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This work has been inspired by the recent article
“Möbius Transformations Revealed” by Dou-
glas N. Arnold and Jonathan Rogness [2] in the
Notices. The authors write:

“Among the most insightful tools that mathe-
matics has developed is the representation of a
function of a real variable by its graph. . . . The
situation is quite different for a function of a
complex variable. The graph is then a surface in
four dimensional space, and not so easily drawn.
Many texts in complex analysis are without a
single depiction of a function. Not it is unusual
for average students to complete a course in the
subject with little idea of what even simple func-
tions, say trigonometric functions, ‘look like’.”

There are praiseworthy exceptions from this
rule, like the textbooks by Tristan Needham [10]
with its beautiful illustrations, and by Steven
Krantz [7], with a chapter on computer packages
for studying complex variables”. And certainly
some of us have invented their own techniques
to visualize complex functions in teaching and
research.

The objective of this paper is to promote one
such method which is equally simple and pow-
erful. It does not only allow to depict complex
functions, but may also serve as a tool for their
visual exploration. Sometimes it also provides
a new view on known results and opens up new
perspectives, as is demonstrated in this paper
for a universality property of Riemann’s Zeta
function.

The Analytic Landscape

The visualization of functions is based on and
limited by our intuitive understanding of geo-
metric objects. The graph of a complex function
f : D ⊂ C → C lives in four real dimensions,
and since our imagination is trained in three di-
mensional space, most of us have difficulties to
“see” such an object.

Of course one can separate complex-valued
functions into their real and imaginary parts.
This, however, destroys their mutual relation,
and exactly this interplay, controlled by the
Cauchy-Riemann equations, is essential for an-
alytic functions.

Some old books on function theory used to have
nice illustrations of complex functions. These
figures show the analytic landscape of a func-
tion f , which is the graph of its modulus |f |.

Figure 1: Analytic landscape of the complex
Gamma function

Taking into account how much easier it is to-
day to produce such illustrations, it seems to
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be strange that we do not find them more often
in contemporary textbooks.
But in fact this may happen for good reasons.
Analytic landscapes must be generated with
care, otherwise discretization effects may result
in pictures which rather hide what they should
demonstrate.

Figure 2: Some “poles” of the complex
Gamma function

In order to understand what a pole is we need
not really see the volcanoes of an analytic land-
scape, and students looking at Figure 2 may
even be in doubt about the validity of the max-
imum principle.
Also, the perspective view of the surface embed-
ded in three dimensional space does not allow
to see things very precisely. For instance, it is
almost impossible to read off location and de-
gree of a zero from the analytic landscape. So
what else can we do?

Colored Analytic Landscape

The analytic landscape involves only one part of
the function f , namely its modulus |f |. The sec-
ond part, its argument arg f , is lost. How can
we incorporate this missing information appro-
priately?
Recall that the argument of a complex num-
ber is only defined up to an additive multiple of
2π. In order to get a well-defined function, we
frequently restrict it artificially to the interval
(−π, π], or, even worse, to [0, 2π). This draw-
back vanishes if we replace ϕ with the phase
eiϕ, which lives on the complex unit circle T.

And points on a circle can naturally be encoded
by colors. So we let color serve as the lack-
ing fourth dimension in representing graphs of
complex-valued functions.

Figure 3: The color circle and the color
encoded phase of points close to the origin

Though one usually does not distinguish be-
tween the notions of “argument” and “phase”,
this difference is essential for our purposes.
Since the phase of f(z) is just the quotient
f(z)/|f(z)|, one need not worry about the an-
noying multi–valuedness of the argument.

The colored analytic landscape is the graph of
|f | colored according to the phase of f .

Figure 4: Colored analytic landscape of the
complex Gamma function

Typically analytic functions grow very fast at
infinity, at singularities or at the boundary of
their (natural) domains. In such cases it is con-
venient to use the graph of ln |f | instead of |f |
for constructing the surface of the analytic land-
scape. Since ln |f | and arg f are harmonic con-
jugate functions the logarithmic representation
is also more natural.
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The Phase Plot

One drawback of the colored analytic land-
scapes is their three–dimensionality. The per-
spective view makes it difficult to locate points
on the surface, and essential details may be in-
visible. Also, there is no standard view, which
would allow to recognize functions visually by
their canonical appearance, as we do with the
real sine function, for instance.
But indeed there is such a distinguished per-
spective, namely the view “straight from the
top”. What we see then is a flat color im-
age which just displays the phase. As will be
shown in a moment, this phase plot alone gives
(almost) all relevant information about the de-
picted analytic function.

