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Abstract: The aim of this paper is to investigate an approach dealing with
the construction of gap functions for the vector variational inequality with
regard to conjugate duality in vector optimization. In order to introduce new
gap functions for the vector variational inequality, we consider some special
perturbation functions. To verify the properties of a gap function, duality
results are used.
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1 Introduction

The conjugate duality for vector optimization problems has been investigated by
many authors. Especially, in [17] (see also [15]) Tanino and Sawaragi developed the
conjugate duality by introducing new concepts of conjugate maps and set-valued
subgradients based on Pareto efficiency. Furthermore, by using the concept of supre-
mum of a set (cf. [18]) on the basis of weak orderings, the conjugate duality theory
has been extended to a partially ordered topological vector space (see [19]) and to
set-valued vector optimization problems (see [16]), respecively.

In the case of scalar optimization the construction of a gap function for varia-
tional inequalities has been associated to Lagrange duality (see [8]). By applying
the duality results for scalar optimization problems introduced in [21], different gap
functions for variational inequalities have been proposed (see [2]).

Since the vector variational inequality in a finite-dimensional space was intro-
duced first in [7], several papers concerning the relations between vector optimization
and vector variational inequalities have been published (see for instance, [9], [13] and
14)).

In this paper we consider the extension of the approach dealing with the construc-
tion of gap functions from variational inequalities to the vector variational inequality
by using the conjugate duality in vector optimization.
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This paper is organized as follows. In Section 2 we recall the definition of the
maximum of a set in a finite-dimensional Euclidean space and some of its proper-
ties. Also, the concepts of conjugate maps, set-valued subgradients and the duality
results in vector optimization are discussed. Section 3 is devoted to the presentation
of perturbation functions associated to the conjugate duality in vector optimization.
Similar functions have been considered in [21] for the scalar case. They allow us
to propose different dual vector optimization problems having set-valued objective
maps. In addition, duality assertions for these problems are obtained. Consider-
ing the conjugate maps with vector variables in Section 4 we discuss further dual
problems with vector variables. These can be seen as special cases of the results in
Section 3. Finally, the dual problems introduced in Section 3 and in Section 4 allow
us to define some new gap functions for the vector variational inequality. In order
to prove the properties in the definition of a gap function, the duality assertions
discussed in Section 3 and in Section 4 are used.

2 Mathematical preliminaries

Let C be a pointed closed and convex cone in R™. For any &, 4 € R", we use the
following ordering relations:

égu & p—EeC;

< p e p—EeC\{0}
c\{0}
£ £ p e p-EgC\{0}
o\(o}

The notions >, > and % are used in an alternative way.
¢ C\{0} c\{0}

Definition 2.1 A point y € R” is said to be a mazimal point of a set Y C R™ if

y €Y and thereis noy €Y such thaty < y'.
C\{0}
The set of all maximal points of Y is called the maximum of Y and is denoted
by max Y. The minimum of Y is defined analogously. Further we take the cone C

c\{o}
being the nonnegative orthant

]R’_:_ = {:1: = (14, ...,xn)T eER z; >0, i= m}

Lemma 2.1 [15, ¢f. Proposition 3.1.8] Let Y1,Y, C R"™. Then

1) max (Y] +Y3) C max Y] + max Y5;
(v) Ri\{O}( L+ Y2) O R VO

72) min (Y; +Y5) C min Y; + min Y5.
(i) R:t\m}( ' 2)—Ri\{0} P rm\op 2

Definition 2.2 [10, ¢f. Definition 8.2.2]
(i) LetY C R™ be a given set. The set R{ln\i{r(l)}Y is said to be externally stable if
+

Y C min Y +R%.
R7\{0}



(ii) Similarly, the set RIP%} Y is said to be externally stable if
+

Y C max Y —R".
R7\{0}

Lemma 2.2 [15, Lemma 6.1.1] Let Fy : R® 3 RP and F5 : R™ =3 RP be set-valued
maps and X CR™. Then

max [F:c—{—Fx]gmax [Fm-f—maxe].
RI\(0) () + Fale) R2\(0} = o) + g o)

If rgg{x} Fy(z) is externally stable for every x € X, then the converse inclusion also
R5\{0
holds.

Corollary 2.1 [15, Corollary 6.1.3] Let F' : R® =3 RP be a set-valued map and

X CR™ If r}p@x} F(x) is externally stable for every x € X, then
RE\{0

max F(z) = max max F(z).
R0} 5, RE\(0)} 5 ®%\{0}

Before describing the conjugate duality for vector optimization, let us recall the
concepts of conjugate maps and the set-valued subgradient.

Definition 2.3 [10, Definition 8.2.1]
Let h: R™ =3 RP be a set-valued map.

(i) The set-valued map h* : RP*" =3 RP defined by

h*(U) = Uz — h(z)|, U € RP*"
)= e U (U Olf

is called the conjugate map of h.

(11) The conjugate map of h*, h** is called the biconjugate map of h, i.e.

R™(z) = max Uz - h*(U)], z € R"

P
KO}y egpxn

(iii) U is said to be a subgradient of the set-valued map h at (Z;y) if § € h(Z) and

The set of all subgradients of h at (z;y) is denoted by Oh(z;y) and is called
the subdifferential of h at (z;y). If Oh(x;y) # &, Yy € h(z), then h is said to be
subdifferentiable at x.

When ¢ : R® — RP is a vector-valued function, then the conjugate map ¢* of
@ is defined by

*(T) = max {Tx-— x :BER"},TE]R”X”.
o'(0) = max {To— o)




Let f: R® — RP U {+o00} be an extended vector-valued function. Here +oo is the
imaginary point whose every component is +o0o0. We consider the following uncon-
strained vector optimization problem

(P min { f@)| z € ]R"}.

RE\{0}

In other words, (P,) is the problem of finding z € R™ such that

f@) £ f(@), VzeR™,
R?\{0}

Let & : R® x R™ — RP U {+00} be another vector-valued function such that
&(z,0) = f(z), Vz € R",

which is the so-called perturbation function. The value function is a set-valued map
U :R™ =3 RPU {+00} defined by

U(y) = min {®(z, ER"}.
) = guin {2@0)l 2

Clearly ¥(0) = min f(R") is the minimal frontier of the problem (P,). The problem

RE\{0}
(P,) can be stated as the primal optimization problem

Py in {®(z,0)| z € R"}.
Ry min {20z € R}

The conjugate map of ®, denoted by ®* : RP** x RP*™ =3 RPU{+00}, is a set-valued
map defined in the usual manner:

d (U,V)=R1§1&§}{U1+Vy—@(x,y)| zeR", yeR }

Then the conjugate dual optimization problem can be defined as being

(D) max [ — 3*(0, V)].

14
RINO} | cgoxm

Since —®* is a set-valued map, the problem (Du) is not an ordinary vector opti-
mization problem. In other words, it can be reformulated as follows.

Find V* € RP*™ guch that

~3*(0,V*) N max — 3%(0, V)] + 2.

