TECHNISCHE UNIVERSITAT
CHEMNITZ

Acceleration of the Level Method by
Exploiting Recurrent Subgradients in

Linear Programming Decomposition

T. Unger

Preprint 02-1

Fakultat far Mathematik

Acceleration of the Level Method
by Exploiting Recurrent Subgradients

in Linear Programming Decomposition

Thomas Unger!

Abstract

The level method is a special variant of the well-known cutting plane methods for
solving nonsmooth convex optimization problems. It proved to be competitive with
other methods in nonsmooth optimization.

It has been observed that during the solving process these methods compute cutting
planes which are (nearly) parallel to each other. In this paper we investigate what
effects appear together with this observation and how they may be exploited to speed
up the level method algorithm for some classes of problems.

MSC: 90C25, 65K05, 90C05.

Keywords: nonsmooth programming, cutting plane methods, level method, piecewise
linear functions.

1 Motivation

We describe a way to accelerate the performance of the level method applied to minimize
the marginal function of a decomposed (large) linear program. The problem to be solved
shall be given as
(¢,2) + (d,) — min
Az +By=f (1)
z,y > 0.
We suppose that (1) is solvable. Let 4* denote the y-part of an optimal solution; furthermore,
lebu>0suchthat y* €Y :={y:0<y; <u Vi}.

Primal decomposition generates the convex marginal function

e(y) = (d,y) + inf{(c,z) : Av = f — By,z > 0}. 2)

1Faculty of Mathematics, TU Chemnitz, 09107 Chemnitz, Germany;
thomas.unger@mathematik.tu-chemnitz.de

It is well-known that the substitute

- mi 3
{w(y) min (3)
is equivalent to (1).

The level method [4], as any other cutting plane method, generates a sequence vy, ...,k

of feasible iterates and uses the respective data, i.e. functionvalues and subgradients, to
construct a new point yxy; at the k& + 1-st iteration.

A so-called oracle serves for computing functionvalues and subgradients. Let y € Y be fixed.
Then, by duality theory it holds

e(y) = (d,y) + sup{(f — By,z) : A7z < c}. (4)

Suppose the oracle uses a simplex method to solve the inner program. Let z*(y) denote the
optimal basic solution. Thus,

p(y) = (d,y) + (f — By, 2" (y))
and
g(y) :=d — B"2*(y) € 0p(y).

Obviously, the feasible set of the inner program (in its dual representation) is independent
of the current value of y; thus, it has only a finite number of extreme points z*. Hence,
the oracle may deliver only a finite number of distinct subgradients d — B"2*. That means,
some of them must repeat at different iterations. We will show next what consequences
are connected with that and how these can be exploited to improve the performance of the
algorithm. Let us briefly give the main steps of the level method in its traditional way.

2 Algorithm of the Level Method

Suppose the iterates y;,...,y, € Y and their data ¢(y1),...,o(y) and g(v1), ..., 9(ye)
already computed. Let A € (0,1) denote the level-parameter. The k + 1-st iteration is as
follows:

Algorithm: Level Method
Step 1: Determine the functionvalue-record

P = @ignk{*”(i‘/i)} = min{p;_y, (v }-

Step 2: Compute

— i 1 . . —u) — *
Ay = Efglf/l {213532 {”9(1}1’)” (Qo(yz) + (g(yz)a Y yz> Sok)} .

If Ay = 0 stop.

Step 3: Compute yx41 as projection of y onto the relaxed level set
Yi(A) = {y t ax { o (P) + (9(wi), v — wi) — 0}) < —/\Ak}} ny.

2

Step 4: Request ¢(yk41) and g(yet1) € Op(yr11) from the oracle.
Set k = k + 1; return to Step 1.

Remarks: 1. Due to normalizing the cutting planes, not the function ¢(y) itself is approx-
imated but its level sets

Y, = {y : 112%)2{90(%) + {9,y —) < wz}}.

So, this version is sometimes referred to as level set method instead of level method.

2. By construction, Ay is the radius of the largest ball that is contained in Y; and has center
inY.

3. Ay is the optimal value of the linear program

t — max
t#y

(9() vi —v) — () +or > tllg(ws)|| Vi=1,....,k (5)
yey

whereas computation of yj;; consists in solving the quadratic program

1y = yxll* — min
(9W), v — y) — o(ws) + 0 > AAillg(w)|] Vi=1,....k (6)
yeY.