Figure 5: Phase plot of the Gamma function
with logarithmically spaced level lines

And if one would not like to miss the infor-
mation about |f |, it can easily be incorporated
into the phase plot as (preferably logarithmi-
cally spaced) level lines.

How to Read It

Though the phase of a function f with domain
D lives on the set

D0 := {z ∈ D : f(z) ∈ C \ {0}}

we shall nevertheless speak of phase plots on
D, considering those points where the phase is
undefined as singularities.

If f is analytic or, more generally, meromorphic
in D, then its phase (plot) encodes the full in-
formation about the function up to a positive
scaling factor.

Theorem 1. If two (non–zero) meromorphic
functions f and g on a connected domain D
have the same phase plot, then f is a positive
scalar multiple of g.

Proof. Removing from D all zeros and poles of
f and g we get a connected domain D0. Since,
by assumption, f(z)/|f(z)| = g(z)/|g(z)| for all
z ∈ D0, the function f/g is holomorphic and
real-valued in D0, and so it must be a (posi-
tive) constant.

It is clear that the result extends to the case
where the phases of f and g coincide on an open
subset of D.
In order to check if two functions f and g with
the same phase are equal, it suffices to compare
their values at a single point which is neither a
zero nor a pole.
There is also an intrinsic test which avoids val-
ues and works with phases alone: If f and g
are not constant (in which case the phase plot
is isochromatic), it follows from the open map-
ping principle that f = g if the phases of f + ci
and g+ ci coincide for two distinct constants c1
and c2.

Zeros and Poles

Since the phases of zero and infinity are unde-
fined, zeros and poles of f are singularities of
its phase plot. How does the plot look like in a
neighborhood of such points?
If a meromorphic function f has a zero of degree
n at z0 it can be represented as

f(z) = (z − z0)
n g(z),

where g is meromorphic and g(z0) 6= 0. It fol-
lows that the phase plot of f close to z0 looks
like the phase plot of zn at 0, rotated by the an-
gle arg g(z0). The same reasoning, with a nega-
tive integer n, applies to poles.
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Figure 6: Phase plots in a neighborhood of a
zero (left) and a pole (right) of third order

Note that the colors are arranged in different
orders for zeros and poles. It is now clear that
the phase plot does not only show the location
of zeros and poles but also reveals their degrees.
A useful tool for locating zeros is the argument
principle. In order to formulate it in the con-
text of phase plots we translate the definition
of winding numbers into the language of colors:
Let γ : T → D0 be a closed oriented path in
the domain D0 of a phase plot P : D0 → D.
Then the usual winding number (or index) of
the mapping P ◦ γ : T → T is called the color
index of γ with respect to the phase plot P and
is denoted by cind γ.
Less formally, the color index counts how many
times the color of the point γ(t) moves around
the color circle when γ(t) traverses γ once in
positive direction.
Now the argument principle can be rephrased as
follows: Let D be a Jordan domain with (pos-
itively oriented) boundary ∂D and assume that
f is meromorphic in a neighborhood of D. If f
has n zeros and p poles in D (counted with mul-
tiplicity), and none of them lies on ∂D, then

n− p = cind ∂D.

Figure 7: This function has no poles. How
many zeros are in the displayed rectangle?

Looking at this picture in search for zeros imme-
diately brings forth new questions, for example:
Where do the isochromatic lines end up? Can
these lines connect two zeros? If so, do they
have a special meaning? What about “basins of
attraction”? Is there always a natural (cyclic)
ordering of zeros? What can be said about the
global structure of phase plots?

Essential Singularities

Have you ever seen an essential singularity?
Here is the picture which usually illustrates this
situation.