REMO} |, moxm
Theorem 2.1 [15, Proposition 6.1.12] (Weak duality)
(I)(.T,O) ¢ _(I)*(07 V) - Rﬁ)—\{o}, Vz € Rn> VVeRP™

Definition 2.4 The primal problem (P,) is said to be stable with respect to the
perturbation function ® if the value function ¥ is subdifferentiable at y = 0.
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Theorem 2.2 [15, Theorem 6.1.1] (Strong duality)

(i) The primal problem (P,) is stable with respect to ® if and only if for each
solution z* to the primal problem (P,) there exists a solution V* to the dual
problem (D,) such that

®(z*,0) € —*(0, V). (2.1)

(ii) Conversely, if * € R™ and V* € RP*™ satisfy (2.1), then x* is a solution to
(P,) and V* is a solution to (D).

3 Conjugate duality for the constrained vector
optimization problem

In this section some special perturbation functions investigated for scalar optimiza-

tion in [21] are applied to the constrained vector optimization problem. As a con-

sequence, we obtain different dual problems having set-valued objective maps. In

analogy to the scalar case, let us call them the Lagrange, the Fenchel and the

Fenchel-Lagrange dual problem, respectively. Let f : R®* — RP, g : R® — R™ be

vector-valued functions and X C R". Consider the vector optimization problem
Vo)  min {s@)l=eG},

where
G= {xEXI g(z) < 0}.
R7?

Let us introduce now the following perturbation functions (cf. [4] and [21])

f(z), reX, g(z) <,
@, : R" x R™ - RPU {400}, P1(z,u) = R™

+
+00, otherwise;

flz+v), zeq,

. n n p —
02 : RYXRY = R7U {F00}, @y(a,0) = { +00, otherwise;
®3 : R" x R" x R™ — RP U {400},

{ fz+v), reX, g(z) <u,
O;3(z,v,u) = R

00, otherwise.

Then the corresponding value functions can be written as follows.

T, :R™" 3 RP, ¥;(u) = min {q)l(a:,u)|x€]R"}
RE\{0}
= min z)| z € X, xgu};
Jnin {7(@) 9@ £
Uy : R* 23 RP, Uy(v) = min {@g(x,v)l xER”}
RE\{0}
= min {fx+v :UEG},
o (z +v)|
U3 :R" x R® =3 RP, U3(v,u) = min {@3(z,v,u)| xGR”}
RE\{0}
= min rz+v)|re X, gz Su}.
Jmin {7 +0) 9@ £



(i5) If Vv € R™ the set Uy(v) is externally stable, then the problem (VO) is stable
with respect to ®,.

(ii1) IfV(v, u) € R"xR™ the set Ys(v,u) is externally stable and there exists T € X
such that —g(xo) € int R, then the problem (VO) is stable with respect to
Ps.

Later for the applications we have to consider the vector optimization problem
with linear objective function (cf. Section 5). Since the objective function is linear
and not strictly convex, we can not apply the above stability criteria. But the
following result deals with this case. Let A € RP*". Consider the vector optimization
problem

P in {A G;.
(Py4) Rgl\l{r(l)}{ x|z € }

Before giving a stability criterion for (P4) with respect to ®,, let us mention the
following trivial properties.

Remark 3.1 Let h : R® — RP be a vector-valued function and Z C R"™. The
following assertions are true:

(i) {hx)l z € 2} = U {h(z)}.

z€Z

(ii) For any t € RP it holds {h(z) + t| z € Z} = {h(z)| z € Z} + t.

(ili) For any set A C RP? it holds |J {A + h(x)} = A+ U {n(2)}.

z€Z z€Z
For the problem (P4) we can state the following assertion.

Proposition 3.2 Let the set gl\i{n}{A:L‘| z € G} be externally stable. Then the
RZ\{0

problem (Pp,) is stable with respect to ®,.

Proof: Let f(z) = Az, A € RP*", Then, in view of Remark 3.1, one has

—¥3(T) = min [ min {Ax + Av| z € G} — Tv]
RO} . LR2\(0)

= mm [Av —Tv+ mm {Ax] z € G}]
R0} 5,

= min ({(A~T)vlv € R"} + min {Az| z € G}|.

Juin [{(A= Tyl € R"} 5 Ri\{o}{ EXye

As the set E’n\i{n}{Aﬂ z € G} is externally stable, for T = A one has (cf. Corollary
RZ\{0

2.1)

—V3(A) = min min {Az| 2 € G} = min {Az|z € G
i(4) = min i (ds] 7 € G} = min {4s] 2 € G}

In other words, Vz € m\1{n}{Am| z € G}, it holds 2z € ~\Il§(A). This means that
R \{0

0V, (0; 2) # 2. O

Lagrange duality. In the remainder of this section we obtain different dual

problems associated to the mentioned perturbation functions. First we show how to

construct the dual problem to (VO) relative to the perturbation function ®;. Let
us prove now the following preliminary result.
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Proposition 3.3 Let A € RP*™. Then

(i) 21(0,4) = max {{Au| u € RT} + {Ag(x) — f(z)| eX}}.

(1) If the set rlp\a{x}{Aul u € R} is externally stable, then it holds
RP \{0 .

®3(0,A) = m&%}{ megg}{Aul u € RT}+ {Ag(z) — f(z)| z € X}}

Proof:

(i) Let A € RP*™. Taking into account Remark 3.1

%04 = o {Au _ &y (z,u)| T ERY, uE Rm}
= ax Au— f(z)| z € X, g(x < w
oo { = 1) 9(z) < uf
= max {Au— f(@)] g(z) < u}
RO 2 =

Setting @ := u — g(z), we have

o5(0,A) = {Ag(m) _ f(z)+Ag|ae RZ’:}

Iglax
0
Ri\{0} xeX

— max {Ag(x)— f(a:)+{Aa1aeth}}

Ri\{o} zeX

= s {{(hul w e R + {80(0) - Sl € X3}

(i) Follows from Lemma 2.2.

According to Proposition 3.3, we can propose the following dual problem to (VO)

(DY°)  max [ @1(0,8)]

P
RINO} , cgoxm

= max U min {{—Au|uE]RT}-{—{f(x)—Ag(zﬂxeX}}.

RN}, = B\ (0}

This dual problem may be considered as a kind of Lagrange-type dual problem. This
interpretation appears evident and natural in the context of the following derivation

of the classical Lagrange dual problem to (VO) (cf. [15]).

As applications of Theorem 2.1 and Theorem 2.2 we get weak and strong duality

results for (VO) and (DY°).
Proposition 3.4 (weak duality)

f@)+¢& £ 0, VzeG, V¢ € 21(0,A),
RE\{0}

where A € RP*™,



Proposition 3.5 (Strong duality)

(i) (VO) is stable with respect to @, if and only if for each solution z* to (VO)
there exists a solution A* to (DY©) such that

F(z*) € —01(0, AY). (3.1)

(1) Conversely, if z* € G and A* € RP*™ satisfy (3.1), then z* is a solution to
(VO) and A* is a solution to (DY°).

