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Abstract

We continue investigating the problem of reconstructing a multivariate trigonometric
polynomial having only few non-zero coefficients from few random samples. Both for a
continuous and a discrete probability model for the sampling points we prove theoreti-
cal results on the success probability of reconstruction when using Orthogonal Matching
Pursuit (OMP) or Basis Pursuit (BP). Although our theoretical estimates are the same
for both methods, our numerical experiments indicate that OMP outperforms BP slightly.
Moreover, OMP is significantly faster than BP in practice.
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1 Introduction

Recently, the surprising fact that it is possible to recover functions having only few non-zero
coefficients with respect to some basis from vastly incomplete information has gained much
attention. Such functions are commonly called sparse or compressible and they naturally
appear in a wide range of applications such as signal and image processing, e.g. biomedical
imaging.

Previous work on this topic includes the reconstruction of Fourier coefficients from samples
taken randomly on a lattice and the use of Randomized Algorithms for Sparse Fourier Analysis
[33] or the Basis Pursuit (BP) principle [6, 7]. The latter approach consists in minimizing the
ℓ1-norm of the Fourier coefficients subject to the condition that the corresponding trigonometric
polynomial matches the sampling points. Indeed, it was proven by Candes, Romberg and Tao
in [6] in the setting of the discrete Fourier transform that this scheme recovers the coefficients
exactly with high probability provided the number of samples is high enough compared to the
sparsity, i.e., the number of non-vanishing coefficients. This result has been generalized by the
second author of the present paper in [23] for the case of samples taken uniformly at random
from the cube [0, 2π]d.

Although there has been made much progress on interior point methods for solving convex
problems (in particular ℓ1-minimization) [4, 25, 20], reliable algorithms that take advantage
of structured, but fully populated, matrices are somewhat rare. A second body of literature,
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cf. [19, 16, 31, 32], suggests (Orthogonal) Matching Pursuit for sparse reconstruction tasks.
Orthogonal Matching Pursuit (OMP) is a greedy approach that is conceptually simple to
implement and potentially faster than BP. In particular, it may easily take into account fast
algorithms for the involved matrices.

This paper is devoted to the theoretical and numerical investigation and comparison of the
use of OMP and BP for the recovery of sparse trigonometric polynomials from randomly taken
samples. Our results indicate that indeed both methods are suitable for this task. However, our
numerical experiments suggest that OMP outperforms BP both with respect to computation
time and – maybe more surprisingly – also slightly with respect to the success probability of
reconstruction.

For related work on this topic, also known as compressed sensing, we refer to [6, 7, 8, 9,
10, 11, 12, 13, 14, 16, 26, 27] and the references therein. For more information on sampling of
(not necessarily sparse) trigonometric polynomials in a random setting the reader may consult
[1, 2].
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(a) Sparse coefficient vector.

−0.5 0 0.5
−3

−2

−1

0

1

2

3

(b) Trigonometric polynomial and a few samples.

Figure 1: Sparse vector of Fourier coefficients and the corresponding trigonometric polynomial
(real part). After sampling at a few randomly chosen points, the orthogonal matching pursuit
algorithm (OMP), i.e., Algorithm 1, as well as the Basis pursuit principle recover the coefficient
vector perfectly with high probability.

The paper is organized as follows: After introducing the necessary notation, including the
orthogonal matching pursuit algorithm, we present the main result in Theorem 2.1. Subse-
quently, Corollary 2.2 reveals the asymptotic performance of OMP and BP in the present
setting, whereas Corollary 2.3 comments on a slight modification within the discrete proba-
bility model. Commonly applied, the coherence parameter proves to be less useful here, cf.
Subsection 2.3. In Section 3 all proofs of the obtained results are given, Section 4 presents
numerical experiments, showing the superior performance of OMP over BP. Finally, Section 5
makes conclusions and discusses possible future work.
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2 Main Results

2.1 The Setting

For some finite subset Γ ⊂ Z
d, d ∈ N, we let ΠΓ denote the space of all trigonometric polyno-

mials in dimension d whose coefficients are supported on Γ. Clearly, an element f of ΠΓ is of
the form

f(x) =
∑

k∈Γ

cke
ik·x, x ∈ [0, 2π]d,

with some Fourier coefficients ck ∈ C. The dimension of ΠΓ will be denoted by D := |Γ|.
Taking Γ = {−q,−q + 1, . . . , q}d yields the space ΠΓ = Πd

q of all trigonometric polynomials of
maximal order q.

We will mainly deal with “sparse” trigonometric polynomials, i.e., we assume that the
sequence of coefficients ck is supported only on a set T , which is much smaller than Γ. However,
a priori nothing is known about T apart from a maximum size. Thus, it is useful to introduce
the set ΠΓ(M) ⊂ ΠΓ of all trigonometric polynomials whose Fourier coefficients are supported
on a set T ⊂ Γ satisfying |T | ≤ M . Note that

ΠΓ(M) =
⋃

T⊂Γ,|T |≤M

ΠT

is not a linear space.
Our aim is to sample a trigonometric polynomial f of ΠΓ(M) at N points x1, . . . , xN ∈

[0, 2π]d and try to reconstruct f from these samples. If for some m ∈ N the sampling points
are located on the grid

2π

m
Z

d
m =

{
0,

2π

m
, . . . ,

2π(m − 1)

m

}

then this problem can also be interpreted as reconstructing a sparse vector from partial infor-
mation on its discrete Fourier transform.

Basis Pursuit consists in solving the following ℓ1-minimization problem

min ‖d‖1 :=
∑

k∈Γ

|dk| subject to
∑

k∈Γ

dke
2πik·xj = f (xj) , j = 1, . . . , N. (2.1)

This task can be performed with convex optimization techniques [4]. For real-valued coefficients
(2.1) can be reformulated as a linear program while for complex-valued coefficients we obtain
a second order cone program. For both kind of problems standard software exists, such as
MOSEK [20] or CVX [15] (internally using SeDuMi [28]) and since recently also L1MAGIC
[25] (only for real-valued coefficients).

On the other hand, we use Orthogonal Matching Pursuit (OMP), cf. Algorithm 1, to
recover the Fourier coefficients of f from a few samples. We need to introduce some notation.
Let X = {x1, . . . , xN} be the set of (random) sampling points. We denote by FX the N × D
matrix (recall that D = |Γ|) with entries

(FX)j,k = eik·xj , 1 ≤ j ≤ N, k ∈ Γ. (2.2)

Then clearly, f(xj) = (FXc)j if c is the vector of Fourier coefficients of f . Let φk denote the
k-th column of FX , i.e.,

φk =




eik·x1

...
eik·xN


 ,
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Algorithm 1 OMP

Input: sampling set X ⊂ [0, 2π]d, sampling vector f := (f(xj))
N
j=1, set Γ ⊂ Z

d.

Optional: maximum allowed sparsity M or residual tolerance ε.

1: Set s = 0, the residual vector r0 = f, and the index set T0 = ∅.
2: repeat

3: Set s = s + 1.
4: Find ks = arg maxk∈Γ |〈rs−1, φk〉| and augment Ts = Ts−1 ∪ {ks}.
5: Project onto span{φk, k ∈ Ts} by solving the least squares problem

‖FTsXds − f‖2
ds→ min .

6: Compute the new residual rs = f −FTsXds.
7: until s = M or ‖rs‖ ≤ ε
8: Set T = Ts, the non-zeros of the vector c are given by (ck)k∈T = ds.

Output: vector of coefficients (ck)k∈Γ and its support T .

so FX = (φk1 |φk2 | . . . |φkD
). By

(FTX)j,k = eik·xj , 1 ≤ j ≤ N, k ∈ T. (2.3)

we denote the restriction of FX to sequences supported only on T . Furthermore, let 〈·, ·〉 denote
the usual Euclidean scalar product and ‖·‖2 the associated norm. We have ‖φk‖2 =

√
N for all

k ∈ Γ, i.e., all the columns of FX have the same ℓ2-norm. We postpone a detailed discussion
on the implementation of Algorithm 1 to Section 4.

