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Abstract. The purpose of this note is to demonstrate the use of the results from
[5, 6] for the explicit computation of the spectrum of two-sided infinite matrices with
random diagonals. Here we consider the case of two random diagonals, one of them
the main diagonal. Our result is a generalization of [24, Theorem 8.1] by Trefethen,
Contedini and Embree from the case of one random and one constant diagonal to the
case of two random diagonals.
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1 Introduction, Preliminaries, Result

The problem. Given two compact sets Σ and T in the complex plane, we study
the spectrum of the two-sided infinite matrix

A =



. . . . . .

σ−2 τ−2

σ−1 τ−1

σ0 τ0

σ1 τ1

σ2
. . .
. . .


, (1)

considered as an operator on `p(Z), where σk ∈ Σ and τk ∈ T are independent
samples from a random distribution on Σ and T , respectively. Here we will suppose
that, for all ε > 0, k ∈ Z, σ ∈ Σ and τ ∈ T , the probabilities of |σk − σ| < ε and
|τk − τ | < ε are both nonzero.
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As usual, spectrum spec A and essential spectrum specess A of A, considered as
a bounded linear operator on `p(Z), are the sets of all λ ∈ C for which A − λI is,
respectively, not invertible or not a Fredholm operator. It is well-known (see e.g.
[16, 19]) that neither spec A nor specess A depend on the choice of p ∈ [1,∞] if A,
as in our case, is a banded matrix.

Matrices like (1) and the question about their spectrum originate from problems
in quantum mechanics. For example, they appear as Hamiltonians of asymmetric
randomly hopping quantum particles, where, in the special case when Σ = {−1, 1}
and T = {1}, (1) is called “one-way model” by Brézin, Feinberg and Zee [2, 13, 14].

The result. For ε ≥ 0, put

Σε
∪ :=

⋃
σ∈Σ

U ε(σ) and Σε
∩ :=

⋂
σ∈Σ

Uε(σ)

with Uε(σ) = {λ ∈ C : |λ− σ| < ε} and U ε(σ) = {λ ∈ C : |λ− σ| ≤ ε} denoting the
open and the closed ε-neighbourhood of σ in C, respectively. Then our result reads
as follows:

Theorem 1.1 If A is the random matrix shown in (1) then, with probability 1,

spec A = specess A = ΣT
∪ \ Σt

∩ ,

where T = max{|τ | : τ ∈ T } and t = min{|τ | : τ ∈ T }.

We hereby generalize Theorem 8.1 of Trefethen, Contedini and Embree’s paper [24]
(and see [25, Section VIII]) where T = {1} and therefore T = t = 1. If we put
Σ = {σ} and T = {τ} with σ, τ ∈ C fixed then (1) is a Laurent matrix with two
constant diagonals of value σ and τ , and Theorem 1.1 resembles the well-known fact
(see e.g. [1]) that spec A = specess A is the circle of radius T = t = |τ | around σ.
If again, Σ = {σ} is a singleton and T consists of at least two points with different
moduli |τ | ∈ [t, T ] then letting t = min |τ | → 0 in Theorem 1.1 demonstrates what
is called “disk-annulus transition” in [11, 12].

Another observation is that, if Σ, T ⊂ C are compact sets and t = dist(T , 0) is
small enough for Σt

∩ = ∅ (e.g. when t ∈ [0, diam Σ/2]) then we get that spec A = ΣT
∪

which coincides with the ε-pseudospectrum, for ε = T , of the diagonal matrix that
results from (1) by deleting the 1st superdiagonal.

We would also like to mention that, as expected for a non-symmetric matrix, the
spectrum of A differs (unless T = {0}, i.e. the symmetric case) from the limit as
n →∞ of the spectra of its n-by-n finite sections which obviously is Σ.
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Our approach. Our tool for computing spec A and specess A for (1) is the
method of so-called limit operators [6, 18, 23], where A is studied in terms of a family
of infinite matrices that represents the behaviour of A at infinity. More precisely, we
say that the operator induced by the matrix B = (bij)i,j∈Z is a limit operator of the
operator induced by the banded matrix A = (aij)i,j∈Z if, for a sequence h(1), h(2), ...
of integers with |h(k)| → ∞, it holds that

ai+h(k),j+h(k) → bij as k →∞

for all i, j ∈ Z. The set of all limit operators of A is denoted by σop(A). Combining
the main theorem on limit operators (going back in this simple form to [17, 22])
with recent results of Chandler-Wilde and the author [5], one gets that, if A is a
two-sided infinite banded matrix with bounded diagonals, then

specess A =
⋃

B∈σop(A)

spec B =
⋃

B∈σop(A)

spec∞point B, (2)

where spec∞point B is the point spectrum (set of eigenvalues) of B as operator on
`∞(Z).

