An Identification of Convolution Operators on Cones

Marko Lindner

September 24, 2003

Abstract

In [6] Simonenko studied properties of convolution type operators on cones in \mathbb{R}^{n}. The purpose of this note is to show that every convolution operator on a suitable cone in \mathbb{R}^{n} or \mathbb{Z}^{n} can be identified with a standard Wiener-Hopf operator, i.e. a convolution operator on \mathbb{R}_{+}^{n} or \mathbb{Z}_{+}^{n}, respectively. We demonstrate this identification and give explicit formulae for the convolution kernels and symbols of these Wiener-Hopf operators.

1 Introduction

To mention only one example, the study of the finite section method

$$
\begin{equation*}
P_{\tau \Omega} A P_{\tau \Omega} u_{\tau}=P_{\tau \Omega} b, \quad \tau \rightarrow \infty \tag{1}
\end{equation*}
$$

for the convolution (type) equation $A u=b$, where $\tau>0, \Omega$ is a polytope in \mathbb{R}^{n} and $P_{\tau \Omega}$ is the operator of multiplication by the characteristic function of $\tau \Omega=\{\tau \omega: \omega \in \Omega\}$, leads to the study of convolution operators on cones (see [2, 3, 4, 5]). Hereby, let C_{1}, \ldots, C_{k} denote the collection of cones in \mathbb{R}^{n} which Ω locally coincides with at its respective vertices v_{1}, \ldots, v_{k}. The operators to be studied in connection with (1) are the compressions of A onto C_{1}, \ldots, C_{k}.

If the cone $C \subset \mathbb{R}^{n}$ has exactly n facets (which is the minimum number for fulldimensional pointed cones), it can clearly be interpreted as an affine-linear deformation of the first orthant $\mathbb{R}_{+}^{n}:=[0, \infty)^{n}$. By means of this deformation, the compression of a convolution operator to C can be identified with the compression of an associated convolution operator to \mathbb{R}_{+}^{n}, which is a standard Wiener-Hopf operator then. We will demonstrate this identification for convolution operators on $L^{p}\left(\mathbb{R}^{n}\right)$ with $1 \leq p \leq \infty$. We will also discuss the discrete case $\ell^{p}\left(\mathbb{Z}^{n}\right)$ which is slightly more sophisticated! Here the convolution operators are so-called Laurent operators, and the Wiener-Hopf operators are also referred to as Toeplitz operators. In both cases, we give a full description of the associated Wiener-Hopf operator.

2 The Function Case

We first discuss the case $L^{p}:=L^{p}\left(\mathbb{R}^{n}\right)$ with $1 \leq p \leq \infty$.

2.1 Convolution Operators

Given a function $k \in L^{1}$, let $F k$ refer to its Fourier transform

$$
(F k)(z)=\int_{\mathbb{R}^{n}} k(x) e^{i(x, z)} d x, \quad z \in \mathbb{R}^{n}
$$

and denote the set of functions $\left\{F k: k \in L^{1}\right\}$ by $F L^{1}$. With every function $a=F k$, one can associate a convolution operator \mathscr{W}_{a} acting on L^{p} by

$$
\left(\dot{W}_{a} u\right)(t):=\int_{\mathbb{R}^{n}} k(t-s) u(s) d s, \quad t \in \mathbb{R}^{n}
$$

and say that the function a is the symbol of the operator W_{a}, while k is referred to as the convolution kernel of W_{a}.

For every bounded and measurable set $U \subset \mathbb{R}^{n}$, let P_{U} denote the operator of multiplication by the characteristic function of U. The operator $P_{U} A P_{U}$ is called compression of an operator A to U. The compression of W_{a} to the first orthant \mathbb{R}_{+}^{n} is referred to as the Wiener-Hopf operator W_{a}.
Remark 2.1 The operators W_{a} and W_{a} are labelled by their symbol a - rather than by their kernel k-because the function a is the most convenient object in order to study their properties, including spectra and essential spectra (see [1], for instance).