Of course, the hope is that running OMP or BP on samples of some f ∈ ΠΓ(M) will
recover its Fourier coefficients. To analyze the performance of the algorithms we will use two
probabilistic models for the sampling points (one for the continuous case and the other one
for the discrete Fourier transform case). This random modeling should be understood in the
sense that the sampling set X is ’generic’: reconstruction is allowed to fail for certain choices
of X, as long as the probability of encountering such a pathological case is very small.

We will work with the following two probability models for the sampling points:

• In our first model we assume that the sampling points x1, . . . , xN are independent random
variables having the uniform distribution on [0, 2π]d. Obviously, the cardinality of the
sampling set X = {x1, . . . , xN} equals the number of samples N with probability 1.

• Our second model aims at analyzing the discrete Fourier transform, i.e., at studying the
problem of reconstructing sparse vectors from (partial) information on its discrete Fourier
transform. Indeed, we suppose that the sampling points x1, . . . , xN have the uniform
distribution on the finite set 2π

m Z
d
m. Moreover, it will always be assumed implicitly that

Γ ⊂ Z
d
m when we discuss this second model.

Observe that it happens with non-zero probability that some of the sampling points
coincide, so the cardinality of the sampling set X = {x1, . . . , xN} might be smaller than
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N . However, this fact will not do much harm to our analysis. Moreover, we will later
be able to replace this model by the one where the random sampling set X is chosen
uniformly at random from all the subsets of 2π

m Z
d
m of size N .

We will often refer to the first model as the “continuous model” while the second will be
called the “discrete model”. It turns out that one can treat both probability models in parallel.
We will have to make a slight distinction only at one point of the proof of our results.

2.2 The Main Theorem

Although originally, our main aim was on investigating OMP, it surprisingly turned out that
our method for approaching the recovery problem is applicable to both OMP and BP at the
same time. Indeed, it is based on results by Tropp in [31, 32] that apply to both schemes.
Also, our result is very similar to Theorem 2.1 in [23] concerning BP, although the proof is
somewhat different there. In order to formulate it we first need to introduce functions Fn(θ),
n ∈ N, by

Fn(θ) =

⌊n/2⌋∑

k=1

S2(n, k)θk, θ ∈ R, (2.4)

where S2(n, k) are the associated Stirling numbers of the second kind. They can be computed
by means of their exponential generating function, see [24, formula (27), p.77] or Sloane’s
A008299 in [30],

∞∑

n=1

Fn(θ)
xn

n!
= exp(θ(ex − x − 1)). (2.5)

Further, we define
Gn(θ) := θ−nFn(θ). (2.6)

Then our main theorem reads as follows.

Theorem 2.1. Assume f ∈ ΠΓ(M), with some sparsity M ∈ N and Γ ⊂ Z
d with |Γ| = D. Let

x1, . . . , xN ∈ [0, 2π]d be independent random variables either

(a) having the uniform distribution on [0, 2π]d, or

(b) having the uniform distribution on 2π
m Z

d
m =

{
0, 2π

m , . . . , 2π(m−1)
m

}d
.

Choose n ∈ N, β > 0, 0 < κ < 1 and K1, . . . ,Kn ∈ N such that

n∑

ν=1

βn/Kν ≤
(

1 +
√

M
κ

1 − κ

)−1

(2.7)

Set the ’generalized oversampling factor’ θ := N/M . Then with probability at least

1 −
(

Mκ−2G2n(θ) + (D − M)β−2n
n∑

ν=1

G2νKν (θ)

)
(2.8)

the sparse trigonometric polynomial f can be reconstructed exactly from its sample values
f(x1), . . . , f(xN ) via Orthogonal Matching Pursuit and also via Basis Pursuit.
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Figure 2: Bound for the probability of failure of exact reconstruction by OMP and BP due to
Theorem 2.1 for different choices of n. (The other parameters were chosen (near) optimal).
The sparsity is M = 10, the dimension D = 10000 and the number of samples N is varied.

The theorem allows to compute explicit numerical bounds for the probability of exact
reconstruction via OMP and via BP given the sparsity M , the number of samples N and the
dimension D of ΠΓ, see Figure 2. However, since it is not very obvious to interpret we also
provide the following corollary, which gives more information on the asymptotic behavior of
the probability bound.

Corollary 2.2. There exists an absolute constant C > 0 such that the following is true.
Assume f ∈ ΠΓ(M) for some sparsity M ∈ N and |Γ| = D. Let x1, . . . , xN ∈ [0, 2π]d be
independent random variables having the uniform distribution either on [0, 2π]d or on 2π

m Z
d
m.

If for some ǫ > 0 it holds
N ≥ CM log(D/ǫ)

then with probability at least 1 − ǫ the trigonometric polynomial f can be recovered from its
sample values f(xj), j = 1, . . . , N , via Orthogonal Matching Pursuit and also via Basis Pursuit.

In particular, if the sparsity M is small and the dimension D large then we may choose
the number N of samples much smaller than D (but larger than M), and we are still able to
recover a polynomial f ∈ ΠΓ(M) exactly – at least with high probability.

As already remarked taking random samples from the uniform distribution on 2π
m Z

d
m has

the disadvantage that some of the sampling points x1, . . . , xN might coincide with non-zero
probability. The following corollary removes this drawback.

Corollary 2.3. Choose X = {x1, . . . , xN} uniformly at random from all subsets of 2π
m Z

d
m of

size N . Then Theorem 2.1 and Corollary 2.2 still hold.

This result corresponds precisely to the random model used by Candes, Romberg and Tao
in Theorem 1.3 of [6]. Since our result is also applicable to Basis Pursuit we are even able to
provide an alternative proof of their theorem, which is considerably shorter. Nevertheless we
were still influenced by nice ideas of Candes et al. in [6].
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Let us shortly comment on the proof of Theorem 2.1. First, it is not possible to apply
directly ideas of Gilbert and Tropp in [16] concerning OMP because they assume that the
columns of the measurement matrix (in our case the vectors φk) are stochastically independent
(see property (M2) in [16, Section 3.1]). Clearly, this property does not hold in our case. Only
the rows of FX are stochastically independent.

Instead, the proof is based on investigating the exact reconstruction condition (ERC) as
introduced by Tropp, see [31, Theorem A], [32]. This is the reason why our analysis is also
applicable to Basis Pursuit. It even improves (very slightly) our previous result in [23]. How-
ever, although we start differently here, in the end, surprisingly, we have to do very similar
computations as in [23]. So parts of our proof rely on auxiliary results in [23].

Furthermore, we note that we may also model the support set T of the Fourier coefficients
as a random set as in [23]. This would rather correspond to an average case analysis than
to a worst case analysis, as provided by Theorem 2.1. The methods in [23] can easily be
applied also to our situation here, so one may formulate the analogue of Theorem 2.3 in [23]
without difficulties. In particular, this would yield an improved bound for the probability of
reconstruction compared to Theorem 2.1, see also Remark (a) in Section 3.6 in [23]. However,
since a related combinatorial problem (stated in [23]) has not yet been solved, the corresponding
estimate is not easy to interpret, and hence, we abstain from giving it here.

2.3 A Result based on Coherence

Many results for OMP rely on the so called coherence parameter µ [31, 32]. It measures the
correlation of different columns of the measurement matrix FX . It requires that they have
unit norm, so we define φ̃k := N−1/2φk resulting in ‖φ̃k‖2 = 1. Then µ is defined as

µ := max
j 6=k

|〈φ̃j , φ̃k〉| = N−1 max
j 6=k

|〈φj , φk〉|. (2.9)

Reformulating Corollary 3.6 in [31] for our context yields the following result.