Under the external stability condition of the set m&x}{Aq| g € R7}, for the dual
R2\{0

problem with the objective map defined by Proposition 3.3(ii) we can obtain similar
results.

Before considering the next perturbation function, let us, as announced, explain
how the problem (DY©) turns out to be the classical Lagrange dual problem (cf.
[15]) under a certain restriction on the feasible set of the dual. To do this, we assume
that

Ael = {A RV Au > 0, Vu € RT} ~ {A € RP*™| AR™ C R{;}.
+

Then we conclude immediately that

min {Au| u € R} = {0}, VA € L. 3.2
Jmin (Al u € BT} = (0} (52)

Because of A € L, by using (3.2), from Lemma 2.1(i) follows

3:(0,—A) = max {{—Aul uw€R™} + {—Ag(z) — f(z)| z € X}}

RE\{0}
C Rréle{%}{—AM ueRT}+ RI{l&)&}{—Ag(m) — f(@)] z € X}
= — Rgl\i{l(l)}{Au' u€eRT}+ RIélé{}é}{—Ag(x) — f(z)| z € X}
= ng&g}{—/\g(w) — f(z)] z € X}.

Denoting by ®(A) := Rrgl\a{)é}{—Ag(x) — f(z)| x € X}, in this case we get the classical
+

Lagrange dual problem to (VO), as follows
DYy° max [ — ®(A
D) e U [-30)

= max min {Ag(z) + f(x)| x € X}.
o U i (40(0) + /)] € )

Proposition 3.6 [15, Theorem 5.2.4] (Weak duality)

fle)+€& £ 0, VzeG, Ve e d(A),
R? \{0}

where A € L.




Proposition 3.7 [10, Theorem 8.3.3] (see also [15, Theorem 5.2.5(i)])

Let x* € G, A* € L such that f(z*) € —®(A*). Then f(z*) is simultaneously a
mNim'mal point to the primal problem (VO) and a mazimal point to the dual problem
(D).

Fenchel duality. The following result deals with the dual objective map with
respect to the perturbation function ®,.

Proposition 3.8 Let T € RP*™. Then

(i) B50.T) = max {{Tv — f0)|veR} +{-Tz| z € G}}.

(i) If the set f*(T) = m\a{.x}{Tv — f(v)| v € R"} is externally stable, then it holds
RE\{0

®3(0,T) = m&%}{f +{—Tx|ac€G}}.

Proof:
(i) Let T € RP*". In view of Remark 3.1

®5(0,T) = m\a{‘x}{Tv—fbg(m ,0)| z € R*, v € R}
0
= me{,x}{Tv—f(:c—i-v)l z € G, veR"}
0
= m@x}U{TU— f(z +v)| veR"}.
0

Denoting v := x + v, one gets

®3(0,7) = m&x} U{T’U — f(v) = Tz| v € R*}
0

- s U {—Tx+{T17—f(’D)| 7 e]R”}}

= e {{Tv ~ f(v)| v € R"} +{-Tz| z € G} }.

(ii) By using Lemma 2.2, we obtain (4¢). O

As a consequence we state the following dual problem to (VO), which will be called
the Fenchel dual problem ‘

0F) g U [ 230,7)]
= max min {{f(v)—Tv| UGR"}+{T3:|a:€G}}.

LAV M ANC)

Again as consequences of the general theory we have weak and strong duality asser-
tions.
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Proposition 3.9 (weak duality)

fl@)+€&€ ¢ 0, VzeG, Veed®y(0,T)
B2\ (0}

where T' € RP*™.
Proposition 3.10 (Strong duality)

(i) (VO) is stable with respect to @, if and only if for each solution x* to (VO),
there exists a solution T* to (D%°) such that

f(z*) € —95(0,T™). (3.3)

(i) Conversely, if x* € G and T* € RP*™ satisfy (3.3), then x* is a solution to
(VO) and T* is a solution to (DY°).

As mentioned before, under the external stability of the set f*(T) = me{x}{Tv -
RP\{0

f(v)| v € R™}, for the dual problem with the objective map defined by Proposition

3.8(ii) we can also show similar dual assertions.

Fenchel-Lagrange duality. Now we consider the dual problem related to the
perturbation function ®j.

Proposition 3.11 Let A € RP*™ gnd T € RP*"*. Then

(i) @50, 7,A) = max { U {Au}+ U {Tv- 7@+ U {Ag() ~Tz}}.

REA{0} L yueRm veRn

(ii) If the sets Igl&x}{Aul u € R} and f*(T) are externally stable, then it holds
RZ\{0

®5(0,T,A) = nax { max U {Au} + fX(T U{Ag Tx}}

=0 L0 S et
Proof:
(i) Let T' € RP*™ and A € RP*™. By applying Remark 3.1
®3(0,T,A) = \{ }{Tv+Au—CI>3(m v,u)l z e R*, ve R ue Rm}
0
= max {Tv+Au—f(a:—+—v)| rze X, veR" g(x) < u}
R” \{0} R
= max U U{TU+AU—- (a:+v)|g() }
R0} zeX veR™ RY
Putting @ := u — g(z), one has
®35(0,7,4) = max | J |J{Tv+Ag(z) + A~ f(z +v)| @ e R}}
R+\{} zeX veR™
= Tv+ Ag(z) — f(z+v
Rp {0} gvg"{ ( )

+ {Au|ae R’}:}}

= max {A z) + {Au| v e R
Ri\{o}zex 9() { I +}

+ {Tv—fz+v)|ve R”}}.

11



Setting ¥ := x 4+ v, we obtain that

BOTA) = mox U {Ag(:c) + {Au| u € R}

+ {To-To - f(5)| 7€ R"}}

= max Ag(z) — Tz + {Au| u € R?
Ri\w}zex{ 9(a) {Au] u e RT}

+ {Tv- f(v)|ve R”}}

= max ${Au|lueR”
Rﬂ\{o}{{ | u € RT}

+ {Tv—f(v)|veR"} +{Ag(z) —Tz|z € X}}

(i) By Lemma 2.2, we can easy verify (ii). O

Consequently, we can formulate the following so-called Fenchel-Lagrange dual prob-
lem to (VO)

O me U [-w0TW)]
+ (T,A)€RPX1 x RPX™

= max U min {{f(v) —Tv| v e R"}

R0 (T,A)€RPXn x RPX™ RL M0}

+ {~Aul u € R™} + {Tz — Ag(z)| z € X}}.
Proposition 3.12 (weak duality)

fx)+& £ 0, VzeX, VEedi0,T,A),
R%\{0}

where T € RP*™ and A € RP*™,
Proposition 3.13 (Strong duality)

(i) (VO) is stable with respect to @3 if and only if for each solution z* to (VO)
there exists a solution (T*,A*) to (D%9) such that

F(z*) € —@3(0, T*, A%). (3.4)

(11) Conversely, if z* € X and (T*,A*) € RP*™ x RP*™ satisfy (3.4), then =* is a
solution to (VO) and (T*, A*) is a solution to (D}9).