Figure 8: Analytic landscape of f(z) = e1/z

Despite of the massive tower this is not very
impressive, and with regard to the Casorati-
Weierstrass theorem, or even Picard’s great the-
orem one would expect something much wilder.
Now look at the colored logarithmic analytic
landscape and the phase plot:

Figure 9: Colored logarithmic analytic
landscape of f(z) = e1/z
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Figure 10: Phase plot of the essential
singularity of f(z) = e1/z

The Logarithmic Derivative

Along the isochromatic lines of a phase plot
the argument of f is constant. The Cauchy-
Riemann equations for (any continuous branch
of) the logarithm log f = ln |f | + i arg f im-
ply that these lines are orthogonal to the level
lines of |f |, i.e. the isochromatic lines are par-
allel to the gradient of |f |. According to the
chosen color scheme, we have red on the right
and green on the left when walking on a yellow
line in ascending direction.
To go a little beyond this qualitative result, we
denote by s the unit vector parallel to the gra-
dient of |f | and set n := is. With ϕ := arg f
and ψ := ln |f | the Cauchy-Riemann equations
for log f yield that the directional derivatives of
ϕ and ψ satisfy

∂sψ = ∂nϕ > 0, ∂nψ = −∂sϕ = 0,

at all regular points of the phase plot. Since
the absolute value of ∂nϕ measures the density
of the isochromatic lines we can visually esti-
mate the growth of ln |f | along these lines from
their density. Because the phase plot delivers
no information on the absolute value, this does
not say much about the growth of |f |. But tak-
ing into account the second Cauchy-Riemann
equation and

|(log f)′|2 = (∂nϕ)2 + (∂sϕ)2,

we obtain the correct interpretation of the den-
sity ∂nϕ: it is the modulus of the logarithmic

derivative,

∂nϕ = |f ′/f | . (1)

So, finally, we need not worry about branches
of the logarithm. It is worth mentioning that
∂nϕ(z) behaves asymptotically like k/|z− z0| if
z approaches a zero or pole of order k at z0.
But this is not yet the end of the story. What
about zeros of f ′ ? Equation (1) indicates that
something should be visible in the phase plot.
Indeed points z0 where f ′(z0) = 0 and f(z0) 6= 0
are “color saddles”, i.e. intersections of isochro-
matic lines. If f ′ has a zero of order k at z0 then
2k + 2 such lines of a specific color emanate
from z0, which is equivalent to saying that k+1
smooth isochromatic lines intersect at z0.

Figure 11: Zeros of f ′ are color saddles

Color saddles appear as diffuse spots and it
needs some training to detect them. Here it
helps to use a color scheme which has a jump
at some point t of the unit circle. If we choose
t := f(z0)/|f(z0)|, then the phase plot depicts
a sharp saddle at the zero z0 of f ′. When t ro-
tates through the full (color) circle, every saddle
shows up clearly at some moment.

Periodic Functions

Obviously, the phase of a periodic function is
periodic, but what about the converse? If, for
example, a phase plot is doubly periodic, can
we then be sure that it represents an elliptic
function?
Though there are only two classes (simply and
doubly periodic) of nonconstant periodic mero-
morphic functions on C, we can observe three
different types of periodic phase plots.
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Figure 12: Phase plot of f(z) = ez

Figure 13: Phase plot of f(z) = sin z

Figure 14: Phase plot of a Weierstrass
℘-function

Motivated by these pictures we give the follow-
ing definition: A nonconstant map Φ is said to
be

(i) striped if there exists p0 6= 0 such that for
all p = αp0 with α ∈ R

Φ(z + p) = Φ(z) for all z, (2)

(ii) simply periodic if there exists p1 6= 0 such
that (2) holds if and only if p = k p1 for
all k ∈ Z,

(iii) doubly periodic if there exist p1, p2 6= 0
with p1/p2 /∈ R such that (2) holds if and
only if p = k1p1 + k2p2 for all k1, k2 ∈ Z.

As usual the numbers p1, p2 in (ii) and (iii) are
referred to as fundamental periods of Φ.

Theorem 2. Let f be a nonconstant meromor-
phic function on C with phase Φ := f/|f |.

(i) The phase Φ is striped if and only if there
exist a, b ∈ C with a 6= 0 such that

f(z) = exp(az + b).

(ii) The phase Φ is simply periodic with fun-
damental period p if and only if there exist
a simply periodic function g : C → C with
period p and a real number α such that

f(z) = exp(αz/p) · g(z).

(iii) The phase Φ is doubly periodic if and only
if f is doubly periodic.

Proof. The “if-direction” of all statements is
easy to verify.
(i) After rotating the z-plane we may assume
that p0 is real. Then Φ(z) only depends on the
imaginary part y of z. Writing Φ (locally) as
Φ = eiϕ we get a harmonic function ϕ which
depends only on y. Hence ϕ(z) = αy + β. The
function − ln |f | is (locally) a harmonic conju-
gate of ϕ, thus ln |f(z)| = αx + γ. Finally
f(z) = eαz+b with b = γ + iβ. The case α = 0
corresponds to a constant function with isochro-
matic phase plot, which was excluded.
(ii) If (2) holds for the phase of f we have

h(z) :=
f(z + p)

f(z)
=
|f(z + p)|
|f(z)|

∈ R+.

