
LP and SDP Branch-and-Cut

Algorithms for the Minimum

Graph Bisection Problem:

A Computational Comparison

M. Armbruster C. Helmberg

M. Fügenschuh A. Martin

Preprint 2011-6

Fakultät für Mathematik

Impressum:
Herausgeber:
Der Dekan der
Fakultät für Mathematik
an der Technischen Universität Chemnitz
Sitz:
Reichenhainer Strae 39
09126 Chemnitz
Postanschrift:
09107 Chemnitz
Telefon: (0371) 531-22000
Telefax: (0371) 531-22009
E-Mail: dekanat@mathematik.tu-chemnitz.de
Internet:
http://www.tu-chemnitz.de/mathematik/
ISSN 1614-8835 (Print)

LP and SDP Branch-and-Cut Algorithms for the Minimum

Graph Bisection Problem: A Computational Comparison ∗

Michael Armbruster, Christoph Helmberg
Chemnitz University of Technology

Contact: helmberg@mathematik.tu-chemnitz.de

Marzena Fügenschuh
Beuth University of Applied Sciences Berlin

Contact: fuegenschuh@beuth-hochschule.de

Alexander Martin
University of Erlangen-Nuremberg

Contact: alexander.martin@math.uni-erlangen.de

March 15, 2011

Abstract

While semidefinite relaxations are known to deliver good approximations for combina-
torial optimization problems like graph bisection, their practical scope is mostly associated
with small dense instances. For large sparse instances, cutting plane techniques are con-
sidered the method of choice. These are also applicable for semidefinite relaxations via
the spectral bundle method, which allows to exploit structural properties like sparsity.
In order to evaluate the relative strengths of linear and semidefinite approaches for large
sparse instances, we set up a common branch-and-cut framework for linear and semidef-
inite relaxations of the minimum graph bisection problem. It incorporates separation
algorithms for valid inequalities of the bisection cut polytope described in a recent study
by the authors. While the problem specific cuts help to strengthen the linear relaxation
significantly, the semidefinite bound profits much more from separating the cycle inequal-
ities of the cut polytope on a slightly enlarged support. Extensive numerical experiments
show that this semidefinite branch-and-cut approach without problem specific cuts is a
superior choice to the classical simplex approach exploiting bisection specific inequalities
on a clear majority of our large sparse test instances from VLSI design and numerical
optimization.

Keywords: branch and cut algorithms, cutting plane algorithms, polyhedral combina-
torics, semidefinite programs

1 Introduction

Let G = (V,E) be an undirected graph with node set V = {1, . . . , n} and edge set E ⊆
{{i, j} : i, j ∈ V, i < j}. For an edge {i, j} we will also write ij if there is no way of confusion.

∗A conference version of this article appeared as [5].

1

For given vertex weights fi ∈ N∪{0}, i ∈ V , and edge costs wij ∈ R, ij ∈ E, a partition
of the vertex set V into two disjoint clusters S and V \ S with sizes f(S) :=

∑
i∈S fi ≤ F

and f(V \ S) ≤ F , where F ∈ N ∩
[

1
2f(V), f(V)

]
, is called a bisection. The minimum

bisection problem (MB) asks for a bisection such that the total cost of edges in the cut
δ(S) := {ij ∈ E : i ∈ S ∧ j ∈ V \ S} is minimal. The problem is known to be NP-hard [17].
The polytope associated with MB and studied in [6] is the bisection cut polytope

PB := conv{ y ∈ RE : y = χδ(S), S ⊆ V, f(S) ≤ F, f(V \ S) ≤ F },

where χδ(S) is the incidence vector of the cut δ(S) with respect to the edge set E.
MB as well as PB are related to other problems and polytopes already known in the

literature. Obviously, the bisection cut polytope is contained in the cut polytope [7, 11]
PC := conv

{
y ∈ R|E| : y = χδ(S), S ⊆ V

}
. If F = f(V) then MB is equivalent to the max-

cut problem (using the negative cost function) and PB = PC. For F = d1
2 |f(V)|e MB

is equivalent to the equipartition problem [10] and the bisection cut polytope equals the
equipartition polytope [8, 9, 31]. Furthermore, MB is a special case of the minimum node
capacitated graph partitioning problem (MNCGP) [13, 14], where more than two clusters
are available for the partition of the node set and each cluster has a common limited ca-
pacity. The objective in MNCGP is the same as in MB, i.e., minimize the total cost of
edges having endpoints in distinct clusters. Finally, we mention the knapsack polytope [36]
PK := conv{x ∈ {0, 1}|V | :

∑
v∈V fvxv ≤ F}, which plays a fundamental role in valid inequal-

ities for PB. Graph partitioning problems in general have numerous applications, for instance
in numerics [18], VLSI-design [32], compiler-design [28] and frequency assignment [12]. A large
variety of valid inequalities for the polytope associated with MNCGP is known [7, 8, 9, 13, 31]
and, since MB is a special case of MNCGP, all those inequalities are also valid for PB.

The emphasis of this work is on investigating the computational possibilities and scope
offered by basic linear and semidefinite relaxations in combination with polyhedral results for
large sparse graphs arising in real world applications. In particular, the three main objectives
are to develop a competitive sparse semidefinite branch-and-cut approach suitable for these
requirements, to explore the usefulness of the valid inequalities for PB given in [6] in combina-
tion with linear and semidefinite relaxations, and to compare the performance of semidefinite
and linear branch-and-cut approaches within a uniform setting.

In order to use the same separation routines for semidefinite and linear relaxations, the
basic linear relaxation is designed to work directly with the edge formulation of PB. For this
purpose we assume, without loss of generality (w.l.o.g.), that G contains a star K1,n−1 with
central node 1 ∈ V by adding edges 1j of cost zero, if necessary. Because the cycle inequalities
[7] together with integrality describe all cuts in G, our initial linear relaxation is based on the
formulation

minimize wT y

subject to

n∑
i=2

fiy1i ≤ F,

f1 +

n∑
i=2

fi(1− y1i) ≤ F,∑
ij∈D

yij −
∑

ij∈C\D

yij ≤ |D| − 1, D ⊆ C ⊆ E, |D| odd, C cycle in G,

y ∈ {0, 1}E .

(1)

2

The semidefinite relaxation is based on [34], which is also the basis of the famous approxi-
mation algorithms for max-cut of Goemans and Williamson [19] and for equipartition [15].
For its formulation, consider x ∈ {−1, 1}V as indicator vector for the partition of the node
set where xi = xj if and only if the nodes i and j are on the same side of the cut. Then a
feasible bisection vector x of MB satisfies |fTx| ≤ 2F − f(V) and the cut vector induced by

this bisection is yij =
1−xixj

2 , i.e., it has value 0 if ij ∈ E is not in the cut and value 1 if
ij is in the cut. Let L ∈ RV×V , Lii =

∑
ij∈E wij for i ∈ V , Lij = −wij for ij, ji ∈ E and

Lij = 0 otherwise, be the weighted Laplacian of G. The canonical semidefinite relaxation of
MB is obtained by replacing xxT by a symmetric, positive semidefinite matrix X � 0 having
its diagonal equal to the vector of all ones,

minimize
〈

1
4L,X

〉
subject to diag(X) = 1,〈

ffT , X
〉
≤ [2F − f(V)]2,

X � 0.

(2)

Here and in the following 〈·, ·〉 denotes the canonical matrix inner product, i.e., for matrices
A,B ∈ Rm×n, 〈A,B〉 :=

∑m
i=1

∑n
j=1AijBij . Interpreting Xij as xixj the linear relation

yij =
1−Xij

2

allows to go back and forth between {0, 1} and {−1, 1} representations of the cuts without
loss of sparsity or structural properties like low rank representations (see, e.g., [20]). In
particular, any valid inequality aT y ≤ β for PB is easily translated into an equally sparse
matrix constraint 〈A,X〉 ≤ β. While the primal semidefinite variable X is not sparse, its
dual matrix variable in the dual semidefinite program to (2) inherits all structural properties
of the cost and constraint matrices. The spectral bundle method [26] was designed to exploit
these structural properties in solving the dual. It does not need the primal X and is thus
able to handle large sparse instances. Due to its good warm start possibilities, the spectral
bundle method allows an efficient primal cutting plane approach [22]; the high quality of the
bounds obtained there by improving relaxation (2) with cycle inequalities encouraged this
work. It was also observed in [22] that these bounds improve sometimes considerably, if the
cycle inequalities are not only separated with respect to the elements Xij for ij ∈ E but
with respect to a slightly enlarged support as might be obtained by adding a few appropriate
virtual edges of weight 0. As this extended support relaxation includes only one bisection-
specific inequality, namely

〈
ffT , X

〉
≤ [2F − f(V)]2, it is one of the major surprise outcomes

of this work that on our instances the new bisection specific cuts did not yield significant
further improvement, quite in contrast to the strong improvements in the linear case, see
Section 5.

