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Abstract

In this paper a random Sturm-boundary-value problem is considered. Thereby,

the random coefficients belo1g to the class of weakly correlated functions, which can
be chatacterized as functions ” without distance effect”.
There exist various solution methods for this problem in the literature. The aim is to
compare these methods and to examine their compatibility. For that, it is useful to
consider limit theorems for i1itegral functionals of the derivatives of weakly correlated
functions.



1 Introduction

Let us consider the random bbundary value problem
Lw)u = g(z,w) (1)
Uilu) = 0, i=1,2,...,2n. 0<z<l1,

where the operator L(w) is given by

1=0
and U; by
2n—1
Uilul = Y (aiju<f)(0)+/3,»ju(f)(1)) =0, i=12,...2n.
=0

4
Let (-, -) denote the scalar product of L,(0,1). The (non-random) boundary conditions
Ui (i=1,2,...,2n) have to be constituted so that

(L(w)u,v) = Zn:/()l(—l)i [fi(m,u;)u(")](i) vdz
i=0

n 1 N
= Z/u fi(z,w)uDol) dz (2)
i=0

is fulfilled for all functions u,v which possess 2n contir uous derivatives and satisfy the
boundary conditions. In that case L(w) is symmetric relative to these permissible func-
tions.

voM ScHEIDT [1} and Bovce, Xia [2] described solut‘on methods for special cases of
problem (1), where the vector process

(folz,w) = (fo(2)}, fi(z,w) = (fi(z)) - 2 Ja(@,0) = (fal2)), 9(2,0) - (g(2)))

is weakly correlated connected with correlation length €. Thereby ( - ) denotes the expec-
tation operator.

Weakly correlated functions can be characterized as functions without “distance effect”.
The values of the functions at two points are independet if the distance of these points
exceeds a certain quantity € > 0. This quantity is the so-called correlation length of the
random function and is assumed to be sufficiently small. The class of weakly correlated
functions can be used for modelling and simulation of many interesting random variables,
processes and fields of physics and engineering. A detailed presentation of the theory of
weakly correlated functions is given in [1].

The aim of this paper is to compare the results of vom ScHEIDT [1] and Bovck, Xia [2],
wha chose different solution methods for problem (1). While voM ScHEIDT [1] used limit
theorems for functionals of weakly correlated processes, BovcE, Xia [2] tried additionally
to use such limit theorems for the derivatives of the processes.

It will be shown that the considerations of [2] have to be modified. The considerations of
this paper lead to the formulation of limit theorems for functionals of the derivatives of
weakly correlated processes.



2 Random Sturm-boundary-value problems

In order to realize the describei comparison we consider a special case of problem (1),
i.e. we set n = 1. It should he noted that in [1] the coefficient Jn(z,w) is chosen as
non-random function, f,(z,w) == f,(z), but it is possible to generalize this assumption.

We consider
Lwu = -[i(z,0)v] +g¢(z,w)u = g(z,w) (3)
Ul[u] Qloit(O) + ,Bwu(l) + O‘u’u,(O) + ﬂ”u'(l) =0
Uz[u] = (1’2025(0) + ﬂgou(l) + a;lu'(O) + ,leu/(l) =0.

In order to fulfill (2), the coefficients a;; and f;; have to be chosen such that

1 1
—-/0 [p(z,w)/(z)]) v(z) dz:/o p(z,w)u'(z)v'(z) dz (1)

holds for all permissible functions u,v. Furthermore, we assume that the boundary value
problem (3) is well-posed a. s.

Remark 1
Problem (3) is called a random Sturm-boundary-value problem.