Since h is meromorphic on C it must be a
positive constant eα. It is easy to check that
g(z) := f(z) · e−αz/p defines a simply periodic
function g with fundamental period p.

(iii) If p1 and p2 are fundamental periods of Φ,
then it follows from the proof of (ii) that there
exist α1, α2 ∈ R such that f(z + pj) = eαj f(z).
The meromorphic function g defined by g(z) :=
f ′(z)/f(z) has only simple poles and zeros. In-
tegration of g = (log f)′ along a (straight) line
from z0 to z0 + pj which contains no pole of g
yields that

αj =

∫ z0+pj

z0

g(z) dz.
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Evaluating now the area integral
∫∫

Ω
g dx dy

over the parallelogram Ω with vertices at
0, p1, p2, p1 + p2 by two different iterated inte-
grals, we get α2 p1 = α1 p2. Since α1, α2 ∈ R
and p1/p2 /∈ R this implies that αj = 0.

Partial Sums of Power Series

Here is a strange image which, in similar form,
occurred in an experiment. Since it looks so
special, one could attribute it to a programming
error.

Figure 15: A Taylor polynomial of
f(z) = 1/(1− z)

A moment’s thought shows what is going on
here, at least at an intuitive level. This exam-
ple demonstrates that looking at phase plots can
immediately bring forth new questions which
would perhaps not have been posed otherwise.
But in the case at hand the question has not
only been posed, it has also been answered much
earlier (see [12], Section 7.8) – and probably
without looking at pictures.

Theorem 3 (Robert Jentzsch, 1914). If a
power series a0 + a1z + a2z

2 + . . . has a posi-
tive finite convergence radius R, then the zeros
of its partial sums cluster at every point z with
|z| = R.

The reader interested in life and personal-
ity of Robert Jentzsch is referred to the re-
cent paper [5] by P.Duren, A.-K.Herbig, and
D.Khavinson.

Riemann Surfaces

Any landscape invites for exploration. An ap-
propriate vehicle for a journey through analytic
landscapes and phase plots is Weierstrass’ disc
chain method (‘Kreiskettenverfahren’) for ana-
lytic continuation of a function along a path γ.
Phase plots are appropriate to visualize this
method not only in its abstract setting with
empty discs, but using concrete functions, like
the square root or the logarithm. Such exper-
iments are not only helpful to develop an in-
tuitive understanding of Riemann surfaces, but
can even guide students to the discovery of such
objects.

Figure 16: Square root and logarithm on their
Riemann surfaces.

It is an advantage of the phase plot that it al-
lows to visualize analytic function directly on
their Riemann surface.

Boundary Value Problems

Experimenting with phase plots generates a
number of new questions. One such problem
is to find a criterion for deciding which color
images are analytic phase plots, i.e. phase plots
of analytic functions.
Since phase plots are painted with the restricted
palette of saturated colors from the color cir-
cle, Leonardo’s Mona Lisa will certainly never
appear. But for analytic phase plots there are
much stronger restrictions: By the uniqueness
theorem for harmonic functions an arbitrarily
small open piece determines the plot entirely.
So let us pose the question a little differently:
What are appropriate data which can be pre-
scribed to construct an analytic phase plot, say
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in a Jordan domain D ? Can we start, for in-
stance, with given colors on the boundary ∂D?
If so, can the boundary colors be prescribed ar-
bitrarily or must they be subject to certain con-
ditions?
In order to state these questions more precise
we introduce the concept of a colored set KC ,
which is a subset K of the complex plane to-
gether with a mapping C : K → T. Any such
mapping is referred to as a coloring of K.
For the sake of simplicity we here consider only
boundary value problems for phase plots with
continuous colorings.

Let D be a Jordan domain and let B be a con-
tinuous coloring of its boundary ∂D. Find all
continuous colorings C of D such that the re-
striction of C to ∂D coincides with B and the
restriction of C to D is the phase (plot) of an
analytic function f in D.

If such a coloring C exists, we say that B admits
a continuous extension to an analytic phase plot
in D.
The restriction to continuous colorings auto-
matically excludes zeros of f in D. It does,
however, not imply that f must extend contin-
uously onto D – and in fact it is essential not
to require this continuity in order to get a nice
result.