Similarly as for (IND‘L/O), under the same restriction on A, we can introduce another
dual problem. Indeed, let us suppose that A € L. Then, according to Lemma 2.1(i)

12



and (3.2), it holds

O5(0,T,—A) = RP\{O}{ U{ Au}—i—vgn{Tv— )}
+ Q{{ng(x) - Tz}}
= ;Z\{O} gm{ Au}
- Ri\{o}{ gn{:rv— f@)} + g({—Ag(x)-Tx}} ‘
= Rrél\a{g}{vgn{%—f(v)}+zg({—1\g(m)—Tw}}-
Let us denote by ¥(T, A) := s { U {Tv—f@}+ U {-Agl@) - Ta:}}. If the i

set f*(T) is externally stable, then U(T, A) can be rewritten as

(T, A) = Rrgl\f?g} {f*(T) + U {=Ag(z) — Tac}}

The proposed map allows us to suggest the following dual problem

DYo max [—E!T,A]
O g U [-EEN

= max | J  min { |J{f@) - To}+ J{Tz+Ag(x)} .
Ri\O} (T,A)GRPXHXLRi\{O} { vER™ zeX }

Proposition 3.14 (weak duality)

fl@)+€ £ 0, Vzeq, VEe U(T,A),
R% \{0}

where T € RP*™ and A € L.
Proof: Let (T,A) € R x L be fixed and £ € ¥(T, A). In other words

£ £ Tv— f(v) +(—Ag(z) —Tz), Vv € R", Vz € X.
RE\{0} '

Choosing v = x := T € G, we obtain that

f@+¢ £ —Ag(@).
RZ\{0}

On the other hand, since A € L, Z € G it follows that —Ag(Z) > 0. Consequently,
LA
one has f(z)+¢ £ 0. O
RE\{0}

Proposition 3.15 Let z* € G, (T*,A*) € RP*™ x L such that f(z*) € —U(T*, A*).
Then f(x*) is simultaneously a minimal point to the primal problem (VO) and a
maximal point to the dual problem (D}9).

13



Proof: Let z* € G, (T*,A*) € RP*" x L and f(z*) € —¥(T*, A*). The latter means
f(z*) € rmn { U {f(v) —T*v} + U {T*z + A*g(:c)}} (3.5)
REMO} ) cRn zeX

If f(z*) is not a minimal point to the primal problem (VO), then there exists z € G
such that
fl) < fla*).

RZ\{0}
As mentioned before, since A* € L, ¢ € G it holds A*g(z) < 0. Consequently, we
R
have f(z) + A*g(z) < f(z*), or, equivalently,
RE\{0}
fl@)—T'z+ Tz +Ag(z) < f(z).
RE\{0}
But
fa) - Ta+ T+ Ag(x) € |J {F) = T} + (T + Ao},
vER™ reX

which is a contradiction to (3.5). Therefore f(z*) is a minimal point to the problem

(VO). Moreover, if f(z*) is not a solution to (DY9), then 3y € U -
(T,A)ERPX7 XL,
(T, A)] such that f(z*) < 7. Let (T,A) € RP*" x L such that § € —U(T, A).
RE\{0}

From Ag(z*) < 0 follows
R
> f(z*) +Ag(a") = f(a*) = Tz* + Tz" + Ag(z"),
RE\{0}

which contradicts the fact that y € —EI(T, 1~X) in the same way as before. Accord-
ingly, f(z*) is a solution to (D%9). O

4 Special cases

This section aims to investigate some special cases of dual problems based on alter-
native definitions of the conjugate maps and the subgradient for a set-valued map
having vector variables. In Definition 2.3, if we choose U := [t,...,t]T € RP*" for
t € R”, as a variable of the conjugate maps, then this reduces to the definition con-
sired in this section. Remark that duality results for vector optimization developed
by Tanino and Sawaragi (see [15] and [17]) are essentially not distinguishable in both
cases. The advantage of considering conjugate maps with vector variable consists in
the fact that the corresponding dual problems have a more simple form than ones in
Section 3 and they can be easily reduced to the duals for scalar optimization prob-

lems. Let us recall first the definitions of the conjugate maps with vector variables
(cf. Definition 2.3).

Definition 4.1 [10, Definition 7.2.3] (the type II Fenchel transform)
Let h: R™ = RP be a set-valued map.
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(i) The set-valued map hy : R™ =3 RP defined by

h5(A) = max [(ATx),, _ h(z)], A€ R"

Ri\{o}zeR“

is called the (type II) conjugate map of h;

(ii) The conjugate map of h%, hi* is called the biconjugate map of h, i.e.

h*(x) = max M2), —h:(\)|, z e RY
> (@) MW%WR )o = h (V)]

(i) X € R™ is said to be a subgradient of the set-valued map h at (Z;7) if § € h(Z)
and

g-(N1)p€ R{,jl\i{r(l)} [(z) — (A7),

where (A\Tz), = (\Tz,..., \Tz)T € RP.

z€R™

Like in Section 3, let f : R® — RP, g : R® — R™ be vector-valued functions and
X C R". Based on the perturbation functions introduced in Section 3, let us suggest
some dual problems having vector variables. For convenience, in this section we use
the following notations.

f(z), e X, g(z) <u,
o1 : R" xR™ - RPU {400}, ¢i(z,u) = R}
400, otherwise;

flz+v), €@,

o : R" x R" - RPU {+00}, palz,v) = { +00 otherwise;

3 : R" x R" x R™ — R? U {400},
flz+v), re€X, g(z) <u,
w3(z,v,u) = R

~+00, otherwise.
Let us notice that throughout this section instead of 0 = 1,2,3, we write

or i=1,23.

Lagrange duality. By using the dual objective map having a vector variable
with respect to ¢;, the Lagrange dual problem to (VO) was introduced in [17]. Let
us now explain how we obtain this dual.

Lemma 4.1 Let A € R™. Then
{0}, fA>0;
R

min {(\"z),] z € RT} = { .
J,  otherwise,

RE\ {0}
where (\Txz), = (\Tz,..., \Tz)T € RP.

Proof: Let z € min {(A\"z),| z € RT}. Then 3z € R™ such that 2z = (\7z), and

RE\{0}
it holds
(N'z), # (Tz),, Vo € RT,
RE\{0}
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or, equivalently,
Mz < Mz, Vz € RT.

0, if A > 0;
In other words, it holds ATZ = min ATz. Since inf Az = R we
zeR™ zeRY —00, otherwise,
obtain the conclusion. ‘ O
Proposition 4.1 Let A € R™. Then
max { (ATg(z)), — fx)|z e X}, fA<0;
o = e {09, — £ bog
J, otherwise.
Proof: Let A € R™. Then by definition
“0,A) = {AT — oz, R", ]R"‘}
01(0, A) s (Au)p — iz, u)| 2 €R®, we
= M), — €X, <up.
e {07, — f(0)] = € X, g(a) @u}
Setting @ := u — g(x), we have
G0 = max [OTg(@)p + (Ta), - f(a)| © € X, T € RY}
= ({7 g(@), - f@)l o € X} +{(\"0),| a € RT}].