Our instances for comparing linear and semidefinite branch-and-cut approaches are typ-
ically too large to be solved exactly, therefore we will mostly consider the size of the gap
achieved after a given time limit. In the majority of the cases the semidefinite approach is the
clear winner, not always because of better bounds but quite often also because of better solu-
tions. While our implementation does not keep the full matrix X, the spectral bundle method
allows to maintain a low rank approximation of X that is a good basis for efficient random
hyperplane rounding methods of the Goemans’-Williamson’s type, see Section 3. Almost as
important as these are the possibilities offered by X to develop new criteria for branching
decisions (Section 4).

3

A recent successful study of a combined semidefinite polyhedral branch-and-cut approach
for max-cut is [35]. It considers triangle inequalities exclusively and uses a polyhedral bundle
method with a semidefinite oracle that solves a dense semidefinite max-cut-relaxation by
interior point methods. Their approach is suitable for rather dense graphs with up to 400
nodes, while ours is designed to be applicable for sparse graphs with up to 2000 nodes.

The paper is structured as follows. In [6] we gave a detailed analysis of PB including
several classes of new and facet-defining inequalities. We briefly summarize these results
and those from the literature in Section 2 and sketch our separation procedures. Section 3
provides the necessary background of the sparse semidefinite approach of [22] for improving (2)
by cutting planes with support extension and describes the semidefinite rounding heuristics
employed. Aspects concerning the incorporation of this semidefinite cutting-plane approach
in a branching scheme are treated in Section 4. The LP-based and the semidefinite branch-
and-cut algorithm were implemented within the same framework SCIP [1] and use the same
separation machinery. Numerical results for the linear and semidefinite root node relaxations
are given in Section 5. The branch-and-cut results are discussed in Section 6. Conclusions and
some open problems will complete the paper in Section 7. This work is an outgrowth of the
dissertations [4, 16], which contain and investigate several further approaches and ideas for
efficient implementation of linear and semidefinite branch-and-cut approaches in great depth.

2 Valid inequalities for PB and their separation

A large variety of valid inequalities for the cut polytope, the equipartition polytope, and the
polytope associated with MNCGP is known: cycle inequalities [7] of the cut polytope; tree,
star, and cycle inequalities [8, 9] as well as suspended tree and path block cycle inequalities [11,
31] for the equipartition polytope; tree, star, cycle with ear, cycle with tails, and knapsack
tree inequalities [13] valid for the polytope associated with MNCGP. Since MB is a special
case of MNCGP and PB ⊆ PC the bisection cut polytope inherits most of the valid inequalities
mentioned above.

Exemplarily we cite the cycle inequalities which we will later use in both models for MB.
Let the subgraph C = (VC , EC) be a cycle in G. Let D be a subset of EC such that |D| is
odd. Then the cycle inequality ∑

e∈D
ye −

∑
e∈EC\D

ye ≤ |D| − 1 (3)

is a valid inequality for the cut polytope PC. For separation we employ the exact polynomial
approach of [7] that searches for shortest paths in an auxiliary graph constructed from two
copies of the original graph with a total of 4|E| edges.

The cut structure implies that whenever there is a walk between two nodes of the graph
with an even number of edges in the cut, the two end-nodes of the walk have to be in the
same cluster. So, given a special root node r, a walk Prv in G to some node v, an edge subset
Hv ⊆ Prv of even cardinality, and an incidence vector y of a cut, if the term

1−
∑

e∈Prv\Hv

ye −
∑
e∈Hv

(1− ye) (4)

evaluates to one then r and v are on the same side of the cut; for nodes in opposite clusters,
it is at most zero. In [6] this is used to set up an inequality linking the cut structure and the
capacity constraint on the node weights.

4

Proposition 1 (bisection knapsack walk inequality [6]). Let
∑

v∈V avxv ≤ a0 be a valid
inequality for the knapsack polytope PK with av ≥ 0 for all v ∈ V . For a subset V ′ ⊆ V ,
a fixed root node r ∈ V ′, walks Prv ⊆ E, and sets Hv ⊆ Prv with |Hv| even, the bisection
knapsack walk inequality

∑
v∈V ′

av

1−
∑

e∈Prv\Hv

ye −
∑
e∈Hv

(1− ye)

 ≤ a0 . (5)

is valid for the polytope PB.

Given a root node r and a vector y ∈ [0, 1]|E| the optimal walks Prv and subsets Hv

maximizing (4) can be found in polynomial time with an algorithm that follows the one for
separating cycle inequalities, see [6].

The knapsack tree inequalities of [13] form a special case, where the walks Prv are taken
from a tree (T,ET) of G rooted at r and Hv = ∅ for all v ∈ V ′,

∑
v∈T

av

(
1−

∑
e∈Prv

ye

)
≤ a0 . (6)

Following [13], one may strengthen the coefficients of (6) to

∑
e∈ET

min

{ ∑
v:e∈Prv

av,
∑
v∈T

av − a0

}
ye ≥

∑
v∈T

av − a0, (7)

we call this a truncated knapsack tree inequality. A less obvious strengthening exploits the
dependence of the coefficients in (7) on the choice of the root node, which we express by the
notation

α0 :=
∑
v∈T

av − a0, αre := min{
∑

v:e∈Prv

av, α0}, e ∈ ET ,

The strongest form is achieved if r enforces a sort of balance with respect to the cumulated
node weights on the paths to r.

Theorem 2. [6] Let (T,ET) be a tree in G. The strongest truncated knapsack tree inequality,
with respect to the knapsack inequality

∑
v∈V avxv ≤ a0, defined on (T,ET) is obtained for a

root r ∈ R := Argminv∈T
∑

e∈ET
αve . That is, if r ∈ R then

∑
e∈ET

αseye ≥
∑

e∈ET
αreye ≥ α0

holds for all s ∈ T and all y ∈ PB. In particular,
∑

e∈ET
αreye =

∑
e∈ET

αseye holds for all
r, s ∈ R and all y ∈ PB.

The elements of the set R are called minimal roots of a given tree (T,ET), and by Theo-
rem 2 all minimal roots of (T,ET) deliver the same strongest truncated knapsack tree inequal-
ity. Additional structural results allow to locate minimal roots algorithmically at almost no
cost. This strengthening proved highly effective in our experiments. Note, if the inequality
induces a facet then r is a minimal root by Theorem 2. In some cases the minimal root
condition is also sufficient. In order to state this result, call a path in (T,ET) branch-less, if
its inner nodes are all of degree 2 in the tree.

Theorem 3. [6] Assume that G = (T,ET) is a tree rooted at a node r ∈ T , fv = 1 for all

v ∈ T and |T |
2 + 1 ≤ F < |T |. The truncated knapsack tree inequality

∑
e∈E min{|{v : e ∈

Prv}|, |V |−F} ≥ |V |−F is facet-defining for PB if and only if one of the following conditions
is satisfied:

5

(a) r is a minimal root and (T,ET) satisfies the so-called branch-less path condition: each
branch-less path with F nodes has one end-edge that is a leaf in (T,ET),

(b) F = |T | − 1.

To motivate a strengthening for general bisection knapsack walk inequalities consider the
case of a disconnected graph with two components, one of them being a single edge {u, v},
the other connected one being V ′ = V \ {u, v}. If yuv = 1 then u and v belong to different
clusters and therefore the capacity remaining for the clusters in V ′ (e.g., the right-hand side
of (5)) can be reduced to F −min {fu, fv} yuv. To generalize this idea we define for Ḡ ⊆ G

with V̄ ⊆ V , Ē ⊆ E(V̄) and a ∈ R|V̄ |+ a function βḠ : {0, 1}|Ē| → R ∪∞ with

βḠ(y) = inf
{
a(S), a(V̄ \ S) : S ⊆ V̄ ,max

{
a(S), a(V̄ \ S)

}
≤ a0, y = χδḠ(S)

}
.

Now we look at the convex envelope β̌Ḡ : R|Ē| → R ∪∞ of βḠ(y), i.e.,

β̌Ḡ(y) = sup
{
β̆(y) : β̆ : R|Ē| → R, β̆ convex, β̆(z) ≤ βḠ(z) for z ∈ {0, 1}|Ē|

}
.

Note that β̌Ḡ is a piecewise linear function on its domain.

Proposition 4 (capacity reduced bisection knapsack walk inequality [6]). Let
∑

v∈V avxv ≤
a0 with av ≥ 0 for all v ∈ V be a valid inequality for the knapsack polytope PK. Let V0 be a
non-empty subset of V and r ∈ V0. Select subgraphs (Vl, El) = Gl ⊂ G with pairwise disjoint
sets Vl, Vl ∩ V0 = ∅ and El ⊆ E(Vl) for l = 1, . . . , L. Find for each l an affine minorant for
the convex envelope β̌Gl

such that

cl0 +
∑
e∈El

ceye ≤ β̌Gl
(y) (8)

holds for all y in PB. Then the capacity reduced bisection knapsack walk inequality

∑
v∈V0

av

1−
∑

e∈Prv\Hv

ye −
∑

e∈Prv∩Hv

(1− ye)

 ≤ a0 −
L∑
l=1

(cl0 +
∑
e∈El

ceye) (9)

is valid for PB.

