(x).

Smoothness assumption: Let X = L2(R) with norm ‖ · ‖. For studying condi-
tional stability, we assume for some E > 0 and p ≥ 0 in case t ∈ (0, T ) and p > 0
in case t = 0 the solution smoothness ‖u(x, 0)‖p ≤ E where ‖ · ‖p is the norm in
the Sobolev space Hp(R) of order p ≥ 0, see (5.3). Hence, we assume

u(·, t) ∈M =
{
u(·, t) ∈ X

∣∣ u obeys (8.1), ‖u(·, 0)‖p ≤ E
}

(8.2)

and ask for a stability estimate ‖f‖ ≤ β(‖g‖), or equivalently, ‖f̂‖ ≤ β(‖ĝ‖).
Step 1 (Operator equation formulation of the problem): By the method of

Fourier transform we obtain in the frequency space the operator equation

Âf̂ = ĝ with Âf̂ := e−θ(ξ)(T−t)f̂(ξ).

Step 2 (Deriving the index function ϕ): Now we ask the question if our smooth-
ness assumption is equivalent to

u(·, t) ∈Mϕ,E =
{
u(·, t) ∈ X

∣∣ u(·, t) = [ϕ(A∗A)]1/2v , ‖v‖ ≤ E
}

(8.3)

with some index function ϕ = ϕ(λ). Some formal computations show that there
holds equality if ϕ : (0, 1] → (0, 1] is implicitly given by

ϕ
(
e−2|ξ|α(T−t) cosµπ/2

)
=
(
1 + |ξ|2

)−p
e−2|ξ|αt cosµπ/2, ξ ∈ R. (8.4)

It can be shown that the function ϕ defined by (8.4) is an index function.
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Step 3 (Deriving the function ̺ and verifying its convexity): From (8.4) we
obtain that the function ̺ : (0, 1] → (0, 1] is given by

̺
((

1 + |ξ|2
)−p

e−2|ξ|αt cos(µπ/2)
)
=
(
1 + |ξ|2

)−p
e−2|ξ|αT cos(µπ/2), ξ ∈ R. (8.5)

We substitute in (8.5) 2T |ξ|α cos(µπ/2) = r and then r = ξ and see that ̺ defined
by (8.5) has the special form (3.11) with constants

c1 = (2T cos(µπ/2))2p/α , c2 = (2T cos(µπ/2))2/α

c3 = 2/α, ξ0 = 0, z = t/T

}
. (8.6)

From Proposition 3.5 and Corollary 3.6 we conclude

Proposition 8.1. The function ̺(λ), defined in parameter representation by
(3.11) with constants (8.6), is convex if and only if (3.12) holds true with con-
stants (c2, c3, ξ0, z) given by (8.6). This convexity condition is valid for all (t, p) ∈
[0, T )× [0,∞) and all α ∈ (0, 2] if and only if 2T cos (µπ/2) ≥ 1.

Proof. From Corollary 3.6 we have that ̺(λ) is convex for all (t, p) ∈ [0, T )×[0,∞)
if and only if f1(α) ≤ f2(α), α ∈ (0, 2], where

f1(α) = sup
ξ∈[0,∞)

ξ2/α(1− ξ)

ξ + 2/α− 1
, f2(α) = (2T cos(µπ/2))2/α .

The function f1 is monotonically increasing with lim
α→0

f1(α) = 0 and f1(2) = 1.

Consider now two cases 2T cos (µπ/2) < 1 and 2T cos (µπ/2) ≥ 1. In the first
case, f2(α) is increasing with limα→0 f2(α) = 0 and f2(2) = 2T cos (µπ/2) < 1.
Hence, the convexity condition f1(α) ≤ f2(α) is not valid for all α ∈ (0, 2]. In
the second case with 2T cos (µπ/2) ≥ 1 there holds f2(α) ≥ 1 for all α ∈ (0, 2].
Hence, in the second case, the convexity condition f1(α) ≤ f2(α) is valid for all
α ∈ (0, 2]. �

Step 4 (Deriving the conditional stability estimate): Due to the preparatory
steps 1−3 we are now able to apply the general Theorems 2.1 and 2.3 and obtain

Theorem 8.2. Let ̺(λ) be convex. Then, on the set M given by (8.2) we have
for t ∈ (0, T ) an improved Hölder type conditional stability estimate and for t = 0
some logarithmic type conditional stability estimate ‖f‖ ≤ β(‖g‖) with

β(δ) = E
(
1 + r

2/α
0

)−p/2

e−r0t cos(µπ/2) = E1−t/T δt/T
(
1 + r

2/α
0

)−p(T−t)/(2T )

(8.7)

where r0 is the unique solution of the equation
(
1 + r2/α

)−p/2
e−rT cos(µπ/2) = δ/E.