2.2 Cones

Given vectors $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$, where a_{1}, \ldots, a_{n} are linearly independent, we denote by $M \in \mathbb{R}^{n \times n}$ the matrix with columns a_{1}, \ldots, a_{n}. Note that M is invertible. Clearly,

$$
\begin{equation*}
C:=a_{0}+\operatorname{cone}\left\{a_{1}, \ldots, a_{n}\right\}=a_{0}+M \mathbb{R}_{+}^{n} \tag{2}
\end{equation*}
$$

is a full-dimensional pointed cone (with vertex a_{0}) with n facets. Conversely, every such cone can be written in the form (2).

As (2) gives a bijection between C and \mathbb{R}_{+}^{n}, we can - in the same manner - construct a linear bijection $T: L^{p}(C) \rightarrow L^{p}\left(\mathbb{R}_{+}^{n}\right)$ by $(T u)(x):=u\left(a_{0}+M x\right), x \in \mathbb{R}_{+}^{n}$.

2.3 Convolutions on Cones

Take some cone C as in (2) and some $k \in L^{1}$. The compression

$$
A:=P_{C} \grave{W}_{a} P_{C} \in L^{p}(C), \quad a=F k
$$

of $\stackrel{\circ}{W}_{a}$ to the cone C can be identified with a Wiener-Hopf operator

$$
\tilde{A}:=P_{\mathbb{R}_{+}^{n}} W_{\tilde{a}} P_{\mathbb{R}_{+}^{n}}=W_{\tilde{a}} \in L^{p}\left(\mathbb{R}_{+}^{n}\right)
$$

via the linear bijection T for some $\tilde{a} \in F L^{1}$. The kernel \tilde{k} and the symbol $\tilde{a}=F \tilde{k}$ of \tilde{A} can be easily calculated from k, a and the matrix M :

Theorem 2.2 $A=T^{-1} \tilde{A} T$, where $\tilde{k}(x)=(\operatorname{det} M) k(M x)$ and $\tilde{a}(z)=a\left(M^{-\top} z\right)$.

Proof. Let $u \in L^{p}(C)$, and write $s, t \in C$ as $a_{0}+M x$ and $a_{0}+M y$, respectively, with $x, y \in \mathbb{R}_{+}^{n}$. Then

$$
\begin{aligned}
(T A u)(y) & =(A u)\left(a_{0}+M y\right) \\
& =(A u)(t) \\
& =\int_{C} k(t-s) u(s) d s \\
& =\int_{\mathbb{R}_{+}^{n}} k\left(\left(a_{0}+M y\right)-\left(a_{0}+M x\right)\right) u\left(a_{0}+M x\right) d\left(a_{0}+M x\right) \\
& =\int_{\mathbb{R}_{+}^{n}}(\operatorname{det} M) k(M(y-x)) u\left(a_{0}+M x\right) d x \\
& =: \int_{\mathbb{R}_{+}^{n}} \tilde{k}(y-x) u\left(a_{0}+M x\right) d x \\
& =(\tilde{A} T u)(y)
\end{aligned}
$$

whence $T A=\tilde{A} T$, i.e. $A=T^{-1} \tilde{A} T$, where the kernel of \tilde{A} is subject to $\tilde{k}(x)=$ ($\operatorname{det} M) k(M x)$ for every $x \in \mathbb{R}^{n}$. It remains to check the connection between a and \tilde{a} :

$$
\begin{aligned}
\tilde{a}(z) & =(F \tilde{k})(z) \\
& =\int_{\mathbb{R}^{n}} \tilde{k}(x) e^{i(x, z)} d x \\
& =\int_{\mathbb{R}^{n}}(\operatorname{det} M) k(M x) e^{i(x, z)} d x \\
& =\int_{\mathbb{R}^{n}} k(t) e^{i\left(M^{-1} t, z\right)} d t \\
& =\int_{\mathbb{R}^{n}} k(t) e^{i\left(t, M^{-\top} z\right)} d t \\
& =(F k)\left(M^{-\top} z\right) \\
& =a\left(M^{-\top} z\right) \boldsymbol{\square}
\end{aligned}
$$

3 The Discrete Case

Now we pass to the case $\ell^{p}:=\ell^{p}\left(\mathbb{Z}^{n}\right)$ with $1 \leq p \leq \infty$. In analogy to the function case, put $\mathbb{Z}_{+}^{n}:=\{0,1,2, \ldots\}^{n}$. Moreover, let \mathbb{T} denote the complex unit circle. Although some details will turn out to be a bit more sophisticated, we will essentially be able to do the same things as in the function case.

