An Identification of Convolution Operators on Cones

Marko Lindner

September 24, 2003

ABSTRACT. In [6] Simonenko studied properties of convolution type operators on cones in \mathbb{R}^n . The purpose of this note is to show that every convolution operator on a suitable cone in \mathbb{R}^n or \mathbb{Z}^n can be identified with a standard Wiener-Hopf operator, i.e. a convolution operator on \mathbb{R}^n_+ or \mathbb{Z}^n_+ , respectively. We demonstrate this identification and give explicit formulae for the convolution kernels and symbols of these Wiener-Hopf operators.

1 Introduction

To mention only one example, the study of the finite section method

$$P_{\tau\Omega}AP_{\tau\Omega}\,u_{\tau} = P_{\tau\Omega}\,b, \qquad \tau \to \infty \tag{1}$$

for the convolution (type) equation Au = b, where $\tau > 0$, Ω is a polytope in \mathbb{R}^n and $P_{\tau\Omega}$ is the operator of multiplication by the characteristic function of $\tau\Omega = \{\tau\omega : \omega \in \Omega\}$, leads to the study of convolution operators on cones (see [2, 3, 4, 5]). Hereby, let $C_1, ..., C_k$ denote the collection of cones in \mathbb{R}^n which Ω locally coincides with at its respective vertices $v_1, ..., v_k$. The operators to be studied in connection with (1) are the compressions of A onto $C_1, ..., C_k$.

If the cone $C \subset \mathbb{R}^n$ has exactly n facets (which is the minimum number for fulldimensional pointed cones), it can clearly be interpreted as an affine-linear deformation of the first orthant $\mathbb{R}^n_+ := [0, \infty)^n$. By means of this deformation, the compression of a convolution operator to C can be identified with the compression of an associated convolution operator to \mathbb{R}^n_+ , which is a standard Wiener-Hopf operator then. We will demonstrate this identification for convolution operators on $L^p(\mathbb{R}^n)$ with $1 \le p \le \infty$. We will also discuss the discrete case $\ell^p(\mathbb{Z}^n)$ which is slightly more sophisticated! Here the convolution operators are so-called Laurent operators, and the Wiener-Hopf operators are also referred to as Toeplitz operators. In both cases, we give a full description of the associated Wiener-Hopf operator.

2 The Function Case

We first discuss the case $L^p := L^p(\mathbb{R}^n)$ with $1 \le p \le \infty$.

2.1 Convolution Operators

Given a function $k \in L^1$, let Fk refer to its Fourier transform

$$(Fk)(z) = \int_{\mathbb{R}^n} k(x) e^{i(x,z)} dx, \qquad z \in \mathbb{R}^n,$$

and denote the set of functions $\{Fk : k \in L^1\}$ by FL^1 . With every function a = Fk, one can associate a *convolution operator* \mathring{W}_a acting on L^p by

$$\left(\mathring{W}_a u\right)(t) := \int_{\mathbb{R}^n} k(t-s)u(s) \ ds, \qquad t \in \mathbb{R}^n,$$

and say that the function a is the symbol of the operator \mathring{W}_a , while k is referred to as the convolution kernel of \mathring{W}_a .

For every bounded and measurable set $U \subset \mathbb{R}^n$, let P_U denote the operator of multiplication by the characteristic function of U. The operator P_UAP_U is called compression of an operator A to U. The compression of \mathring{W}_a to the first orthant \mathbb{R}^n_+ is referred to as the Wiener-Hopf operator W_a .

Remark 2.1 The operators W_a and W_a are labelled by their symbol a – rather than by their kernel k – because the function a is the most convenient object in order to study their properties, including spectra and essential spectra (see [1], for instance).