In certain cases it is possible to establish a full description of β̌Ḡ via a complete description
of the cluster weight polytope defined as follows. Given a graph G = (V,E) with non-negative
node weights av ∈ R for all v ∈ V . For a set S ⊆ V we define h(S) := (a(S), (χδ(S))T)T ∈
R|E|+1. With respect to a given a0 ∈ R we call

PCW = conv{h(S) : S ⊆ V, a(S) ≤ a0, a(V \ S) ≤ a0 }

the cluster weight polytope.
In [6], a full description of PCW

(
Ḡ
)

is given for the special case that the subgraph Ḡ =(
V̄ , Ē

)
is a star centered at some node r ∈ V̄ , a ≥ 0, and a0 satisfies a(V̄) ≤ a0 . In order

to state the nontrivial facets of this case, assume a
(
V̄ \ {r}

)
> ar and call a triple (Vp, v̄, Vn)

6

feasible if it fulfills V̄ = {r, v̄} ∪̇ Vp ∪̇ Vn and a(Vp) ≤ 1
2a
(
V̄
)
< a(Vp) + av̄. For all feasible

triples (Vp, v̄, Vn) the inequalities

y0 −
∑
v∈Vp

avyrv −
(
a(V̄)− 2a(Vp)− av̄

)
yrv̄ +

∑
v∈Vn

avyrv ≥ 0 (10)

are the facet-inducing inequalities for PCW(Ḡ). Thus, inequalities (10) form the best linear
minorants (8) to be used in (9) in this case.

In our experiments this rather involved strengthening technique proved far less effective
than the simple root strengthening for knapsack tree inequalities, but this may be due to the
dominating non-negative cost structure in our test instances.

3 A sparse semidefinite cutting-plane approach

We employ the semidefinite cutting-plane approach of [22] which is based on the spectral
bundle method [26, 24]. For a brief sketch of the essentials, let Sn and Sn+ denote the space
of symmetric matrices and symmetric positive semidefinite matrices of order n, let C = −1

4L
denote the cost matrix of (2) and collect all constraint matrices of (2) together with additional
cutting planes in a linear operator A : Sn → Rm with AX = [〈Ai, X〉]i∈{1,...,m}. It is

convenient and computationally useful to require ‖Ai‖ :=
√
〈Ai, Ai〉 = 1 for i ∈ {1, . . . ,m}.

In order to keep notation simple we assume that all constraints are given as inequalities with
a right-hand side vector b ∈ Rm, then the negative of (2) reads

max{〈C,X〉 : AX + η = b,X ∈ Sn+, η ∈ Rm+}. (11)

The dual eigenvalue formulation.

Because of the constraints diag(X) = 1, the trace of any feasible X is equal to n, i.e., defining

W := {X ∈ Sn+ : 〈I,X〉 = 1} = conv{vvT : ‖v‖ = 1, v ∈ Rn}

we have {X ∈ Sn+ : AX ≤ b} ⊆ nW. Introducing Lagrange multipliers µ ∈ Rm, a slater point
or compactness argument shows that there is no duality gap for the Lagrangian dual,

sup
X∈nW,η∈Rm

+

inf
µ∈Rn

[〈C,X〉+ (b−AX − η)Tµ] = inf
µ∈Rn

sup
X∈nW,η∈Rm

+

[
〈
C −ATy,X

〉
+ (b− η)Tµ].

The Rayleigh-Ritz characterization of the maximum eigenvalue yields

λmax(C −ATµ) = max
‖v‖=1

vT (C −ATµ)v = max
‖v‖=1

〈
C −ATµ, vvT

〉
= max

W∈W

〈
C −ATµ,W

〉
. (12)

Therefore the dual is equivalent to the eigenvalue optimization problem

min
µ∈Rm

ϕ(µ) := nλmax(C −ATµ) + sup
η∈Rm

+

(b− η)Tµ.

7

A semidefinite model of λmax.

The nonsmooth convex function ϕ can be evaluated at some given µ ≥ 0 by computing
the maximum eigenvalue λmax of the symmetric matrix C −

∑m
i=1Aiµi. If this is done by an

iterative method (the ConicBundle package [23] uses a Lanczos method), structural properties
like low rank representations and sparsity can be exploited conveniently. An eigenvector v
to λmax with ‖v‖ = 1 generates a subgradient via b − A(nvvT), but any other normalized
vector v also generates a linear minorant to the dual function via W = vvT as in (12). The
key idea of the spectral bundle method is to form a manageable minorant of the objective by
accumulating (approximate) eigenvector information in a subset of W of the form

Ŵ := {PUP T + αW : U ∈ Sr+, α ≥ 0, 〈I, U〉+ α = 1} ⊆ W,

where P ∈ Rn×r consists of r orthonormal columns (P TP = Ir) and W ∈ W. The columns
of P are meant to form a basis of the r most important directions spanned by previous eigen-
vectors while W collects hopefully less important residual contributions; both are updated at
every iteration of the bundle method.

The bundle subproblem and the primal aggregate.

In iteration k of the bundle method a next multiplier candidate µk+1 is determined in the
vicinity of a current stability center µ̂k by approximating

argmin
µ∈Rn

ϕŴk(µ) + 1
2‖µ− µ̂

k‖2, where ϕŴk(µ) := max
W∈Ŵk

n
〈
C −ATµ,W

〉
+ sup
η∈Rm

+

(b− η)Tµ.

(13)
If the actual progress ϕ(µ̂k) − ϕ(µk+1) is sufficiently large in comparison to the progress
predicted by ϕ(µ̂k)−ϕŴk(µk+1), a descent step is made by setting µ̂k+1 := µk+1. Otherwise, in

a null step, the stability center is left unchanged, µ̂k+1 := µ̂k, but the subgradient information
obtained by evaluating ϕ(µk+1) is used to improve the new model Ŵk+1. For computing the
candidate µk+1 the spectral bundle method solves – for some slack vector estimate η̂k – a
(small) convex quadratic semidefinite program of the form

maximize −1
2‖b− η̂

k −A(nW)‖2 +
〈
C −ATµ̂k, nW

〉
+ (b− η̂k)T µ̂k

subject to W = PkUP
T
k + αW k,

〈I, U〉+ α = 1,
U ∈ Sr+, α ≥ 0.

(14)

Let W k = P kUk(P
k)T + αkW

k
be the computed optimal solution and vk+1 a normalized

eigenvector to λmax(C − ATµk+1), then the next P k+1 is set to hold a basis of vk+1 and
the eigenvectors of P kUk(P k)T belonging to large eigenvalues of Uk (this only requires an

eigenvector factorization of the r × r matrix Uk = QkΛUk(Qk)T), while W
k+1

collects that
part of W k that is not spanned by P k+1. In order to guarantee convergence, the choice

P k+1 = vk+1 and W
k+1

= W k would be sufficient, but for purposes explained below we
prefer a rather rich P and require r ≤ 20 only for efficiency reasons. It is important to note

that for the spectral bundle algorithm there is no need to store W
k
, only

〈
C,W

k
〉

and AW k

are needed. For other purposes, however, it will be useful to store at least part of it, e.g.,
its elements W ij with ij ∈ E or even some elements on an enlarged support outside E. The

8

computed solution X̄k := nW k � 0 of (14) is of central importance to the cutting-plane
algorithm. We will refer to X̄k as the (primal) aggregate. The iteration index k is of little
relevance in the considerations to follow and will be dropped most of the time.

Separation.

Cluster points of appropriate subsequences of the primal aggregates are optimal solutions
of (11), see [21]. Therefore the vector ȳ ∈ RE with ȳij = 1

2(1 − X̄ij) for ij ∈ E should
eventually be landed in PB, so our separation routines work with respect to the aggregate X̄.
Unfortunately, X̄ is only a rough approximation that is typically infeasible and does not satisfy
even the current set of constraints AX ≤ b. One consequence is that ȳ may not even satisfy
the bound constraints, i.e., in general ȳ /∈ [0, 1]E (the bounds hold whenever diag(X̄) = 1).
Thus, ȳ is truncated or computed with respect to some scaled X̄ so as to lie in [0, 1]E before
separation routines are called. A second consequence is that separation routines may find
the same inequalities repeatedly and some care has to be taken that the algorithm does not
stall due to this property. It was shown in [22] that convergence of appropriate subsequences
to optimal solutions can be guaranteed for such a cutting plane approach within the bundle
framework if a maximum violation oracle is used for separation, i.e., for a given finite set of
inequalities and a given input point y the oracle always returns an inequality whose violation
with respect to y is maximal. The result relies on the fact that violation of each individual
inequality will be reduced sufficiently over time so that eventually all violated inequalities
will be detected. In theory and in practice repeated separation of the same inequalities is
typical and requires some additional work in order to eliminate duplicates. After the addition
of newly separated cutting planes there is no difficulty in restarting the bundle method from
the old Lagrange multiplier solution by setting the new multipliers to zero. Extending the
old subgradients to the new coordinates (i.e., setting up the bundle subproblem (14)) can be
done easily, if the support of the new inequalities is restricted to the support of W . This way
there is no need to rebuild the bundle model in spite of the changes in dimension. After every
descent step that satisfies the bundle method’s termination criterion for a relative precision of
0.2 we delete cuts with sufficiently large slack and call the separation routines for the current
ȳ, see [4] for a detailed description. Fortunately, no dramatic scaling problems seem to arise
after the separation process, maybe because in our current scheme violation of the inequalities
and changes in the multipliers seem to converge to zero at a common speed.