For δ → 0 there holds the asymptotic representation

β(δ) = E1−t/T δt/T
(

1

T cos(µπ/2)
ln

1

δ

)−p(1−t/T )/α

(1 + o(1)). (8.8)

If ̺(λ) is not convex, then (8.7) and (8.8) hold true with an additional factor
√
2

on the right hand side.
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Proof (sketch). From (8.5) we obtain that the inverse ̺−1 is implicitly given by

̺
((

1 + r2/α
)−p

e−2rT cos(µπ/2)
)
=
(
1 + r2/α

)−p
e−2rt cos(µπ/2), 0 ≤ r <∞. (8.9)

Hence, (8.7) follows. From
(
1 + r

2/α
0

)−p/2

e−r0T cos(µπ/2) = δ/E we have

r0 =

(
1

T cos(µπ/2)
ln

1

δ

)
(1 + o(1)) for δ → 0.

From this asymptotic representation and (8.7) we obtain (8.8). �

9. Backward heat conduction in the plane

This problem is taken from [3]. We recommend this book also for engineering
applications and further references.

System equation formulation of the problem: Let r = (x, y) and ∆u = uxx+uyy.
Determine, for any fixed t ∈ [0, 1), the function f(r) := u(r, t) from the data
function g(r) := u(r, 1) where u obeys the following heat equation problem

ut −∆u = 0 for (r, t) ∈ R2 × R

u(r, 1) = g(r) for r ∈ R2

u(·, t) ∈ L2(R2) for t ∈ R



 . (9.1)

Smoothness assumption: Let X = L2(R2) with norm ‖ · ‖. For studying condi-
tional stability, we assume for some E > 0 and p ≥ 0 in case t ∈ (0, 1) and p > 0
in case t = 0 the solution smoothness ‖u(r, 0)‖p ≤ E where ‖ · ‖p is the norm
in the Sobolev space Hp(R2) of order p ≥ 0, see (6.3). That is, we assume the
solution smoothness

u(·, t) ∈M =
{
u(·, t) ∈ X

∣∣ u obeys (9.1), ‖u(·, 0)‖p ≤ E
}

(9.2)

and ask for a stability estimate ‖f‖ ≤ β(‖g‖), or equivalently, ‖f̂‖ ≤ β(‖ĝ‖).
Step 1 (Operator equation formulation of the problem): Let F ∈ L(X,X) be the

Fourier operator and û(ξ, t) be the Fourier transform of u(r, t) with respect to the
variable r = (x, y). Due to F(uxx(r, t)) = −ξ21 û(ξ, t) and F(uyy(r, t)) = −ξ22 û(ξ, t),
ξ = (ξ1, ξ2), problem (9.1) attains in the frequency space the form

ût(ξ, t) + |ξ|2û(ξ, t) = 0, û(ξ, 1) = ĝ(ξ), (ξ, t) ∈ R
2 × R.

Solving this final value problem for an ordinary differential eqution yields the

operator equation Â(t)û(ξ, t) = û(ξ, 1), or equivalently,

Âf̂ = ĝ with Âf̂ = e−(1−t)|ξ|2 f̂(ξ). (9.3)

From (9.3) we have that both A and Â are linear, nonnegative, self-adjoint, injec-

tive and bounded operators with non-closed range where ‖A‖ = ‖Â‖ = 1.

Step 2 (Deriving the index function ϕ): Now we ask the question if the set M
is equivalent to some general source set

Mϕ,E =
{
u(·, t) ∈ X

∣∣ u(·, t) = [ϕ(A∗A)]1/2v , ‖v‖ ≤ E
}

(9.4)
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with some index function ϕ = ϕ(λ). Some formal computations show that both

sets (9.2) and (9.4) are equal if Â∗Âϕ(Â∗Â) = (1 + |ξ|2)−pÂ∗
0Â0 with Â0 = Â(0),

or equivalently, if ϕ(λ) : (0, 1] → (0, 1] is implicitly given by

ϕ
(
e−2(1−t)|ξ|2

)
= (1 + |ξ|2)−pe−2t |ξ|2, ξ ∈ R

2. (9.5)

It can be shown that the function ϕ defined by (9.5) is an index function.

Step 3 (Deriving the function ̺ and verifying its convexity): By using ̺(ϕ(λ)) =

λϕ(λ) we obtain that ̺(ϕ(Â∗Â)) = (1 + |ξ|2)−pÂ∗
0Â0. From this representation

we obtain that ̺ is implicitly given by

̺
(
(1 + |ξ|2)−pe−2t |ξ|2

)
= (1 + |ξ|2)−pe−2 |ξ|2, ξ ∈ R

2. (9.6)

We substitute in (9.6) 2|ξ|2 = r and then r = ξ and see that ̺ defined by (9.6)
has the special form (3.11) with constants

c1 = 2p, c2 = 2, c3 = 1, ξ0 = 0 and z = t. (9.7)

From Proposition 3.5 we conclude

Proposition 9.1. The function ̺(λ), defined in parameter representation by
(3.11) with constants (9.7), is convex for all (t, p) ∈ [0, 1)× [0,∞).