2.2 Cones

Given vectors $a_0, a_1, ..., a_n \in \mathbb{R}^n$, where $a_1, ..., a_n$ are linearly independent, we denote by $M \in \mathbb{R}^{n \times n}$ the matrix with columns $a_1, ..., a_n$. Note that M is invertible. Clearly,

$$C := a_0 + \operatorname{cone}\{a_1, ..., a_n\} = a_0 + M\mathbb{R}^n_+$$
(2)

is a full-dimensional pointed cone (with vertex a_0) with *n* facets. Conversely, every such cone can be written in the form (2).

As (2) gives a bijection between C and \mathbb{R}^n_+ , we can – in the same manner – construct a linear bijection $T: L^p(C) \to L^p(\mathbb{R}^n_+)$ by $(Tu)(x) := u(a_0 + Mx), x \in \mathbb{R}^n_+$.

2.3 Convolutions on Cones

Take some cone C as in (2) and some $k \in L^1$. The compression

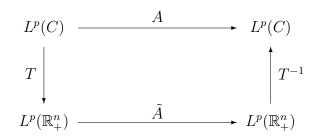
$$A := P_C \mathring{W}_a P_C \in L^p(C), \qquad a = Fk$$

of \dot{W}_a to the cone C can be identified with a Wiener-Hopf operator

$$\tilde{A} := P_{\mathbb{R}^n_+} \check{W}_{\tilde{a}} P_{\mathbb{R}^n_+} = W_{\tilde{a}} \in L^p(\mathbb{R}^n_+)$$

via the linear bijection T for some $\tilde{a} \in FL^1$. The kernel \tilde{k} and the symbol $\tilde{a} = F\tilde{k}$ of \tilde{A} can be easily calculated from k, a and the matrix M:

Theorem 2.2 $A = T^{-1} \tilde{A} T$, where $\tilde{k}(x) = (\det M) k(Mx)$ and $\tilde{a}(z) = a(M^{-\top}z)$.



Proof. Let $u \in L^p(C)$, and write $s, t \in C$ as $a_0 + Mx$ and $a_0 + My$, respectively, with $x, y \in \mathbb{R}^n_+$. Then

$$(TAu)(y) = (Au)(a_0 + My)$$

$$= (Au)(t)$$

$$= \int_C k(t-s) u(s) ds$$

$$= \int_{\mathbb{R}^n_+} k((a_0 + My) - (a_0 + Mx)) u(a_0 + Mx) d(a_0 + Mx)$$

$$= \int_{\mathbb{R}^n_+} (\det M) k(M(y-x)) u(a_0 + Mx) dx$$

$$=: \int_{\mathbb{R}^n_+} \tilde{k}(y-x) u(a_0 + Mx) dx$$

$$= (\tilde{A}Tu)(y),$$

whence $TA = \tilde{A}T$, i.e. $A = T^{-1}\tilde{A}T$, where the kernel of \tilde{A} is subject to $\tilde{k}(x) = (\det M) k(Mx)$ for every $x \in \mathbb{R}^n$. It remains to check the connection between a and \tilde{a} :

$$\tilde{a}(z) = \left(F\tilde{k}\right)(z)$$

$$= \int_{\mathbb{R}^n} \tilde{k}(x) e^{i(x,z)} dx$$

$$= \int_{\mathbb{R}^n} (\det M) k(Mx) e^{i(x,z)} dx$$

$$= \int_{\mathbb{R}^n} k(t) e^{i(M^{-1}t,z)} dt$$

$$= \int_{\mathbb{R}^n} k(t) e^{i(t,M^{-\tau}z)} dt$$

$$= (Fk)(M^{-\tau}z)$$

$$= a(M^{-\tau}z) \bullet$$

3 The Discrete Case

Now we pass to the case $\ell^p := \ell^p(\mathbb{Z}^n)$ with $1 \le p \le \infty$. In analogy to the function case, put $\mathbb{Z}^n_+ := \{0, 1, 2, ...\}^n$. Moreover, let \mathbb{T} denote the complex unit circle. Although some details will turn out to be a bit more sophisticated, we will essentially be able to do the same things as in the function case.