Theorem 2.4. Suppose that FTX is injective for all subsets T ⊂ Γ with |T | ≤ M . Assume
(2M − 1)µ < 1. Then both OMP and BP recover every f ∈ ΠΓ(M).

Proof: The injectivity of FTX for all T with |T | ≤ M is needed to ensure that if f ∈ ΠΓ(M)
has support T then it is the unique polynomial in ΠT having the vector (f(x1), . . . , f(xN )) of
sample values. The rest of the proof is the same as the one of Corollary 3.6 in [31].

In order to state a result on the coherence parameter µ we first introduce a variant S1(n, t)
of the Stirling numbers by means of the following generating function, see also [29, formula
(18)],

∞∑

n=1

n∑

t=1

S1(n, t)xt zn

(n!)2
= exp

(
x

∞∑

n=1

zn

(n!)2

)
. (2.10)

A table of these numbers is given in [29, Table II]. (The proof of the following result will even
reveal a combinatorial interpretation of them, which does not seem to be known yet.)

Theorem 2.5. Assume M,N ∈ N, ǫ > 0 and Γ ⊂ Z
d. Choose x1, . . . , xN independent random

variable having the uniform distribution either on [0, 2π]d or on 2π
m Z

d
m. Let Γ′ = {j − k : j, k ∈
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Γ, j 6= k} and D′ = |Γ′|. Suppose

D′

(
2M − 1

N

)2n n∑

t=1

S1(n, t)N t ≤ ǫ (2.11)

for some n ∈ N, which is assumed to be less than m in the discrete probability model. Then
with probability at least 1 − ǫ the coherence satisfies (2M − 1)µ < 1.

Observe that the influence of D′ and ǫ decreases in (2.11) when n gets larger. For given
parameters D′,M,N one may optimize (2.11) with respect to n to obtain a good probability
bound. We abstain from giving a detailed analysis here, but rather suggest to do this task
numerically. Also observe that if Γ = {−q, . . . , q}d for instance then Γ′ = {−2q, . . . , 2q}d \ {0}
and D′ = (4q + 1)d − 1.

In the continuous probability model the matrices FTX are injective almost surely if |T | ≤ N
by Lemma 3.2 in [23]. So combining Theorem 2.4 and 2.5 gives

Theorem 2.6. Make the same assumptions on M,N, ǫ and Γ as in Theorem 2.5. Let x1, . . . , xN

be independent random variables having the uniform distribution on [0, 2π]d. Then with prob-
ability at least 1 − ǫ every f ∈ ΠΓ(M) can be recovered both by OMP and BP.

The main difference of the previous result to Theorem 2.1 is the uniformity in f . Indeed
here, once the x1, . . . , xN are chosen then reconstruction is successful for all f with a cer-
tain probability, whereas in Theorem 2.1 the probability of reconstruction is estimated for a
(deterministically) given single f . (Although inspecting the proof of Theorem 2.1 shows that
with the stated probability the reconstruction is successful for all f with a given support T of
their Fourier coefficients.) In other words, we cannot deduce from Theorem 2.1 that a single
sampling set X can be equally good for all sparse f (resp. all support sets T ).

Having a closer look at condition (2.11) reveals that for fixed D and ǫ we have to choose
N ≥ CD,ǫM

2. Thus, the number N of samples that Theorem 2.5 suggests to take are far too
many for practical purposes, especially when comparing this observation with Corollary 2.2. It
is interesting to note that Gilbert and Tropp obtain a similar result for Gaussian and Bernoulli
measurements [16, Proposition 10]. So it seems that coherence is not the optimal concept for
studying the recovery problem. To further support this statement we note that one can hardly
improve Theorem 2.5 in this regard by using other methods than ours. Indeed, its proof shows
that E[|〈φj , φk〉|2] = S1(1, 1)N = N for k 6= j, see (3.20). Thus, it does not seem very unlikely
that |〈φj , φk〉| ≥

√
N for at least one pair (k, j), in particular, µ = N−1 maxj 6=k |〈φj , φk〉| ≥

N−1/2. This means that it is rather likely that (2M − 1)µ > 1 if (2M − 1)2 ≥ N . (We are, of
course, aware that this is not a precise mathematical argument, but nevertheless gives some
intuition.)

A refinement of the coherence parameter is given by the cumulative coherence function,
defined as

µ1(M) = N−1 max
T⊂Γ,|T |=M

max
j∈Γ\T

∑

k∈T

|〈φj , φk〉|.

It is easy to see that µ1(M) ≤ Mµ. Theorem 2.4 still holds if the condition (2M − 1)µ is
replaced by µ1(M) + µ1(M − 1) < 1, see [31, Theorem B]. (Clearly, the latter implies the first
condition.) One might ask whether in our situation an investigation of µ1(M) would give better
results than analyzing µ. However, a similar informal argument as above leaves little hope.
Indeed, as E[|〈φj , φk〉|2] = N for all j 6= k, it seems rather likely that

∑
k∈T |〈φj , φk〉| ≥ M

√
N

8



for some T with |T | = M and as a consequence, µ1(M) + µ1(M − 1) ≥ (2M − 1)N−1/2. In
particular, using the cumulative coherence function does not seem to improve our results based
on the coherence µ.

Of course, we may also formulate a result analogous to Theorem 2.6 for the discrete prob-
ability model. However, the almost sure injectivity of FTX is not guaranteed anymore. The
proof of Theorem 2.1 contains an analysis of the probability of injectivity of FTX (for a single
T ). So in principle we could state the analogue of Theorem 2.6 but the probability estimate
would be even worse than (2.11). We remark that based on the so called Uniform Uncertainty
Principle, Candes and Tao were able to formulate much better results for the discrete prob-
ability model that hold uniformly for all sparse f [7, 8], see also further improved results by
Rudelson and Vershynin [27].

3 Proof of the Main Results

3.1 Proof of Theorem 2.1

Let us first introduce some notation. By ℓp(T ), ℓp(X), p = 1, 2 we denote the usual ℓp-
spaces of sequences indexed by T ⊂ Γ and X, respectively, endowed with the usual norm
‖c‖p = (

∑
k |ck|p)1/p. The matrices FX , FTX defined in (2.2) and (2.3) can be identified

with operators from ℓ2(Γ) and ℓ2(T ), resp., into ℓ2(X). The adjoint operators are denoted

by F∗
X : ℓ2(X) → ℓ2(Γ) and F∗

TX : ℓ2(X) → ℓ2(T ). Further, let F†
TX : ℓ2(X) → ℓ2(T )

be the Moore-Penrose pseudo-inverse of FTX . If F∗
TXFTX is invertible then it is given by

F†
TX = (F∗

TXFTX)−1F∗
TX .

The next lemma is the key to our proof. It is essentially due to Tropp [31, Theorem A],
[32, Theorem 5.2].

Lemma 3.1. Let T denote the support of the Fourier coefficients of f ∈ ΠΓ(M). Assume FTX

is injective and
max
j∈Γ\T

‖F†
TXφj‖1 < 1. (3.1)

Then f can be recovered from its sample values on the set X via OMP and also via Basis
Pursuit.

Proof: The injectivity of FTX ensures that there does not exist another f̃ whose Fourier
coefficients are also supported on T such that f̃(xℓ) = f(xℓ) for all ℓ = 1, . . . , N . (In the context
of sparse approximation this property is satisfied automatically for the sparsest representation,
and thus the corresponding hypothesis is not needed in [31].) The rest of the proof is completely
analogous to the one of Theorem A in [31], and hence, we omit it here. We just note that the
set Λopt in [31] corresponds to T in our situation.