Proof. For ψ defined by (3.13) we have ψ(ξ) = 1/(2+ ξ) and ψ̇(ξ) = −1/(2 + ξ)2.
We apply Proposition 3.5 and obtain that ̺(λ) is convex if and only if

p2 + p [(2 + ξ)(t+ 1)− 1] + (2 + ξ)2t ≥ 0 for all ξ ∈ [0,∞).

This convexity condition holds true if and only if p2 + p [2(t + 1)− 1] + 4t ≥ 0,
which is valid for all (t, p) ∈ [0, 1)× [0,∞). �

Step 4 (Deriving the conditional stability estimate): Due to the preparatory
steps 1− 3 we are now able to apply the general Theorem 2.1 and obtain

Theorem 9.2. On the set M given by (9.2) we have for t ∈ (0, 1) an improved
Hölder type conditional stability estimate and for t = 0 some logarithmic type
conditional stability estimate ‖f‖ ≤ β(‖g‖) with

β(δ) = E (1 + r0)
−p/2 e−t r0 = E1−tδt (1 + r0)

−p(1−t)/2 (9.8)

where r0 is the unique positive solution of the equation (1 + r)−p/2 e−r = δ/E. For
δ → 0 there holds the asymptotic representation

β(δ) = E1−tδt
(
ln δ−1

)−p(1−t)/2
(1 + o(1)). (9.9)

Proof (sketch). From (9.6) we obtain that the inverse ̺−1 is implicitly given by

̺−1
(
(1 + r)−pe−2 r

)
= (1 + r)−pe−2t r, r ∈ R

+.

Hence, (9.8) follows from formula (2.2). From (1 + r0)
−p/2 e−r0 = δ/E we have

r0 =
(
ln δ−1

)
(1 + o(1)) for δ → 0.

From this asymptotic representation and (9.8) we obtain (9.9). �
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10. Non-standard sideways heat conduction

Problems of this type have been considered, e. g., in the papers [19, 52, 71]. In
the special case b = 0 this problem has been treated in [60]. Different industrial
examples for sideways heat conduction problems may be found, e.g., in [5].

System equation formulation of the problem: Determine, for any fixed x ∈ [0, 1),
the function f(t) := u(x, t) from the data function g(t) := u(1, t) where u(x, t)
obeys the following non-standard sideways heat conduction problem

ut + bux − uxx = 0 for x > 0, t > 0
u(x, 0) = 0 for x ≥ 0
u(1, t) = g(t) for t ≥ 0, u(x, t)|x→∞ bounded



 . (10.1)

We are in particular interested in the question if the convection term bux has
some influence on the conditional stability of the above problem.

Smoothness assumption: Let X = L2(R) with norm ‖ · ‖. Since we are working
with Fourier transform with respect to the variable t, we extend the domain of
the appearing functions with respect to t by defining them to be zero for t < 0.
For studying conditional stability, we assume for some E > 0 and p ≥ 0 in case
x ∈ (0, 1) and p > 0 in case x = 0 the solution smoothness ‖u(0, t)‖p ≤ E where
‖ · ‖p is the norm in the Sobolev space Hp(R) of order p ≥ 0, see (5.3). That is,
we assume the solution smoothness

u(x, ·) ∈M =
{
u(x, ·) ∈ X

∣∣u obeys (10.1), ‖u(0, ·)‖p ≤ E
}

(10.2)

and ask for a stability estimate ‖f‖ ≤ β(‖g‖), or equivalently, ‖f̂‖ ≤ β(‖ĝ‖).
Step 1 (Operator equation formulation of the problem): By the method of

Fourier transform we obtain in the frequency space the following operator equation

Â(x)û(x, ξ) = û(1, ξ), or equivalently,

Âf̂ = ĝ with Âf̂ = e−θ(ξ)(1−x)f̂(ξ) (10.3)

where Â = FAF−1, F is the Fourier operator, û(x, ξ) is the Fourier transform of
u(x, t) with respect to the variable t and θ = θ(ξ) is given by

Re θ = −b/2 +
√
r/2 + b2/8, Im θ = sign(ξ)

√
r/2− b2/8, r =

√
ξ2 + b4/16.

From this representation we obtain that ‖A∗A‖ = e−(1−x)(|b|−b). We conclude that
the operator A∗A has continuous spectrum in the interval

(
0, e−(1−x)(|b|−b)

]
.