3.1 Discrete Convolution Operators

Suppose we are given a sequence $(a_{\gamma})_{\gamma \in \mathbb{Z}^n}$ of complex numbers. The discrete convolution operator, alias Laurent operator L(a), acts on ℓ^p by the rule

$$(L(a)u)_{\alpha} = \sum_{\beta \in \mathbb{Z}^n} a_{\alpha-\beta} u_{\beta}, \qquad \alpha \in \mathbb{Z}^n.$$

Its symbol is the function $a: \mathbb{T}^n \to \mathbb{C}$ acting by

$$a(t_1,...,t_n) := \sum_{\gamma \in \mathbb{Z}^n} a_{\gamma} t_1^{\gamma_1} \cdots t_n^{\gamma_n}, \qquad t_i \in \mathbb{T}.$$

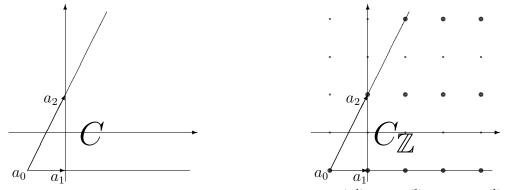
For brevity, we define $(t_1, ..., t_n)^{(\gamma_1, ..., \gamma_n)} := t_1^{\gamma_1} \cdots t_n^{\gamma_n}$, to get $a(t) = \sum_{\gamma \in \mathbb{Z}^n} a_{\gamma} t^{\gamma}$, i.e. $(a_{\gamma})_{\gamma \in \mathbb{Z}^n}$ are the Fourier coefficients of a. The classes of functions a for which L(a) is a bounded linear operator on ℓ^p are the so-called multiplicator algebras M^p (for instance, see [1, §2.3ff]). The compression of L(a) to \mathbb{Z}^n_+ is the discrete Wiener-Hopf operator, alias Toeplitz operator T(a).

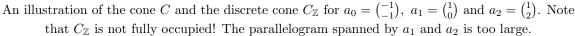
3.2 Discrete Cones

For the definition of a discrete cone, we essentially replace \mathbb{R} by \mathbb{Z} in Section 2.2. So we have integer entries in a_0 and M, and

$$C_{\mathbb{Z}} := a_0 + \operatorname{cone}_{\mathbb{Z}}\{a_1, ..., a_n\} = a_0 + M \mathbb{Z}_+^n.$$
(3)

We will say that $C_{\mathbb{Z}}$ from (3) is fully occupied, if $C_{\mathbb{Z}} = C \cap \mathbb{Z}^n$ with C from (2).





Proposition 3.1 The following conditions are equivalent:

- (i) $C_{\mathbb{Z}}$ is fully occupied,
- (ii) $M\mathbb{Z}^n = \mathbb{Z}^n$,
- (iii) M^{-1} is an integer matrix,
- (*iv*) det $M = \pm 1$,
- (v) the parallelotope spanned by $a_1, ..., a_n$ has volume 1.

Proof.

 $(i) \Leftrightarrow (ii)$: Since $a_0 \in \mathbb{Z}^n$, (i) is equivalent to

$$M\mathbb{Z}^n_+ = (M\mathbb{R}^n_+) \cap \mathbb{Z}^n.$$
(4)

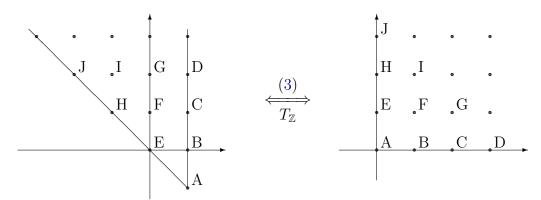
Set-subtracting (4) from itself, we get

$$M\mathbb{Z}^n = (M\mathbb{R}^n) \cap \mathbb{Z}^n.$$
(5)

On the other hand, (5) implies (4) as we see by taking intersection with $M\mathbb{R}^n_+$ on both sides of (5). But since M is invertible, we have $M\mathbb{R}^n = \mathbb{R}^n$, and hence, (5) is the same as (*ii*).