We remark that (3.1) is called the exact reconstruction condition. In the following we will
prove in several steps that it holds with high probability, and Theorem 2.1 will follow.

Assume for the moment that FTX is injective, which is equivalent to F∗
TXFTX being

invertible. Later this will follow automatically with a certain probability, and in the continuous
probability model it is even true almost surely if N ≥ |T | by Lemma 3.2 in [23], see also Section
3 in [1]. Then

F†
TXφj = (F∗

TXFTX)−1F∗
TXφj .
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Observe that
v(j) := F∗

TXφj = (〈φj , φk〉)k∈T ∈ ℓ2(T ), j ∈ Γ \ T.

The entries of v(j) are given by

v
(j)
k =

N∑

ℓ=1

ei(j−k)·xℓ, k ∈ T, j ∈ Γ \ T. (3.2)

As in [23] and [6] we introduce the operator

H0 : ℓ2(T ) → ℓ2(T ), H0 := NIT −F∗
TXFTX ,

where IT denotes the identity on ℓ2(T ). Obviously, H0 is self-adjoint and acts on a vector as

(H0d)k = −
N∑

ℓ=1

∑

j∈T
j 6=k

dje
i(j−k)·xℓ . (3.3)

The Frobenius norm of a matrix A is defined as ‖A‖2
F := Tr(A∗A) =

∑
j,k |Aj,k|2.

Lemma 3.2. Let n ∈ N. If
‖(N−1H0)

n‖F < κ < 1 (3.4)

then F∗
TXFTX is invertible. If for j ∈ Γ \ T additionally, the estimate

n−1∑

ν=0

N−ν−1‖Hν
0 v(j)‖2 < |T |−1/2

(
1 +

√
|T | κ

1 − κ

)−1

=: a (3.5)

is fulfilled, then it follows that ‖F†
TXφj‖1 < 1.

Proof: By the von Neumann series we can write

(
IT −

(
1

N
H0

)n)−1

= IT + An with An :=
∞∑

r=1

(
1

N
H0)

rn (3.6)

and due to (3.4) this series converges with ‖An‖F < κ
1−κ . Moreover, the identity (I −A)−1 =

(I − An)−1(I + A + · · · + An−1) yields

(IT − 1

N
H0)

−1 = (IT + An)

n−1∑

ν=0

(
1

N
H0

)ν

and thus, F∗
TXFTX is invertible. Furthermore, we obtain

F†
TXφj = (N−1F∗

TXFTX)−1N−1F∗
TXφj = (IT − N−1H0)

−1(N−1v(j))

= (IT + An)
n−1∑

ν=0

(
N−1H0

)ν
(N−1v(j)) = (IT + An)

n−1∑

ν=0

N−ν−1Hν
0 v(j).

10



for j ∈ Γ \ T . Taking the ℓ1-norm and using the triangle inequality yields

‖F †
TXφj‖1 ≤ ‖IT + An‖ℓ1→ℓ1‖

n−1∑

ν=0

N−ν−1Hν
0 v(j)‖1 ≤ (1 + ‖An‖ℓ1→ℓ1)

n−1∑

ν=0

N−ν−1‖Hn
0 v(j)‖1.

The operator norm of An from ℓ1(T ) to ℓ1(T ) is given by ‖An‖ℓ1→ℓ1 = maxk∈T
∑

j∈T |(An)j,k|
and by the Cauchy-Schwarz inequality it can be estimated as

‖An‖2
ℓ1→ℓ1 ≤ |T |max

k∈T

∑

j∈T

|(An)j,k|2 ≤ |T |
∑

j,k

|(An)j,k|2 = |T |‖An‖2
F .

Invoking once more the Cauchy-Schwarz inequality gives ‖Hν
0 v(j)‖1 ≤

√
T‖Hν

0 v(j)‖2, and
altogether

‖F†
TXφj‖1 ≤ (1 +

√
|T |‖An‖F )

√
|T |

n−1∑

ν=0

N−ν−1‖Hν
0 v(j)‖2. (3.7)

which is less than one by assumption (3.5).

Altogether we can estimate the probability that condition (3.1) does not hold as follows,

P( max
j∈Γ\T

‖F†
TXφj‖1 ≥ 1) ≤ P

(
{‖(N−1H0)

n‖F ≥ κ} ∪
{

max
j∈Γ\T

n−1∑

ν=0

N−ν−1‖Hν
0 v(j)‖2 ≥ a

})

≤ P(‖(N−1H0)
n‖F ≥ κ) +

∑

j∈Γ\T

P

(
n−1∑

ν=0

N−ν−1‖Hν
0 v(j)‖2 ≥ a

)
. (3.8)

In the second inequality we have used the union bound (also known as Boole’s inequality).
The probability that ‖(N−1H0)

n‖F is larger than κ was already estimated in [23]. Indeed, in
Section 3.3 of [23] (see also Lemma 3.3 and Remark (b) in Section 3.6 in [23]) it is stated that

P(‖(N−1H0)
n‖F ≥ κ) ≤ κ−2MG2n(N/M). (3.9)

(Recall that M = |T | and G2n was defined in (2.6).) Thus, it remains to estimate the second
term in (3.8). To this end we proceed similarly as in [23, Section 3.2].

Let β > 0 and Kν ∈ N, ν = 1, . . . , n, such that

n∑

ν=1

βn/Kν ≤
(

1 +
√

|T | κ

1 − κ

)−1

=
√

|T |a.

Further let j ∈ Γ \ T . By the pigeonhole principle we obtain

P

(
n−1∑

ν=0

N−ν−1‖Hν
0 v(j)‖2 ≥ a

)
≤

n−1∑

ν=0

P

(
N−ν−1‖Hν

0 v(j)‖2 ≥ βn/Kν+1 |T |−1/2
)

=
n−1∑

ν=0

P

(
‖Hν

0 v(j)‖2Kν+1

2 ≥ β2nN2(ν+1)Kν+1 |T |−Kν+1

)

≤
n−1∑

ν=0

E

[
‖Hν

0 v(j)‖2Kν+1

2

]
β−2nN−2(ν+1)Kν+1 |T |Kν+1 . (3.10)

In the last inequality we have used Markov’s inequality. So it remains to investigate the
expected value of ‖Hν

0 v(j)‖2Kν+1

2 .

11



Lemma 3.3. Let ν ∈ N0, K ∈ N and j ∈ Γ \ T . Then

E

[
‖Hν

0 v(j)‖2K
2

]
≤ |T |2Kν+KF2K(ν+1)

(
N

|T |

)

with Fn defined in (2.4).

Proof: Let k0 ∈ T . Using (3.3) and formula (3.2) for v(j) we obtain after an elementary
calculation

(Hν
0 v(j))k0 = (−1)ν

N∑

ℓ1,...,ℓν=1

∑

k1,...,kν∈T
kr−1 6=kr,r=1,...,ν

v
(j)
kν

ν∏

r=1

ei(kr−kr−1)·xℓr

= (−1)ν
N∑

ℓ1,...,ℓν ,ℓν+1=1

∑

k1,...,kν∈T
kr−1 6=kr,r=1,...,ν

ei(j−kν)·xℓν+1ei(kν−kν−1)·xℓν · · · ei(k1−k0)·xℓ1 .

(If ν = 0 then the second summation symbol in the previous formula disappears.) Defining for

simplicity of notation k
(p)
ν+1 := j and k

(p)
0 := k0, p = 1, 2, we obtain

|(Hν
0 v(j))k0|2 =

N∑

ℓ
(1)
1 ,...,ℓ

(1)
ν+1=1

ℓ
(2)
1 ,...,ℓ

(2)
ν+1=1

∑

k
(1)
1 ,...,k

(1)
ν ∈T

k
(2)
1 ,...,k

(2)
ν ∈T

k
(p)
r−1 6=k

(p)
r

(
ν+1∏

r=1

e
i(k

(1)
r −k

(1)
r−1)·x

ℓ
(1)
r

)(
ν+1∏

r=1

e
−i(k

(2)
r −k

(2)
r−1)·x

ℓ
(2)
r

)
.

