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ABSTRACT. In [6] Simonenko studied properties of convolution type operators on cones
in Rn. The purpose of this note is to show that every convolution operator on a suit-
able cone in Rn or Zn can be identified with a standard Wiener-Hopf operator, i.e.
a convolution operator on Rn

+ or Zn
+, respectively. We demonstrate this identification

and give explicit formulae for the convolution kernels and symbols of these Wiener-Hopf
operators.

1 Introduction

To mention only one example, the study of the finite section method

PτΩAPτΩ uτ = PτΩ b, τ →∞ (1)

for the convolution (type) equation Au = b, where τ > 0, Ω is a polytope in Rn and PτΩ

is the operator of multiplication by the characteristic function of τΩ = {τω : ω ∈ Ω},
leads to the study of convolution operators on cones (see [2, 3, 4, 5]). Hereby, let
C1, ..., Ck denote the collection of cones in Rn which Ω locally coincides with at its
respective vertices v1, ..., vk. The operators to be studied in connection with (1) are
the compressions of A onto C1, ..., Ck.

If the cone C ⊂ Rn has exactly n facets (which is the minimum number for full-
dimensional pointed cones), it can clearly be interpreted as an affine-linear deformation
of the first orthant Rn

+ := [0,∞)n. By means of this deformation, the compression of
a convolution operator to C can be identified with the compression of an associated
convolution operator to Rn

+, which is a standard Wiener-Hopf operator then. We will
demonstrate this identification for convolution operators on Lp(Rn) with 1 ≤ p ≤ ∞.
We will also discuss the discrete case `p(Zn) which is slightly more sophisticated! Here
the convolution operators are so-called Laurent operators, and the Wiener-Hopf opera-
tors are also referred to as Toeplitz operators. In both cases, we give a full description
of the associated Wiener-Hopf operator.

2 The Function Case

We first discuss the case Lp := Lp(Rn) with 1 ≤ p ≤ ∞.
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2.1 Convolution Operators

Given a function k ∈ L1, let Fk refer to its Fourier transform(
Fk

)
(z) =

∫
Rn

k(x) ei(x,z) dx, z ∈ Rn,

and denote the set of functions {Fk : k ∈ L1} by FL1. With every function a = Fk,
one can associate a convolution operator W̊a acting on Lp by(

W̊au
)
(t) :=

∫
Rn

k(t− s)u(s) ds, t ∈ Rn,

and say that the function a is the symbol of the operator W̊a, while k is referred to as
the convolution kernel of W̊a.

For every bounded and measurable set U ⊂ Rn, let PU denote the operator of
multiplication by the characteristic function of U . The operator PUAPU is called
compression of an operator A to U . The compression of W̊a to the first orthant Rn

+ is
referred to as the Wiener-Hopf operator Wa.

Remark 2.1 The operators W̊a and Wa are labelled by their symbol a – rather than
by their kernel k – because the function a is the most convenient object in order to
study their properties, including spectra and essential spectra (see [1], for instance).

2.2 Cones

Given vectors a0, a1, ..., an ∈ Rn, where a1, ..., an are linearly independent, we denote
by M ∈ Rn×n the matrix with columns a1, ..., an. Note that M is invertible. Clearly,

C := a0 + cone{a1, ..., an} = a0 + MRn
+ (2)

is a full-dimensional pointed cone (with vertex a0) with n facets. Conversely, every
such cone can be written in the form (2).

As (2) gives a bijection between C and Rn
+, we can – in the same manner – construct

a linear bijection T : Lp(C) → Lp(Rn
+) by (Tu)(x) := u(a0 + Mx), x ∈ Rn

+.

2.3 Convolutions on Cones

Take some cone C as in (2) and some k ∈ L1. The compression

A := PCW̊aPC ∈ Lp(C), a = Fk

of W̊a to the cone C can be identified with a Wiener-Hopf operator

Ã := PRn
+
W̊ãPRn

+
= Wã ∈ Lp(Rn

+)

via the linear bijection T for some ã ∈ FL1. The kernel k̃ and the symbol ã = F k̃ of
Ã can be easily calculated from k, a and the matrix M :
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Theorem 2.2 A = T−1ÃT , where k̃(x) = (det M) k(Mx) and ã(z) = a(M−>z).

Lp(Rn
+) Lp(Rn

+)-Ã

Lp(C) Lp(C)-A

?