If A is our random matrix (1) then it is easy to see (the argument is sometimes
called “the Infinite Monkey Theorem” and it follows from the 2nd Borel Cantelli
Lemma, see [3, Theorem 8.16] or [7, Theorem 4.2.4]) that, with probability 1, the
function k 7→ (σk, τk) is a pseudo-ergodic mapping Z → Σ×T in the sense of Davies
[9], in which case we call the matrix A pseudo-ergodic. This, however, is equivalent
(see e.g. [8, Lemma 6], [18, Corollary 3.70] or [6, Theorem 7.6]) to the following
fact:

σop(A) consists of all matrices of the form (1)
with σk ∈ Σ and τk ∈ T for all k ∈ Z.

(3)

So in particular, A ∈ σop(A), which shows that, by (2), spec A ⊂ specess A and hence

spec A = specess A =
⋃

B∈σop(A)

spec B =
⋃

B∈σop(A)

spec∞point B. (4)

The proof of Theorem 1.1 now rests on a combination of (3) and (4).

Limit operator ideas, the “Infinite Monkey” argument and the validity of the
first two “=” signs in (4) are not new in the spectral theory of random matrices (see
e.g. [4, 8, 9, 15, 21]) but what seems to be new here is the third “=” sign in (4),
due to [5] (or [6, Theorem 7.6]), and hence the possibility of the simple proof that
is presented here.
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matrices of this and similar type. This research was financially supported by Marie-
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2 Proof of Theorem 1.1

Let A be the random matrix (1) with samples σk ∈ Σ and τk ∈ T from the prob-
ability distributions on the compact sets Σ, T ⊂ C as described above, and put
T = max{|τ | : τ ∈ T } and t = min{|τ | : τ ∈ T }.

For the calculation of the point spectra in (4), take λ ∈ C and let B ∈ σop(A),
i.e. B is of the form (1) with σk ∈ Σ and τk ∈ T for all k ∈ Z, by (3). If x : Z → C
is a nontrivial solution of Bx = λx then x(n0) 6= 0 for some n0 ∈ Z, w.l.o.g. let
x(n0) = 1, and

τk x(k + 1) = (λ− σk) x(k) for all k ∈ Z. (5)

Case 1: 0 6∈ T , i.e. t > 0.

Note that, by (5), λ 6= σk for all k < n0 since otherwise x(n0) = 0 (recall that τk 6= 0
for all k). As a consequence we get that

x(n) =


n−1∏
k=n0

λ−σk

τk
, n ≥ n0,

n0−1∏
k=n

τk

λ−σk
, n < n0

(6)

for every n ∈ Z.

Clearly, if λ 6∈ ΣT
∪ then |λ− σ| > T ≥ |τ | for all σ ∈ Σ and τ ∈ T and hence, for

every nontrivial eigenvector x of B, we have that |x(n)| → ∞ in (6) as n → +∞
since |λ−σk

τk
| > 1 for all k ∈ Z, regardless of the particular entries σk and τk of B.

Similarly, if λ ∈ Σt
∩ then |λ−σ| < t ≤ |τ | for all σ ∈ Σ and τ ∈ T and hence, for

every nontrivial eigenvector x of B, |x(n)| → ∞ in (6) as n → −∞ since | τk

λ−σk
| > 1

for all k ∈ Z, regardless of the particular entries σk and τk of B. (Note that n0 in
(6) depends on B and λ.)

So in both cases, Bx = λx has no nontrivial solution x ∈ `∞(Z), so λ 6∈ spec∞point B
for all B ∈ σop(A) and hence, by (4), λ 6∈ spec A. Now it remains to look at
λ ∈ ΣT

∪ \Σt
∩. In this case, let σ∗, σ∗ ∈ Σ and τ ∗, τ∗ ∈ T be such that |λ− σ∗| ≤ |τ ∗|

and |λ− σ∗| ≥ |τ∗|, which is possible by the choice of λ. Now consider

B =



. . . . . .