Theorem 4. Let D be a Jordan domain with
a continuous coloring B of its boundary ∂D.
Then B admits a (unique) continuous extension
to an analytic phase plot in D if and only if the
color index of B is zero.

Proof. If C : D → T is a continuous coloring,
then a simple homotopy argument (contract ∂D
inside D to a point) shows that the color index
of its restriction to ∂D must vanish.
Conversely, any continuous coloring B of ∂D
with color index zero can be represented as B =
eiϕ with a continuous function ϕ : ∂D → R.
This function admits a (unique) continuous har-
monic extension Φ to D. If Ψ denotes a har-
monic conjugate of Φ, then f = eiΦ−Ψ is ana-
lytic in D. Its phase C := eiΦ is continuous on
D and coincides with B on ∂D.

Though the function f need not be continuous,
it belongs to the Smirnov spaces Ep(D) for all
p <∞.
The figure below shows the phase plots of
f1(z) = −1, f2(z) = (z + 1)2/(z − 1)2, and
f3(z) = (z2 + 5

2
z + 1)/(z2 − 5

2
z + 1) which all

have constant phase −1 almost everywhere on
T. Though f1 and f2 are analytic and have con-
tinuous phase in D, only f1 is a solution of the
boundary value problem in the sense of Theo-
rem 4.

Figure 17: Three functions with phase −1
almost everywhere on T

The theorem can be rephrased in yet another
intuitive form, which avoids the color index, as
follows.

Let C : C → T be any continuous coloring of the
plane. Draw an arbitrary Jordan curve J and
erase the color in the interior of J . Then the
empty space can be filled in a unique way with
the phase plot of an analytic function such that
the resulting coloring of the plane is continuous
again.
Theorem 4 parametrizes analytic phase plots
which extend continuously on D by their
boundary colorings. This result can be ex-
tended to phase plots which are continuous on
D with the exception of finitely many singular-
ities of zero or pole type in D. If we then admit
boundary colorings B with arbitrary color index
we get the following result:
For any finite collection of given zeros with or-
ders n1, . . . , nj and poles of orders p1, . . . , pk the
boundary value problem for analytic phase plots
with prescribed singularities has a (unique) so-
lution if and only if the (continuous) boundary
coloring B satisfies

cindB = n1 + . . .+ nj − p1 − . . .− pk.
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The Riemann Zeta-Function

After these preparations we are ready to pay
a visit to “Zeta”, the mother of all analytic
functions. Here is a phase plot in the square
−40 ≤ Re z ≤ 10, −2 ≤ Im z ≤ 48.

Figure 18: Riemann’s Zeta function

We see the pole at z = 1, the trivial zeros at
the points −2,−4,−6, . . . and several zeros on
the critical line Re z = 1/2. Also we observe
that the isochromatic lines are quite regularly
distributed in the left half plane.
The regular behavior of the phase of Zeta on
the imaginary axis provides a basis for count-
ing its zeros in the rectangle 0 < Re z < 1,
0 < Im z < T by the argument principle. Fur-
ther, the striking visual similarity between the
phase plots of ζ and Γ in the left half plane,
together with the location of poles of Gamma
and zeros of Zeta, suggests to look at the prod-
uct ζ(z) Γ(z/2). Observing then that the phase
of this function is changing very slowly along
the imaginary axis, we get a clue of the famous
Riemann-Siegel formula (see [6]).
The saying that Zeta is the mother of all func-
tions alludes to its universality. The objective
of this section is to present a version of this
result which can be communicated to (almost)
everybody.1.

Our starting point is the following variant of
Voronin’s universality theorem (Karatsuba and
Voronin [8], see also Steuding [11]):

Let D be a Jordan domain such that D is con-
tained in the strip

R := {z ∈ C : 1/2 < Re z < 1},

and let f be any function which is analytic in
D, continuous on D, and has no zeros in D.
Then f can be uniformly approximated on D by
vertical shifts of Zeta, ζt(z) := ζ(z + it) with
t ∈ R.

Recall that a continuously colored Jordan curve
JC is a continuous mapping C : J → T from a
simple closed curve J into the color circle T. A
string S is the equivalence class of all such col-
ored curves with respect to rigid motions of the
plane.

Strings can be classified
by their chromatic num-
ber, which is the wind-
ing number of the color
map of any representa-
tive. The figure depicts
a string with chromatic
number one.