In view of Lemma 2.1(i) and Lemma 4.1, one has

0 € max {(Wg(e)), - f(a)] o € X} + max {(\w)y| u € BT}

RE\{0}
= max {()\Tg(2)), — f(z)| z € X} — min {(=\Tu),| v € R}
e (To(e)y— @] = € X) = min (-Xw)y| u € RY)
max {(\Tg(z)), — f(z)| z € X}, if A <0
f e (09, — @z € X A2
, otherwise.

For A < 0 it remains to show that
R

R?%}{(ATg(w))p — f(@)| = € X} C ¢7(0, A).

Let § € RIP%}{()\Tg(x))p—f(xﬂ ¢ € X}. This means § € {(A\Tg(z)),— f(£)| z € X}

and

g £ (Vg(@),— flz), VX (4.1)

RE \{0}

Choosing 4 = 0, we have

§=7+(Na), € {(\"g(@))p — f(@)| © € X} + {(WTw)y| uw € R} }.
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On the other hand, since (A\Tu), <0, Vu € RT, onehas g > 7+ (ATw), and by (4.1)
Ry R%,
it holds

+ (W), £ (WTg(@), — f(z) + (ATu)p, Vz € X, Yu € RT.
REA\{0}

Consequently, we obtain that

§ % (Ng(@))p— f(z) + (Au)p, Yz € X, Vu € RY.
R2\(0}

In other words § € ¢1(0, A). O
In this case the dual problem to (VO) can be written as

Dvo max [— 10, X
( L ) R-’l\{o})\eRm S01( )]

= U mln {f() = (A Tg(x)),| = € X}

=0} 2R

= max min T z e X}
0 U, Jin (/) + (g(a))y = € X)

+

Proposition 4.2 [15, Theorem 6.1.4]

(i) The problem (VO) is stable with respect to 1 if and only if for each solution T

to (VO), there ezists a solution X € R™ with X\ > 0 to the dual problem (DV°)
, Rp
such that

f(z) € m\l{r(l)}{f( z) + (Mg(2)),| = € X}

and MTg(z) = 0.
(ii) Conversely, if T € G and X\ € R™ with X > 0 satisfy the above conditions, then

Ry
Z and X are solutions to (VO) and (DY©), respectively.

Remark 4.1 Let p =1 and the assumptions of Theorem 2.8 in [4] (see also [21])
be fulfilled. Then Proposition 4.2 coincides with the optimality conditions (cf. The-
orem 2.9 in [4]) for the Lagrange dual problem in scalar optimization.

Example 4.1 Consider the vector optimization problem

(VOy) III\I{II}{($1,$2)| 0<z; <1, z; €R, i=1,2}.
0

Let us construct the Lagrange dual problem to (VO;). Before doing this, in view of

(DY©), for A > 0, one has to calculate
R

m\l{rg)}{f(w) + (A g(x))p| = € X}
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Let A = (A1, A2, A3, M)T € R* and the function g : R2 — R* be defined by g(z) =
(=1, — 1, —T9,22 — 1)T. In other words, we have

. I — )\1$1 + )\2(1’1 — 1) — )\3%2 -+ }\4(1}2 — 1) l T 9
erjl\lgtl)} { < —_ )\11E1 + )\2(.’1]1 it 1) — )\3![2 -+ )\4(1’2 — 1) (.’L‘l,.’ljg) = R !

or, equivalently,
. (>\2 - )\1 + 1)%1 + ()\4 — )\3)1‘2 ’ T 9 )\2 + )\4
, eR — .
Rgﬁ%}{ ( O — A1 + (hg — Ag + V) ) 1 (5072 N+ A

Let
B = A=A+l A= A3
D T N A R A

Taking into account Theorem 11.20 in [12], if 3p € int R? such that (cf. Lemma
5.1)

pr' By =07, (4.2)
then mm {Blcc| r € R?} = {Byz| = € R?}. If (4.2) is not fulfilled, it follows that

RZ

2 A=A+ g1+ M= Ape =0
m\l{r(l)}{leI z € R?} = . From (4.2) follows { O — Aa)iin + (v — s + jaa = 0.

Consequently, we have

AL = A+ H , Az =M+ a

1+ e p +

Let us define

L::{AeR‘*a cint B2 such that A = Ag + —22 ) Ag = Ay + —22 }
' | * ' 2Tt e ’ Y e

In conclusion, we obtain the Lagrange dual problem (DVOI) as follows

(}\2—/\1—1— )IL‘1+()\4——)\3)1L'2 ()\2‘*‘)\4). T 9
- zo)T €R2Y .
Rr??&)é} S0 {( ()\2 —_ )\1)ZE1 + ()\4 — )\3 + 1)1‘2 )\2 + )\4 (:I;l IQ)
5

A€l

Let z = (0,0)T € R? and A = (A1, A2, A3, A1)T € Ly be vectors such that A >0 and
R4
ATg(z) = 0. Then, from N g(z) = 0 follows Ay + Ay = 0. As X2, A > 0, this implies

that A\ = Mg = 0. Moreover as A € Ly, it holds A\ = m+uz A3 = —“—— In other

A =1—a, 0<a<1. On the other hand, 1t 1s clear that

words, \; = a: o +u2

f(z) = (0,007 € min {f( )+ (W Tg(z))q] x € R?}

R2\{0)
ry —
= { ( ’“ﬂné ;_ajg > ' (z1,22)7 € R? }
p1tp2

— { <(a;y1y>'yeR},0<a<1.

According to Proposition 4.2(ii), T = (0,0)T and A = (o, 0,1 — 2,07, 0<ax<l
are solutions to (VO1) and (Dvol) respectively.

Fenchel duality. Before considering the next dual problem, we need the following
assertion.
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Lemma 4.2 Lett € R® and Y C R™. If the set IRm(afc}{(tTac)pl r €Y} # @, then
2\{0

R@@g}{(t%)pl z €Y} = {(maxt"z),}

Proof: Let t € R". By assumption, there exists T € Y such that

tTz), £ (t'z),, Vz €Y,
&%\ {0}

or, equivalently,
'z >tTe, Yz €Y.

Therefore tT% = maxtTz.
€Y

Proposition 4.3 Let t € R™. Then

*(t) — (mintTz),, if max {(—tTz),| z€ G &,
o [ O~ @B o (a2 € G
g, otherwise.

Proof: Let t € R™. By definition

0s(0,t) = max { ¢! — wolx, x € R", E]R”}
2( ) »\{0} ( 'U)p 2( 11)| v
= max{tiv — flx+v zeG,UE]R"}.
RE\{0} ( ) ( )|

Substituting ¥ := z + v, we get

#i(0,1) = max {@™D), - (T2), _f@)|z€C, Te R}
= Jax {{t70), — f(0) v € R*} + {(~t7a),| = € G} }.