4. If A =1, the level method merges into the well-known Kelley cutting plane method [1]
which is in case of linear programming decomposition finite but of exponential order. The
level method finds an e-optimal solution with polynomial complexity [4] and proved better
in various tests [3].)

3 Recurrent Subgradients

Since in general we may not expect finite termination of the algorithm (i.e., it generates
an infinite sequence yy,yo, ... of iterates), and due to the fact that the oracle may deliver
only a finite number of distinct subgradients, it will occur that they repeat. Throughout
this section we suppose that z*(y;,) = 2*(y;,) := 2z* whereat i, > 4;. Hence, oly,) =
<d’ yi1> + <f - Byiu Z*>7 Qo(yiz) = <da yi2> + <f - Byi27z*>7 and g(yil) = g(yiz) =d- Bz
Consequently, in the linear program for computing A;,+1 we have for i = i; as well as for
1 = 15 the constraint

tld—Bz"| < {g(wi), v —v) — o(%:) + &},
= (d=B"2"yi —y) — (d,us) — (f ~ By, 2*) + ¢}, (7)
= (B2" —d,y) = (f,7") + ¢},
i.e. two identical constraints. Therefore, it is sensible to use this cognition for a possible

improvement of the algorithm. The next observation motivates the changes to be considered
in a refined method.

Lemma 1: It holds ¢}, < ¢} | — A, _1||B72* —d|.

Proof: Since y;, is optimal in

cY
(9, i —) — o) + 95,1 = My allg(ws)|] Vi<iz—1,

due to (7) it holds for i = ¢;

{ Iy = gt = mip

(B2 —d,yi,) — (f,2") + i1 2 My 1||B72" —]
This leads to

902(2—1 - (P(yiz) >)‘Aiz—lllBTz* - d” + <f7 z*> - <BTZ* —d, yiz) - <dv yi2> - <f - Byizvz*>
— My, _1||B72* — d|| > 0.

Consequently, ¢(yi,) < i, 1 — ADi,1||B72" — d|| < ¢, 1 and ¢, = (ys,)- O

Thus, a repeated subgradient belongs to a reduction in the functionvalue-record which is of
the magnitude of the current optimality measure A.

Lemma 2: It holds

By B —dl
i2-1 max [lg(ys)ll

Proof: By definition of A;,, there exists ¥ € Y such that the ball Ba,, (9) centered in g with
radius A;, satisfies

Ba, () C{y: (9w, vi —y) —p(yi) + 7, 20 Vi},

ie,Vr:|r|| <1 it holds

(i), i — (T + Ayr)) —o(yi) + 5, >0 Vi <, (8)

which yields
(9(ve),yi — 9) — o(ys) + 95, = Agllg(wa)ll Vi <o
Then, for all 4 < 45 — 1 it holds due to Lemma 1 and (8)

(9, i —y) — (W) + 95,1 > Apllg(ya) || + ALy 1| B"2" — d| + (9(v:), T — v)-

Thus, if ||y — g|| < A;, +)‘Aiz—lJnJlfxfz—ﬁg_(zum’ then Cauchy-Schwarz-inequality yields
i<ig—1

(9W:), v — v) — o(ys) + 5,1 =0,

ie., the set {y : (g(v:), i —y) — (¥:) + ¢}, > 0} contains the ball with center § and radius
A, +)\Ai2_1u However, since A;,_; is the radius of the largest ball contained in

1.;?233_(1“9(%)“'
this set with center in Y it follows A;,_; > A;, +)\Ah_l% which is equivalent to
i<ig—1

A, < (1 — ,\M) Agy_1.

(e [lg(yi)ll

This section should be closed with a note on the number N of possible distinct subgradients.
In the first section it has been mentioned that this number is bounded by the number of
extremal points of the polyedral set {2z : A"z < ¢}. Assuming that A7 € R+IX7 g
immediately get N < (m;:ﬁ .

However, the main concept for dealing with primal decomposition is that the decomposed
program splits into a series of independent programs. Assuming that A is blockdiagonal,
ie. A=diag (A, As,..., Ak), we have to consider

K
ply) ={d.y) + 3 int{(c", 2*) : Apah = (f - By)*, 2 > 0} 9)
resp. its dual representation
& k Lk k< Kk
ply) = (d,y) + & sup{((f = Bu)t,) Afsh <). (10)
Thus, a subgradient is obtained through
& k
9(y) :=d— ¥ BTz"(y).