Let

p(z,w) po(z) +np(z,w),  (pi(z)) =0
q(z,w) '10(‘”)4‘77411(%‘*’), (QI(-T» =0
9(z,w) = go(z)+ng(z,w), (gi(z))=0

with 7 € R, where go(z) and go(z) are continuous functions and po(z) is continuously
differentiable. The vector process

(pl(z,w),ql(m,w),gl(z,w))
is assumed to be weakly correlated connected with correlation length €. The sample
functions of ¢;(z,w) and g, (z,w) are assumed to be continuous a.s., the sample functions
of pi(z,w) are assumed to be continuously differentiable a.s. and
P,0) #0, Ipi(z,0) <7, lai(z,w)l < v, lg1(z,0)| < 7 s,
for all € with a small parameter vy > 0.

Finally, we assume, that ¢;(z,w) and g, (z,w) are mean-square continuous functions and
that py(z,w) is mean-square continuously differentiable.

Now it is possible to write (3) in the form

Lw)u = Lou+nLi(w)u = go(z) + ng1(z,w) (5)
UI[U] =)
Uylu] = ),



where Ly and L;(w) are given by

Lov = ~[po(z)u]) + go(2)u (6)
Ll(w)u = _[pl(zaw)ul],'*'q(z’w)u' (7)

We assume that the (non-random) boundary value problem
Lyw =0, Uilw) = Uy[w) =0

only possesses the trivial solution w = 0.

Now an expansion of the solution of boundary value prcblem (5) of the form

u(z,w) = uo(z) + Y n* uk(z,w) + O(n"+) (8)
k=1 '

is supposed, where u(z,w) denotes the terms of the solution u(z,w) which are homoge-
neous of k-th order with respect to p, (z,w), ¢ (z,w), g1{z,w).

We substitute expansion (8) into boundary value problem: (5). Then the functions u(z,w)
can be obtained successively from the equations

Luuo(fb) = gu(.‘l?) U1 [uo] = Uz[’du] =0
Loul(z,w) = gl(x,w) - Ll(w)uu(x) (}l[ull = Li)[ull =0 a.s. (9)
Loug(z,w) = —Lij(w)ue_s(z,w) Uilug] = Uy[ug) = 0 a.s.

fork=2,3,...,r

Let G(z,y) be the (deterministic) Green’s function associated with Ly and the boundary
conditions U3[.] = Uy[.] = 0.

Remark 2
G(z,y) is defined on {(z,y) : 0< z,y < 1} having the properties

— G(z,y) is continuous on {(z,y) : 0 < z,y < 1},
— G(z,y) is twice continuously differentiable with respect to r on
{(#,9) :0<z<y<1) and {(s,9): 0<y<z<1)
and satisfies the homogeneous differential equation LoG(y)=0, for0<y< 1,

— G(z,y) satisfies as a function of z for 0 < Yy < 1 the boundary conditions

— Gy +0,y) - Gy - 0,y) = 0<y< L

po(y)’



The solution of  Low = g(z), Uy[w] = Us[w] =0 can be written as

w(z) = /01 G(z,2)g9(2)dz.

From (9) the subsequent relations follow immediately,

1
u(z) = [ Glz,2)o(e)dz (10)
1
weww) = [ 62 (00 + @] - aEou@)d )
ur(z,w) = / 6z, (I ()i s (2,0 a1(z,0)uk-1 (2,0)) dz (12)

fork=2,3,...,r.

Assuming the relations (10) - (12) vom ScHEIDT [1] (Chapter 5) and Bovce, Xia [2]
consider expansions of moments of u(z,w) with respect to the correlation length ¢ of the
weakly correlated connected vector process (p(z,w), qi(z,w), gi{z,w)) up to first order.

It should be noted that it is also possible to compute expansions of moments - and con-
sequently of distribution functions - of u(z,w) up to terms of higher order if we use the
investigations given in [3] (see also [1], Chapter 1).

To compare the results of [1] and [2] we confine the considerations to the expansions of
moments

(u(z1)u(z,)), 0<zy,2,< 1

up to first order, i.e. the aim is an approximation of the form

(u(ar)u(zs)) = U(zy, 22) - € + 0(e),

where the term I(z), z3) has to be specified.