- $(ii) \Rightarrow (iii)$: The (unique) solutions $s_1, ..., s_n$ of $Ms_i = e_i$ (the *i*-th unit vector) are the columns of M^{-1} . By (ii), these are integer vectors.
- $(iii) \Rightarrow (ii)$: trivial
- $(iii) \Rightarrow (iv)$: By (iii), det M^{-1} is an integer. But det M is an integer as well, and since their product is 1, both have to be +1 or -1.
- $(iv) \Rightarrow (iii): M^{-1} = (1/\det M)[M_{ji}]_{i,j=1}^n$ shows that M^{-1} is an integer matrix.
- $(iv) \Leftrightarrow (v)$: This is trivial since the volume of this parallelotope is $|\det M|$.

Again, (3) gives a bijection between $C_{\mathbb{Z}}$ and \mathbb{Z}_{+}^{n} . So we will construct a linear bijection $T_{\mathbb{Z}}: \ell^{p}(C_{\mathbb{Z}}) \to \ell^{p}(\mathbb{Z}_{+}^{n})$ by $(T_{\mathbb{Z}}u)_{\alpha} := u_{a_{0}+M\alpha}, \ \alpha \in \mathbb{Z}_{+}^{n}$.



An illustration of the bijection (3) between the discrete cone $C_{\mathbb{Z}} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \operatorname{cone}_{\mathbb{Z}} \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$ and the discrete quarter plane \mathbb{Z}_{+}^{2} . This identification yields to the bijection $T_{\mathbb{Z}}$ between $\ell^{p}(C_{\mathbb{Z}})$ and $\ell^{p}(\mathbb{Z}_{+}^{2})$.

3.3 Discrete Convolutions on Discrete Cones

Fix a discrete cone $C_{\mathbb{Z}}$ and a function $a \in M^p$ with Fourier coefficients $(a_{\gamma})_{\gamma \in \mathbb{Z}^n}$. The compression

$$A := P_{C_{\mathbb{Z}}}L(a)P_{C_{\mathbb{Z}}}$$

of L(a) to $C_{\mathbb{Z}}$ corresponds to a Toeplitz operator

$$\hat{A} := P_{\mathbb{Z}^n_{\perp}} L(\tilde{a}) P_{\mathbb{Z}^n_{\perp}} = T(\tilde{a})$$

via the bijection $T_{\mathbb{Z}}$:

Theorem 3.2 a)
$$A = T_{\mathbb{Z}}^{-1} \tilde{A} T_{\mathbb{Z}}$$
, where $\tilde{a}_{\gamma} = a_{M\gamma}$.
b) If $\mathbb{C}_{\mathbb{Z}}$ is fully occupied, then $\tilde{a}(t) = a(t^{s_1}, ..., t^{s_n})$, where $\begin{bmatrix} | & | \\ s_1 & \cdots & s_n \\ | & | \end{bmatrix} = M^{-1}$.

Proof. **a**) is almost identic to the proof of the first part of Theorem 2.2.

b) By Proposition 3.1, $M\mathbb{Z}^n = \mathbb{Z}^n$. Then for arbitrary $t \in \mathbb{T}^n$,

$$\begin{split} \tilde{a}(t) &= \sum_{\gamma \in \mathbb{Z}^n} \tilde{a}_{\gamma} t^{\gamma} = \sum_{\gamma \in \mathbb{Z}^n} a_{M\gamma} t^{\gamma} = \sum_{\delta \in \mathbb{Z}^n} a_{\delta} t^{M^{-1}\delta} = \sum_{\delta \in \mathbb{Z}^n} a_{\delta} t^{\delta_1 s_1 + \ldots + \delta_n s_n} \\ &= \sum_{\delta \in \mathbb{Z}^n} a_{\delta} (t^{s_1})^{\delta_1} \cdots (t^{s_n})^{\delta_n} = a(t^{s_1}, \ldots, t^{s_n}). \blacksquare \end{split}$$

4 An Example

We will briefly illustrate the results of Theorems 2.2 and 3.2 by an example in the plane, n = 2. Therefore, let a_0 be an arbitrary integer vector,

$$a_1 = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$$
 and $a_2 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$.