3.1 Discrete Convolution Operators

Suppose we are given a sequence $\left(a_{\gamma}\right)_{\gamma \in \mathbb{Z}^{n}}$ of complex numbers. The discrete convolution operator, alias Laurent operator $L(a)$, acts on ℓ^{p} by the rule

$$
(L(a) u)_{\alpha}=\sum_{\beta \in \mathbb{Z}^{n}} a_{\alpha-\beta} u_{\beta}, \quad \alpha \in \mathbb{Z}^{n} .
$$

Its symbol is the function $a: \mathbb{T}^{n} \rightarrow \mathbb{C}$ acting by

$$
a\left(t_{1}, \ldots, t_{n}\right):=\sum_{\gamma \in \mathbb{Z}^{n}} a_{\gamma} t_{1}^{\gamma_{1}} \cdots t_{n}^{\gamma_{n}}, \quad t_{i} \in \mathbb{T}
$$

For brevity, we define $\left(t_{1}, \ldots, t_{n}\right)^{\left(\gamma_{1}, \ldots, \gamma_{n}\right)}:=t_{1}^{\gamma_{1}} \cdots t_{n}^{\gamma_{n}}$, to get $a(t)=\sum_{\gamma \in \mathbb{Z}^{n}} a_{\gamma} t^{\gamma}$, i.e. $\left(a_{\gamma}\right)_{\gamma \in \mathbb{Z}^{n}}$ are the Fourier coefficients of a. The classes of functions a for which $L(a)$ is a bounded linear operator on ℓ^{p} are the so-called multiplicator algebras M^{p} (for instance, see $[1, \S 2.3 f f])$. The compression of $L(a)$ to \mathbb{Z}_{+}^{n} is the discrete Wiener-Hopf operator, alias Toeplitz operator $T(a)$.

3.2 Discrete Cones

For the definition of a discrete cone, we essentially replace \mathbb{R} by \mathbb{Z} in Section 2.2. So we have integer entries in a_{0} and M, and

$$
\begin{equation*}
C_{\mathbb{Z}}:=a_{0}+\operatorname{cone}_{\mathbb{Z}}\left\{a_{1}, \ldots, a_{n}\right\}=a_{0}+M \mathbb{Z}_{+}^{n} \tag{3}
\end{equation*}
$$

We will say that $C_{\mathbb{Z}}$ from (3) is fully occupied, if $C_{\mathbb{Z}}=C \cap \mathbb{Z}^{n}$ with C from (2).

An illustration of the cone C and the discrete cone $C_{\mathbb{Z}}$ for $a_{0}=\binom{-1}{-1}, a_{1}=\binom{1}{0}$ and $a_{2}=\binom{1}{2}$. Note that $C_{\mathbb{Z}}$ is not fully occupied! The parallelogram spanned by a_{1} and a_{2} is too large.

Proposition 3.1 The following conditions are equivalent:
(i) $C_{\mathbb{Z}}$ is fully occupied,
(ii) $M \mathbb{Z}^{n}=\mathbb{Z}^{n}$,
(iii) M^{-1} is an integer matrix,
(iv) $\operatorname{det} M= \pm 1$,
(v) the parallelotope spanned by a_{1}, \ldots, a_{n} has volume 1 .

Proof.
$(i) \Leftrightarrow(i i): \quad$ Since $a_{0} \in \mathbb{Z}^{n},(i)$ is equivalent to

$$
\begin{equation*}
M \mathbb{Z}_{+}^{n}=\left(M \mathbb{R}_{+}^{n}\right) \cap \mathbb{Z}^{n} \tag{4}
\end{equation*}
$$

Set-subtracting (4) from itself, we get

$$
\begin{equation*}
M \mathbb{Z}^{n}=\left(M \mathbb{R}^{n}\right) \cap \mathbb{Z}^{n} \tag{5}
\end{equation*}
$$