Hence, two subgradients g(y;,) and g(y;,) equal each other only in case that in all K sub-
programs identical basises are optimal at y;, and Yi, -

At first glance, it seems that the number of different subgradients is increasing through
decomposition, yet actually it decreases since the number of linear independent rows in a
blockdiagonal matrix is not greater than in a general matrix of the same size.

For simplicity, we assume that all blocks A, are of the same size: A} € Rm+m)xn, Hence,
the ratio of the number of possible basises in the decomposed version to the one with full

matrix is

m4n\ K

(K(Z?m)) <L
We continue with an investigation regarding the effects of subgradients recurrance.

4 Longer Steps

Suppose again that z* is optimal in sup{(f — By, z) 1 A7z < ¢} for y = y;, as well as for
Y = Yi,- ‘
Lemma 3: ¢ is linear on [y;,, y;,] = {(1 — p)ys, + pys, = p € [0, 1]}
Proof: By the assumption, there exist z;, and z;, such that for ¢ = ¢y, i, it holds
Az; = f — By;
A"z < ¢
(x;, A7z — ¢) = 0.
For any p € [0, 1] obviously it is
A = p)zi, + pzi,) = £ — B((1 - w)wi, + pyi,)
(1 = wzi, + prs, > 0
ATz < ¢
<(1 - N)$z1 + UZiy, AT2* — C> =0

3

and by linear programming theory 2* is an optimal solution of (4) for y = (1 — p)y;, + uy;,.
Hence, p(y) = (d,y) +(f — By,2") = (d — B"z*,y) + (f, 2*) for all y € [, ys,). O

Because of p(y;,) > o7 > ¢}, _; > ¢} it holds (d — B"2*,y;, — y;,) < 0, i.e. the directional

derivative ¢'(y;,; ¥, — vi,) is negative. Since the level method suggests a search in this

direction, too (remember i > 4;), it seems sensible to take a longer step as far as the

functionvalue decreases. Hence, we aim to solve the one-dimensional search problem

{ ()5(3) = Qo(yiz + s(yh - yu)) - msin (11)
Yin +5(Yi, —y) €Y.

Due to our assumption the inequality ¢(y;,) < @(y;,) is valid; furthermore, ¢ and henceforth
@ are convex functions. Since ¢&'(0;1) = ¢'(yi,; ¥i, —¥;,) < 0 and Y is compact, the minimal
value of (11) is attained at some s* > 0. We describe a method to find this minimum by
use of a simplex method.

For fixed y let 8 denote the optimal basis in

sup{(f — By,2) : A72 < ¢} = inf{{c,z) : Az = f — By,z > 0}.

By LP-theory, g is optimal for all ¥ which it is primal and dual feasible for. The solutions
connected to 8 are 25 = (A}) 'cg and x5 = AZ(f — By), % = 0, where Az denotes the
matrix consisting of the columns of A belonging to /3 resp. z5 the components of z belonging
to B, and B¢ denotes the complement of j3.

Now consider y = y;, +5(y;, —1;,) where 8 denotes the optimal basis for y = ;, and y = Yiy-
Then, 3 is dual feasible for all s € IR and primal feasible for all s satisfying

zﬁ(s) = Aﬁ_l(f - B(yi2 +S(yi2 - yil)) = Aﬂ_l(f - Byiz) - SA,ng(yiz - yil) > 07

that means for

—1,p .)
s<sg = min{ﬁél(—fM : (Ang(yiz = ¥i))j > 0}

(A5 Blyi—v:1));

" ((431)i.S~Byiy) -1y . o
- mm{((Agln,B(y,-z—yil)) (A5 Blyia = wa)) > 0}‘

Let sy = max{s > 0 : y;, + s(3i;, — %;,) € Y} < oo. Then, f is optimal for (at least)
s € [-1, min{sg, sy }|.

