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Abstract

In 1956, W.T. Tutte proved that a 4-connected planar graph is hamiltonian. More-
over, in 1997, D.P. Sanders extended this to the result that a 4-connected planar
graph contains a hamiltonian cycle through any two of its edges. J. Harant and S.
Senitsch (Discr. Math. 309(2009)4949-4951) even proved that a planar graph G has
a cycle containing a given subset X of its vertex set and any two prescribed edges of
the subgraph G[X] of G induced by X if | X| > 3 and if X is 4-connected in G. If
X = V(G) then Sanders’ result follows.

Here we consider the case that X is 5-connected in G and that there are prescribed
edges and forbidden edges of G[X] for a cycle through X.
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1 Introduction and Result

We use [3] for terminology and notation not defined here and consider finite simple graphs.
In 1956, W.T. Tutte [8] proved

Theorem 1 (/8]) Every 4-connected planar graph on at least three vertices is hamiltonian.
In 1997, D.P. Sanders [7] extended Tutte’s result to Theorem 2.

Theorem 2 ([7]) Every 4-connected planar graph on at least three vertices has a hamilto-
nian cycle through any two of its edges.

For a subset of the vertex set of a graph G we define its connectivity in G as follows:
Given a nonnegative integer k, a set X C V(G) of vertices of a graph G is said to be
k-connected in G if for each two different vertices a and b of X the graph G contains k
internally disjoint a-b-paths. The connectivity rg(X) of X in G is the largest integer k
such that X is k-connected in G.

Note that G is k-connected if and only if ke(V(G)) > k. Hence, with X = V(Q),
Theorem 2 is a consequence of the following Theorem 3 which is proven in [G6].




Theorem 3 ([5/) If G is a planar graph, X C V(G), |X| > 2, ke(X) >4, E C E(G[X]),
and |E| <2, then G contains a cycle C with X C V(C) and E C E(C).

Let us remark that Theorem 3 in [5] is proven only for sets X with at least 3 vertices
and with a slightly different notion for the connectivity of a set X in a graph G: There
X is said to be k-connected in G if deleting fewer than k vertices of G will not disconnect
X in G. By Menger’s Theorem ([1, 6]), it is clear that this notion of k-connectivity is
weaker than that one used here. Consequently, the original theorem in [5] is stronger than
Theorem 3 for | X| > 3. For | X| = 2, Theorem 3 is a consequence of the connectivity of X
as defined here.

In [2], the conclusion of Theorem 4 is shown.

Theorem 4 ([2]) Let G be a 5-connected plane triangulation and E be a set of edges
of G such that the distance between any two edges of E is at least 3. Furthermore, let
E:E1UE2 ’LU’LLLhElﬂEQZQ)

Then G has a hamiltonian cycle C with Ey C E(C) and Eo N E(C) = 0.

Here we will prove the following generalization of Theorem 4.

Theorem 5 Let G be a plane triangulation, X C V(G), |X| > 2, X be 5-connected in
G, and E C E(G[X]) such that the edges of E have pairwise distance at least 3 in G.
Furthermore, let E = FE1 U Ey with E; N Ey = ().

Then G has a cycle C with X CV(C), E; C E(C), and E; N E(C) = (.

Theorem 5 is a consequence of a more general Lemma 2 being presented in the next
section.

2 Proof of Theorem 5

Given a graph G and X C V(G), a set S of vertices and edges of G is an X -separator of
G if the graph obtained from G by deleting all elements of S has two different components
containing vertices of X. As an easy corollary of Mengers theorem as stated in [3], Corollary
3.3.5., we obtain the following: '

Lemma 1 For a nonnegative integer k, a set X C V(QG) is k-connected in a graph G if
and only if each X -separator of G has at least k elements.

For an edge e = zy € E(G) of a plane graph G let C, be the graph of the facial walk
of the face of G — z — y containing z (and y).

Suppose G is a graph and e = zy is one of its edges such that C, is a cycle and z and
y have exactly two common neighbors v and v. Furthermore, assume that both z and y
have at least three neighbors at C,. Let u' € Ng(x) \ v such that there is an u'-u-path of
Ce containing no inner vertex also contained in Ng(z) and v' € Ng(y) \ w such that there




is an v"-v-path of C, containing no inner vertex also contained in Ne(y). By hiding the
edge e in G we mean deleting z and y, adding a new vertex ., and connecting it to u, u’ LU,
and v'.

Hiding an edge e = zy € E(G) is shown in the following figure, where v, is identified
with an arbitrary endvertex - say x - of e. Hence, the vertex set of the resulting graph is
a subset of V(G), an essential property to be used later.