σ∗ τ∗
σ∗ τ∗

σ∗ τ ∗

σ∗ τ ∗

σ∗
. . .
. . .


∈ σop(A)
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with σ∗ and τ ∗ in row 0, 1, 2, ... and σ∗ and τ∗ in row −1,−2, ... to see that

x =

(
· · · ,

(
τ∗

λ− σ∗

)2

,

(
τ∗

λ− σ∗

)1

, 1 ,

(
λ− σ∗

τ ∗

)1

,

(
λ− σ∗

τ ∗

)2

, · · ·

)>

,

with the 1 at position n0 = 0, is an eigenvector in `∞(Z) of B w.r.t. λ. So we have
that λ ∈ spec∞point B ⊂ spec A, by (4).

Summarizing, we see that the formula in Theorem 1.1 holds in Case 1.

Case 2: 0 ∈ T with 0 = t < T , i.e. T has points other than 0.

Suppose λ 6∈ ΣT
∪. Then λ 6= σk for all k ∈ Z and, by (5), τk 6= 0 for all k ≥ n0 since

otherwise x(n0) = 0. So again, (6) holds for all n ∈ Z. But from |λ− σ| > T ≥ |τ |
for all σ ∈ Σ and τ ∈ T we again get that |x(n)| → ∞ in (6) as n → +∞ since
|λ−σk

τk
| > 1 for all k ∈ Z, regardless of the particular entries σk and τk of B.

Now suppose λ ∈ ΣT
∪. Then fix τ ∈ T with maximal modulus, i.e. |τ | = T > 0

and take a σ ∈ Σ with |λ− σ| ≤ T = |τ |. Now

B =



. . . . . .

σ 0
σ 0

σ τ
σ τ

σ
. . .
. . .


∈ σop(A)

with τ in row 0, 1, 2, ... and 0 in row −1,−2, ... has

x =

(
· · · , 0 , 0 , 1 ,

(
λ− σ

τ

)1

,

(
λ− σ

τ

)2

, · · ·

)>

∈ `∞(Z),

with the 1 at position n0 = 0, as its eigenvector w.r.t. λ. So λ ∈ spec∞point B ⊂ spec A,
by (4).

So in Case 2 we get spec A = ΣT
∪. But the latter is equal to ΣT

∪ \ Σt
∩ since t = 0

and Σ0
∩ = ∅.

Case 3: 0 ∈ T with 0 = t = T , i.e. T = {0}.
In this trivial case, A is a diagonal matrix, so that, with probability 1, spec A = Σ.
But Σ = ΣT

∪ \ Σt
∩ if T = t = 0.
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3 An a-posteriori experiment:

Is it enough to look at periodic limit operators?

Recall formula (4) for the spectrum of a bi-infinite, pseudo-ergodic and banded
matrix A. Generally it is difficult to evaluate the rightmost term in (4) since the
index set σop(A) of this union is a very large set and the point spectrum of most
operators B ∈ σop(A) is difficult to determine. An approach which has been used
by Davies and co-workers (see e.g. [9, 10, 20] and references therein) for studying
the spectrum of such an operator A is to look at a large amount of periodic limit
operators B of A. More precisely, one looks at the subsets

specn
per A :=

⋃
B∈Pn(A)

spec∞point B of spec A =
⋃

B∈σop(A)

spec∞point B

for large values of n ∈ N, where Pn(A) ⊂ σop(A) denotes the set of all limit operators
of A with n-periodic diagonals. For B ∈ Pn(A), spectrum and `∞ point spectrum
coincide (see e.g. [6, Theorem 6.7]) and its computation reduces to the computation
of the spectra of certain finite matrices by treating B as a block Laurent matrix
with n-by-n block entries (see e.g. [1, 10, 20]).

An interesting question is under what circumstances does it hold that the left-
hand side of the inclusion

specper A :=
∞⋃

n=1

specn
per A ⊂ spec A (7)

is dense in the right-hand side. In this section we illustrate that, even when the
pseudo-ergodic operator A is non-normal, it can hold that the closure of the left-
hand side of (7) is equal to the spectrum of A.

To do this, we will look at Brézin, Feinberg and Zee’s “one-way model” (1), where
Σ = {−1, 1} and T = {1}; that is,

A =



. . . . . .