If min{sg, sy} = sy then we replace y;, by yi, + sy (vi, — ¥i,). Otherwise, z3(s3) is primal
degenerated, hence there is another basis optimal at y;, + s3(y;, — v;,). Let # denote any
such basis. Then the directional derivative of ¢ is given by

¢'(s5;1) = 9'(yin + 8p(Ys — Yir)s Yi — ¥ir) = (d — B"(A5) "cs, i, — i)

If 3'(sp;1) < 0 we do the same considerations as above. This scheme is continued until we
find s* = sz such that ¢'(sz;1) > 0 or s* = sy springs into action. The final s* realizes
rsn>i£1{<f0'(s) Y, +8(Yi, — ¥1,) € Y}. Replacing yi, by vi, + s*(vi, — ¥;,) we start the next
iteration of the level method.

Although this one-dimensional minimization may end at some basis which was optimal
in a preceding iteration we do not suggest to do the same scheme again since the overall
algorithm, namely the level method, gave no hint for doing that (besides, this strategy would
degenerate to Kelley’s method).

5 The Conceptual Refined Algorithm

In this section we describe the new features of a refined level method version which makes
use of the considerations above. Again, we suppose that for i = 1,...,k the data vi, 0(¥s),
g(y;) are known. In addition, let B; denote some basis optimal in (2) for y = y;.

In the algorithm of Section 2, Steps 3 and 4 are replaced by

Step 3’: Compute § as projection of vyk onto the relaxed level set

Yie(A) = {y : max { Tt (e (w:) + {a(w),y — w) — ¢}) < _)‘Ak}} ny.

Step 4’ Request (), g(7) € dp(§), and B(§) optimal in (2) for y = § from the oracle.
Compare f(5) with B, o1, - ., By.
If 5(@) ¢ {ﬁk’ﬂk—lv ey /Bl}a set Ye+1 = g
Else, i.e. if B(§) = B; for some j € {k,...,1}, compute the optimal solution s* of
p+s-v) = gHatims)ey’
set yxr1 =9+ 8*(§ — ;).
Recall the oracle to gather ¢(yk+1), 9(¥rt1), Bes1-
Set k = k + 1 and return to Step 1.

It should be added that the technique described in Section 4 computes not only the optimal
value s* but all values (if any) at which the optimal basis of (2) changes along the ray
§+ s(§ — y;)- If at these kinks the oracle is accessorily called, the additional data may be
used to further improve the approximation of Y*.

6 Further Applications

Note that the objective function introduced by (2) is a piecewise linear function, and the con-
siderations concerning longer steps — and consequently an acceleration of the level method —
rely only on this piecewise linearity. Hence, the same target may be pursued if the primary
problem consists in minimizing a piecewise linear convex function, which may be expressed
as a finite max-function. Thus, all statements are transferable to

{ ply) = max {(a,,y) + by} — min (12)

yeY ={yeR™: —u<y<u}.

Subgradients of ¢ are the vectors a, (and in case that at some point y the max in (12) is at-
tained at several indices py, . .., p,, the subdifferential is the convex hull conv {ap, - ap,})-
However, there is only a finite number of extremal subgradients, namely ay,...,a; and re-
currance is inevitable.

In our method, Step 4’ of the foregoing section has to be replaced by

Step 47: Request ¢(3) and the active index p for y = § from the oracle.
Compare p with pg, pp_1,...,p1.
Ifﬁ g {pkvpk—b e 7p1}a set Ye+1 = Q
Else, i.e. if p = p; for some j € {k,...,1}, compute the optimal solution s* of

. 0= 1)) = min 3
(9 + s(9— y;)) 50, g+s(1ﬁ-yf)ey

set Yer1 = G+ s*(§ — y;).
Recall the oracle to gather ¢(yg41), Pes1.
Set k =k +1 and return to Step 1.

In the following we describe how the main cause for a possible acceleration, namely sub-
gradient recurrance, may be exploited even in nonlinear cases, i.e. for a general convex
function ¢. In this case, we may not expect exact repeating of some previously computed
subgradient. However, it may happen that for a pair of indices i; < 12 and some small € > 0
it holds

l9(yii) = 9(uin)ll <e.
We will give a sufficient condition on the value of ¢ such that again ¢}, < or .

By construction, y;, is optimal in
— 2 i
{ Iy = via-al? = min
(90, y: = 9) = oY) + 0h,_y > My, illg(ws)] Vi <ip— 1.