Let a quadrupel (G, X, Ey, Ey) be suitable if the following propositions are satisfied:
Proposition 1 G is a plane graph.
Proposition 2 X C V(G), |X| > 2, and X is 5-connected in G.
Proposition 3 E; and E» are disjoint subsets of E(G[X]).
Proposition 4 Each edge of E; is contained in two triangular faces of G.
Proposition 5 For each edge e € E; the graph C, is a cycle.

Proposition 6 For different edges e and €' in EyU E, the graphs D, and Dy are disjoint,
where D, is the graph obtained from C, by adding the endvertices of € as well as all edges
incident with them if e € By and the union of the borders of the two faces incident with e
if e € Es.

If the assumptions of Theorem 5 are fulfilled then (G, X, E,, E) is suitable, hence,
Theorem 5 is a simple consequence of the following Lemma 2:

Lemma 2 If (G, X, Ey, Es) is suitable then G contains a cycle C through X with E; C
E(C) and E; N E(C) = 0.

To prove Lemma 2 we need the following crucial lemma about the impact of indepen-
dently hiding the edges in I and deleting the edges in F» to the connectivity of X if
(G, X, Ey, E,) is suitable.

Lemma 3 If (G, X, Ey, Es) is suitable and H is obtained from G by hiding all edges in E;
and deleting all edges in Ey then the set

Yi={viec E,}JUX\ | U {x,y}> 18 4-connected in H.

zyeE;
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Assuming Lemma 3 to be true, we are ready for the

Proof of Lemma 2. Because (G, X, Fy, E») is suitable and using Lemma 3, the set
Y is 4-connected in the plane graph H and, obviously, Y # 0.

If [Y| =1 then |X| =2, |Ey| = 1, and | E,| = 0. In this case the cycle C' can be chosen as
the boundary of a triangular face of GG incident with the edge in E;.

Hence, we may assume that |Y| > 2.

Applying Theorem 3 with E = (), there is a cycle D C H containing Y. Because all edges
in [> have been deleted by constructing H from G and v, € V(D) for all e € E,, it follows
easily (see the figure) that D can be extended to the desired cycle C in G. 1

It remains to give a proof of Lemma 3.

Proof of Lemma 3.

By Lemma 1 it suffices to prove that an arbitrary Y-separator of H has at least four ele-
ments. In the sequel, let T be such an Y-separator separating two vertices a and b of Y.
Then there is a decomposition of V(H) \ T into disjoint sets A and B such that a € A,
b € B and H has no edge connecting an element of A to an element of B.

Note that V(H) C V(G) because v, is identified with x for each edge ¢ = zy € E;. The
graph G might have some A-B-paths avoiding 7" - which will be shortly named additional
paths throughout this proof. In the sequel let two A-B-paths be weakly disjoint if they are
disjoint outside {a, b}.

We prove |T'| > 4 by observing the following claims:

Claim 1 If G has no two weakly disjoint additional paths then |T| > 4.

Claim 2 The set of edges of each additional path is nonempty and contained in E(G) \

Claim 3 FEach additional path is contained in a graph D, with e € E; U E,.

Claim 4 If there are two edges e,/ € E; U Ey such that both D. and D, contain an
additional path then |T| > 4.

Claim 5 If there is an edge e such that D, contains two weakly disjoint additional paths
then e € E1 and one of these additional paths has length 1.

Claim 6 If there is an edge e € Ey such that D, contains an additional path of length 1
then |T| > 4.

At first we will show that these claims together in fact suffice to prove |T'| > 4:

By Claim 1, we may assume that G has two disjoint additional paths P; and P,. Then,
by Claim 3, each additional path is contained in a D, for a suitable e € F; U Ey. Using
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Claim 4, we may assume, that for P, and P, are contained in D, for a common suitable
e € Ey UE,. By Claim 5, we conclude that e € £ and one of the paths P, and P, has
length one. Finally, by Claim 6, the proof is done. O

Next we provide the detailed proofs of the particular claims:

Proof of Claim 1. By Menger’s Theorem, G'— T has an A-B-separator 7" with |T"| < 2.
Each additional path contains an (the) element of T". Hence, T UT" is an A-B-separator
of G. Consequently, |T| + 2 > |[T'UT'| >5 and, finally, IT| > 3. O
Proof of Claim 2. Because the inner vertices of additional paths do neither belong to
A mnor to B nor to T, they are not contained in H. An edge of an additional path of
length one connects a vertex of A with a vertex of B and, thus, it is not contained in H.
Consequently, no edge of an additional path is contained in H. Since each additional path
contains a vertex of A and a vertex of B and because A and B are disjoint, each additional
path contains at least one edge. O
Proof of Claim 3. By Proposition 6, each component of the graph R formed by the
edges of F(G) \ E(H) is contained in D, for some e & E1 U E,. By Claim 2 the additional
paths are connected subgraphs of R. Consequently, Claim 3 is true. 0
Proof of Claim 4. The endvertices of an additional path are contained in D.N H for a
suitable e € E; U Ey by Claim 3 and because it connects a vertex a € ACV(H) with
a vertex of b’ € B C V(H). Hence, T N (V(De) U E(D,)) is an o/-b-separator of D.. By
construction of D, (see Proposition 6), the graph D, N H is a cycle plus eventually - if
e € F; - an additional vertex connected to three vertices of that cycle. Thus, D, N H is
2-connected. Consequently, if D, contains an additional path, then 7" has two elements in
D, N H. Finally, by Proposition 6, Claim 4 follows. O
Proof of Claim 5. If e € F, then |E(De) \ E(H)| = 1. By Claim 2, each additional path
contained in D, contains at least one edge not in £ (H). Hence, if e € E, then D, contains
at most one additional path. Consequently, if the proposition of Claim 5 holds then e € F,
and v, is defined.

Furthermore, only one of the two disjoint additional paths in D, might contain the endver-
tex y of e not identified with wv,. Hence, there is an additional path P contained in D, —y.
By the construction of D, in Proposition 6, each edge of (E(D, —y) \ H) is incident with
Ue. By Claim 2, P contains an edge incident with v,. Because Ve is in H and P avoids T,
ve is iIn AU B. Consequently, P contains only one edge. 0
Proof of Claim 6. We need some notation to split the proof of Claim 6 into simpler
subclaimes:

See the figure and recall the definition of hiding the edge e. Additionally, let P be the
additional path of length one and @ (if exists) be an y-b-path of G avoiding 7', v, and wv,.
Furthermore, let C, be the cycle of C, + ve + v'v. + vov — u and, analogously, C, be the
cycle of Ce + v +v've +v,u—v. Note, that Ne(ve) \ Ni(ve) C V(Cy), Na(y)\{v} C V(Cy),
and C, UC, C H. Finally, w.lo.g. let v, € A.

First consider the following subclaims:




Subclaim 1 If Q) doesn’t exist, ‘then |T| > 4.

Subclaim 2 If Q contains an additional path, then |T| > 4.

Subclaim 3 If Q) contains no additional path, then C, contains two elements of T .
Subclaim 4 C, contains two elements of T

Subclaim 5 C, N C, contains no element of T.

Next we will show that Claim 6 is a consequence of these subclaims:
By Subclaim 1 and Subclaim 2, we may assume that @ exists and that ) contains no
additional path. Hence, by Subclaim 3 and Subclaim 4, it follows that both C, and C,
contain two elements of T'. It follows |T'| > 4, since C, and C, have only v, in common.[]

Finally, we prove the subclaims:

Proof of Subclaim 1. If @) does not exist, then {ve,v} UT \ {v.v} is an y-b-separator
and, because {y,b} C X, even an X-separator of G. If v,v € T or v € T then, with X
being 5-connected in G, it follows that |T'| > [{ve, v} UT \ {ve,v}| —1>5~1=4.

Hence, we may assume v.v ¢ T and v ¢ T and, consequently, v € A. If each y-b-path
containing v also contains v, then T'U v, is an y-b-separator of G. Again, with {y,b} € X
and X being 5-connected in G, it follows that |T'| > [T U {v.}|—1>5—1=4.

Hence, we may assume additionally that G has an y-b-path using v but avoiding v..
This y-b-path contains an v-b-path avoiding v, and y. Since v € A, this v-b-path contains
an additional path P’ avoiding v, and y. Hence, P’ is not contained in D,. By Claim 3,
P’ is contained in D, for some ¢’ € Ey U Ey and, by P’ € D,, we obtain ¢’ # e. Hence, by
Claim 4, |T'| > 4. O
Proof of Subclaim 2. Since () starts in y and avoids v., by construction of D,, its
additional path cannot be contained in D,, and Subclaim 2 follows by Claim 3 and Claim
4. O
Proof of Subclaim 3. It follows V(Q) NV (H) C B, since Q contains no additional path
and ends in b € B. Since Ng(y) \ {v,v.} C V(C,) C V(H), V(C,) contains an element
w € B. Because O, is a 2-connected subgraph of H, C, contains two elements of 7. [
Proof of Subclaim 4. Because |E(P)| = 1, P has no inner vertex, thus avoids y and
contains ve. C, — v, contains Ng(ve) \ (Nu(ve) U {y}). Because Ng(v.) \ {y} C V(C,) C
V(H), P has its endvertices in C, and C, contains vertices from A and B. Because the
elements of 7' contained in C, form an A-B-separator of C,, C, contains two of them. O
Proof of Subclaim 5. C, and C, by construction intersect only at v, € A. O
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