Summing over k0 yields

‖Hν
0 v(j)‖2

2 =

N∑

ℓ
(1)
1 ,...,ℓ

(1)
ν+1=1

ℓ
(2)
1 ,...,ℓ

(2)
ν+1=1

∑

k0∈T

∑

k
(1)
1 ,...,k

(1)
ν ∈T

k
(2)
1 ,...,k

(2)
ν ∈T

k
(p)
r−1 6=k

(p)
r ,(p,r)∈[2]×[ν]

2∏

p=1

ν+1∏

r=1

exp
(
i(−1)p(k(p)

r − k
(p)
r−1) · xℓ

(p)
r

)
.

Taking the K-th power gives

‖Hν
0 v(j)‖2K

2 =

N∑

ℓ
(1)
1 ,...,ℓ

(1)
ν+1=1

...
ℓ
(2K)
1 ,...,ℓ

(2K)
ν+1 =1

∑

k
(1)
0 ,...,k

(1)
ν ∈T

...
k
(2K)
0 ,...,k

(2K)
ν ∈T

k
(p)
r−1 6=k

(p)
r , (p,r)∈[2K]×[ν]

k
(2p−1)
0 =k

(2p)
0 , p=1,...,K

2K∏

p=1

ν+1∏

r=1

exp
(
i(−1)p(k(p)

r − k
(p)
r−1) · xℓ

(p)
r

)
,

(3.11)

where similarly as above we agree on setting k
(p)
ν+1 = j for p = 1, . . . , 2K. Note that since

j ∈ Γ \ T the condition k
(p)
r 6= k

(p)
r−1 holds also for r = ν + 1. For simpler notation we denote

by I(T,K, ν) the set of indices (k
(p)
r )p=1,...,2K

r=0,...,ν satisfying all the conditions specified under the

12



second summation symbol in the previous formula. Using linearity of expectation we obtain

E

[
‖Hν

0 v(j)‖2K
2

]
=

N∑

ℓ
(1)
1 ,...,ℓ

(1)
ν+1=1

...
ℓ
(2K)
1 ,...,ℓ

(2K)
ν+1 =1

∑

(k
(p)
r )∈I(K,ν)

E




2K∏

p=1

ν+1∏

r=1

exp
(
i(−1)p(k(p)

r − k
(p)
r−1) · xℓ

(p)
r

)

 .

(3.12)
Let us investigate the expectation appearing in the previous expression. We would like to
somehow use the stochastic independence of the random variables xℓ. However, we have to be

careful since some of the indices ℓ
(p)
r in the expectation in (3.12) might coincide. As in [23]

and [6] this is the point where set partitions enter the game. So before we continue with the
proof we introduce some notation and background on set partitions.

Let Q be a finite set. A partition of Q is a set of subsets of Q called blocks such that each
element of Q is contained in precisely one of the blocks. By P (Q, t) we denote the set of all
partitions of Q into precisely t blocks such that each block contains at least 2 elements. It is
well known that the number of such partitions is given by the associated Stirling numbers of
the second kind (see also (2.4), (2.5)), i.e., |P (Q, t)| = S2(|Q|, t), see e.g. [24]. Observe that
P (Q, t) is empty if t ≥ |Q|/2. Here, we will encounter partitions of sets of the form

[K] × [ν] := {(a, b), a ∈ {1, . . . ,K}, b ∈ {1, . . . , ν}} .

where |[K] × [ν]| = Kν and |P ([K] × [ν], t)| = S2(Kν, t).

Now given a vector (ℓ
(p)
r )p=1,...,2K

r=1,...,ν+1 ∈ {1, . . . , N}2K(ν+1) we associate a partition A of [2K]×
[ν + 1] such that ℓ

(p)
r = ℓ

(p′)
r′ if and only if (p, r) and (p′, r′) are contained in the same block of

the partition. This allows us to unambiguously write ℓA = ℓ
(p)
r if (p, r) ∈ A ∈ A. Clearly, A

cannot have more than N blocks since the ℓ
(p)
r may take at most N different values. Since by

construction of A all the ℓA, A ∈ A, are different from each other, we are allowed to use the
stochastic independence of the xℓ to write the expectation appearing in the sum of the right
hand side of (3.12) as

E




2K∏

p=1

ν+1∏

r=1

exp(i(−1)p(k(p)
r − k

(p)
r−1) · xℓ

(p)
r

)




=
∏

A∈A

E


exp


i

∑

(p,r)∈A

(−1)p(k(p)
r − k

(p)
r−1) · xℓA




 . (3.13)

Now we have to make a small distinction between the continuous and the discrete probability
model for the random variables xℓ.

1. In case the xℓ have the uniform distribution on [0, 2π]d we obtain

E


exp


i

∑

(p,r)∈A

(−1)p(k(p)
r − k

(p)
r−1) · xℓA






=
1

(2π)d

∫

[0,2π]d
exp


i

∑

(p,r)∈A

(−1)p(k(p)
r − k

(p)
r−1) · x


 dx = δ



∑

(p,r)∈A

(−1)p(k(p)
r − k

(p)
r−1)


 ,
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where δ denotes the Kronecker-Delta.

2. In case of the uniform distribution on 2π
m Z

d
m we get

E


exp


i

∑

(p,r)∈A

(−1)p(k(p)
r − k

(p)
r−1) · xℓA






=
1

md

∑

u∈Z
d
m

exp


i

∑

(p,r)∈A

(−1)p(k(p)
r − k

(p)
r−1) ·

2πu

m




= δ



∑

(p,r)∈A

(−1)p(k(p)
r − k

(p)
r−1) mod m


 .

Thus, the only difference to the continuous model is the calculation modulo m in the last
expression.

We conclude that the expectation in (3.13) contributes to the sum in (3.12) if and only if

∑

(p,r)∈A

(−1)p(k(p)
r − k

(p)
r−1) = 0 for all A ∈ A, (3.14)

where these sums have to be evaluated modulo m in case of the discrete probability model.

Since we require that k
(p)
r 6= k

(p)
r−1 for all r = 1, . . . , ν + 1 and p = 1, . . . , 2K, see (3.11), the

above condition cannot be satisfied if A has a block A containing only one element. Thus,
we only need to consider partitions having at least 2 elements in each block, i.e., the ones

in P ([2K] × [ν + 1], t). We denote by B(A, T ) the number of vectors (k
(p)
r ) in I(T,K, ν)

satisfying (3.14). Also observe that if A has t blocks then the number of vectors of indices
(ℓA)A∈A ∈ {1, . . . , N}t such that all ℓA are different is N(N − 1) · · · (N − t + 1) = N !

(N−t)! .
Pasting all these pieces together yields

E

[
‖Hν

0 v(j)‖2K
2

]
=

min{K(ν+1),N}∑

t=1

N !

(N − t)!

∑

A∈P ([2K]×[ν+1],t)

B(A, T ).

Let us estimate B(A, T ). Recall that we required k
(2p−1)
0 = k

(2p)
0 , p = 1, . . . ,K for a vector

(k
(p)
r )p=1,...,2K

r=0,...,ν ∈ I(K, ν), see (3.11). Hence, it may be identified with a vector in T 2K(ν+1)−K .

If A has t blocks then (k
(p)
r ) is restricted to the t independent (!) linear conditions given in

(3.14). It follows that the number of vectors in I(T,K, ν) satisfying (3.14) can be bounded by
|T |2Kν+K−t – whether we calculate modulo m or not. Recalling that |P ([2K] × [ν + 1], t)| =
S2(2K(ν + 1), t) we finally obtain

E

[
‖Hν

0 v(j)‖2K
2

]
≤

min{K(ν+1),N}∑

t=1

N !

