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ABSTRACT. In [6] Simonenko studied properties of convolution type operators on cones
in R™. The purpose of this note is to show that every convolution operator on a suit-
able cone in R™ or Z"™ can be identified with a standard Wiener-Hopf operator, i.e.
a convolution operator on R} or Z7, respectively. We demonstrate this identification
and give explicit formulae for the convolution kernels and symbols of these Wiener-Hopf
operators.

1 Introduction

To mention only one example, the study of the finite section method
P.oAPqu, = Pqob, T — 00 (1)

for the convolution (type) equation Au = b, where 7 > 0, 2 is a polytope in R™ and P,q
is the operator of multiplication by the characteristic function of 72 = {7w : w € Q},
leads to the study of convolution operators on cones (see [2, 3, 4, 5]). Hereby, let
(1, ...,Ch denote the collection of cones in R™ which €2 locally coincides with at its
respective vertices vy, ...,vx. The operators to be studied in connection with (1) are
the compressions of A onto C4, ..., C.

If the cone C' C R™ has exactly n facets (which is the minimum number for full-
dimensional pointed cones), it can clearly be interpreted as an affine-linear deformation
of the first orthant R} := [0, 00)". By means of this deformation, the compression of
a convolution operator to C' can be identified with the compression of an associated
convolution operator to R’} , which is a standard Wiener-Hopf operator then. We will
demonstrate this identification for convolution operators on LP(R™) with 1 < p < co.
We will also discuss the discrete case ¢P(Z"™) which is slightly more sophisticated! Here
the convolution operators are so-called Laurent operators, and the Wiener-Hopf opera-
tors are also referred to as Toeplitz operators. In both cases, we give a full description
of the associated Wiener-Hopf operator.

2 The Function Case

We first discuss the case LP := LP(R™) with 1 < p < 0.



2.1 Convolution Operators

Given a function k € L', let Fk refer to its Fourier transform

(Fk) (2) = /n k(z) e @ da, z € R",

and denote the set of functions {Fk : k € L'} by FL' With every function a = F&,
one can associate a convolution operator W, acting on LP by

<Wau>(t) - / k(t — s)u(s) ds,  t€R",

and say that the function a is the symbol of the operator Wa, while £ is referred to as
the convolution kernel of W,.

For every bounded and measurable set U C R", let Py denote the operator of
multiplication by the characteristic function of U. The operator PyAPy is called

compression of an operator A to U. The compression of W, to the first orthant R? is

referred to as the Wiener-Hopf operator W,,.

Remark 2.1 The operators W, and W, are labelled by their symbol a — rather than
by their kernel k£ — because the function a is the most convenient object in order to
study their properties, including spectra and essential spectra (see [1], for instance). O

2.2 Cones

Given vectors ag, aq, ..., a, € R", where aq,...,a, are linearly independent, we denote
by M € R™™™ the matrix with columns a, ..., a,. Note that M is invertible. Clearly,

C = ap + cone{ay,...,a,} = ag + MR’ (2)

is a full-dimensional pointed cone (with vertex ag) with n facets. Conversely, every
such cone can be written in the form (2).

As (2) gives a bijection between C' and R}, we can — in the same manner — construct
a linear bijection T": LP(C) — LP(R%) by (Tu)(x) := u(ag + Mx), xz € R.
2.3 Convolutions on Cones

Take some cone C' as in (2) and some k € L'. The compression
A = PcW,P- e LP(C), a=Fk

of W, to the cone C can be identified with a Wiener-Hopf operator
A = Py WiPry = Wi € LP(RY)

via the linear bijection T" for some a € F' L'. The kernel k and the symbol @ = Fk of
A can be easily calculated from k, a and the matrix M:
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Theorem 2.2 A =T'AT, where k(x) = (det M) k(Mz) and a(z) = a(M ™" 2).

1#(C) A . 12(0)

T T-1

N

LP(RY)

- ()

Proof. Let u € LP(C), and write s,t € C' as ag + Mz and ag + My, respectively, with
x,y € R. Then

(TAu) (y) = <Au> (ap + My)

whence TA = AT, ie. A = TLAT, where the kernel of A is subject to l%(x) =
(det M) k(Mz) for every x € R"™. It remains to check the connection between a and a:

i(z) = (Fk) (2)

k(z) '@ dg



3 The Discrete Case

Now we pass to the case ¢ := (P(Z") with 1 < p < oo. In analogy to the function case,
put Z%} := {0,1,2,...}". Moreover, let T denote the complex unit circle. Although
some details will turn out to be a bit more sophisticated, we will essentially be able to
do the same things as in the function case.

3.1 Discrete Convolution Operators

Suppose we are given a sequence (@) ezn of complex numbers. The discrete convolu-
tion operator, alias Laurent operator L(a), acts on ¢? by the rule

(L(a)u) Z Ao—p Ug, acZ".

