TU Chemnitz, Fakultät für Mathematik: Fakultät für Mathematik
Albrecht Böttcher, Hermann Brunner, Arieh Iserles, Syvert P. Nørsett : On the Singular Values and Eigenvalues of the Fox-Li and Related Operators
Albrecht Böttcher, Hermann Brunner, Arieh Iserles, Syvert P. Nørsett : On the Singular Values and Eigenvalues of the Fox-Li and Related Operators
- Author(s):
-
Albrecht Böttcher
Hermann Brunner
Arieh Iserles
Syvert P. Nørsett
-
Title:
- On the Singular Values and Eigenvalues of the Fox-Li and Related Operators
- Electronic source:
-
application/pdf
- Preprint series:
-
Technische Universität Chemnitz,
Fakultät für Mathematik (Germany). Preprint
4, 2010
- Mathematics Subject Classification:
-
| 47B35
| [ Toeplitz operators, Hankel operators, Wiener-Hopf operators ]
|
| 45C05
| [ Eigenvalue problems ]
|
| 47B06
| [ Riesz operators; eigenvalue distributions; approximation numbers, $s$-numbers, Kolmogorov numbers, entropy numbers, etc. of operators ]
|
| 65R20
| [ Integral equations ]
|
| 78A60
| [ Lasers, masers, optical bistability, nonlinear optics ]
|
- Abstract:
-
The Fox-Li operator is a convolution operator over a finite in-
terval with a special highly oscillatory kernel. It plays an important role
in laser engineering. However, the mathematical analysis of its spectrum
is still rather incomplete. In the present paper we show how standard
Wiener-Hopf theory can be used to obtain insight into the behaviour of
the singular values of the Fox-Li operator. In addition, several approximations
to the spectrum of the Fox-Li operator are discussed and results
on the singular values and eigenvalues of certain related operators are
derived.
- Keywords:
-
Fox-Li operator,
Wiener-Hopf operator,
oscillatory kernel,
eigenvalue,
singular value
- Language:
- English
-
Publication time:
- 03/2010