Support extension.

Because the semidefiniteness constraint X � 0 and the capacity constraint
〈
ffT , X

〉
≤ (2F −

f(V))2 couple all entries Xij , the bound can sometimes be improved considerably by enforcing
cycle inequalities on entries ij with ij /∈ E. Within the max-cut setting, the approaches of
[25, 35] separate triangle inequalities on the complete graph, but this is computationally too
expensive for graphs having more than a few hundred nodes. It was shown in [22] that adding
just a few edges per node may already lead to strong improvements while maintaining sparsity.
Good guidelines for choosing the additional edges, however, are not yet known. For the unit
weight case f = 1 it seems likely that there exists some favorable sparse graph structure
that works reasonably well when added to any graph. Some experiments in this direction
are reported in [4] but so far the dynamic support extension approach of [22] seems to work
better. In order to keep the paper self contained we give a brief sketch of it. Given the current

9

support Ek and the exact values of the aggregate X̄ on Ek (this is achieved by storing all
values W ij for ij ∈ Ek), let Ēk :=

(
V
2

)
\ Ek denote the set of edges not in Ek. The idea is

to add for each node ı̄ ∈ V at most two edges from Ēk that are hopefully part of a violated
cycle inequality (3) in X̄. For edges {i, j} ∈ Ēk the correct value of X̄ij is not available, but
X̃ij := n[P kUk(P k)T]ij may be used as a rough approximation. For each root node ı̄ ∈ V a

shortest path tree is computed within (V,Ek) with respect to edge weights 1−|X̄ij/
√
X̄iiX̄jj |

for ij ∈ Ek. With respect to this tree, each edge ı̄̄ ∈ Ēk induces a cycle C̄. For the cycle

inequality (3) on this cycle we use the values ỹij := 1
2(1− X̄ij/

√
X̄iiX̄jj) for ij ∈ Cj ∩Ek and

ỹı̄̄ = 1
2(1− X̃ij) to determine a violation measure

vı̄(̄) := max{1 +
∑
e∈D

(ỹe − 1)−
∑

e∈C̄\D

ỹe : D ⊆ C̄, |D| odd}.

For each ı̄ we now add a “most violated” edge ı̄̂ with ̂ ∈ Argmax{vı̄(j) : ı̄j ∈ Ēk} and a most
undecided edge ı̄̃ with ̃ ∈ Argmin{|X̃ı̄j : ı̄j ∈ Ēk}. This support extension routine is called
directly after the first separation step and after each tenth separation step. At this point we
also eliminate all edges e ∈ Ek \E that are not in the support of separated inequalities. After

every modification of Ek the matrix W
k

has to be rebuilt from scratch.

Rounding heuristics.

The primal aggregate Xk = n(P kUk(P k)T + αkW
k
) offers several possibilities for designing

rounding heuristics. In all approaches we first try to find a partition vector x̄ ∈ {−1, 1}n
so that x̄x̄T is close to Xk and then apply local exchange heuristics in order to enforce
feasibility of the bisection constraint |fTx| ≤ 2F − f(V). One way to generate x̄ is the
random hyperplane rounding technique of Goemans and Williamson [19]. For this, we first
compute an eigenvalue factorization of Uk = QkΛUK (Qk)T with λmax(Uk) = [ΛUK]11 ≥ · · · ≥
[ΛUK]rr = λmin(Uk) ≥ 0 and approximate X̄ by P̄ P̄ T with

P̄ = nP kQk
√

ΛUk . (15)

Random hyperplane rounding is then applied to the n normalized row vectors of P̄ . In fact,
for random h ∈ Rk we sort the values P̄i,•h (i ∈ V) nonincreasingly and fill up one side
of the partition in this order until the capacity restrictions are met or exceeded yielding a
corresponding feasible or infeasible x̄. A slightly simplified version of this seemed to work
even better. Indeed, the hope is that X̄ is actually close to some rank one matrix xxT

with x ∈ {−1, 1} and the sign structure of an eigenvector to the maximum eigenvalue of X̄
should already give a reasonable approximation. The first column of P̄ should be a reasonable
approximation of this eigenvector and we simply try x̄i = sign P̄1i as starting partition. If
[ΛUk]11 is not that much bigger than [ΛUk]22 or if there are some values P̄1i close to zero it
might make sense to include a bit information from the second eigenvector as well. Therefore
we generate two more starting vectors based on p+ = P̄•,1 + P̄•,2 and p− = P̄•,1 − P̄•,2 using
again the sorted values of these vectors to generate initial partitions. This heuristic, called
SumPi in [4], actually performed best in the experiments of [4]. Some more classical rounding
approaches based on the values ȳij = 1

2(1 − X̄ij) for ij ∈ E were also quite successful in [4],
but on average SumPi was observed to be slightly superior. In our experiments reported in
Section 5 we called SumPi after every descent step.

10

4 Spectral Bundle Based Branching

In this section we will concentrate on two topics, namely the possibilities offered for finding
good branching decisions and the aspect of warmstart after branching. While semidefinite
relaxations are quite powerful, they also require a lot of time to compute, so typically any
semidefinite branch-and-cut code will only be able to visit very few nodes of the branch-and-
cut tree within reasonable time. We use the standard approach of setting one edge variable
Xij to either −1 (ij is in the cut) or +1 (i and j belong to the same set in the bipartition), but
explore new possibilities to exploit the information offered by the primal aggregate X̄. The
branching decision is then implemented by adding the constraint Xij = ±1 and induces a big
change on the values of relatively few Lagrange multipliers while many others need almost no
corrections. This causes scaling problems and is a notoriously difficult situation for first order
methods. Therefore we investigate some ideas to improve warm start properties by scaling
heuristics.

Variable selection for branching. First note that there is no need to require ij ∈ E
when determining an Xij to be set to ±1 in semidefinite relaxations, because ij may always
be added to E with a zero cost coefficient. In [25] the branching strategy resulting in the
smallest branch-and-cut tree was rule R3, it selects an edge ij ∈ Argmin{|X̄ij | : ij ∈ E}
that is “most undecided”. In our new approaches we would like to improve this criterion by
taking into account the global information offered in P̄ k of (15). Using the vector labeling
interpretation of [33, 19] each row P̄i,• (i ∈ V) represents node i by a vector in Rr and ideally
they should all lie in a common one-dimensional subspace so that X̄ is of rank one. We try
to identify a common dominating direction of the vectors P̄i,• by computing a singular value
decomposition of P̄ = ŪΣV̄ , with Σ11 ≥ · · · ≥ Σrr ≥ 0. As dominating direction we use
v̄ := (V̄1,•)

T ∈ Rr. A possible branching rule is to determine the nodes

ı̄ ∈ Argmax
i∈V

| P̄i,•
‖P̄i,•‖

v̄| and ̄ ∈ Argmin
i∈V

| P̄i,•
‖P̄i,•‖

v̄|

that are most and least articulate with respect to the dominating direction v̄ with the intention
to clarify the relative position of ̄ with respect to the majority of the nodes by setting Xı̄̄.
This rule is called Most Orthogonal (MO) in [4]. In general, one would hope that nodes
of almost parallel vectors induce a subgraph that is well decided with respect to a favorable
partition of its nodes. Fixing the decision between two pronounced representatives of different
one-dimensional subspaces should therefore encourage a decision between all nodes of the
corresponding two subgraphs in one step. The branching strategy Most Orthogonal Elaborate
(MOEL) tries to identify such favorable sets as follows. Given a parameter γ ∈ (0, 1), say
γ = 0.2, the set of nodes considered “orthogonal” to the dominating direction v̄ is

O := {i ∈ V : | P̄i,•
‖P̄i,•‖

v̄| ≤ γ}.