We say that a string S lives in a domain D if
it can be represented by a colored Jordan curve
JC with J ⊂ D. A string can hide itself in a
phase plot P : D → T, if, for every ε > 0, it has
a representative JC such that J ⊂ D and

max
z∈J

|C(z)− P (z)| < ε.

In less technical terms, a string can hide itself if
it can move to a place where it is invisible since
it looks almost like the background.
In conjunction with Theorem 4 the following
universality result for the phase plot of the Rie-
mann Zeta function can easily be derived from
Voronin’s theorem.

Theorem 5. Let S be a string which lives in
the strip R. Then S can hide itself in the phase
plot of the Riemann Zeta function on R if it has
chromatic number zero.

1“Man hat eine Sache erst dann verstanden, wenn man sie seiner Großmutter erklären kann.” (Albert Einstein)
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In view of the extreme richness of Jordan curves
and colorings this result is a real miracle. The
three pictures below show phase plots of Zeta
in the critical strip. The regions with saturated
colors belong to R. The rightmost figure depicts
the domain considered on p. 342 of Conrey’s pa-
per [4].

Figure 19: Riemann’s Zeta function at
Im z = 171, 8230 and 121415

What about the converse of Theorem 5 ? If
there existed strings with nonzero chromatic
number which can hide themselves in the strip
R, their potential hiding-places must be Jor-
dan curves with non-vanishing color index in
the phase plot. By the argument principle this
would imply that Zeta has zeros in R. If we as-
sume this, for a moment, then such strings in-
deed exist: They are perfectly hidden and wind
themselves once around such a zero. So the con-
verse of Theorem 5 holds if and only if R con-
tains no zeros of Zeta, which is known to be
equivalent to the Riemann hypothesis (see [4],
[6]).

The Phase Plot as a Tool

Phase plots may be a useful tool for everybody
who is working with complex–valued functions.
Here are a few examples which also demonstrate
some additional tricks.

If it is not clear which branch of a function
is used in a certain software implementation
of a special function a glimpse of the phase
plot may help. In particular, if several func-
tions are composed, implementations with dif-
ferent branch cuts can lead to completely dif-
ferent results. Figure 20 illustrates the dif-
ference between the Mathematica functions
Log (Gamma) and LogGamma.

Figure 20: The Mathematica
implementations of LogGamma and Log(Gamma)

Another promising field of application is the vi-
sual analysis of transfer functions in systems
theory and filter design.

Figure 22: The transfer function of a
Butterworth filter

The left part of the figure depicts the phase plot
of a Butterworth filter. The frequency response
is on the white line (imaginary axis). In the
right figure the color scheme is a modified by a
black component, which is a sawtooth function
of ln |f |. This allows to read off the gain of the
filter directly from the plot. Numerically this
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is much more efficient than computing contour
lines of the modulus.
Phase plots also allow to guess the asymptotic
behavior of functions and to find functional re-
lations. For example you may wish to compare
the phase plots of exp z and sin z or, more chal-
lenging, reinvent Riemann’s ξ-function and dis-
cover its functional relation from the phase plots
of Zeta and Gamma.
Further potential applications are in the field
of Laplace and complex Fourier transforms, in
particular to the method of steepest descent (or
stationary phase).
Of course, the utility of phase plots is not
restricted to analytic functions. Figure 23
shows the phase plot of a harmonic polynomial
(Wilmshurst’s example [13], see also the paper
on gravitational lenses by Khavinson and Neu-
mann [9]).

Figure 23: A modified phase plot of
Wilmshurst’s example for n = 4

To understand the construction of the depicted
function it is important to keep track of the ze-
ros of its real and imaginary parts. In the figure
these (straight) lines are visualized using a mod-
ified color scheme which has jumps at the points
1, i,−1 and −i on the unit circle.
Finally, it should be mentioned that phase plots
can easily be animated. For example, a spin-
ning color wheel with a discontinuity is helpful
to identify zeros of f ′ as color saddles.

In the phase plot of f − c, with a complex con-
stant c, the c-values of f appear as singulari-
ties. Now let c move and observe what hap-
pens. Good examples are Blaschke products2

or functions with an essential singularity.

Figure 24: A finite Blaschke product with
randomly distributed zeros

Can you predict how the phase plot in Figure 24
will morph when c travels along the real axis
from 0 to 1 ?
Even more interesting are animated phase plots
of functions involving parameters. For example,
varying the module of elliptic functions allows
to visualize their metamorphosis from simply
periodic to doubly periodic functions.