(N − t)!
S2(2K(ν + 1), t) |T |2Kν+K−t

≤ |T |2Kν+K

K(ν+1)∑

t=1

S2(2K(ν + 1), t)

(
N

|T |

)t

= |T |2Kν+KF2K(ν+1)

(
N

|T |

)
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with Fn as defined in (2.4).

Let θ = N/|T | = N/M . Using the previous lemma and (3.10) we conclude that

P

(
n−1∑

ν=0

N−ν−1‖Hν
0 v(j)‖2 ≥ a

)
≤ β−2n

n−1∑

ν=0

|T |2(ν+1)Kν+1N−2(ν+1)Kν+1F2(ν+1)Kν+1

(
N

|T |

)

= β−2n
n∑

ν=1

G2νKν (θ).

Finally, together with (3.8) and (3.9) we obtain

P

(
FTX not injective or max

j∈Γ\T
‖F†

TXφj‖1 ≥ 1

)
≤ κ−2MG2n(θ) + (D−M)β−2n

n∑

ν=1

G2νKν (θ).

Recall that we imposed the conditions κ < 1 and
∑n

ν=1 βn/Kν ≤ (1 +
√

M κ
1−κ)−1. Thus, by

Lemma 3.1 we completed the proof of Theorem 2.1.

3.2 Proof of Corollary 2.2

The proof is similar to the one of Corollary 2.2 in [23]. Of course, the main issue is a good
choice of the parameters n,K1, . . . ,Kn, κ, β in Theorem 2.1. Dependent on θ = N/M , large
enough, we let

n = n(θ) :=

⌊
β3θ

8

⌋
≥ 1. (3.15)

Choose Kν , ν = 1, . . . , n, to be the nearest integer to n/ν. It was proven in [23, Section 3.5]
that in this case

(D − M)β−2n
n∑

ν=1

G2νKν (θ) ≤ 1/4(D − M)θ2−2n/3

and the right hand side is less than ǫ/2 provided

2 ln(2)

3
n − ln(θ) ≥ ln(D − M) + ln(ǫ−1) − ln(2). (3.16)

Further, let us choose κ such that

κ

1 − κ
=

1

24
M−1/2.

Then condition (2.7) requires that

n∑

ν=1

βn/Kν ≤
(

1 +
√

M
κ

1 − κ

)−1

=
24

25
= 0.96.

A simple numerical test shows that the choice β = 0.47 is valid for all n ∈ N and (3.15) yields
n = n(θ) ≈ ⌊0.013 θ⌋. Recalling that θ = N/M it follows from (3.16) that there exists a
constant C1 such that (D − M)β−2n

∑n
ν=1 G2νKν (θ) ≤ ǫ/2 provided

N ≥ C1M ln(D/ǫ).
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Further, it was shown in [23] that G2n(θ) ≤ (3n/θ)n−1 if (3.15) holds. Since M ≥ 1 our choice
of κ implies κ ≥ 1

25M−1/2. Thus, we have

Mκ−2G2n(θ) ≤ 252M2

(
3β3

8

)n−1

.

This term is less than ǫ/2 if

(n − 1) ln

(
8

3β3

)
≥ ln(2 · 252) + 2 ln(M) + ln(ǫ−1).

The valid choice β = 0.47 yields ln(8/(3β3)) ≈ 3.2459. We conclude that there exists a constant
C2 such that Mκ−2G2n(θ) ≤ ǫ/2 if

N ≥ C2M ln(M/ǫ).

Choosing C := max{C1, C2} and using that M ≤ D concludes the proof of Corollary 2.2.

3.3 Proof of Corollary 2.3

We denote by success(X1) the event that reconstruction is successful with the model that
the sampling points x1, . . . , xN – collected in X1 = {x1, . . . , xN} – are chosen independently
from the uniform distribution on 2π

m Z
d
m, and by success(X2) the corresponding event when the

sampling set X2 is chosen uniformly at random from all subsets of 2π
m Z

d
m of size N . It holds

P(success(X2)) = P(success(X1)| |X1| = N).

Also observe that the probability of success certainly decreases if the sampling set X1 contains
less sampling points than N since then we have less information about f that could be used
for the reconstruction. A basic property of conditional probabilities yields

P(success(X1)) =
N∑

k=1

P(success(X1)| |X1| = k) P(|X1| = k)

≤
N∑

k=1

P(success(X1)| |X1| = N) P(|X1| = k)

= P(success(X1)| |X1| = N) = P(success(X2)).

Thus, the probability of reconstruction when choosing the sampling set X2 uniformly at random
among all subsets of size N is larger than the probability of success(X1) estimated in Theorem
2.1 and Corollary 2.3.

3.4 Proof of Theorem 2.5

The proof relies on estimating E[|〈φj , φk〉|2n] for j 6= k. In (3.2) we already computed

〈φj , φk〉 =
N∑

ℓ=1

ei(j−k)·xℓ =: σj−k. (3.17)
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Setting k′ = j − k 6= 0 we get

|σk′ |2n = |〈φj , φk〉|2n =
N∑

ℓ1,...,ℓ2n=1

2n∏

r=1

ei(−1)rk′·xℓr

Using linearity of expectation we obtain

E
[
|σk′ |2n

]
=

N∑

ℓ1,...,ℓ2n=1

E

[
2n∏

r=1

ei(−1)rk′·xℓr

]
. (3.18)

Similarly as in the proof of Theorem 2.1 we associate a partition A of {1, . . . , 2n} to a given
vector (ℓr)r=1,...,2n ∈ {1, . . . , N}2n of indices such that r, r′ ∈ A ∈ A if and only if ℓr = ℓr′ .
Then we may unambiguously write ℓA instead of ℓr. Using the independence of the random
variables xℓA

we get

E

[
2n∏

r=1

ei(−1)rk′·xℓr

]
=
∏

A∈A

E

[
exp

(
ik′ · (

∑

r∈A

(−1)rxℓr
)

)]
=
∏

A∈A

δ

(
∑

r∈A

(−1)r

)
. (3.19)

The expectation in the second term is computed similarly as in the proof of Theorem 2.1 using
that k′ = j − k 6= 0. If the xℓ have the uniform distribution on 2π

m Z
p
m then the sum in the last

term initially has to be calculated modulo m. However, since A has at most n even and n odd
elements calculating modulo m can be suppressed due to the assumption n < m.

Thus, the term in (3.19) contributes to the sum in (3.18) if and only if all blocks A of the
partition A contain the same number of even and odd numbers. Let us denote the set of all
such partitions of {1, . . . , 2n} with t blocks by R(n, t). Clearly, R(n, t) is empty if t > n since
then there would be a block with only 1 element. Also observe that the number of vectors
of indices (ℓA)A∈A ∈ {1, . . . , N}t, A ∈ A ∈ R(n, t), with pairwise different entries is precisely
N !/(N − t)!. We obtain

E[|σk′ |2n] =

min{n,N}∑

t=1

∑

A∈R(n,t)

N !