2.1 Solution method contained in [1]

In order to get an expansion of the solution of boundary value problem (5) with respect
to £ up to terms of first order we consider (11),

1
w(z,w) = /0 Gz, 2) (gl(z,w) + [pl(z,w)u{,(z)]' - ql(z,w)uu(z)) dz.
By partial integration and using‘_ Remark 3 we obtain
1
wy(z,w) = / G(z,2)q1(2,w) dz
0

- /OIG(z,z)uu(z)ql(z,w) dz — AIG;(x,z)ub(z)pl(z,w)dz. (13)



Remark 3
Problem (3) is self adjoint. Then, the Green’s function is symmetric, G(z,z) = G(z,z),
and from Remark 2 follows for a fizedz, 0 <z < 1:

UlG(z, )] = Ua[G(z, )] = 0.

For all permissible functions u, v we have supposed

- /Ol[p(z,w)u'(z)]"v(z) dz = /OIP(Z,‘U)",(Z)”I(Z) dz

and consequently it holds

1 1 :
- /U [P (2, 0)'(2)]'v(2) dz = /0 P1(2,0)u(2)9'(2) dz, (14)
that means -
[pl(z,w)u'(z)v(z)]:_:_0 =0.

To prove (13) we consider

[ e beone) e = [ 6 i)
+[C G(z,2) [p1(2,w)uf(2)] dz

G(ZI?,IE’— 0) Pl(%w)uﬁ(x) - G(.'l‘, T+ 0) pl(x7w)u6(x)
- G(:L‘,O) pl(01w) UB(O) + G(.’B, 1)p1(11w) “6(1)

- /OIG;(z,z)pl(z,w) u(z) dz.

Because of the continuity of G(z, z) it holds
G(.’l}, T - 0) pl(z’w) u:)(z) - G(.’L‘,.’E + 0) D (.T,U)) U:)(CL‘) = 01

and because G(z,z) (for fived z) and uop(2) satisfy the boundary conditions we get

z=1
=0.

z=0 -

[p1(2,0) ui(2) Gz, 2)]
Summarizing these results we get
1 , 1
/ Gz, 2) [p1(z,w)uy(2)]) dz = —/ G (2, 2)p1(z,w) up(z)dz
0 0

and this leads to Eq. (13).



From (13) it follows for the second-order moments (ui(z1)us(22)), 1,2, € [0, 1]:

(u(z1)uy(22)) =
B / / Gle1,2 )G(22, 22) (91 (21)91(22)) dzy dzy
* / / G(z1, 21)G (3, 22)u0(21)0(2) g1 (21) 1 (22)) d dzy
* -/ul /01 G (21, 21) G, (22, 22) wg(21)u(22) (1 (21)Pa (22)) d2y dzy
- /0‘ /01 G(z1,21)G (22, 22)uo(22) (91(21) g1 (22)) dzy dzy
} /Ul / Gla1,21)G (22, 22)0(=1) (@1 (21)91 (22)) d2u dzg (15)
- /0‘ /01 G(z1, 21) Gy, (22, 22)up(22) (91(21)p1(22)) dzy dzy
B / / G, (21, 2)G(e2, 2)up(21) (p1(21)g1(22)) dzy dzy
+ / / G(z1,21)G}, (22, 22)wo(21)w(22) (g1 (21) 1 (22)) da dz

1 1
+ [ 6L 1, 2)Gon, m)u() o) (pa(a0)ar (22)) don dy.
0 0

Now we use the following limit theorem which is a special case of limit theorems given
in [1].