If O is empty, use rule (MO). Otherwise, form set Oh for h = 1, 2, . . . , h̄ and suitable h̄ ∈ N
by finding the next direction

v̄h = (
P̄ih,•
‖P̄ih,•‖

)T for some ih ∈ Argmin{| P̄i,•
‖P̄i,•‖

v̄| : i ∈ O \
h−1⋃
h′=1

Oh′}

11

and by collecting almost parallel vectors to vh in

Oh := {i ∈ O \
h−1⋃
h′=1

Oh′ : | P̄i,•
‖P̄i,•‖

v̄h| ≥ 1− γ}

so that O \
⋃h̄
h=1Oh becomes empty. As an aside, attempts to identify the directions via

singular value decomposition of the rows belonging to O failed so far, maybe due to the
rather large diversity of the row vectors belonging to O. Node ih is used as a representative
of the set Oh and it remains to decide which of the edges ı̄ih should be branched on. To this
end we define for each h = 1, . . . , h̄ two trial solutions

X+
h := P+

h (P+
h)T +W and X−h := P−h (P−h)T +W

where

[P+
h]i,• :=

{
P̄i,• for i ∈ V \Oh
sign(P̄i,•v̄h)P̄ı̄,• for i ∈ Oh

and

[P−h]i,• :=

{
P̄i,• for i ∈ V \Oh
− sign(P̄i,•v̄h)P̄ı̄,• for i ∈ Oh.

They correspond to setting all vectors of nodes in Oh to being positively or negatively aligned
with the vector of the representative ı̄ of the dominating direction v̄. Now we branch on an
edge ı̄iĥ with

ĥ ∈ Argmin
h=1,...,h̄

(
〈
C,X+

h

〉
+
〈
C,X−h

〉
)

in the hope that this gives the best average improvement of the bound on both branches.
Scaling for warm start after branching. In principle there is no difficulty to start a bundle

method from any given stability center µ̂, but subsequent progress of the method depends
heavily on the scaling of the variables. If just a few multipliers have to change a lot while
most others should roughly stay the same, first order methods typically exhibit very slow
convergence. This is exactly the situation that is encountered whenever a branching constraint
Xij = ±1 is added to the converged Lagrangian relaxation of the preceding subproblem. The
quadratic term 1

2‖µ − µ̂k‖2 in (13) penalizes movement in all directions equally while one
would prefer wider steps in directions that are affected by the new constraint. One can try
to improve progress by adjusting the quadratic term via diagonal scaling to 1

2‖µ − µ̂
k‖2H =

1
2(µ− µ̂k)TH(µ− µ̂k) for some appropriate diagonal matrix H � 0. Several attempts to set up
H are described in [4], here we only report on the approach by spectral analysis at the current
point (SACP) that seemed to perform best among these. To fix ideas, suppose Xı̄̄ = −1 is
enforced by adding the constraint

〈
Ā,X

〉
≤ −1 with Āij =

{
1, ij ∈ {ı̄̄, ̄̄ı},
0, otherwise.

Using Lagrange multiplier ν ≥ 0 for this constraint we would like to minimize

nλmax(C −ATµ− νĀ) + (b− η)Tµ− ν.

12

The current values are µ = µ̂ and ν = 0. We would like to increase ν to improve the bound.
In order to study its influence on λmax observe that

Ā = v̄v̄T − w̄w̄T with v̄i =

1/
√

2, i = ı̄,

1/
√

2, i = ̄,
0, otherwise,

w̄i =

1/
√

2, i = ı̄,

−1/
√

2, i = ̄,
0, otherwise.

Thus increasing ν adds the positive semidefinite part νw̄w̄T to C −ATµ̂ while it subtracts a
positive semidefinite part νv̄v̄. If w̄ is almost an eigenvector to λmax, i.e., w̄T (C −ATµ̂)w̄ ≥
λmax(C − ATµ̂) − ε for some small ε > 0, then an increase in ν will increase λmax by the
same amount unless this can be compensated by changing some other variables of µ̂. Among
these, only those indices i with rather large values |w̄TAiw̄| can be expected to have a strong
effect on the subspace spanned by w̄. Because their interaction is hard to predict we allow
larger movement for all of them. On the other hand, subtracting νv̄v̄ can do no harm but
might open some space to move for variables µi with |v̄TAiv̄| large. Motivated by this and
putting Am+1 := 1√

2
Ā, µ̂m+1 := ν, we define a diagonal scaling matrix H via Hii := 1/si for

i = 1, . . . ,m+ 1 with

si := 1 + σ

{
max{(v̄TAiv̄)2, (w̄TAiw̄)2}, if w̄T (C −ATµ̂)w̄ ≥ λmax(C −ATµ̂)− ε,
(v̄TAiv̄)2, otherwise.

Based on the experiments in [4] we choose σ = 20 and ε = 0.1 in our actual computations.
The scaling is reset to H = I after the next descent step.

5 Computational results at the root node

In this section we first introduce the common software framework and the data sets in Sec-
tion 5.1. Next, in Section 5.2, we discuss the results of the cutting plane algorithms when
separating the cycle, the knapsack tree and the bisection knapsack walk inequalities within
the LP and the SDP model. Then, in Section 5.3, we analyze the performance of the heuristics
METIS, SumPi and Goemans-Williamson when working with the semidefinite model. Sec-
tion 5.4 illustrates the effect of separating cycle inequalities on a slightly extended support
of the graph. Finally, in Section 5.5, we show the evolution of the lower bound over time for
the LP and the SDP model. All computations of this section are carried out only in the root
node of the branch-and-bound tree.

Note that in plotting the results in the following figures we commit the sin of linearly
connecting the evaluations corresponding to identical algorithmic choices for otherwise inde-
pendent instances. We do so on purpose because we found it helpful in visually linking the
results to the actual parameter settings.

5.1 Computational environment and instances

For solving the minimum graph bisection problem we use the state of the art branch-and-cut
framework SCIP (Solving Constraint Integer Programs [1]). In combination with CPLEX
as LP-solver SCIP is one of the fastest MIP-solvers currently available. Because SCIP can
handle non-linear constraints, it is possible to replace the LP-solver with a semidefinite solver
or to use both within one run. SCIP follows the common branch-and-cut strategy which

13

select node to solve

call primal heuristics

no

read problem and settings

solve LP?

problem solved? branch

build initial LP relaxation

yes no

call primal heuristics

solve SDP relaxationsolve LP relaxation

end

yes

Figure 1: Main solving loop in SCIP.

build SDP relaxation

first iteration?
yes

initial support extension

call spectral bundle method to make a descent step

no

stop?

separate and add new cuts

end

yes

separate?

delete inactive cuts

extend support

no

no

no

yes

yes

call SCIP’s separators?

primal heuristics

Figure 2: Main solving loop of the SDP-solver.

we outline in Figure 1. For full implementation details we refer to [1]. The semidefinite
relaxation is solved by the ConicBundle code [23] which is an implementation of the spectral
bundle method [26]. The integration of the SDP-solver into SCIP is explained in detail in
[4]. The main solving loop of the SDP-solver is drafted in Figure 2. For our computations
we used SCIP version 1.1.0 [2] with ILOG CPLEX 12.10 [27] as LP-solver and Conic Bundle
version 0.3.5 as SDP-solver. The computations were executed on Intel(R) Core(TM) i7 CPU
920 machines with 8 MB cache and 12 GB RAM under openSUSE Linux 11.1 (x86 64) in
single thread mode.

The first set of graph instances that we used in our computational experiments is based on
nets from VLSI design discussed in [29]. The authors consider the placement problem in the
layout design of electronic circuits, which consists of finding a non-overlapping assignment of
rectangular cells to positions on the chip so that wireability is guaranteed and certain technical
constraints are met. Using heuristic algorithms for the optimization problem involved, a
partial placement is obtained for the chips alue, alut, diw, dmxa, gap and taq. We use this as
input for the minimum graph bisection problem and call the instances vlsi graphs. The second
set of graphs originates from nested dissection approaches for solving sparse symmetric linear
KKT-systems and were communicated to us in [22] by Sharon Filipowski from Boeing. Their
names start with kkt.

5.2 Separation at the root node

It is important to mention at this point that the SCIP-framework employs the same separation
algorithms for both linear (1) and semidefinite (2) programs by transforming any X̄ to ȳ via

ȳij =
1−X̄ij

2 for all ij ∈ E. Separated inequalities
∑

ij∈E kijyij ≤ kl are translated into

constraints 〈K,X〉 ≤ ks for the primal semidefinite relaxation by Kij = −1
2kij for all ij ∈ E

and ks = 2kl −
∑

ij∈E kij .

14

27.07.10 13:01lp-kkt-lines-sw.svg

Seite 1 von 1file:///Users/marzena/Desktop/sdp/mai2010/svgs-sw/lp-kkt-lines-sw.svg

kkt
82
260

kkt
115
433

kkt
2063
10936

kkt
2117
14001

kkt
5150
19906

kkt
2817
24999

kkt
2186
37871

kkt
17990
45883

kkt
17148
112633

kkt
20006
241947

25

50

75

100

% of best lower bound

cycle
bisection knapsack walk
knapsack tree
all separators

Figure 3: Performance of separation routines
with LP-relaxation applied to kkt-graphs.