On the other hand, (5) implies (4) as we see by taking intersection with $M \mathbb{R}_{+}^{n}$ on both sides of (5). But since M is invertible, we have $M \mathbb{R}^{n}=\mathbb{R}^{n}$, and hence, (5) is the same as (ii).
(ii) $\Rightarrow\left(\right.$ iii) : \quad The (unique) solutions s_{1}, \ldots, s_{n} of $M s_{i}=e_{i}$ (the i-th unit vector) are the columns of M^{-1}. By (ii), these are integer vectors.
$($ iii $) \Rightarrow(i i): \quad$ trivial
$(i i i) \Rightarrow(i v): \quad B y(i i i), \operatorname{det} M^{-1}$ is an integer. But $\operatorname{det} M$ is an integer as well, and since their product is 1 , both have to be +1 or -1 .
$(i v) \Rightarrow(i i i): \quad M^{-1}=(1 / \operatorname{det} M)\left[M_{j i}\right]_{i, j=1}^{n}$ shows that M^{-1} is an integer matrix.
$(i v) \Leftrightarrow(v)$: This is trivial since the volume of this parallelotope is $|\operatorname{det} M|$.
Again, (3) gives a bijection between $C_{\mathbb{Z}}$ and \mathbb{Z}_{+}^{n}. So we will construct a linear bijection $T_{\mathbb{Z}}: \ell^{p}\left(C_{\mathbb{Z}}\right) \rightarrow \ell^{p}\left(\mathbb{Z}_{+}^{n}\right)$ by $\left(T_{\mathbb{Z}} u\right)_{\alpha}:=u_{a_{0}+M \alpha}, \alpha \in \mathbb{Z}_{+}^{n}$.

An illustration of the bijection (3) between the discrete cone $C_{\mathbb{Z}}=\binom{1}{-1}+\operatorname{cone}_{\mathbb{Z}}\left\{\binom{0}{1},\binom{-1}{1}\right\}$ and the discrete quarter plane \mathbb{Z}_{+}^{2}. This identification yields to the bijection $T_{\mathbb{Z}}$ between $\ell^{p}\left(C_{\mathbb{Z}}\right)$ and $\ell^{p}\left(\mathbb{Z}_{+}^{2}\right)$.

3.3 Discrete Convolutions on Discrete Cones

Fix a discrete cone $C_{\mathbb{Z}}$ and a function $a \in M^{p}$ with Fourier coefficients $\left(a_{\gamma}\right)_{\gamma \in \mathbb{Z}^{n}}$. The compression

$$
A:=P_{C_{\mathbb{Z}}} L(a) P_{C_{\mathbb{Z}}}
$$

of $L(a)$ to $C_{\mathbb{Z}}$ corresponds to a Toeplitz operator

$$
\tilde{A}:=P_{\mathbb{Z}_{+}^{n}} L(\tilde{a}) P_{\mathbb{Z}_{+}^{n}}=T(\tilde{a})
$$

via the bijection $T_{\mathbb{Z}}$:

Theorem 3.2 a) $A=T_{\mathbb{Z}}^{-1} \tilde{A} T_{\mathbb{Z}}$, where $\tilde{a}_{\gamma}=a_{M \gamma}$.
b) If $\mathbb{C}_{\mathbb{Z}}$ is fully occupied, then $\tilde{a}(t)=a\left(t^{s_{1}}, \ldots, t^{s_{n}}\right)$, where $\left[\begin{array}{ccc}\mid & & \mid \\ s_{1} & \cdots & s_{n} \\ \mid & & \mid\end{array}\right]=M^{-1}$.

Proof. a) is almost identic to the proof of the first part of Theorem 2.2.
b) By Proposition 3.1, $M \mathbb{Z}^{n}=\mathbb{Z}^{n}$. Then for arbitrary $t \in \mathbb{T}^{n}$,

$$
\begin{aligned}
\tilde{a}(t)=\sum_{\gamma \in \mathbb{Z}^{n}} \tilde{a}_{\gamma} t^{\gamma}=\sum_{\gamma \in \mathbb{Z}^{n}} a_{M \gamma} t^{\gamma} & =\sum_{\delta \in \mathbb{Z}^{n}} a_{\delta} t^{M^{-1} \delta}=\sum_{\delta \in \mathbb{Z}^{n}} a_{\delta} t^{\delta_{1} s_{1}+\ldots+\delta_{n} s_{n}} \\
& =\sum_{\delta \in \mathbb{Z}^{n}} a_{\delta}\left(t^{s_{1}}\right)^{\delta_{1}} \cdots\left(t^{s_{n}}\right)^{\delta_{n}}=a\left(t^{s_{1}}, \ldots, t^{s_{n}}\right) .
\end{aligned}
$$