Step 2 (Deriving the index function ϕ): Now we ask the question if the set M
is equivalent to some general source set

Mϕ,E =
{
u(x, ·) ∈ X

∣∣ u(x, ·) = [ϕ(A∗A)]1/2v , ‖v‖ ≤ E
}

(10.4)

with some index function ϕ = ϕ(λ). Some formal computations show that both

sets (10.2) and (10.4) are equal if Â∗Âϕ(Â∗Â) = (1+ ξ2)−pÂ∗
0Â0 with Â0 = Â(0),

or equivalently, if ϕ(λ) :
(
0, e−(1−x)(|b|−b)

]
→
(
0, e−x(|b|−b)

]
is implicitly given by

ϕ
(
e−2(1−x) Re θ

)
= (1 + ξ2)−pe−2xRe θ, 0 ≤ ξ <∞. (10.5)
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For showing that ϕ is an index function for all b ∈ R we introduce g(ξ) := Re θ
and rewrite (10.5) into parameter representation

λ(ξ) = e−2(1−x) g(ξ), ϕ(ξ) = (1 + ξ2)−pe−2x g(ξ), 0 ≤ ξ <∞,

verify that due to ġ(ξ) > 0 there holds λ̇(ξ) < 0 and ϕ̇(ξ) < 0 and obtain that
ϕ′(λ) > 0. Since in addition lim

ξ→∞
ϕ(ξ) = 0 we conclude that ϕ is an index function.

Step 3 (Deriving the function ̺ and verifying its convexity): From (10.5) we
obtain that ̺(λ) := λϕ−1(λ) :

(
0, e−x(|b|−b)

]
→
(
0, e−(|b|−b)

]
is implicitly given by

̺
(
(1 + ξ2)−pe−2xRe θ

)
= (1 + ξ2)−pe−2Re θ, 0 ≤ ξ <∞. (10.6)

Following proposition verifies the convexity of the function ̺.

Proposition 10.1. The function ̺ from (10.6) is convex if and only if

p2+p
[
(1 + t)

(
(1 + x)ġ − g̈/ġ

)
− 1
]
+x(1+t)2ġ2 ≥ 0 for all t ∈ [0,∞), (10.7)

where g is defined by g(t) := −b+
(√

4t+ b4/4 + b2/2
)1/2

. The convexity condi-

tion (10.7) is valid for all x ∈ [0, 1) and all p ≥ 0 if and only if 10 + 2|b| ≥ b4.

Proof. We substitute ξ2 = t and obtain that the function ̺(λ) can be rewritten
into parameter representation

λ(t) = (1 + t)−pe−xg(t), ̺(t) = (1 + t)−pe−g(t), 0 ≤ t <∞.

We introduce the both functions

r(t) = (1 + t)−pe(1−x)g(t), h(t) = p/(1 + t) + ġ(t),

observe that λ(t) = ̺(t)r(t) and ˙̺(t) = −̺(t)h(t), proceed as in the proof of

Proposition 3.1 and obtain that ̺′′ ≥ 0 is equivalent to hr̈/ṙ ≤ h2 + ḣ for all
t ∈ [0,∞), which is equivalent to (10.7) and holds true for all x ∈ [0, 1) and all
p ≥ 0 if and only if

ġ − g̈/ġ ≥ 1/(1 + t) for all t ∈ [0,∞).

This convexity assumption is valid if and only if 10 + 2|b| ≥ b4. �

Step 4 (Deriving the conditional stability estimate): Due to the preparatory
steps 1−3 we are now able to apply the general Theorems 2.1 and 2.3 and obtain

Theorem 10.2. Let (10.7) be valid, then on the set M given by (10.2) we have
for x ∈ (0, 1) an improved Hölder type conditional stability estimate and for x = 0
some logarithmic type conditional stability estimate ‖f‖ ≤ β(‖g‖) with

β(δ) = E
(
1 + ξ20

)−p/2
e−xRe θ(ξ0) = E1−xδx

(
1 + ξ20

)−p(1−x)/2
(10.8)

where ξ0 is the unique positive solution of the equation (1 + ξ2)
−p/2

e−Re θ(ξ) = δ/E.
For δ → 0 there holds the asymptotic representation

β(δ) = E1−xδx
(√

2 ln δ−1
)−2p(1−x)

(1 + o(1)). (10.9)

If the convexity condition (10.7) is violated, then (10.8) and (10.9) hold true with
an additional factor

√
2 on the right hand side.
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Proof (sketch). From (10.6) we obtain that the inverse ̺−1 is implicitly given by

̺−1
(
(1 + ξ2)−pe−2Re θ

)
= (1 + ξ2)−pe−2xRe θ, 0 ≤ ξ <∞.

Hence, (10.8) follows. From (1 + ξ20)
−p/2

e−Re θ(ξ0) = δ/E we have

ξ0 = 2
(
ln δ−1

)2
(1 + o(1)) for δ → 0.

From this asymptotic representation and (10.8) we obtain (10.9). �

The asymptotic representation (10.9) tells us that the convection term bux in
(10.1) has no influence on the conditional stability function β for δ → 0.