σ−1 1
σ0 1

σ1 1

σ2
. . .
. . .


(8)

with σk randomly chosen from Σ = {−1, 1}. The spectrum of A is explicitly known
due to [24] or from our Theorem 1.1: It is the union of the two disks of radius 1
centered at 1 and −1 (see Figure 3.1).
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Figure 3.1: The left image shows the spectrum of the infinite random matrix (8). The right
image shows the point spectra (solutions λ of (10)) corresponding to ratio r = 0.5 (lemniscate,
bold), r = 0.75 (thin) and r = 1 (dotted).

Now take n ∈ N and B ∈ Pn(A), i.e. B is of the form (8), where we choose
σ1, ..., σn ∈ {−1, 1} and let σk+n = σk for all k ∈ Z. Let m denote the number of
1’s in σ1, ..., σn so that the remaining n−m entries are equal to −1. Now we are in
the situation of Case 1 (0 6∈ T ) in our proof of Theorem 1.1. So take a λ ∈ C and
look at a nontrivial solution x of Bx = λx. Looking at (6) and taking into account
τk = 1 ∀k and the periodicity of the σk-sequence, we get that x ∈ `∞(Z) iff

|λ− 1|m |λ + 1|n−m = |λ− σ1| · · · |λ− σn| = 1. (9)

Indeed, |x(n)| from (6) remains bounded for n → +∞ iff the left-hand side of (9) is
≤ 1, and it remains bounded for n → −∞ iff the left-hand side of (9) is ≥ 1 (also
cf. [14]).

So we have that λ ∈ spec∞point B iff (9) holds. Taking n-th roots in (9), we get the
slightly more convenient formula

|λ− 1|r |λ + 1|1−r = 1, (10)

where r = m/n is the ratio of 1’s among all entries σk in a period of length n. The
set specper A, as defined in (7), is hence equal to the set of all solutions λ of (10)
with a rational ratio r = m/n ∈ [0, 1].

For example, if r = 0.5, i.e. if n is even and m = n/2 then (10) is equivalent to
|λ − 1| · |λ + 1| = 1, which is the equation of the lemniscate with focal points −1
and 1 (see Figures 3.1 and 3.2, and cf. [24, Figures 2.1 and 3.1(b)] and [14, Figure
2]). By the same argument, it can be shown that the same lemniscate is the point
spectrum not only of all periodic matrices (8) with an equal share of 1’s and −1’s
per period but also for the much larger class of all matrices of the form (8) for which
the ratio of 1’s within σ−k, ..., σk tends to 0.5 as k →∞ – which is what one expects
from a random matrix if the probability is distributed equally on Σ = {−1, 1}.
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For r = 0 and r = 1, (10) is the equation of the circle with radius 1 around −1
and 1, respectively. For every r ∈ (0.5, 1), the solutions of (10) form two closed
curves: one curve lies inside the left loop of the lemniscate, and the second curve
lies inside the radius 1 circle around 1 but outside the right loop of the lemniscate
(see the right image of Figure 3.1, also cf. the resolvent level plots in [24, Figure
2.1]).

It is easy to see that every point λ ∈ U1(−1)∪U1(1), with the only two exceptions
λ = −1 and λ = 1, solves (10) for a particular value of r ∈ [0, 1], namely for

r =
1

1− log|λ+1| |λ− 1|
(11)

(the origin λ = 0, for which this formula is not applicable, is a solution of (10) for
every r ∈ [0, 1] and every point on the circle |λ + 1| = 1 is the solution of (10) for
r = 0), and that no λ outside these two disks solves (10) for any value of r ∈ [0, 1].

Figure 3.2: The left image shows the point spectra (solutions of (10)) corresponding to ratios
r = 0, 0.02, ... , 0.98, 1 with r = 0.5 highlighted (bold). So what we see on the left is spec50

per A.
What we see on the right is the union ∪12

n=1specn
per A.

From (11) it is not hard to see that the set of all λ ∈ U1(−1)∪U1(1) = spec A for
which (11) is rational is a dense subset of spec A. So here we have that the left-hand
side of (7) is indeed dense in the right-hand side, i.e.

spec A = clos
(
specper A

)
. (12)

In this sense, for the determination of the spectrum of A, it is indeed enough to look
at the periodic limit operators of A. We have tried to illustrate (12) in Figure 3.2.
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