According to Lemma 2.1(3i), it follows that

*(0,t) € max {(tTv), — f(v)| v € R*} + max {(—tTz),| z € G}.
30,6) € max ("), — F(0) 0 € R} + e (~¢70) | = € G

It is clear that unless Rrglax}{(—th)A z € G} # @, v5(0,t) = 2.
0
+

Since Rgl%}{(~th)p| z € G} # &, by Lemma 4.2 it holds
+

Rgl%}{(—t”x)pl z € G} = {(-mint"z),}.

In other words

©03(0,8) C Rrél&)é}{(tTv)p — f(v)|veR"} - (glelg tT:U)p

= fp(t) - (I;lelg th)p-
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Let now § € f;(t) — (Imnelél tTxz),. Then

ﬂeéﬁﬁ{ﬂﬂwp—fwﬂveRﬂJWQQHEh}

This means that

g £ (tTv)p— flv)— (mint'z),, Yv € R".
Rﬂ\{O} zeG

Moreover, from

(tTv), — f(v) — (migth)p > (tTw), — f(v) — (tTz),, Vz € G, Yv €R"
xc ]R?I-

follows
(tTv), — f(v) — (tTz), 2 U VZEG, YWE R™.
RE\{0}

Whence § € ¢5(0,1). O

The Fenchel dual problem can be stated now as follows

pve max [— ©5(0,t ]
B s U [0

= max [—f* t) + (mint’z ]
Ri\{O} e p( ) (zeG )P

From Theorem 2.2 and Proposition 4.3 follows the following assertion.

Proposition 4.4

(i) The problem (VO) is stable with respect to s if and only if for each solution

Z to (VO), there exists a solution t € R™ to the dual problem (DY%°) such that

7(@) € ~F;(®) + (min ), (43)

and £% = mint’ z.
zeG
(ii) Conversely, if 7 € G and T € R™ satisfy the above conditions, then T and t are
solutions to (VO) and (D}°), respectively.

Remark 4.2 Let p = 1 and the assumptions of Theorem 2.8 in [4] be fulfilled.
Then Proposition 4.4 is nothing else than the result which provides the optimality
conditions (cf. Theorem 2.10 in [4]) for the Fenchel dual problem in scalar optimiza-
tion.

Fenchel-Lagrange duality. The last dual problem in this section deals with the
perturbation function ¢s.
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Proposition 4.5 Lett € R™ and A € R™. Assume that m\:’:}x}{()\T g(z) —tTz),| z €
R
XY} # @, then

S0.3) = { fi(®) + (mapl\g (@) — )y, if A 20
a, - otherwise.
Proof: Let t € R™ and A € R™. By definition
03(0,t,A) = Rrél%} {(tTU)p + (M u), — pa(z,v,u)| z e R\ v e R*u € ]Rm}
= Rrél&{)é} {(tTv)p + (M), — flz+v)|ze X,ve R”,g(w)ﬁéu}
= Q{ U {0y + (\Tw)y — f(@ + )] g() s u}.

Taking @ := u — g(x), one has

A0.LN = max ax | J | { )p + (\Tg(2))p + (\T), — f(z + )] aeRQ’}}

reX veR?

= max |J U {(To)y+ \Tg(@)y — flz +v) + {(\T0),| a € RT}

\{0} zeX veR™?

= max Mg(z), + {(MTa),| w € RY
Rﬂ\{o}wex{< 9(@), + {(\"0),| @ € RT)

+ {(t"), — flz+v)|ve R"}}
Setting now v := z + v, it follows that

2(0,t,A) = max Mg(x), + {(\Ta),| e R”
@3(0,,3) Ri\w}wex{( 9@+ {(3"0)| 7 € RY)

+ {(t0), — (T2), - ()] D € R"}}

= e U {07, 72+ (0T v e wr)

+ {(T0) - £(3)] T R"}}

= e {{(ATu)p| u € R™} + {(t™), — f(v)| v € R}

+ {(\Tg()), - (o)l = € X} .

Consequently
5(0,£,\) € max M), ue R
©3( ) Ri\{o}{( )ol }
+ max {(tTv), — f(?)| v € R"
\{0}{( o — (D) }
+ max {(\T tTz), | z € X}.
\{0}{( g( )) ( )p| }
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Moreover, we can easy verify that
R?%}{(ATg(w) — tTa)y| z € X} = {(max[\g(z) — ¢}, }-

By Lemma 4.1 we conclude that

<P§(0,t,>\)<_i{ 3(6) + (N Tg(o) — 2]}y, ) <

z, otherwise.

Let us show now the converse inclusion. Let t € R?, A <0 and
RT

7 € fr(t) + (max[\"g(z) — t7'x]),. Then it holds

zER”

7 gox [{(™0)p = £@)] v € R"} + (maxlXTg(@) - 7))y |-

In other words

7 £ ("), — f(v) + (max[\'g(z) —t7z])p, Vo €R".
Ri\{o} reX

Since

(") = f(v) + (Tg(x) = t"a)p < (t70)p — f(v) + (max[X'g(z) — t'z])p, Vo € X,

we conclude that
7 £ (tTv)p,— f(v)+ (MTg(z) — tTx),, Vo € X, Yv € R,
RE\{0}
or, equivalently,
g+(\Tu), ¢ }(tTv)p—f(v)—|—()\Tg(x)'—th)p—i-()\Tu)p, Vz € X, Vv € R, Vu € RT.
R \{0

On the other hand, because of (A\Tu), < 0, Vu € RT it holds § > g+(\Tu)p, u € R
RE R?

+ +

Whence, we obtain that

7 £ (tTv)p,— flv)+ (ATg(z) — t7x)p + (ATu)p, VE € X, Y0 €R", Vu € RT.
RE\{0}

Therefore § € ¢5(0,t, A). O

As a consequence, we can suggest the following dual problem to (VO)

12)4% max — *O,t,)\]
o g U (-0,

)eR™ xR™
s U (=50 + qiglés - oGl
A<0
KR
= max [—f*t—{— min[tTz + M\Tg(z ]
R0}, PO+ (o sxe
A>0
]Rm

+

According to Theorem 2.2 and Proposition 4.5 one can give the following result.
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Proposition 4.6

(i) The problem (VO) is stable with respect to 3 if and only if for each solution
T to (VO), there exists a solution t € R*, X € R™ with A\ > 0 to the dual
]Rm

+

problem (DY%9) such that

f(z) e -1, + (gggg[f‘r z + ATg(z))),. (4.4)
Moreover it holds
Tz + \g(z) = glgl};l[def +Ag(z)] and Xg(z) = 0. (4.5)

(it) Conversely, if T € G and t € R®, X € R™ with A > 0 satisfy (4.4)—(4.5), then
7
Z and (£,A) are solutions to (VO) and (DY%9), respectively.