11. Fractional sideways heat conduction

This problem is taken from [81]. In the special case α = 1 this problem has been
considered, e. g., in [20, 21, 22, 51, 60, 70]. Time fractional diffusion equations are
used when attempting to describe transport processes with long memory where
the rate of diffusion is inconsistent with the classical Brownian motion model.

System equation formulation of the problem: Determine, for any fixed x ∈ [0, 1),
the function f(t) := u(x, t) from the data function g(t) := u(1, t) where u(x, t)
obeys the following time fractional sideways heat conduction problem

Dα
t u− uxx = 0 for x > 0, t > 0
u(x, 0) = 0 for x ≥ 0
u(1, t) = g(t) for t ≥ 0, u(x, t)|x→∞ bounded



 (11.1)

and Dα
t u is the Caputo fractional derivative of order α ≤ 1 with respect to t, for

which there holds F (Dα
t u) = (iξ)αû(x, ξ). We are in particular interested in the

influence of the parameter α on the conditional stability of the above problem.

Smoothness assumption: Let X = L2(R) with norm ‖ · ‖. Since we are working
with Fourier transform with respect to the variable t, we extend the domain of
the appearing functions with respect to t by defining them to be zero for t < 0.
For studying conditional stability, we assume for some E > 0 and p ≥ 0 in case
x ∈ (0, 1) and p > 0 in case x = 0 the solution smoothness ‖u(0, t)‖p ≤ E where
‖ · ‖p is the norm in the Sobolev space Hp(R) of order p ≥ 0, see (5.3). That is,
we assume the solution smoothness

u(x, ·) ∈M =
{
u(x, ·) ∈ X

∣∣u obeys (11.1), ‖u(0, ·)‖p ≤ E
}

(11.2)

and ask for a stability estimate ‖f‖ ≤ β(‖g‖), or equivalently, ‖f̂‖ ≤ β(‖ĝ‖).
Step 1 (Operator equation formulation of the problem): By using Fourier trans-

form we obtain in the frequency space

û(x, ξ) = e−θ(ξ)xû(0, ξ) with θ(ξ) = |ξ|α/2ei sgn(ξ)απ/4.
Consequently, û(0, ξ) = eθ(ξ)xû(x, ξ) = eθ(ξ)û(1, ξ). We conclude that in the fre-

quency space we have the operator equation Â(x)û(x, ξ) = û(1, ξ), or equivalently,

Âf̂ = ĝ with Âf̂ = e−θ(ξ)(1−x)f̂(ξ).
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Step 2 (Deriving the index function ϕ): Now we ask the question if the set M
is equivalent to some general source set

Mϕ,E =
{
u(x, ·) ∈ X

∣∣ u(x, ·) = [ϕ(A∗A)]1/2v , ‖v‖ ≤ E
}

(11.3)

with some index function ϕ = ϕ(λ). Some formal computations show that both
sets (11.2) and (11.3) are equal if ϕ : (0, 1] → (0, 1] is implicitly given by

ϕ
(
e−2r(1−x) cos(απ/4)

)
=
(
1 + r4/α

)−p
e−2rx cos(απ/4), 0 ≤ r <∞. (11.4)

It can be shown that the function ϕ defined by (11.4) is an index function.

Step 3 (Deriving the function ̺ and verifying its convexity): From (11.4) and
̺(ϕ(λ)) = λϕ(λ) we obtain that the function ̺ : (0, 1] → (0, 1] is given by

̺
((

1 + r4/α
)−p

e−2rx cos(απ/4)
)
=
(
1 + r4/α

)−p
e−2r cos(απ/4), 0 ≤ r <∞. (11.5)

We substitute in (11.5) 2r cos(απ/4) = ξ and see that ̺ defined by (11.5) has the
special form (3.11) with constants

c1 = (2 cos(απ/4))4p/α , c2 = (2 cos(απ/4))4/α

c3 = 4/α, ξ0 = 0, z = x

}
. (11.6)

From Corollary 3.6 we obtain

Proposition 11.1. The function ̺(λ), defined in parameter representation by
(3.11) with constants (11.6), is convex for all (x, p) ∈ (0, 1]× [0,∞).

Proof. From Corollary 3.6 we have that ̺(λ) is convex for all (x, p) ∈ (0, 1]×[0,∞)
if and only if f1(α) ≤ f2(α), α ∈ (0, 1], where

f1(α) = sup
ξ∈[0,∞)

ξ4/α(1− ξ)

ξ + 4/α− 1
, f2(α) = (2 cos(απ/4))4/α .