Theorem 1

Let (fie(z,w), fo(2,w)) be a weakly correlated connected vector function on [0, 1) with cor-
relation length . The sample functions of f\.(z,w), f2e(,w) are supposed to be continuous
a.s. and

<f,";(.7:)> Lep<oo for i=1,2, Ve
Let Fy(z), Fy(z) be functions from L,(0,1). Then it holds for i, € {1,2}
1 g1 1
</0 /0 Fi(21) Fa(22) fie (21) fie (22) d 2y d22> =¢ /0 Fi(2)Fy(2)aij(z) dz + o(¢),
where a;;(x) is the so-called intensity with respect to f;. and fie:

.|
aij(z) := 151{13 .

| et + e

Remark 4
We assume, that the intensities of the considered weakly correlated connected vector process

(pl(zaw)’QI(mvw)agl(xyw))

7



which are denoted by ayp(2), apy(x), agp(z), ..., ayy(z), fulfill the properties
ge(z) = agy(z),
agp(z) = apy(z), (16)
agp(Z) = apy(z).

Assuming the following condition, which is given in [1], Yhese properties are fulfilled.

For an arbitrary n > 0 it exists a parameter § > 0 so that
|R.(z,2+2) - R (y,y+2)| <7

for all z,y with |z —y| < § and z with |z| < e. Thereby, R.. is one of the cross correlation
functions Ryq, Ry, and Ry,

Especially in the case of a wide-sense stationary connected vector process
(Pl(-’lf',w),Q1($,w),gl(z,w))

this condition is obviously fulfilled.

Now we apply Theorem 1 to the representation of (uy(z;)u;(x2)) given in (15) and get
the following expansion of (u;(z;)ui(z,)) with respect to the correlation length ¢ up to
first order,

weue)) = e [ Glo, G aglz) s

+ [ Gl 26 ) (u0(2)) g2 d

+ [ Gllen, )G z2,2) () ayp() d

- 2/01G(zl,z)G(zg,z)uo(z)agq(z) dz (17)

- [ (G G a0, 2) + Glen, G2, 2) th(2Jage(z) d

+ /01 (G(21,2)G(22, 2) + Gly(z1, 2)G (22, 2)) uh(2) un(2)apy(2) dz}

+ o(g) .
To get an expansion of the second-order moments (u(z;)u(z2)) of the solution of boundary
value problem (3), we have to consider the terms uy(x,w) (k > 2) of expansion (8). Using
the idea of partial integration contained in Remark 3 for the representation (12) of u(z,w)

it is possible to show, that second-order moments containing terms ui(z,w),k > 2 are of
order o(e), i.e. it holds

((u(z1) — wo(z1))(u(e2) — uo(22))) = (ur(z1)ui(22)) + ofe). (18)
The complete proof of (18) is given in [1].

Theorem 2 summarizes the results of this section.



Theorem 2
Let agy(z), agq(2), app(z), agq(x), agp(x), agy(z) be the intensities of the considered weakly
correlated connected vector process

(pl(x,w)aql(mvw)’gl(z»w))
with the properties (16) and let € be its correlation length.
Then the ezpansion of the second-order moments ((u(z,) — uo(21)) (u(z2) — uo(x2))) of the
solution of (3) up to first order is given by Eq. (17), where G(z, z) denotes the Green’s

function associated with Lo and the considered boundary conditions and ug(z) is the solu-
tion of the averaged problem given by (10).

2.2  Solution method contained in [2]

In this section we turn to the results of Boyck, Xia [2]. As in section 2.1 the aim is to
consider the expansion of the moments (u(z;)u(z,)) up to terms of first order.

Remark 5

As mentioned in section 2.1, with the ideas of [1] it is possible to show, that it is sufficient
to consider the second-order moments (uy(z1)u1(z2)), because second-order moments, in
which ux(z,w),k > 2 are involied, possess order o(c) (see Eq. (18)). It should be noted,
that this result of [1] can not be deduced from the considerations of [2].