Consequently, $M = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}$, det M = 1 and $M^{-1} = \begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix}$. As in Sections 2.2 and 3.2, put

 $C := a_0 + M\mathbb{R}^n_+ \quad \text{and} \quad C_{\mathbb{Z}} := a_0 + M\mathbb{Z}^n_+.$

By Theorem 2.2, the compression of a convolution operator \mathring{W}_a with kernel $k \in L^1$ and symbol a = Fk to the cone C can be identified with a Wiener-Hopf operator $W_{\tilde{a}}$ (on the quarter plane) with kernel $\tilde{k} \in L^1$ and symbol $\tilde{a} = F\tilde{k}$:

$$\tilde{k}(x) = \tilde{k}(x_1, x_2) = k(3x_1 + 2x_2, 7x_1 + 5x_2),$$
(6)

$$\tilde{a}(x) = \tilde{a}(x_1, x_2) = a(5x_1 - 7x_2, -2x_1 + 3x_2)$$
(7)

By Proposition 3.1, $\mathbb{C}_{\mathbb{Z}}$ is fully occupied. So both parts of Theorem 3.2 are applicable, and the compression of the Laurent operator L(a) with symbol $a \in M^p$ and Fourier coefficients $(a_{\gamma})_{\gamma \in \mathbb{Z}^n}$ to the discrete cone $C_{\mathbb{Z}}$ can be identified with the Toeplitz operator $T(\tilde{a})$ (on the quarter plane) with symbol $\tilde{a} \in M^p$ and Fourier coefficients $(\tilde{a}_{\gamma})_{\gamma \in \mathbb{Z}^n}$:

$$\tilde{a}_{\gamma} = \tilde{a}_{(\gamma_1, \gamma_2)} = a_{(3\gamma_1 + 2\gamma_2, 7\gamma_1 + 5\gamma_2)},$$
(8)

$$\tilde{a}(t) = \tilde{a}(u,v) = a(u^5v^{-7}, u^{-2}v^3)$$
(9)

Note the incidence between (6) and (8), and that between (7) and (9).

References

- [1] A. BÖTTCHER and B. SILBERMANN: Analysis of Toeplitz Operators, Akademie-Verlag, Berlin, 1989 and Springer Verlag, Berlin, Heidelberg, New York 1990.
- [2] R. HAGEN, S. ROCH and B. SILBERMANN: Spectral Theory of Approximation Methods for Convolution Equations, Birkhäuser Verlag, Basel, Boston, Berlin 1995.
- [3] A. V. KOZAK: Projection methods for the solution of multidimensional equations of convolution type, Cand. Dissert., Rostov-on-Don, 1974.
- [4] V. S. RABINOVICH, S. ROCH and B. SILBERMANN: Fredholm Theory and Finite Section Method for Band-dominated operators, *Integral Equations Operator Theory* **30** (1998), no. 4, 452–495.
- [5] V. S. RABINOVICH, S. ROCH and B. SILBERMANN: Band-dominated operators with operator-valued coefficients, their Fredholm properties and finite sections, *Integral Equations Operator Theory* 40 (2001), no. 3, 342–381.
- [6] I. B. SIMONENKO: Convolution type operators in cones, Matemat. Sbornik 74 (1967), 298–313 (Russian).

Author's address:

Fakultät für Mathematik TU Chemnitz D - 09107 Chemnitz Germany

Marko.Lindner@Mathematik.TU-Chemnitz.de