The function f1 is monotonically increasing with limα→0 f1(α) = 0 and f1(1) ≈
0.02158. The function f2(α) is monotonically decreasing with limα→0 f2(α) = ∞
and f2(1) = 4. Hence, f1(α) ≤ f2(α) is valid for all α ∈ (0, 1]. �

Step 4 (Deriving the conditional stability estimate): Due to the preparatory
steps 1− 3 we are now able to apply the general Theorem 2.1 and obtain

Theorem 11.2. On the set M given by (11.2) we have for x ∈ (0, 1) an improved
Hölder type conditional stability estimate and for x = 0 some logarithmic type
conditional stability estimate ‖f‖ ≤ β(‖g‖) with

β(δ) = E
(
1 + r

4/α
0

)−p/2

e−r0x cos(απ/4) = E1−xδx
(
1 + r

4/α
0

)−p(1−x)/2

(11.7)

where r0 is the unique solution of the equation
(
1 + r4/α

)−p/2
e−r cos(απ/4) = δ/E.

For δ → 0 there holds the asymptotic representation

β(δ) = E1−xδx
(

1

cos(απ/4)
ln

1

δ

)−2p(1−x)/α

(1 + o(1)). (11.8)
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Proof (sketch). From (11.5) we obtain that the inverse ̺−1 is given by

̺−1
((

1 + r4/α
)−p

e−2r cos(απ/4)
)
=
(
1 + r4/α

)−p
e−2rx cos(απ/4), 0 ≤ r <∞.

Hence, (11.7) follows. From
(
1 + r

4/α
0

)−p/2

e−r0 cos(απ/4) = δ/E we have

r0 =

(
1

cos(απ/4)
ln

1

δ

)
(1 + o(1)) for δ → 0.

From this asymptotic representation and (11.7) we obtain (11.8). �

12. Identification of heat sources

Problems of this type have been considered, e. g., in [10, 14, 76, 77, 78, 79]. They
arise in different engineering problems. For example, an accurate estimation of
the pollution source is crucial for environmental protection in cities with high
population, see [77].

System equation formulation of the problem: Determine the source function f
from the data function g where f and g obey the heat equation problem

ut − uxx = f(x) for 0 < x < 1, 0 < t ≤ 1
u(x, 0) = 0 for 0 ≤ x ≤ 1
ux(0, t) = ux(1, t) = 0 for 0 ≤ t ≤ 1
u(x, 1) = g(x) for 0 ≤ x ≤ 1




. (12.1)

Smoothness assumption: Let X = L2(0, 1) with norm ‖ · ‖. For studying con-
ditional stability, we assume the solution smoothness f ∈M with

M = {f ∈ X | ‖f‖p ≤ E}
where ‖f‖p is the norm in the Sobolev space Hp(0, 1) of order p > 0, that is,

‖f‖p :=
(

∞∑

n=1

(1 + n2)p|(f, un)|2
)1/2

with un =
√
2 cos nπx,

and ask for a stability estimate ‖f‖ ≤ β(‖g‖).
Step 1 (Operator equation formulation of the problem): By separation of vari-

ables one obtains that the function

u(x, t) =

∞∑

n=1

(
1− e−n2π2t

)

n2π2
(f, un)un

obeys the differential equation along with the initial condition and boundary con-
ditions of (12.1). From this representation we conclude that the operator equation
Af = g, A ∈ L(X,X), X = L2(0, 1), is given by

Af =

∞∑

n=1

σn(f, un)un = g with σn =
1− e−n2π2

n2π2
.

Hence, σn are the eigenvalues and un the corresponding eigenelements of the
compact operator A.
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Step 2 (Deriving the index function ϕ): Now we ask the question if the set M
is equivalent to some general source set

Mϕ,E =
{
f ∈ X

∣∣ f = [ϕ(A∗A)]1/2v , ‖v‖ ≤ E
}

(12.2)

with some index function ϕ. Some formal computations show that both sets M
and Mϕ,E are equal if ϕ : (0, (1− e−π2

)2/π4] → (0, 2−p] is implicitly given by

ϕ



(
1− e−lπ2

lπ2

)2

 = (1 + l)−p, 1 ≤ l <∞. (12.3)

For showing that ϕ is an index function we rewrite (12.3) into parameter repre-

sentation λ(l) =
(

1−e−lπ2

lπ2

)2
, ϕ(l) = (1+ l)−p, 1 ≤ l <∞, verify that λ̇(l) < 0 and

ϕ̇(l) < 0 and obtain that ϕ′(λ) > 0. Since in addition lim
l→∞

ϕ(l) = 0 we conclude

that ϕ is an index function.

Step 3 (Deriving the function ̺ and verifying its convexity): From (12.3) and the

representation ̺(ϕ(λ)) = λϕ(λ) we obtain that ̺ : (0, 2−p] → (0, 2−p(1−e−π2

)2/π4]
is given by

̺
(
(1 + l)−p

)
= (1 + l)−p

(
1− e−lπ2

lπ2

)2

, 1 ≤ l <∞. (12.4)

Following proposition verifies the convexity of the function ̺.

Proposition 12.1. The function ̺ from (12.4) is convex for all p > 0.