30.11.10 14:23sdp-kkt-kkt.svg

Seite 1 von 1file:///Users/marzena/Desktop/sdp/mai2010/svgs-sw/sdp-kkt-kkt.svg

kkt
82
260

kkt
115
433

kkt
2063
10936

kkt
2117
14001

kkt
5150
19906

kkt
2817
24999

kkt
2186
37871

kkt
17990
45883

kkt
17148
112633

kkt
20006
241947

25

50

75

100

% of best lower bound
cycle
knapsack tree
bisection knapsack walk
only sdp relaxation

Figure 4: Performance of separation routines
with SDP-relaxation applied to kkt-graphs.

In Figures 3–6 we present a comparison of the performance of the cutting plane algorithms
based on the knapsack tree inequalities with minimal roots (Theorem 2), bisection knapsack
walk inequalities (9) and cycle inequalities (3) in combination with the linear and the semidef-
inite relaxation. Note that the cycle inequalities are part of the integer linear model (1), they
are separated in each setting of the LP relaxation. These tests consider the root node without
branching and with a time limit of 2 hours. We added inequalities of each class separately as
long as violated cuts were found. Within the linear relaxation the knapsack tree inequalities
have the biggest impact on the improvement of the lower bound. This may seem surprising in
view of the fact that the knapsack walk inequalities subsume the knapsack tree inequalities;
the reason is that, for speed, both separators start from a few seed nodes and then the min-
imal root strengthening of Theorem 2 boosts the performance of knapsack trees. In the LP
model the best results are achieved when applying all separators, as one can see in Figures 3
and 5. The cycle separator alone, however, achieves very poor lower bounds, thus studying
the bisection cut polytope PB pays off when considering the linear relaxation of MB. The sit-
uation is stunningly different in the semidefinite case. Here, the pure semidefinite relaxation
yields already reasonable good lower bounds. For very large instances like alut2292.494500
the separation routines only slow down the solution process and thus lead to worse bounds
when computing time is a major limiting factor. The best results are obtained when the cycle
inequalities are separated exclusively (on an extended support, see Section 5.4), additional
knowledge about the bisection knapsack polytope does not seem to help for these instances.
From the bisection specific inequalities, i.e., the knapsack tree and bisection knapsack walk
inequalities, only the knapsack tree inequalities improve the basic SDP bound significantly,
while the bisection knapsack walk inequalities seem not to help at all. In comparison to cycle
inequalities, however, the bounds are worse and computation times are higher.

5.3 Primal heuristics

A major advantage of semidefinite relaxations over LP relaxations are the powerful possibil-
ities they offer for rounding heuristics. Indeed, while LP rounding methods need a long time
to produce reasonable results and have to rely on separation heuristics like MeTiS [30] ini-

15

2
7

.0
7

.1
0

 1
3

:0
2

lp
-v

ls
i-

lin
es

-s
w

.s
vg

Se
it

e
1

 v
on

 1
fi

le
:/

//
U

se
rs

/m
ar

ze
na

/D
es

kt
op

/s
d
p
/m

ai
2

0
1

0
/s

vg
s-

sw
/l

p
-v

ls
i-

lin
es

-s
w

.s
vg

gr
id

52 11
7

d 79 17
2

d 83 17
6

ve
n

68 29
0

d 11
5

24
8

d 12
7

34
4

ta
q

17
0

42
4

di
w

16
6

50
7

ta
q

27
8

39
6

ta
q

22
8

69
2

di
w

68
1

14
94

ta
q

10
21

22
53

dm
xa

17
55

36
86

di
w

68
1

31
04

ta
q

33
4

37
63

di
w

68
1

64
02

ga
p

26
69

61
82

al
ut

22
92

63
29

ta
q

10
21

54
80

dm
xa

17
55

10
86

7

al
ue

61
12

16
89

6

ga
p

26
69

24
85

9

ta
q

10
21

31
64

1

al
ut

22
92

49
45

00

255075

10
0

%
 o

f b
es

t l
ow

er
 b

ou
nd

cy
cl

e
bi

se
ct

io
n

kn
ap

sa
ck

 w
al

k
kn

ap
sa

ck
 tr

ee
al

l s
ep

ar
at

or
s

F
ig

u
re

5:
P

er
fo

rm
an

ce
o
f

se
p

ar
at

io
n

ro
u

ti
n

es
w

it
h

L
P

-r
el

ax
at

io
n

a
p
p

li
ed

to
v
ls
i-

gr
a
p

h
s.

3
0

.1
1

.1
0

 1
4

:2
3

sd
p
-v

ls
i-

vl
si

.s
vg

Se
it

e
1

 v
on

 1
fi

le
:/

//
U

se
rs

/m
ar

ze
na

/D
es

kt
op

/s
d
p
/m

ai
2

0
1

0
/s

vg
s-

sw
/s

d
p
-v

ls
i-

vl
si

.s
vg

gr
id

52 11
7

d 79 17
2

d 83 17
6

ve
n

68 29
0

d 11
5

24
8

d 12
7

34
4

ta
q

17
0

42
4

di
w

16
6

50
7

ta
q

27
8

39
6

ta
q

22
8

69
2

di
w

68
1

14
94

ta
q

10
21

22
53

dm
xa

17
55

36
86

di
w

68
1

31
04

ta
q

33
4

37
63

di
w

68
1

64
02

ga
p

26
69

61
82

al
ut

22
92

63
29

ta
q

10
21

54
80

dm
xa

17
55

10
86

7

al
ue

61
12

16
89

6

ga
p

26
69

24
85

9

ta
q

10
21

31
64

1

al
ut

22
92

49
45

00

255075

10
0

%
 o

f b
es

t l
ow

er
 b

ou
nd

cy
cl

e
kn

ap
sa

ck
 tr

ee
bi

se
ct

io
n

kn
ap

sa
ck

 w
al

k
on

ly
 s

dp
 re

la
xa

tio
n

F
ig

u
re

6
:

P
er

fo
rm

an
ce

of
se

p
ar

at
io

n
ro

u
ti

n
es

w
it

h
S

D
P

-r
el

ax
at

io
n

a
p

p
li

ed
to
v
ls
i-

g
ra

p
h

s.

16

28.07.10 14:08heur-vlsiAkkt.svg

Seite 1 von 1file:///Users/marzena/Desktop/sdp/mai2010/svgs-sw/heur-vlsiAkkt.svg

dmxa
1755
3686

diw
681
3104

taq
334
3763

diw
681
6402

gap
2669
6182

alut
2292
6329

taq
1021
5480

dmxa
1755
10867

kkt
2063
10936

kkt
2117
14001

kkt
5150
19906

kkt
2817
24999

alue
6112
16896

gap
2669
24859

taq
1021
31641

alut
2292
494500

75

100

125

150

% of best upper bound

METIS
SUMPI
Goemans-Williamson

Figure 7: The performance of the primal heuristics applied to the semidefinite program.

tially, the random hyperplane rounding approach of Goemans and Williamson [19] produces
very good solutions after the first few iterations of the semidefinite solver. In comparison, the
slight variation SumPi suggested in Section 3 is sometimes slightly worse but seems to be a
bit more stable than pure random hyperplane rounding. This is illustrated in Figure 7 which
collects all instances where differences are visible.

5.4 Support extension

The surprising strength of the cycle inequalities in combination with the SDP relaxation
observed in Section 5.2 depends crucially on the fact that the inequalities are separated on an
extended support. Figure 8 displays the effect of the dynamic support extension technique
of [22] sketched in Section 3 in comparison to separating the cycle inequalities on the orginal
support only. Indeed, for some instances without support extension almost no progress is
achieved with respect to the pure SDP relaxation because none of the relevant edges are
contained in cycles within the original graph.

5.5 Development of the lower bound over time

In Figures 9 - 12 we compare the development of the lower bound of the LP versus the
SDP relaxation over time for a few characteristic instances. The results are given for root
node computations with the best respective setting for each relaxation. In particular, LP
uses all separators and SDP employs only the cycle separator together with dynamic support
extension. The time limit is two hours. The plot of Figure 9 gives the typical development
of the objective function value over time. The semidefinite relaxation delivers a good bound
rather quickly and then exhibits a strong tailing off effect often observed for bundle methods
and cutting plane approaches. In contrast, the lower bound of the linear relaxation grows
much slower, looking linear on a logarithmic time scale. Figures 10 and 11 give examples of
some bigger instances where progress is very slow for SDP, LP performance being abysmal

17

30.11.10 13:23supp-vlsiAkkt.svg

Seite 1 von 1file:///Users/marzena/Desktop/sdp/mai2010/svgs-sw/supp-vlsiAkkt.svg

dmxa
1755
3686

diw
681
3104

taq
334
3763

diw
681
6402

gap
2669
6182

alut
2292
6329

taq
1021
5480

dmxa
1755
10867

kkt
2063
10936

kkt
2117
14001

kkt
5150
19906

kkt
2817
24999

alue
6112
16896

gap
2669
24859

taq
1021
31641

alut
2292
494500

25

50

75

100

% of best lower bound
no support extension
support extension

Figure 8: Semidefinite relaxation in the root node with and without support extension.

in these cases. An exception is the instance kkt2817 24999 of Figure 12, where the linear
relaxation outperforms the semidefinite one, but the shape of both curves is again typical.