4 An Example

We will briefly illustrate the results of Theorems 2.2 and 3.2 by an example in the plane, $n=2$. Therefore, let a_{0} be an arbitrary integer vector,

$$
a_{1}=\binom{3}{7} \quad \text { and } \quad a_{2}=\binom{2}{5}
$$

Consequently, $M=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$, $\operatorname{det} M=1$ and $M^{-1}=\left[\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right]$. As in Sections 2.2 and 3.2, put

$$
C:=a_{0}+M \mathbb{R}_{+}^{n} \quad \text { and } \quad C_{\mathbb{Z}}:=a_{0}+M \mathbb{Z}_{+}^{n} .
$$

By Theorem 2.2, the compression of a convolution operator ${ }^{\circ}{ }_{a}$ with kernel $k \in L^{1}$ and symbol $a=F k$ to the cone C can be identified with a Wiener-Hopf operator $W_{\tilde{a}}$ (on the quarter plane) with kernel $\tilde{k} \in L^{1}$ and symbol $\tilde{a}=F \tilde{k}$:

$$
\begin{align*}
& \tilde{k}(x)=\tilde{k}\left(x_{1}, x_{2}\right)=k\left(3 x_{1}+2 x_{2}, 7 x_{1}+5 x_{2}\right), \tag{6}\\
& \tilde{a}(x)=\tilde{a}\left(x_{1}, x_{2}\right)=a\left(5 x_{1}-7 x_{2},-2 x_{1}+3 x_{2}\right) \tag{7}
\end{align*}
$$

By Proposition 3.1, $\mathbb{C}_{\mathbb{Z}}$ is fully occupied. So both parts of Theorem 3.2 are applicable, and the compression of the Laurent operator $L(a)$ with symbol $a \in M^{p}$ and Fourier coefficients $\left(a_{\gamma}\right)_{\gamma \in \mathbb{Z}^{n}}$ to the discrete cone $C_{\mathbb{Z}}$ can be identified with the Toeplitz operator $T(\tilde{a})$ (on the quarter plane) with symbol $\tilde{a} \in M^{p}$ and Fourier coefficients $\left(\tilde{a}_{\gamma}\right)_{\gamma \in \mathbb{Z}^{n}}$:

$$
\begin{align*}
\tilde{a}_{\gamma} & =\tilde{a}_{\left(\gamma_{1}, \gamma_{2}\right)}=a_{\left(3 \gamma_{1}+2 \gamma_{2}, 7 \gamma_{1}+5 \gamma_{2}\right)}, \tag{8}\\
\tilde{a}(t) & =\tilde{a}(u, v)=a\left(u^{5} v^{-7}, u^{-2} v^{3}\right) \tag{9}
\end{align*}
$$

Note the incidence between (6) and (8), and that between (7) and (9).

References

[1] A. Böttcher and B. Silbermann: Analysis of Toeplitz Operators, AkademieVerlag, Berlin, 1989 and Springer Verlag, Berlin, Heidelberg, New York 1990.
[2] R. Hagen, S. Roch and B. Silbermann: Spectral Theory of Approximation Methods for Convolution Equations, Birkhäuser Verlag, Basel, Boston, Berlin 1995.
[3] A. V. Kozak: Projection methods for the solution of multidimensional equations of convolution type, Cand. Dissert., Rostov-on-Don, 1974.
[4] V. S. Rabinovich, S. Roch and B. Silbermann: Fredholm Theory and Finite Section Method for Band-dominated operators, Integral Equations Operator Theory 30 (1998), no. 4, 452-495.
[5] V. S. Rabinovich, S. Roch and B. Silbermann: Band-dominated operators with operator-valued coefficients, their Fredholm properties and finite sections, Integral Equations Operator Theory 40 (2001), no. 3, 342-381.
[6] I. B. Simonenko: Convolution type operators in cones, Matemat. Sbornik 74 (1967), 298-313 (Russian).

Author's address:

Fakultät für Mathematik
TU Chemnitz
D - 09107 Chemnitz
Marko.Lindner@Mathematik.TU-Chemnitz.de Germany