¢ ezr
Its symbol is the function a : T" — C acting by

a(ty, ..tn) == > ay it L ET
YEL™

For brevity, we define (t1,...,t,) 007 .= 71 ... 170 to get a(t) = > ezn Gy 17, e
(@y)yezn are the Fourier coefficients of a. The classes of functions a for which L(a) is a
bounded linear operator on ¢? are the so-called multiplicator algebras M? (for instance,
see [1, §2.3f]). The compression of L(a) to Z7 is the discrete Wiener-Hopf operator,
alias Toeplitz operator T'(a).

3.2 Discrete Cones

For the definition of a discrete cone, we essentially replace R by Z in Section 2.2. So
we have integer entries in ag and M, and

Cz = ap + conez{ay,...,an} = ag + MZY. (3)

We will say that Cz from (3) is fully occupied, if Cz = C' N Z™ with C from (2).

V| - -
C C7

A A

o

Qo aq ao ai

An illustration of the cone C' and the discrete cone Cy for ag = (j), a = ((1)) and ay = (é) Note
that C7 is not fully occupied! The parallelogram spanned by a; and as is too large.
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Proposition 3.1 The following conditions are equivalent:

(i)
(i)
(iii)
(iv)
(v)

Proof.

(4) & (ii):

C7 s fully occupied,

M7 =7,
M~ is an integer matrix,
det M = +1,

the parallelotope spanned by ay, ..., a, has volume 1.

Since ag € Z", (i) is equivalent to

MZ! = (MR?)NZ" (4)

Set-subtracting (4) from itself, we get

MZ" = (MR")NZ" (5)
On the other hand, (5) implies (4) as we see by taking intersection
with MR’ on both sides of (5). But since M is invertible, we have

MR™ = R", and hence, (5) is the same as (i7).

(id) = (iid):

(idi) = (id):
(1ii) = (iv):
(iv) = (i47):

(iv) & (v):

The (unique) solutions sy, ..., s, of Ms; = e; (the i-th unit vector) are
the columns of M~!. By (ii), these are integer vectors.

trivial

By (i74), det M1 is an integer. But det M is an integer as well, and
since their product is 1, both have to be +1 or —1.

M~' = (1/det M)[Mj;]},_, shows that M~' is an integer matrix.

This is trivial since the volume of this parallelotope is |det M|. m

Again, (3) gives a bijection between Cz and Z7. So we will construct a linear
bijection Ty, : (P(Cy) — (P(Z7}) by (Tpu)a = Uagrmas @ € ZT}.

' J
J 1 |¢ |D H I
(3)
H |F |C — E F G
Ty,
E |B A B C D
A

An illustration of the bijection (3) between the discrete cone Cz = (711) + coney, {((1)), (_11)} and the
discrete quarter plane Z2% . This identification yields to the bijection Ty, between ¢P(Cyz) and (P(Z2%).



3.3 Discrete Convolutions on Discrete Cones

Fix a discrete cone C7 and a function a € M? with Fourier coefficients (a.)ez». The
compression

A = PCZL(CL)PCZ

of L(a) to Cy corresponds to a Toeplitz operator

via the bijection T7:

Theorem 3.2 a) A = Tz_lflTZ, where Gy = apfy .

b) If Cz is fully occupied, then a(t) = a(t,...,t*"), where | s -+ s, | = ML

Proof. a) is almost identic to the proof of the first part of Theorem 2.2.
b) By Proposition 3.1, MZ" = Z". Then for arbitrary t € T",

a(t) = Z ayt7 = Z ap, 7 = Z agtM'0 = Z ag 10151 Fonsn

YEZL™ YEL™ deZ™ dEL™
= D ay () () = a(t, ).
sezn

4 An Example

We will briefly illustrate the results of Theorems 2.2 and 3.2 by an example in the
plane, n = 2. Therefore, let ag be an arbitrary integer vector,

s ()

5 =2
-7 3

3 2

75 } As in Sections 2.2

Consequently, M = [ } ,det M =1and M~ ! = {

and 3.2, put
C = ap + MR} and Cz = ay + MZY.

By Theorem 2.2, the compression of a convolution operator Wa with kernel k € L! and
symbol a = Fk to the cone C' can be identified with a Wiener-Hopf operator W; (on
the quarter plane) with kernel k € L' and symbol a = Fk:

k(z) = k(zy,xs) = k(3x1 4+ 225, Txy + 513), (6)
a(x) = a(xy,x2) = a(dbxy — Txy, —221 + 3x9) (7)



By Proposition 3.1, Cy is fully occupied. So both parts of Theorem 3.2 are ap-
plicable, and the compression of the Laurent operator L(a) with symbol a € MP and
Fourier coefficients (a.),ezn to the discrete cone Cz can be identified with the Toeplitz
operator T'(a) (on the quarter plane) with symbol @ € M? and Fourier coefficients

(@ )rezn:

IS
3
|
Q

(m2) = ABn+2y2, Ty +572) (8)
at) = a(u,v) = a(w’v™", u?v?) 9)

Note the incidence between (6) and (8), and that between (7) and (9).
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