Starting from (11)

w(@w) = [ 6z, (515:0) + [z - alew)uz)) ds,

Boycke, Xi1a [2] avoid the pa,rtlal mtegratlon and get

w@w) = [ 6,2 @(00) - 050 +rio)
+p1(z,w)up(2)) dz . (19)
These considerations lead to
1 1
(u1($1)u1($2))=/0 /(; G(zy, 21)G(z2, 22)s(21, 22) dzy d2y (20)
where s(z;, 2) is given by
s(z,z2) = (g1(z1)91(22)) = (91(21)q1(22)) uo(22)
+(91(21)p}(22)) uo(22) + (91(21)P1(22)) ) (22)
—{@1(21)91(22)) wo(21) + (g1 (21)q1 (22)) wo(21 ) uo(22)
—{n1(20)p1(22)) wo(21)up(22) — (@1 (21)pa(22)) vo(21) 1l (22)
+(Pi(21)91(22)) wg(21) — (P (21) @1 (22)) wp(2 )“0(22.)
+ (P} (21)P}(22)) up(21) up(22) + (P (21)P1(22)) uh(z1) uly (22)
+(P1(21)91(22)) ug(21) — (P1 (= 01(22))"3(21)%(22)
+{P1(21)p1(22)) w5 (21) up(22) + (P1(21) 1 (22)) uf (21) ) (22) -

9



Remark 6

The correlation functions (respectively the cross correlation functions) Ry, 1,5 € {1,2}
of a centered real random vector process (fi(z,w), fo(z,w)),

Ry 1, (x1,22) == (fi(z1) fi(22))

and the (cross) correlation functions of the derivatives
By o (21,32) = <f.~(k)($1)f](l)($2)>
fulfill for 4,5 € {1,2} the relations
— Ry (x1,22) = Ry g, (22, 71)
— Rfl(k)f](l)(xl,zz) = gi—g%;—;Rf'.f’ (z1,22) .
Thereby we assumed, that the derivatives of f,(z,w) and f,(z,w) ezist in the sense of the

differentiability of the sample functions and additionally in the mean-square sense. In that
case, the corresponding derivatives are equivalent (see [4], [5]).

Bovce, XIA consider the special case, that p;(z,w), ¢i(z,w) and g¢,(z,w) are pairwise
independent processes, In that case, using the second property given in Remark 6 it
follows
s(z1,22) = Rgg(z1,22) + qu(zl,zz)"u(zl)uo(zz)
+Ryp (21, 22)ug (1) g (22) + 5= Rpp(zlaz2) o(z1)ug(22) (21)
+£;Rpp(zla z)ug(21)up(z2) + 321322 Rpp(21, 22)ug(z1)uh(22) .

Furthermore, Boycg, XiA only consider the special case of a wide-sense stationary con-
nected vector process

(m(2,0), qi(z,w), (z,w)) .

Therefore we introduce the notations

Rgg(v) = (g1(2)g1(z + w)),
Ry(w) = (q(z)q(z+u)),
Rpp(u) = (p1(2)p1(z +u)) .

Remark 7
For a wide-sense stationary and weakly correlated connected vector process

(fle(xv“))y fae(z,w))

the intensities a;;(z) (i,j € {1,2}) are constant quantities,

L
aij(z) = ]1{8 g (fte( )fJC(x + z)) dz = l"{)l g Rz]s( )dz = a5 .

10



Under the assumptions of Remark 6 the correlation functions (respectively the cross cor-
relation functions) Ry.5,, 1,7 € {1,2} of a real, centered, wide-sense stationary connected
vector process (fi(z,w), fo(z,w)),

Ryp,(v) = (fil2) fi(z + )

and the (cross) correlation functions of the derivatives
Ry ,0) = ({06 +w)
Julfill for i, j € {1,2} the relations
— Ry, (v) = Ryypi(-u),
— Ry (v) = (DRGH ().

In case of a wide-sense stationary connected vector process with pairwise independent
components from Eq. (21) follows

s(z1,22) = Rge(22 — 21) + Ryg(22 ~ 21)u0(21) uo(22)
+Rop(22 — 21)ug(21)ug(22) — Ry (22 — 21)up(z1)ult(2) (22)
+R§p({2 — zn)ug(z1)ug(22) = Rypy(22 — z1)uf(21)uly(22) .

Eq. (20) leads to the second-order moment (u,(x)?),

<u1(x)2> = [)1/01 G(z,21)G(x, 23)8(21, 23) d2z; dzy .