T
6

T−1

Proof. Let u ∈ Lp(C), and write s, t ∈ C as a0 + Mx and a0 + My, respectively, with
x, y ∈ Rn

+. Then(
TAu

)
(y) =

(
Au

)
(a0 + My)

=
(
Au

)
(t)

=

∫
C

k(t− s) u(s) ds

=

∫
Rn

+

k((a0 + My)− (a0 + Mx)) u(a0 + Mx) d(a0 + Mx)

=

∫
Rn

+

(det M) k(M(y − x)) u(a0 + Mx) dx

=:

∫
Rn

+

k̃(y − x) u(a0 + Mx) dx

=
(
ÃTu

)
(y),

whence TA = ÃT , i.e. A = T−1ÃT , where the kernel of Ã is subject to k̃(x) =
(det M) k(Mx) for every x ∈ Rn. It remains to check the connection between a and ã:

ã(z) =
(
F k̃

)
(z)

=

∫
Rn

k̃(x) ei(x,z) dx

=

∫
Rn

(det M) k(Mx) ei(x,z) dx

=

∫
Rn

k(t) ei(M−1t,z) dt

=

∫
Rn

k(t) ei(t,M−>z) dt

=
(
Fk

)
(M−>z)

= a(M−>z)
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3 The Discrete Case

Now we pass to the case `p := `p(Zn) with 1 ≤ p ≤ ∞. In analogy to the function case,
put Zn

+ := {0, 1, 2, ...}n. Moreover, let T denote the complex unit circle. Although
some details will turn out to be a bit more sophisticated, we will essentially be able to
do the same things as in the function case.

3.1 Discrete Convolution Operators

Suppose we are given a sequence (aγ)γ∈Zn of complex numbers. The discrete convolu-
tion operator, alias Laurent operator L(a), acts on `p by the rule(

L(a)u
)

α
=

∑
β∈Zn

aα−β uβ, α ∈ Zn.

Its symbol is the function a : Tn → C acting by

a(t1, ..., tn) :=
∑
γ∈Zn

aγ tγ1

1 · · · tγn
n , ti ∈ T.

For brevity, we define (t1, ..., tn)(γ1,...,γn) := tγ1

1 · · · tγn
n , to get a(t) =

∑
γ∈Zn aγ tγ, i.e.

(aγ)γ∈Zn are the Fourier coefficients of a. The classes of functions a for which L(a) is a
bounded linear operator on `p are the so-called multiplicator algebras Mp (for instance,
see [1, §2.3ff]). The compression of L(a) to Zn

+ is the discrete Wiener-Hopf operator,
alias Toeplitz operator T (a).

3.2 Discrete Cones

For the definition of a discrete cone, we essentially replace R by Z in Section 2.2. So
we have integer entries in a0 and M , and

CZ := a0 + coneZ{a1, ..., an} = a0 + MZn
+. (3)

We will say that CZ from (3) is fully occupied, if CZ = C ∩ Zn with C from (2).

-
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An illustration of the cone C and the discrete cone CZ for a0 =
(−1
−1

)
, a1 =

(
1
0

)
and a2 =

(
1
2

)
. Note

that CZ is not fully occupied! The parallelogram spanned by a1 and a2 is too large.
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Proposition 3.1 The following conditions are equivalent:

(i) CZ is fully occupied,
(ii) MZn = Zn,
(iii) M−1 is an integer matrix,
(iv) det M = ±1,
(v) the parallelotope spanned by a1, ..., an has volume 1.

Proof.
(i) ⇔ (ii): Since a0 ∈ Zn, (i) is equivalent to

MZn
+ = (MRn

+) ∩ Zn. (4)

Set-subtracting (4) from itself, we get

MZn = (MRn) ∩ Zn. (5)

On the other hand, (5) implies (4) as we see by taking intersection
with MRn

+ on both sides of (5). But since M is invertible, we have
MRn = Rn, and hence, (5) is the same as (ii).

(ii) ⇒ (iii): The (unique) solutions s1, ..., sn of Msi = ei (the i-th unit vector) are
the columns of M−1. By (ii), these are integer vectors.

(iii) ⇒ (ii): trivial

(iii) ⇒ (iv): By (iii), det M−1 is an integer. But det M is an integer as well, and
since their product is 1, both have to be +1 or −1.