(N − t)!
≤

n∑

t=1

|R(n, t)|N t. (3.20)

Let us determine the number |R(n, t)| of partitions in R(n, t) by developing a recursion formula.
To this end consider the partitions of {1, . . . , 2n + 2} in R(n + 1, t) and let A be the block
containing the element 2n + 2. The overall number of elements in A may be 2s for s ranging
between 1 and n + 1 − (t − 1) = n − t + 2 (each of the other (t − 1) blocks must contain at
least 2 elements, so necessarily 2s + 2(t− 1) ≤ 2(n + 1)). For each s we may choose s− 1 even
numbers out of {2, 4, . . . , 2n} (in addition to 2n+2) and s odd numbers from {1, 3, . . . , 2n+1}
to be contained in A. Then the remaining numbers {1, . . . , 2n + 2} \ A are partitioned into
t− 1 sets. The set of these remaining partitions is isomorphic to R(n + 1− s, t− 1). Thus, the
overall numbers of partitions in R(n + 1, t) is given by

|R(n + 1, t)| =
n−t+2∑

s=1

(
n

s − 1

)(
n + 1

s

)
|R(n + 1 − s, t − 1)|

=

n∑

ℓ=t−1

(
n
ℓ

)(
n + 1

ℓ

)
|R(ℓ, t − 1)|. (3.21)
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In the second equality we used the substitution ℓ = n+1−s and the fact that

(
n

n − ℓ

)
=

(
n
ℓ

)
.

By [29, formula (23)] the recursion formula (3.21) is the same as the one for the Stirling
type numbers S1(n, k) defined by the generating function in (2.10). Further, R(n, 1) contains
only the trivial partition consisting of one block containing all the elements, i.e., |R(n, 1)| = 1.
By differentiating (2.10) with respect to x and setting x = 0 we see that also S1(n, 1) = 1 for all
n. This implies that |R(n, k)| = S1(n, k). (This is the announced combinatorial interpretation
of the numbers S1(n, k) that seemingly has not yet been observed.) Altogether we obtain

E
[
|〈φj , φk〉|2n

]
≤

n∑

t=1

S1(n, t)N t.

Using the union bound and Markov’s inequality we further conclude for the coherence
parameter µ defined in (2.9) that

P((2M − 1)µ ≥ 1) = P((2M − 1)N−1 max
j 6=k

|〈φj , φk〉| ≥ 1) = P((2M − 1)N−1 max
k′∈Γ′

|σk′ | ≥ 1)

≤
∑

k′∈Γ′

P(|σk′ |2n ≥ (N/(2M − 1))2n) ≤
∑

k′∈Γ′

E[|σk′ |2n]

(
2M − 1

N

)2n

≤ D′

(
2M − 1

N

)2n n∑

t=1

S1(n, k)Nk.

This concludes the proof of Theorem 2.5.

4 Implementation and Numerical Experiments

Algorithm 1 contains two costly computations. Step 4 multiplies the adjoint measurement
matrix F∗

X with the current residual vector rs. When drawing the sampling set from the
lattice 2π

m Z
d
m or from the interval [0, 2π]d, we use a zero padded fast Fourier transform (FFT)

or the nonequispaced FFT, cf. [22, 17], respectively. In both cases, the total costs of this
step in one iteration is O(D log D). Note furthermore, that if the maximum in step 4 occurs
at several indices the algorithm chooses one of them. Step 5 solves in each iteration a least
squares problem

‖FTsXds − f‖2
ds→ min .

A straightforward implementation yields costs O(MN2) per iteration. Speed up for this com-
putation is obtained by the QR factorization of FTsX obtained from the factorization of FTs−1X ,
cf. [3, pp. 132], or by the use of the iterative algorithm LSQR, cf. [21], reducing the costs
for solving one least squares problem to O(N2) or O(MN), respectively. The latter asser-
tion is due to a uniformly bounded condition number of FTsX and thus, a constant number
of iterations within LSQR. (We will report on theoretical results concerning the boundedness
of the condition numbers of FTX in a subsequent contribution.) Clearly, if OMP succeeds,
the algorithm takes M outer iterations. Two reasonable choices for stopping criteria are a
maximum number of iterations (assuming an upper bound on the sparsity M is known) or a
residual tolerance ε (or a combination of both). In any case the algorithm will do no more
than N iterations. Assuming M outer iterations, a reasonable sparsity M = O(

√
D), and
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N = O(M log D) sampling points, see also Corollary 2.2, Algorithm 1 (using LSQR) has a
total cost of O(D1.5 log D) arithmetic operations.

For the reader’s convenience, we also provide an efficient and reliable implementation of
the presented algorithm for the univariate case in MatLabTM. Following the common ac-
cepted concept of reproducible research, all numerical experiments are included in our pub-
licly available toolbox [18]. The toolbox comes with a simple version of the nonequispaced
fast Fourier transform (NFFT). All numerical results were obtained on a Intel Pentium M
with 1.60GHz, 512MByte RAM running OpenSUSE Linux kernel 2.6.13-15-default and Mat-
Lab7.1.0.183 (R14) Service Pack 3.

All examples testing the Basis Pursuit principle use the optimization tools of CVX [15],
L1MAGIC [25], or MOSEK [20], respectively. If the vector of Fourier coefficients is assumed to
be real valued, the ℓ1-minimization problem is reformulated as a linear program, whereas for
complex valued coefficients the corresponding second order cone problem is set up. While CVX
and MOSEK handle both problems, the constraints have to be stored explicitly taking O(DN)
bytes of memory and causing the drawback of not being able to use fast matrix multiplication
algorithms like FFT or NFFT. On the other hand, L1MAGIC includes the use of function
handles to avoid this memory bottleneck and reduces the computation time from O(DN)
to O(D log D) when multiplying with the matrix FX . Unfortunately, the solver for equality
constraint ℓ1-minimization of this package supports only the reformulation as linear program,
i.e., real valued Fourier coefficients.

Subsequently, we compare our implementation of Algorithm 1 with different Basis Pursuit
implementations for the univariate case. We use (pseudo-)random Fourier coefficients, where
the real as well as the imaginary part is drawn from a normal distribution with mean zero
and standard deviation one. The support T ⊂ Γ of the Fourier coefficients is chosen uniformly
at random from all the subsets of Γ of size M . The sampling points xj are drawn uniformly
from the interval [0, 2π] for the continuous probability model, denoted by NFFT subsequently.
Within the discrete probability model a subset of size N is chosen uniformly from all subsets
of {0, 2π

D , . . . , 2π(D−1)
D } with size N , denoted by FFT.

Example 4.1. In our first example, we compare the ability of OMP and BP to reconstruct
sparse trigonometric polynomials with complex valued coefficients on the set Γ = {−25, . . . , 24}
of possible indices, i.e., the dimension of ΠΓ is D = 50. We draw a set T of size M ∈
{1, 2, . . . , 40} and M complex valued Fourier coefficients. Furthermore, we choose N = 40
sampling points within the discrete and within the continuous probability model. The samples
(xj , f(xj)), j = 1, . . . , N, of the corresponding trigonometric polynomial and the set Γ are
the input for the OMP and the BP algorithm. The OMP algorithm uses the updated QR
factorization to solve the sequence of least squares problems, whereas the BP algorithm uses
the MOSEK-package [20] to solve the second order cone problem. The output dk ∈ C, k ∈ Γ,
of these algorithms is compared to the original vector of Fourier coefficients. Repeating the
experiment 100 times for each level of sparsity M , we count how often each algorithm is able to
reconstruct the given coefficients. Furthermore, the average CPU-time used by each algorithm
with respect to the number of non-zero coefficients M is shown. The same experiment is done
for the set Γ = {−50, . . . , 49}.

As readily can be seen from Figure 3, both OMP algorithms are faster than their BP coun-
terparts. For the number of samples N = 40 close to the dimension D = 50, the FFT-based
OMP performs best, but both BP algorithms are able to reconstruct for sparsity levels when the
NFFT-based OMP already fails. This effect is not present anymore and both OMP schemes
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perform at least as good as BP, if the dimension D is chosen larger.
Also observe that the success rates are much better than the theoretical estimates provided

in Theorem 2.1, see also Figure 2.
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(a) Success rate, D = 50.
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(c) Success rate, D = 100.
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(d) Computation time D = 100.