Proof (sketch). We rewrite (12.4) into parameter representation

λ(l) = (1 + l)−p, ̺(l) = (1 + l)−p

(
1− e−lπ2

lπ2

)2

, 1 ≤ l <∞

and obtain from ̺′′ =
(
¨̺λ̇− ˙̺λ̈

)
/λ̇3 and λ̇(l) < 0 that ̺′′ > 0 is equivalent

to ¨̺λ̇ < ˙̺λ̈. From ̺(l) := λ(l)r(l) with r(l) := (1−e−lπ2

lπ2 )2 and ṙ(l) < 0 we

conclude that ̺′′ > 0 is equivalent to λλ̈ − 2λ̇2 < λλ̇r̈/ṙ, which is equivalent to
(1 + l)r̈/ṙ + 1 < p and holds true for all p > 0 and all l ∈ [1,∞). �

Step 4 (Deriving the conditional stability estimate): Due to the preparatory
steps 1− 3 we are now able to apply the general Theorem 2.1 and obtain

Theorem 12.2. On the set M there holds the Hölder type conditional stability
estimate ‖f‖ ≤ β(‖g‖) with

β(δ) = E(1 + t0)
−p/2 = π

2p

p+2E
2

p+2 δ
p

p+2 (1 + o(1)) for δ → 0 (12.5)

where t0 is the unique solution of the equation (1 + t)−p/2
(

1−e−tπ2

tπ2

)
= δ/E.
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Proof (sketch). From (12.4) we obtain that the inverse ̺−1 is implicitly given by

̺−1


(1 + t)−p

(
1− e−tπ2

tπ2

)2

 = (1 + t)−p, 1 ≤ t <∞. (12.6)

Hence, the first representation of (12.5) follows. From (12.6) we obtain that the
inverse ̺−1 possesses the asymptotic (explicit) representation

ρ−1(λ) =
(
π4λ
) p

p+2 (1 + o(1)) for λ→ 0. (12.7)

From (12.7) and (2.2) we obtain the second representation of (12.5). �

13. Analytic continuation

Problems of this type have been considered, e. g., in [13, 17, 18, 80]. They arise
in different important applications such as in medical imaging, see [15].

Problem formulation: Let h(z) = h(x + iy) = u(x, y) + iv(x, y) be an analytic
function on Ω = {z ∈ C | x ∈ R, 0 ≤ y ≤ y0}. Determine, for any fixed y ∈ (0, y0],
the function f(x) := h(x+ iy) from the data g(x) := h(z)|y=0 ∈ X = L2(R).

Smoothness assumption: Let X = L2(R) with norm ‖ · ‖. For studying condi-
tional stability, we assume for some E > 0 and p ≥ 0 in case y ∈ (0, y0) and p > 0
in case y = y0 the solution smoothness

f ∈M =
{
f ∈ X

∣∣h(z) is analytic on Ω, ‖h(·+ iy0)‖p ≤ E
}

(13.1)

where ‖ · ‖p is the norm in the Sobolev space Hp(R) of order p ≥ 0, see (5.3), and

ask for a stability estimate ‖f‖ ≤ β(‖g‖), or equivalently, ‖f̂‖ ≤ β(‖ĝ‖).
Step 1 (Operator equation formulation of the problem): From [17, 18] we have

that the operator equation formulation of the above problem is given by

Âf̂ = ĝ with Âf̂ := eξyf̂(ξ)

where, for any fixed y ∈ (0, y0], the function f̂(ξ) is the Fourier transformation of
f(x) := h(x + iy) with respect to the variable x. From the above representation

for the operator Â we see that for the spectrum we have σ(Â) = (0,∞). That is,

both Â and Â−1 are unbounded. For deriving conditional stability estimates, we
use the decomposition idea as outlined in [56, 69]. We decompose the real axis
R into R = I ∪W and call I = (−∞, 0] the ill-posed part and W = [0,∞) the
well-posed part. Next, we decompose the space X into the direct sum

X = X1 ⊕X2 with X1 = L2(I) and X2 = L2(W ).

We introduce P1, P2 as the orthoprojections onto X1 and X2, respectively, and

decompose (for fixed y ∈ (0, y0]) the element f̂(ξ) = F (h(x+ iy)) into the sum

f̂(ξ) = f̂1(ξ) + f̂2(ξ) with f̂1(ξ) = P1f̂(ξ) and f̂2(ξ) = P2f̂(ξ).

This decomposition allows to decompose the above operator equation in the fre-
quency domain into two separate problems, one ill-posed problem

Â1f̂1(ξ) := eξyf̂1(ξ) = ĝ1(ξ), Â1 : X1 → X1, ĝ1 := P1ĝ,
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and one well-posed problem

Â2f̂2(ξ) := eξyf̂2(ξ) = ĝ2(ξ), Â2 : X2 → X2, ĝ2 := P2ĝ.