(iv) ⇒ (iii): M−1 = (1/ det M)[Mji]
n
i,j=1 shows that M−1 is an integer matrix.

(iv) ⇔ (v): This is trivial since the volume of this parallelotope is | det M |.
Again, (3) gives a bijection between CZ and Zn

+. So we will construct a linear
bijection TZ : `p(CZ) → `p(Zn

+) by (TZu)α := ua0+Mα, α ∈ Zn
+.

-

6

@
@

@
@

@
@

@
@

@
@

@
@

`
``
```
````
`````

a
aa
aaa
aaaa
aaaaa

A

B

C

D

E

F

G

H

IJ

⇐==⇒
(3)

TZ

-

6

` ` ` `
` ` ` `
` ` ` `
` ` ` `

a a a a
a a a a
a a a a
a a a a

A B C D

E F G

H I

J

An illustration of the bijection (3) between the discrete cone CZ =
(

1
−1

)
+ coneZ

{(
0
1

)
,
(−1

1

)}
and the

discrete quarter plane Z2
+. This identification yields to the bijection TZ between `p(CZ) and `p(Z2

+).
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3.3 Discrete Convolutions on Discrete Cones

Fix a discrete cone CZ and a function a ∈ Mp with Fourier coefficients (aγ)γ∈Zn . The
compression

A := PCZL(a)PCZ

of L(a) to CZ corresponds to a Toeplitz operator

Ã := PZn
+
L(ã)PZn

+
= T (ã)

via the bijection TZ:

Theorem 3.2 a) A = T−1
Z ÃTZ, where ãγ = aMγ.

b) If CZ is fully occupied, then ã(t) = a(ts1 , ..., tsn), where

 | |
s1 · · · sn

| |

 = M−1.

Proof. a) is almost identic to the proof of the first part of Theorem 2.2.

b) By Proposition 3.1, MZn = Zn. Then for arbitrary t ∈ Tn,

ã(t) =
∑
γ∈Zn

ãγ tγ =
∑
γ∈Zn

aMγ tγ =
∑
δ∈Zn

aδ tM
−1δ =

∑
δ∈Zn

aδ tδ1s1+...+δnsn

=
∑
δ∈Zn

aδ (ts1)δ1 · · · (tsn)δn = a(ts1 , ..., tsn).

4 An Example

We will briefly illustrate the results of Theorems 2.2 and 3.2 by an example in the
plane, n = 2. Therefore, let a0 be an arbitrary integer vector,

a1 =

(
3

7

)
and a2 =

(
2

5

)
.

Consequently, M =

[
3 2
7 5

]
, det M = 1 and M−1 =

[
5 −2
−7 3

]
. As in Sections 2.2

and 3.2, put
C := a0 + MRn

+ and CZ := a0 + MZn
+.

By Theorem 2.2, the compression of a convolution operator W̊a with kernel k ∈ L1 and
symbol a = Fk to the cone C can be identified with a Wiener-Hopf operator Wã (on
the quarter plane) with kernel k̃ ∈ L1 and symbol ã = F k̃:

k̃(x) = k̃(x1, x2) = k(3x1 + 2x2 , 7x1 + 5x2), (6)

ã(x) = ã(x1, x2) = a(5x1 − 7x2 , −2x1 + 3x2) (7)
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By Proposition 3.1, CZ is fully occupied. So both parts of Theorem 3.2 are ap-
plicable, and the compression of the Laurent operator L(a) with symbol a ∈ Mp and
Fourier coefficients (aγ)γ∈Zn to the discrete cone CZ can be identified with the Toeplitz
operator T (ã) (on the quarter plane) with symbol ã ∈ Mp and Fourier coefficients
(ãγ)γ∈Zn :

ãγ = ã(γ1,γ2) = a(3γ1+2γ2 , 7γ1+5γ2), (8)

ã(t) = ã(u, v) = a(u5v−7 , u−2v3) (9)

Note the incidence between (6) and (8), and that between (7) and (9).
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[1] A. Böttcher and B. Silbermann: Analysis of Toeplitz Operators, Akademie-
Verlag, Berlin, 1989 and Springer Verlag, Berlin, Heidelberg, New York 1990.

[2] R. Hagen, S. Roch and B. Silbermann: Spectral Theory of Approxima-
tion Methods for Convolution Equations, Birkhäuser Verlag, Basel, Boston, Berlin
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