If you meet an interesting complex function in
your own work, I recommend that you look at
its phase plot. There is a good chance to dis-
cover new aspects of the subject. Here is a self-
explaining Matlab code3:

xmin=-0.5; xmax=0.5; ymin=-0.5; ymax=0.5;

xres = 400; yres = 400;

x = linspace(xmin,xmax,xres);

y = linspace(ymin,ymax,yres);

z = ones(yres,1)*x + i*y’*ones(1,xres);

f = exp(1./z);

p = surf(real(z),imag(z),0*f,angle(-f));

set(p,’EdgeColor’,’none’);

caxis([-pi,pi]), colormap hsv(600)

view(0,90), axis equal

2For readers interested in other color representations of Blaschke products the paper [3] is a must.
3This is a tribute to N.Trefethen’s proposal to communicate ideas by exchanging ten-lines computer code
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Conclusion

Color encoding of function values has been cus-
tomary for many decades (think about altitudes
on maps or temperature and air pressure distri-
bution in weather forecast). Also the idea to
represent the argument of a complex function
by a circular color scheme (its phase) is quite
natural.

Since color printing is not yet standard in math-
ematical publications, analytic functions are
usually either depicted by their analytic land-
scape or by images of grids (see Section 12 of
[7]). The latter approach is perfect for con-
formal mappings, but the visualization of non-
univalent function is problematic.

To the best of my knowledge the colored an-
alytic landscape appears for the first time in
printed form in the outstanding mathematics
textbook [1] for engineering students.

In the internet, the page on special functions
at Wolfram Research is a well-structured
source for all kinds of information, includ-
ing tools for graphical visualization of complex
functions. There are a few colored analytic
landscapes, but at the time of this writing phase
plots play only a marginal rôle. A good source
for aesthetic “phase plot like” pictures (see the
comments below) is the Wikipedia page of Jan
Homann.

Though I have been working with phase plots
in education and research for several years, it
took me some time to realize that they are much
more than just one of several options to visual-
ize analytic functions, and that forgetting about
the modulus may even be an advantage.

The concept of phase plots starts with split-
ting the information about the function into two
parts, such that one (phase f/|f |) can be easily
represented, while the second one (ln |f |) can be
reconstructed from the same picture.

So why not separate f into its real and imagi-
nary part? One reason is that often zeros are
of special interest, which can easily be detected
and characterized using the phase, but there is
no way to find them from the real or imaginary
part alone.

And what is the advantage of using f/|f | in-
stead of ln |f | ? Of course, zeros and poles can
be seen in the analytic landscape, but they are
much better represented in the phase plot. In
fact there is a subtle asymmetry between modu-
lus and argument (respectively phase). For ex-
ample, Theorem 4 has no counterpart for the
modulus of a function.
Another advantage of phase is its small range,
the unit circle. So one standardized color
scheme is appropriate for all functions.
Reducing the range by replacing the argument
arg f with the phase f/|f | has yet another inter-
pretation: we periodize the values of a function.
The same idea was applied to ln |f | in Figure 22
(Butterworth filter), where the gray scale was
chosen according to the fractional part of ln |f |.
If a sawtooth function with high frequency is
applied to both, the phase and the module, the
resulting plots show the preimages of a polar
grid, which yields a conformal representation of
the function.

Figure 25: A conformal representation of the
sine function

Finally, why do we not use a gray scale in gen-
eral to represent the modulus and show the full
information about f in a “value plot”?
The interested reader can find such pictures
(where large values of |f | are associated with
dark colors and small values are bright) on the
Wikipedia page of Jan Homann.
There is no doubt that value plots outperform
phase plots in some applications. However, for
analytic functions their main drawback is the
lack of a simple characterization among all pos-
sible colorings of the domain. In particular,
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there is no result about the boundary coloring
corresponding to Theorem 4.
As a consequence the universality of Riemann’s
Zeta function for value plots needs the con-
cept of “analytic color patterns”. For a non-
mathematician this does not say much, in par-
ticular it is not clear if this class is large or small.
For some applications value plots have too many
colors.

Technical Remark. All images of this arti-
cle have been created using Mathematica and
Matlab.

Acknowledgement. I would like to thank
Gunter Semmler for many stimulating discus-
sions and ideas as well as for his constructive
criticism, and Albrecht Böttcher for his inter-
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