Remark 4.3 In the scalar case Proposition 4.6 is nothing else than the assertion
dealing with the optimality conditions for the Fenchel-Lagrange duality (cf. Theo-
rem 2.11 in [4]).

Further we show some relations between the dual objective maps investigated in this
section.

Proposition 4.7 Lett € R® and A\ € R™ with X\ < 0. If Igle{x}{(—tTw)A z € G} #
RT R \{0
@ and max {(\Tg(z) —tTz),| z € X &, then
o ((Kg(z) = Ta),| 2 € X} #
90;(07t) - QDE(O,t, )‘) - Rﬁ_.

Proof: Let t € R” and A < 0. Assume that z € ¢3(0,1) = ) — (mlg tTz),. Since
R z€
g(z) <0, for z € G one has —ATg(z) <0, Vz € G. After adding t"z in both sides
RY
we have

T, AT < minliTz — AT < min T
gg(l[tm )\g(x)]_rzrg(r;l[ x ’\9(1”)]—52315 z,

or, equivalently,
_ 3 T < _ 3 T _ T .
(mint w)p]ﬁ (minft"z — X" g(z)))s

This means that

—(mint"z), € —(min[t’z — MTg(z)]), — RE.

zeG reX
Therefore
2 € ()~ (minli"s — X'g(z), - R
In other words z € ¢%(0,¢,A) — RE. O

Proposition 4.8 Let t € R™ and A € R™ with A < 0. If the set f;(t) is external
RY

stable and max {(\Tg(z) —tTz),| z € X} # @, then
RE\{0}
SDI(Oa )‘) - 90;(07 t, /\) - Rg—'
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Proof: Let ¢t € R® and A < 0 be fixed. Then it is clear that
Rm

+

|

R?%}{(A g(x))p — f(z)| = € X}

c {(\Tg(x)), — f(z)l z € X}
c {(t"z),— f@)|z € R"} + {—(tTz — Al g(x)),| z € X}

@1(0,))

On the other hand, in view of the relation
{7 — XTg(a))y| = € X} € —min(pw — Xg(z)) — RS
and by the external stability of f; (t), we have

S0, C fi(t) — R —min(pz — Ng(a), — R:
) - miglTe - gl ~ B

5 Applications to the vector variational
inequality

5.1 Gap functions for the vector variational inequality

Let F : R* — R™*? be a matrix-valued function and K € R™. The vector variational
inequality problem consists in finding = € K such that

(VVI) Fz)T(y—z) £ 0, VyeK,
2\ {0}

Definition 5.1 (cf. [6] and [10]) A set-valued map 7 : K = RP is said to be a gap
function for (VVI) if it satisfies the following conditions:

(i) 0 € y(z) if and only if © € K solves the problem (VVI),

(i) 0 # ), VWyeK.
RE\(0}

For (VVI) the following gap function has been investigated (see [6])

@) = o {F@ @)l € K}.

Recall that v% V7 is a generalization of Auslender’s gap function for the scalar vari-
ational inequality problem (cf. [3]).

On the other hand, the dual problems and duality results investigated in Section 3
allow us to introduce some new gap functions for (VVI). Let us mention that such
a similar approach has been proposed for scalar variational inequalities in [2]. We
remark that z € K is a solution to the problem (VVI) if and only if 0 is a minimal
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point of the set {F(w)T(y —z)ly € K}. This means that z is a solution to the
following vector optimization problem

PV in § F(z)"(y - K;.
(Pha)  min {F@)" -2y e K}

Let z € K be fixed. Setting f,(y) := F(z)T(y — z) instead of f in (D¥©), the
Fenchel dual problem to (PVV’;z) turns out to be

(DYVE: x) max min { U {(F( T)y} — F(z)Tx + U{Ty}}

RE\(0},, =7 RZ\{0) et

We define the following map for any z € K
V() U <I>* 0,T;z),

TeRpxn

where 3(0, T’ z) is defined by
%5(0,T;2) = max { U AT - F@&)T)y) + F@)"e + | {- Ty}}

\{0} yER™ yeK

Theorem 5.1 Let for any x € K the problem (PVVI;x) be stable with respect to
<I>2(O z). Then v5V! is a gap function for (VVI).

Proof:

(i) Let x € K be a solution to the problem (VVI). As the problem (PVV'; z) is
stable, by Proposition 3.10(i), there exists a solution T, € RP*™ to (D4V/; )
such that

fo(z) = 0 € —3(0, T; 2). (5.1)
In other words, 0 € 5;(0, T,; ) and this implies that
oe |J @50,T;2) =1L (a).
TERPXn
Conversely, let z € K and 0 € v4V!(z). Hence, there exists T, € RP*" such
that
0 € ®5(0, T,; z) or, equivalently, 0 = F(z)T(z — z) € —®3(0, T; 2).

According to Proposition 3.10(ii), z is a solution to (PYV!;z) and also to the
problem (VVI).

(ii) Let y € K be fixed. Then, in view of Proposition 3.9, for any T € RPX"_ one
has

f(z)+€ £ 0,VzeK, VEe 850, Ty),
RZ\{0}
or, equivalently,
Fiy)"(z-y)+¢& £ 0,VzeK, Ve |J ®50,T;y) = 15" (v).
RE\{0} TeRpxn

Setting 2z = y, we get

& £ 0, VEeyrVi(y).
R? \{0}
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According to Proposition 3.2, we can give the following result relative to the stability
with respect to ®5(0,-;z), z € K.

Proposition 5.1 Let for any x € K the set 2;1\1{n}{F(a:)Ty| y € K} be externally
R” \{0

stable. Then the problem (PVV1;z) is stable with respect to 3,(0, ; ).

In connection with the Fenchel dual problem we call y}V! as the Fenchel gap function
for the problem (VVI). Let now the ground set K be given by

K = {m € R"| g(m)RSMO},

where g(z) = (g1(2), ., gm(z))T, ¢ : R* — R. Before introducing two other
gap functions, let us state the Lagrange and Fenchel-Lagrange dual problems for
(PYV1;z). Taking f, instead of f in ®;(0, A) and ®3(0,T, A), respectively, we have

(DYVE: x) max U min { U {-Ag} — F(z)"z

RO}, = O

+ U F@Ty - )}

and
(DYYT: 1) max U min { U {-A¢} — F(2)"z

RP \{0 RE\{0O
A }(T,A)eRpxanpxm +\{0} gERT

+ UE@" -+ ATy - A} -
yER™ yeR™
We introduce the following maps, for any z € K, as follows
Wi(z) = % (0, A; z),
AcRpxm
where we define

$*(0,A;z) = max { U {Ag} + F@)"z + | {Ag(y) - F(x)Ty}}

RO © ern yeR?
and _
wil@ = U %OT A,
(T,A)ERPX7 X RPX ™
defining
50,7, A;z) = max { U {Ag} + F(2)Tz + U {(T — F(z)")y}
R+\{O} qGIR’_;1 yeR™
+ U (o) - Tu}}. ._
yeR™

In analogy to the proof of Theorem 5.1, by applying the duality assertions in Section
3, for (DY©) and (DY?), respectively, the following theorem can be verified.
Theorem 5.2 Let for any x € K the problem (PVV!;z) be stable with respect to
®,(0,-;x) and ®3(0,;x), respectively. Then VYV and v§1! are gap functions for
(VVI).