The well-posed problem is stable and, since ‖Â−1
2 ‖ ≤ 1, we have ‖f̂2‖ ≤ ‖ĝ2‖. It

remains to find a stability estimate ‖f̂1‖ ≤ β(‖ĝ1‖) for the ill-posed part.

Step 2 (Deriving the index function ϕ for the ill-posed part): It can be shown

that ̂h(x+ iy0) = e−ξ(y0−y)f̂(ξ). Hence, ‖h(· + iy0)‖p ≤ E is equivalent to the

smoothness assumption ‖e−ξ(y0−y)(1 + ξ2)p/2f̂(ξ)‖L2(R) ≤ E. We conclude that
∫

I

e−2ξ(y0−y)(1 + ξ2)p
∣∣∣f̂1(ξ)

∣∣∣
2

dξ ≤ E2
1 (13.2)

where I = (−∞, 0] is the ill-posed part, f̂1 = P1f̂ and E1 ≤ E. Now we ask the

question if the set of functions f̂1(ξ) that obey (13.2) is equivalent to

Mϕ,E1
=
{
f̂1(ξ) ∈ X1

∣∣
∥∥∥[ϕ(Â∗

1Â1)]
−1/2f̂1(ξ)

∥∥∥
L2(I)

≤ E1

}
(13.3)

with some index function ϕ = ϕ(λ). Some formal computations show that both
sets are equal if ϕ : (0, 1] → (0, 1] is implicitly given by

ϕ
(
e2yξ
)
= (1 + ξ2)−pe2ξ(y0−y), −∞ < ξ ≤ 0. (13.4)

It can be shown that the function ϕ defined by (13.4) is an index function.

Step 3 (Deriving the function ̺ for the ill-posed part and verify its convexity):
From (13.4) we obtain that the function ̺(λ) := λϕ−1(λ) : (0, 1] → (0, 1] is
implicitly given by

̺
(
(1 + ξ2)−pe2ξ(y0−y)

)
= (1 + ξ2)−pe2ξy0, −∞ < ξ ≤ 0. (13.5)

We substitute in (13.5) 2ξy0 = −r and then r = ξ and see that ̺ defined by (13.5)
has the special form (3.11) with constants

c1 = (2y0)
2p, c2 = (2y0)

2, c3 = 2, ξ0 = 0 and z = (y0 − y)/y0. (13.6)

From Proposition 3.5 and Corollary 3.6 we obtain

Proposition 13.1. The function ̺(λ), defined in parameter representation by
(3.11) with constants (13.6), is convex if and only if (3.12) holds true with con-
stants (c2, c3, ξ0, z) given by (13.6). This convexity condition is valid for all

(y, p) ∈ (0, y0]×[0,∞) if and only if y0 ≥ 1
2

√
supξ∈[0,∞)(ξ

2 − ξ3)/(1 + ξ) ≈ 0.1514.

Step 4 (Deriving the conditional stability estimate): Due to the preparatory
steps 1−3 we are now able to apply the general Theorems 2.1 and 2.3 and obtain

Theorem 13.2. Let ̺ defined by (13.5) be convex. Then, on the set (13.2) we
have for the ill-posed part for any fixed y ∈ (0, y0) an improved Hölder type condi-
tional stability estimate and for y = y0 some logarithmic type conditional stability
estimate ‖f1‖ ≤ β(‖g1‖) with

β(δ) = E1

(
1 + ξ20

)−p/2
eξ0(y0−y) = E

y/y0
1 δ1−y/y0

(
1 + ξ20

)−py/(2y0)
(13.7)
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where ξ0 is the unique negative solution of the equation (1 + ξ2)
−p/2

eξy0 = δ/E1.
For δ → 0 there holds the asymptotic representation

β(δ) = E
y/y0
1 δ1−y/y0

(
1

y0
ln

1

δ

)−py/y0

(1 + o(1)). (13.8)

If ̺ is not convex, then (13.7) and (13.8) hold true with an additional factor
√
2

on the right hand side.

Proof (sketch). From (13.5) we obtain that the inverse ̺−1 is implicitly given by

̺−1
(
(1 + ξ2)−pe2ξy0

)
= (1 + ξ2)−pe2ξ(y0−y), −∞ < ξ ≤ 0.

Hence, (13.7) follows. From (1 + ξ20)
−p/2

eξ0y0 = δ/E1 we have

ξ0 = −
(

1

y0
ln

1

δ

)
(1 + o(1)) for δ → 0.

From this asymptotic representation and (13.7) we obtain (13.8). �

Remark 13.3. From the above two stability estimates (13.8) for the ill-posed
part and ‖f2‖ ≤ ‖g2‖ for the well-posed part we obtain due to the Pythagoras
Theorem that on the set M defined by (13.1) we have ‖f‖ ≤ β(‖g‖) with

β(δ) = Ey/y0δ1−y/y0

(
1

y0
ln

1

δ

)−py/y0

(1 + o(1)) for δ → 0.
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