28.07.10 11:39dmxa1755.3686.svg

Seite 1 von 1file:///Users/marzena/Desktop/sdp/mai2010/schranke/svgs/dmxa1755.3686.svg

0 100 1000 10000
sec.

25

50

75

100

% of best lower bound

LP
SDP

Figure 9: dmxa1755.3686

28.07.10 11:38alut2292.494500.svg

Seite 1 von 1file:///Users/marzena/Desktop/sdp/mai2010/schranke/svgs/alut2292.494500.svg

0 100 1000 10000
sec.

25

50

75

100

% of best lower bound

LP
SDP

Figure 10: alut2292.494500

6 Computational results for branch-and-cut

The second part of our computational experiments focuses on our SCIP based semidefinite
branch-and-cut approach sketched in Section 5.1. Motivated by the results of the previous
section the parameters were set as follows. For the LP-relaxation the knapsack tree separator
is given the highest priority and separation frequency, followed by the cycle and the bisection
knapsack walk separators. The LP branching decision is determined by the standard setting
provided by SCIP. For the semidefinite relaxation the cycle separator is the only separator.
The SDP branching strategy is derived from the experiments presented in this section. We
limited computation time to 4 hours for each instance. In Section 6.1 we show the performance

18

28.07.10 11:39kkt5150.19906.svg

Seite 1 von 1file:///Users/marzena/Desktop/sdp/mai2010/schranke/svgs/kkt5150.19906.svg

0 100 1000 10000
sec.

25

50

75

100

% of best lower bound

LP
SDP

Figure 11: kkt5150.19906

28.07.10 11:38kkt2817.24999.svg

Seite 1 von 1file:///Users/marzena/Desktop/sdp/mai2010/schranke/svgs/kkt2817.24999.svg

0 100 1000 10000
sec.

25

50

75

100

% of best lower bound

LP
SDP

Figure 12: kkt2817.24999

of the four branching rules implemented for SDP. The tests presented in Section 6.2 concern
the decision when to start to branch in order to reduce tailing off effects. In Section 6.3 we
show the impact of the scaling and warm start methods. Finally, in Section 6.4, we compare
the performance of the LP and SDP based branch-and-cut algorithm.

Before embarking on the actual comparisons please note that all results of this section
need to be interpreted with some care. Indeed, a general difficulty in judging the effectiveness
of branching rules for SDP is the fact that due to rather long computation times in the root
node the actual number of branching decisions observed within a computation time of 4 hours
is quite limited, in particular if the emphasis is on medium to large instances. An extensive
study on smaller and in part random instances is given in [4] and results there point into the
same directions observed here.

6.1 Branching rules for SDP

Figure 13 displays the performance of the branching strategies most orthogonal (MO) and
most orthogonal elaborte (MOEL) suggested in Section 4 in comparison to the standard rules
most infeasible, which picks the edge ij within the original support E that minimizes |Xij |,
and random infeasible, which picks a random edge ij ∈ E among all edges with |Xij | 6= 1.
Results are only given for instances with at least three branch-and-bound nodes. While
MOEL is not always the best choice, it produces good results quite reliably and so this is
selected as the default rule in all further experiments.

Note that all newer branching rules (pseudocost branching, reliable branching, etc., see
for instance [3]) for LP based branch-and-cut have also been taken into account with limited
success. The reason is the same as mentioned above. These ideas are especially successfull
if the branch-and-bound trees are huge, because they gather information throughout the
enumeration process about the variables to branch on. Since the SDP trees are much smaller
these techniques tend to be much less effective.

6.2 Early versus late branching

As illustrated in Section 5.5, the joint tailing off effects of the spectral bundle method and the
cutting plane approach result in very slow progress after strong initial improvements of the
bound. Once this slow down is observed, the hope is to obtain faster progress by branching

19

28.07.10 17:43br-ru-branched.svg

Seite 1 von 1file:///Users/marzena/Desktop/sdp/mai2010/svgs-sw/br-ru-branched.svg

diw
681
1494

diw
681
3104

taq
334
3763

diw
681
6402

alut
2292
6329

taq
1021
5480

kkt
2063
10936

dmxa
1755
10867

kkt
2117
14001

kkt
2817
24999

kkt
2186
37871

alut
2292
494500

92.5

95

97.5

100

% of best lower bound

most orthogonal
most orthogonal elaborated
most infeasible
random infeasible

Figure 13: The performance of the branching rules.

and computing bounds for the subproblems of each branch. In lack of a mathematically
well founded indicator for identifying a good point for switching from the separation process
to branching, we experimented with a decision rule based on the inner mechanics of the
bundle method. For bundle methods, the number of functions evaluations that do not lead
to descent steps is a good indicator for the progress of the method. In Figure 14 we consider
three scenarios. In all of them we stop computation in a node for the usual combination
of cirteria regarding the progress of the bound, the violation of inequalities and the relative
precision obtained (see [4] for details), giving the basic setting of late branching. In early
branching we stop even before these criteria are met if the number of descent steps is at least
ten and the total number of evaluations exceeds twenty times the number of descent steps.
In less early branching the latter factor is set to 200. For small to medium size instances the
early branching strategy seems to work best on the instances tested. Because branching is not
really attractive for large scale instances we choose early branching as our default strategy in
the sequel.

6.3 Warmstart and scaling

As discussed in Section 4, any nonnegative dual point may be chosen as starting point for
the spectral bundle method, but because of the importance of scaling issues for first order
methods it would be desirable to start at points, where all dual variables have to change
by roughly the same amount. When considering the initialization of a new branch-and-
cut node, it is therefore worth to investigate the effect of warmstarts the method from the
best dual point computed in its parent node. In Section 4 we also introduced a scaling
heuristic intended to mitigate the effects of scaling difficulties caused by the addition of a
branching constraint Xij = ±1. The impact of warmstarting and scaling options is displayed
in Figure 15. On these instances, warmstarting has a positive effect while the influence of

20

30.11.10 13:33early-br-vlsi-branch.svg

Seite 1 von 1file:///Users/marzena/Desktop/sdp/mai2010/svgs-sw/early-br-vlsi-branch.svg

taq
278
396

taq
228
692

diw
681
1494

taq
1021
2253

dmxa
1755
3686

diw
681
3104

taq
334
3763

diw
681
6402

gap
2669
6182

alut
2292
6329

taq
1021
5480

dmxa
1755
10867

alue
6112
16896

gap
2669
24859

taq
1021
31641

92.5

95

97.5

100

% of best lower bound

early branching
less early branching
late branching

Figure 14: Early versus late branching.

the scaling heuristic is somewhat ambiguous. Additional experiences collected in [4] indicate
some advantage for scaling on small to medium scale instances and so we decided in favor of
warmstarting in combination with the scaling heuristic as our default strategy. It should be
noted, however, that we do not consider the current approach satisfactory and more needs to
be done. Yet, even in the case of significant progress in warmstarting it seems unlikely that
the same efficencies can be reached that are observed in restarting the simplex method within
linear branch-and-cut methods.

6.4 LP versus SDP

Figure 16 displays the final results of the branch-and-cut codes for LP and SDP relaxations
for the default settings obtained within 4 hours of computation time for each instance and
compares these to the lower bounds achieved by the SDP-relaxation in the root within 2
hours of computation time as described in Section 5.5. The advantage of the SDP over the
LP approach matches the performance of the bounds as discussed in Section 5.5. The rather
ambiguous outcome of the comparison between SDP branch-and-cut bounds and the SDP
root node bound may be seen as a disappointment at first, but is acutally in line with the
previous observations and folklore experience in branch-and-cut. For small to medium size
instances branch-and-cut may actually help to speed up the bounding process, and the results
indicate that our approach is a reliable choice for instances with up to 15000 edges and a few
thousands of nodes. For larger problems, the time limit is best exploited by putting all efforts
into the root node and branching is a waste of time.