Particularly, for ¢ = 4; it holds

<g(yi1)a Yi, — yi2> - ()O(yi1) + 90:'(2—1 > ’\Aiz—lllg(yil)”a

which together with the subgradient inequality

So(yh) > 90(%‘2) + <(P(yi2), Yiy — yi2>

leads to
Pi1 — 9(¥) 2 Miallg(u)ll + (9(vi) — 9(us,), vi, — Yia)

2 M, llgwi)ll = Nlgws) — 9(wi) | llws, — v, |-

This difference is positive (and hence wi, < i) if ——z—l-hng(y"ig();ggﬁi i < %Ai2_1 where D denotes
i1
the diameter of Y.

Summarizing, if two subgradients are close to each other (compared to the size of the
diameter A of the current approximation of the localization set), then the latest trial point
is the best and again, a longer step in the direction given by these two trial points may
cause a further decrease in the functionvalue record.

However, in contrast to the linear case, computation of an optimal steplength requires
much more expenditure. A longer step (with a steplength suitably chosen) is therefore
recommended mainly to gather more information. After all, even detecting the recurrance
of a similarly computed subgradient requires more effort than in the linear case.

7 Computational Results

The above described longstep version of the level method has been tested for max-functions
like given in (12) against the traditional level method described above. We solved series of
50 randomly generated problems each for different values of m (dimension of the variable Y)
and ! (number of linear functions contributing to (12)).

The first table gives the average number of iterations needed to end in A < 107° in the
original method (first row) resp. in the longstep version (second row, slanted):

m 10 20 40
l

10 26.36 | 25.86 | 27.32
15.46 | 17.78 | 17.40

20 31.40 | 32.48 | 33.88
26.56 | 26.50 | 28.92

40 36.92 | 51.42 | 49.40
35.74 | 43.12 | 49.06

Number of Iterations: Original Level Method vs. Longstep Level Method

The next table gives the computing time for each series of 50 test instances in minutes:

m 10 20 40

l
10 2:20) 4:12 | 10:53
1:06 | 2:10 | 6:20
20 3:02 | 5:30 | 13:27
2:15 | 3:49| 9:13
40 3:27 [10:22 | 20:20
3:02 | 8:40 | 18:50

Computation Time: Original Level Method vs. Longstep Level Method

The last table summarizes the percentage of number of iterations (first row; slanted) resp.

computation time (second row: boldface) of the longstep version compared to the original
version:

m 10 20 40

l :
10 58.6 | 68.8| 63.7
47.1 | 51.6 | 58.2
20 84.6 | 81.6 | 85.4
74.2 | 69.4 | 68.5
40 96.8 | 83.9| 99.3
87.9 | 83.6 | 92.6

Percentage of average number of iterations resp. computation time in the longstep version
(original version =100%)

The results confirm that on average the longstep version beats the original one. The advan-
tage is especially significant the smaller the ratio % This seems to be natural since small
values of [mean fewer different subgradients; hence, the effects of recurrent subgradients are
stronger in these cases. For m = [, there is nearly no difference between the two versions. In
these instances, there were nearly no recurrent subgradients observed. The few ones taken
resulted mainly in very small stepsizes.

In the foregoing investigations we considered the minimization of convex piecewise-linear
functions, hence, determination of functionvalues resp. subgradients consumed compared to
computing the optimality gap A resp. a new trial point § just a small part of the computation

time. It could be expected that in case of linear programming decomposition the comparison
concerning computation time is even more distinct in favour of the longstep version.

Computation time could in both versions be reduced through a strategy of selection or
aggregation of cuts as described in [2]. However, this was not part of our considerations.

Another aspect should be mentioned. As was said above, we used an optimality gap of 10~°
as stopping criterion. Most of the longstep test problems however ended in a gap of 10712
to 10724 which was caused by a last longstep. This gives reason to the assumption that the
final iteration computes actually the minimal point (i.e., a Kelley step is taken at the end).

Literature

[1] J.E. Kelley: The cutting-plane method for solving convex programs; J. Soc. Ind. Appl.
Math. 8 (1961); pp. 703-712.

[2] K. Kiwiel: Proximal level bundle methods for convex nondifferentiable optimization,
saddle-point problems and variational inequalities; Math. Program. 69 (1995); pp. 89-109

[3] C. Lemaréchal: Numerical experiments in nonsmooth optimization; ITASA Collab. Proc.
Ser. CP-82-S8 (1982), pp. 61-84.

(4] C. Lemaréchal, A. Nemirovskii, Y. Nesterov: New Variants of Bundle Methods; Math.
Program. 69 (1995); pp. 111-147.

10