The origin of these new gap functions for (VVI) justifies to call them as Lagrange

gap function 7YV? and Fenchel-Lagrange gap function vy ', respectively.
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5.2 Gap functions via Fenchel duality

According to the results in Section 4, we can suggest a further class of gap functions
for (VVI). In this subsection, we restrict the construction of a gap function to the
case of Fenchel duality. As mentioned before, for a fixed x € K we consider the
following vector optimization problem relative to (VVI)

PYVi.g min {FmT -z EK}.
(Phz) min {F@T( )y

For a fixed = € K, taking F(x)T(y — x) as the objective function, (ﬁ%o) becomes

DYVvI, in [(F(2)T(y —z) — (7 € R"] + (mintT }
(Dpa) e U { i (P70 = 2) = (Tl y € + (i),

We need the following auxiliary result.

Lemma 5.1 Let M € RP*™. Then

{ {My| y e R}, 4f3p € int RY such that pTM = 07,

. n —_—
min {My| y € R"} = 2, otherwise.

&)\ {0}

Proof: Let M € RP*" be fixed and § € R". According to Theorem 11.20 in [12],
My e m\i{n}{My| y € R*} if and only if 3u € int R% such that
R?\{0

My < My, Yy € R™ (5.2)
As r .
0 M=0
: T . 3 2 3
ylergnu My = { —o0, otherwise,

My e Rgp\i{n}{My! y € R*} if and only if Ju € int R% such that
0
+

ptM =0T, (5.3)
This means that under the above assumption each § € R" is a solution to (5.2). O
Let C:=t,...,t] € R™? and for a fixed z € K the set N(z) be defined by
N(z) :={t € R"| Jp € int R such that (F(z) — C)u = 0}.
In view of Lemma 5.1, one has

NVVI. . T . mT n s LT
(DY) R?@’é}teN(){ F(@)+{(F() = Oyl y € R'} + (mint"y), .

Let us introduce for z € K the following map

R (z) == F(z)Tz + U [{(C ~ F(z))Tyly e R"} - (i,réizr(ltTy)p]'
teN(x)

Theorem 5.3 Let for any r € K the set Ipn\i{n}{F(x)Ty| y € K} be externally
RP\{0
stable. Then ¥V is a gap function for (VVI).
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Proof:

(i)

(i)

Let z € K be fixed. As the set Ipn\l{n}{F (z)Ty| y € K} is externally stable, by
RZ\{0

Proposition 5.1, the problem (PVV1; 1) is stable. Taking F' ()T (y — z) instead
of f(y) in f(t), by Lemma 5.1, we have

f) = Rrp%}{(tTy)p — F(z)"(y—=2)ly €R"}

= F(z)Tz — min {(F(z) - C)" e R"”
() Ri\{o}{( (z) = C)'yly €R"}
= F(@)"z - {(F(z) -C)"yly eR"},
where C = [t, ...,t] € R™? and t € N(z). Then (4.3) is equivalent to

0€—F(@)z+{(Fl2)-C)'yly eR"} + (gg}gtTy)p- (5.4)

Let € K be a solution to (VVI). By Proposition 4.4(i) and (5.4) it follows
that 0 € 7¥V1(z). Let 7 € K and 0 € ¥£"'(Z). Then 3t € N(Z) such that

0 € F(z)"z +{(C - F(2))7yl y € R"} — (min y)p,

where C = [f, ..., ] € R™*?. Taking into account Proposition 4.4(ii) and (5.4),
% is a solution to (PVV1;z). Consequently, Z solves the problem (VVI).

Let y € K. Choosing as T := [t,...,t]T € RP*" by Proposition 3.9 and Propo-
sition 4.3, it holds

Fiy)T(z—y)+€& £ 0,Vze K, VEe f(t) - (mint"y),, t € N(y),
R?\ {0} yek

or, equivalently,

F)T(z—y)+€& £ 0, VzeK, VeeF: ().
2\ {0}

Setting z = y, one has

¢ £ 0,VEeqp " (y)
R?\(0}

a

Remark 5.1 In the case p = 1, the problem (VVI) reduces to the scalar varia-
tional inequality problem of finding = € K such that

VD)  F@)(z-y) 20, y€K,

where F : R® — R" is a vector-valued function. Let z € K be fixed. By the
definition of the set N(z), there exists p > 0 such that (F(z) — t)p = 0. Therefore
it holds F(z) = ¢. Consequently, the gap function for the variational inequality
becomes

1 (2) = F(z)'e+max(—F (z)"y)

= max F(z)'(z - ),
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which coincides with Auslender’s gap function (see [2] and [3]).

10

Example 5.1 Let F = ( 01

) be a constant matrix and

K ={(z1,22)" €eR*| 0<z; <1, z; €R, i =1,2}.
We consider the vector variational inequality problem of finding z € K such that
(VVI) (é ?)(y—x) £ 0, VyeK.
RZ \{0}

Let us describe V7 for (VVI,). Let z = (z1,72)T € R? be fixed. First we consider
the set-valued map W : R? = R? given by (see (D%LV?; 7))

W(z1,12) = Rgn\i{r(l)}{F(w)T(y —z) = (t7y)s| y € R*}.

Then

) 10 Y1 — 21 tiyr + tayo ‘ T 2
W (1, = — , eR
(21,22) Rrin\l{r(l)}{( 01 )( Y2 — T2 ) ( tiyr + taye (w1,92)

— min { (y1—x1—t1y1—t2y2 ) l (yl,y2)T€R2 }

R2 \{0} Y2 — T2 — t1y1 — tayo
. (1 —t)y1 — tawe ’ T 2 Z1
= min , eR — .
Ri\{O}{ < —tiy1 + (1 — t2)y2 (1, 2) o
o 1—t, —t .
If 3p = (1, p2)” € int RZ such that (1, po) £ 1t = (, or, equiva-
—t —t2

(1—ti)m —tipg =0 .
lently, { tom 4 (1 —t)p = 0. Then, py Lemma 5.1, it holds

Wana) = { (G 0070 Y pwr e Lo (1),

As (1, p2) € int R, it must to be (1 —ttl) (l_tlt ) = (. As a consequence, one
—tg — 12
has
t1 +t2 =1 and tg,ul = tly,g.

Whence

~VVI 1 t(y2 — v1) ) ‘ T .~ 2 }

z) = + , €eR
T (T) ( 1’2 ) U [ { ( (1 —t)(y1 — ya) (y1,12)

teENy
oZinl Ot B, e
RN
where the set N; is defined by
Ny :={t € R| Ju € int R such that (1 —#)u; = tuy}.
Moreover, as N1 = (0,1), we conclude that

i@ = () U {( (M, )| ves)

te(0,1)
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