Figure 3: Success rate of OMP, with FFT (solid) and NFFT (dash-dot), and BP, with FFT
(dashed) and NFFT (dotted) with respect to an increasing number M of non-zero Fourier
coefficients and a fixed number of samples N = 40 and dimension D of ΠΓ. Furthermore, we
show the average computation time in seconds for each set of tested parameter.

Example 4.2. We consider the Basis Pursuit principle exclusively. As in the previous ex-
ample, the set of possible Fourier coefficients is Γ = {−25, . . . , 24}, whereas we use only
N = 20 sampling points and choose real-valued or complex-valued Fourier coefficients, re-
spectively. Again, we repeat the experiment 100 times for each level of sparsity, the results in
Figure 4 reveal the following. Besides the easier implementation and a speed up of around two,
the additional assumption, i.e., real valued coefficients, indeed saves roughly half of the needed
samples to recover a sparse trigonometric polynomial.

Example 4.3. The last example that focuses on the success of reconstruction verifies Corollary
2.2 for OMP, i.e., the relation N ∼ M log(D

ǫ ), in the following way. For a fixed set Γ =
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Figure 4: Basis pursuit from N = 20 samples, dimension D = 50. Success rate for complex-
valued coefficients, with FFT (solid) and NFFT (dash-dot), and real-valued coefficients, with
FFT (dashed) and NFFT (dotted) with respect to an increasing number M of non-zero coef-
ficients. The chart on the right hand side shows again the average computation time.

{−29, . . . , 29 − 1} of possible indices (D = 1024), we draw a support set T of increasing sizes
M = 1, . . . , 40, complex-valued Fourier coefficients, and sampling sets of size N = 2.5M ,
N = 3M , and N = 3.5M within the continuous probability model, respectively. For 200 runs
of each experiment, we count the number of perfect reconstructions after exactly M steps. As
Figure 5 (left) reveals, the success rate stays (almost) constant or might even increase slightly
for an increasing number of non-vanishing coefficients if the ratio θ = N/M remains constant.

In the second part of this example, we are concerned with the dependence of this ratio
θ = N/M to reach a certain success rate when the dimension D varies. For an increasing
number D = 26, 27, . . . , 214 of possible coefficients, we draw sets T of sizes M = 4, 8, 16, 32 and
test for the smallest number N of (continuously drawn) samples, such that at least 90% (180
out of 200) of the runs result in a perfect recovery of the given Fourier coefficients. Figure 5
(right) confirms the relation θ = C log2(D) to reach a fixed success rate, whereas the constant
C ≤ 2

3 even decreases mildly for a larger number M of non-zero coefficients.

Example 4.4. This example considers the computation time needed by each algorithm for an
increasing dimension D, a dependent sparsity level M = O(

√
D), and a number of samples

N = O(M log D). Constants are adjusted such that the used algorithms succeed in most cases
in the reconstruction task; all methods, except L1MAGIC, are tested with complex coefficients.

For the small scale experiment, we choose a dimension D = 23, 24, . . . , 29, a sparsity level
M = ⌊1

2

√
D⌋, and a number of continuously drawn samples N = M(log2(D)− 2). We use the

OMP algorithm with the updated QR factorization and BP algorithms based on CVX, MOSEK,
and L1MAGIC. The average computation time of 10 runs is shown in Figure 6 (left).

Furthermore, we test for a dimension D = 27, 28, . . . , 217, a sparsity level M = ⌊1
8

√
D⌋,

and a number of discrete drawn samples N = 2M log2 D the following algorithms:

1. OMP with LSQR and explicitly stored matrices FTsX ,

2. OMP with LSQR and FFT-based multiplications with FTsX and its adjoint,
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Figure 5: Numerical verification of Corollary 2.2 for OMP. Left: Rate of successful reconstruc-
tion with respect to number M of non-zero Fourier coefficients (D = 210) for three ’oversam-
pling factors’ θ = 2.5 (solid), θ = 3 (dashed), and θ = 3.5 (dash-dot). Right: Ratio θ = N/M ,
necessary to reach a success rate of 90 percent, with respect to the dimension D and fixed
numbers of non-vanishing coefficients M = 4 (solid), M = 8 (dashed), M = 16 (dash-dot),
and M = 32 (dotted).

3. BP using L1MAGIC and an explicitly stored matrix FX for D ≤ 212, and

4. BP using L1MAGIC and FFT-based multiplications with FX and its adjoint.

The FFT-based multiplications, denoted by implicit in Figure 6, need no additional memory,
whereas storing the matrices explicitly needs O(D log D) bytes for OMP and O(D1.5 log D) bytes
for BP.

Both OMP algorithms show a O(D1.5 log D) time complexity, whereas the scheme with
explicit storage of FTsX is a constant multiple faster. The Basis Pursuit algorithms are con-
siderably slower in all cases. Moreover, the storage of the whole measurement matrix FX results
in large memory requirements.

5 Conclusions and future work

Our theoretical and numerical results show that both BP and OMP are well-suited for the
problem of recovering sparse trigonometric polynomials from few random samples taken either
on a grid (FFT) or from a continuous uniform distribution on the cube (NFFT). In practice
however, OMP outperforms BP. Indeed, OMP is not only significantly faster and much easier
to implement than BP, the numerical experiments show even a slightly higher rate of success
of reconstruction. At first sight the latter observation might be surprising since OMP is a
greedy algorithm which optimizes only locally at each step while BP is a global optimization
scheme. It might be interesting (but also difficult) to find a mathematical explanation for this
phenomenon.

We remark that both OMP and BP can be used to identify dominant frequencies from
few samples – even if these frequencies are very high or if two (high) neighboring frequencies
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Figure 6: Computation time in seconds. Left: OMP with updated QR factorization (solid),
BP using MOSEK (dashed), BP using CVX (dash-dot), BP using L1MAGIC(explicit) (dot-
ted). Right: OMP with explicit LSQR (solid), OMP with implicit LSQR (dashed), BP using
explicit L1MAGIC (dash-dot), BP using implicit L1MAGIC (dotted), and for comparison
O(D1.5 log D) (solid+diamond).

are present. Numerical tests showed for instance that the FFT based OMP can recover a
signal consisting of 10 frequencies in {−218, . . . , 218 − 1} – with k1 = 218 − 1 = 262143,
k2 = 218 − 2 = 262142 being two of them – from 60 random samples.

In practice, signals are usually not sparse in a strict sense. However, they might still be
well-approximated by sparse ones. For the case of BP in connection with FFT, Candes and Tao
could prove in [7] that recovery is still possible with only small errors. Indeed, this is implied
by the so called Uniform Uncertainty Principle for the Fourier Basis, see also the notion of
restricted isometry constants in [8]. We plan to investigate such stability issues also for OMP,
and for the NFFT case.

Further, stability under noise is important in practice. For BP in connection with the FFT
this has been establish already by Candes, Romberg and Tao in [8]. For OMP we performed first
numerical experiments in the following way. We corrupted the sample values with a significant
amount of normal distributed noise. We observed that OMP usually finds the correct support
set and makes only small errors on the coefficients, see Figure 7. Thus, it seems that also OMP
is stable under noise – at least if the noise level is not very high. (Actually, we observed that
for moderately higher noise as in our example in Figure 7, the reconstructed coefficient vector
is significantly different from the original). We plan to address such issues more deeply in a
future contribution.
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Figure 7: Trigonometric polynomial (real part) as in Figure 1 and 30 samples (◦). The samples
are disturbed by Gaussian distributed noise with variance 0.2 (×) (resulting here in a PSNR of
15.6dB). Nevertheless OMP reconstructs the true support set of the coefficients, and the true
coefficients (◦) themselves with small error (×).
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[1] R.F. Bass, K. Gröchenig, Random Sampling of Multivariate Trigonometric Polynomials,
SIAM J. Math. Anal. 36(3), 773–795, 2004.
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