7 Conclusion

While SDP relaxations are widely believed to be of use only for small dense intsances, our
work demonstrates by direct comparison within the same branch-and-cut framework that they
are also an attractive and often superior choice in the classical linear programming domain

21

28.07.10 17:16wm-sc.svg

Seite 1 von 1file:///Users/marzena/Desktop/sdp/mai2010/svgs-sw/wm-sc.svg

dmxa
1755
3686

diw
681
3104

taq
334
3763

diw
681
6402

gap
2669
6182

alut
2292
6329

taq
1021
5480

dmxa
1755
10867

kkt
2063
10936

kkt
2117
14001

kkt
5150
19906

kkt
2817
24999

alue
6112
16896

gap
2669
24859

taq
1021
31641

alut
2292
494500

85

90

95

100

% of best lower bound

no warmstart and no scaling
warmstart and no scaling
no warmstart and scaling
warmstart and scaling

Figure 15: The impact of warmstart and scaling.

of large and sparse graph partitioning instances. For bisection instances, the semidefinite
cutting plane approach based on the spectral bundle method is certainly competitive to
linear programming cutting plane methods. Problem specific cutting planes studied in [6], in
particular knapsack tree inequalities centered at minimal roots, boost the quality of the LP
bound but do not seem to improve the performance of the SDP bounds. Indeed, it is one of the
major surprises that for the bisection instances conisdered here the best results were obtained
for the basic semidefinite relaxation improved by exclusively separating cycle inequalities on
a slightly extended support. This raises hopes for obtaining semidefinite bounds of similar
quality for general constrained quadratic 0-1 programming problems without using problem
specific cutting planes. The proposed extension of the semidefinite cutting plane method to
a semidefinite branch-and-cut approach works well on instances with up to 15000 edges and
a few thousand nodes. For larger instances more work is needed to increase the efficiency of
warmstarting the spectral bundle method after the addition of branching constraints.

In order to improve the results it would be valuable to better understand structural
properties that are required in the selection of a slightly extended support that is favorable
for the separation of general valid inequalities of the cut polytope. This might also give
further insight on why the current problem specific inequalities show so little effect on the
SDP bound. On the algorithmic side, any progress on the scaling difficulties caused by new
primal cuts within the spectral bundle method should be helpful for the semidefinite cutting
plane method as well as for the semidefintie branch-and-cut approach.

Acknowledgements. This work was supported by grants HE 3524/1-2 and MA1324/1-2
of Deutsche Forschungsgemeinschaft (DFG) and mostly carried out while Michael Armbruster
was at Chemnitz University of Technology and Marzena Fügenschuh and Alexander Martin
were at Darmstadt University of Technology.

22

10.09.10 21:39lpsdp-br09.svg

Seite 1 von 1file:///Users/marzena/Desktop/sdp/mai2010/svgs-sw/lpsdp-br09.svg

dmxa
1755
3686

diw
681
3104

taq
334
3763

diw
681
6402

alut
2292
6329

taq
1021
5480

kkt
2063
10936

dmxa
1755
10867

kkt
2117
14001

alue
6112
16896

kkt
5150
19906

kkt
2817
24999

gap
2669
24859

taq
1021
31641

kkt
2186
37871

kkt
17990
45883

kkt
17148
112633

25

50

75

100

% of best lower bound
SDP root
SDP branch-and-cut
LP branch-and-cut

Figure 16: Branch-and-cut based on the linear versus the semidefinite relaxation. (early
branch)

References

[1] T. Achterberg. Contraint Integer Programming. PhD-thesis, Technische Universität
Berlin, München, 2008.

[2] T. Achterberg. SCIP 1.1.0. Konrad-Zuse-Zentrum für Informationstechnik Berlin,
Takustr. 7, D-14195 Berlin-Dahlem, Germany, 2009. URL: http://scip.zib.de.

[3] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33:42 – 54, 2005.

[4] M. Armbruster. Branch-and-Cut for a Semidefinite Relaxation of Large-scale Minimum
Bisection Problems. PhD-Thesis, Technische Universität Chemnitz, Chemnitz, Germany,
2007.

[5] M. Armbruster, M. Fügenschuh, C. Helmberg, and A. Martin. A comparative study of
linear and semidefinite branch-and-cut methods for solving the minimum graph bisection
problem. In A. Lodi, A. Panconesi, and G. Rinaldi, editors, Integer Programming and
Combinatorial Optimization, volume 5035 of Lecture Notes in Computer Science, pages
112–124, Berlin, 2008. IPCO 2008, Bertinoro, Italy, Springer.

[6] M. Armbruster, M. Fügenschuh, C. Helmberg, and A. Martin. On the graph bisection
cut polytope. SIAM J. Discrete Math., 22(3):1073–1098, 2008.

[7] F. Barahona and A. R. Mahjoub. On the cut polytope. Math. Programming, 36:157–173,
1986.

[8] M. Conforti, M. Rao, and A. Sassano. The equipartition polytope I. Math. Programming,
49:49–70, 1990.

23

[9] M. Conforti, M. Rao, and A. Sassano. The equipartition polytope II. Math. Programming,
49:71–90, 1990.

[10] C. C. de Souza. The graph equipartition problem: Optimal solutions, extensions and
applications. PhD-Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium,
1993.

[11] M. Deza and M. Laurent. Geometry of Cuts and Metrics, volume 15 of Algorithms and
Combinatorics. Springer, 1997.

[12] A. Eisenblätter. Frequency Assignment in GSM Networks. PhD-
Thesis, Technische Universität Berlin, Berlin, 2001. ISBN 3-89873-213-4,
ftp://ftp.zib.de/pub/zib-publications/books/PhD eisenblaetter.ps.Z.

[13] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey. For-
mulations and valid inequalities for the node capacitated graph partitioning problem.
Math. Programming, 74:247–267, 1996.

[14] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey. The node
capacitated graph partitioning problem: a computational study. Math. Programming,
81(2):229–256, 1998.

[15] A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT and
MAX BISECTION. Algorithmica, 18(1):67–81, 1997.

[16] M. Fügenschuh. Relaxations and Solutions for the Minimum Graph Bisection Problem.
Phd-thesis, Darmstadt University of Technology, Darmstadt, Germany, 2007.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and
Company, New York, 1979.

[18] J. R. Gilbert and R. E. Tarjan. The analysis of a nested dissection algorithm. Nu-
mer. Math., 50:377–404, 1987.

[19] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. ACM, 42:1115–1145,
1995.

[20] C. Helmberg. Fixing variables in semidefinite relaxations. SIAM J. Matrix Anal. Appl.,
21(3):952–969, 2000.

[21] C. Helmberg. Semidefinite programming for combinatorial optimization. Habilitations-
schrift TU Berlin, Jan. 2000; ZIB-Report ZR 00-34, Konrad-Zuse-Zentrum für Informa-
tionstechnik Berlin, Takustraße 7, 14195 Berlin, Germany, Oct. 2000.

[22] C. Helmberg. A cutting plane algorithm for large scale semidefinite relaxations. In
M. Grötschel, editor, The Sharpest Cut, MPS-SIAM Series on Optimization, pages 233–
256. SIAM/MPS, 2004.

[23] C. Helmberg. ConicBundle 0.3. Fakultät für Mathematik, Technische Universität Chem-
nitz, 2009. http://www.tu-chemnitz.de/∼helmberg/ConicBundle.

24

[24] C. Helmberg and K. C. Kiwiel. A spectral bundle method with bounds. Math. Program-
ming, 93(2):173–194, 2002.

[25] C. Helmberg and F. Rendl. Solving quadratic (0,1)-problems by semidefinite programs
and cutting planes. Math. Programming, 82(3):291–315, Aug. 1998.

[26] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming.
SIAM J. Optim., 10(3):673–696, 2000.

[27] ILOG S.A., 9 Rue de Verdun, 94253 Gentilly Cedex, France. ILOG AMPL CPLEX Sys-
tem, Version 12.1, User’s Guide, 2008. Information available at http://www.ilog.com.

[28] E. Johnson, A. Mehrotra, and G. Nemhauser. Min-cut clustering. Math. Programming,
62:133–152, 1993.

[29] M. Jünger, A. Martin, G. Reinelt, and R. Weismantel. Quadratic 0/1 optimization and
a decomposition approach for the placement of electronic circuits. Math. Programming,
63(3):257–279, 1994.

[30] G. Karypis and V. Kumar. MeTiS: A software package for partitioning unstructured
graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices,
version 4.0. Technical report, Department of Computer Science, University of Minnesota,
1998. URL (13.03.2007): http://glaros.dtc.umn.edu/gkhome/views/metis.

[31] M. Laurent and C. C. de Souza. Some new classes of facets for the equicut polytope.
Discrete Applied Mathematics, 62:167–191, 1995.

[32] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley and
Sons Ltd, Chichester, 1990.

[33] L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information
Theory, IT-25(1):1–7, Jan. 1979.

[34] S. Poljak and F. Rendl. Nonpolyhedral relaxations of graph-bisection problems. SIAM
J. Optim., 5(3):467–487, 1995.

[35] F. Rendl, G. Rinaldi, and A. Wiegele. Solving max-cut to optimality by intersecting
semidefinite and polyhedral relaxations. Technical report, Alpen-Adria-Universität Kla-
genfurt, 2007.

[36] R. Weismantel. On the 0/1 knapsack polytope. Math. Programming, 77:49–68, 1997.

25