It follows, that (for fixed z) integrals of the form
t o1 -
J = / / F(21)F(2) B(23 ~ 2) dzy dz
0 Jo

have to be considered, where I~Z(u) is one of the functions

Ryg(u), Ryq(u), Rpp(u), R, (u) and Ry (u).

14

With the new coordinates

1
s=2— 2 t:5(21+22)
r t S z t+s
2y = — - 5 = —
o 1 2 2 5

then it holds
1 £ ~
J:// F(t—f)F(t+E>R(s)dsdt—J1—Jz—J3—J4, (23)
1] —& 2 2

where Jy, Jz, J3 and J; are integrals of the same integrand over the triangular regions T},
Ty, Ts and Ty, respectively (see Figure 1).

11



Figure 1

Boyck, Xia [2] deduce, that Jy, ..., J4 are of order £2. By expanding the integrand of (23)
in powers of s, the following result is obtained,

J = /f_( )~ SF (- (s )))(F(t)+%F’(t+62(s)))(§(0)+sﬁ’(ég(s)))dsdt
+O(e2)
- 25/0 F2 (1) R( dt+/ /_ H(t,s)dsdt + O(e?). (24)

In [2] only the first term of the expansion of (23) in powers of s is kept, the result is
~ l B
J= 253(0)/ F2(t) dt + O(?) .
0
With the help of (22) this leads to the expansion
2 ! 2 2
(@) = 2 [ (G@2)* [Res(0) + Reg(0) (u0(2))
+Rpp(0) (u(2))* — Bpy(0) (uf(2))*] dz + O(e?).  (25)

This result has to be corrected as the following special case of a correlation function R(u)
shows.

R(u) is assumed to have the form

with a correlation function p.

12



Then it holds
o L, (u i I yfu
R'(u)=-p (— and Ri(u)=50"(-).

_.8 £ 3 &

In this case, it is not sufficient to keep only the term
- 1
26R(0) [ F*(0)ds
0

of expansion (21) into consideration, for instance also the term

/Ul ) F2(t)s R (65(s)) dsdt = 2/01 ’ F?’(t)sg’(&“(s)) ds dt

—& —E &

1 re
/ / sH(t,s)dsdt
0 J-¢

Further problems are connected with the terms

which is contained in
possesses the order O(¢).

R(u) = R, (u) and R(u) = R} (u)

in a similar way.

Furthermore, the terms Jy, J;, J5 and Jy are not necessarily of order o(¢) and the integrand
has not to be defined in the corresponding regions.

Remark 8
If we apply the results of [1] to the case of a wide-sense stationary connected vector process

(m(z,w), a2, w), g1z, w))

with pairwise independent components we obtain as special case of Theorem 2
. 1 3 2
(@) = =] [ (G2 [agg + agy (wo()?] 2
l s
+/ (G (2, 2))ap, (uh(2))? dz} +ofe). (26)
0

The comparison with Eq. (25) shows, that the results of [1] and [2] are different. Although
for some cases of weakly correlated functions the terms Ry4(0), Ryq(0) and R,,(0) in (25)
could be expressed in terms of intensities ayq, ag, and app, different results are obtained.
Furthermore, it is not possible to substitute R/ (0) by an intensity. Therefore, particulary
the term connected with ap, possesses a completely different structure.

If we return to Eq. (21) (or in the more general case to Eq. (20)) it is clear, that we can use
Theorem 1 to obtain expansions for those terms, which are connected with Ryg, Ryy and
Rpp (Ryq, Ryp and Ry, respectively), but not for those terms, which include derivatives of
these (cross) correlation functions.

13




However, the results of this chapter show, that in addition to Theorem 1 especially for
integrals of the form

</01 /01 Fl(ZI)F2(22)fie(Zl)f;€(22) dz, d32>

1 1
= /0 /0 Fl(zl)F2(22)%RijE(Zl,z2) dzl d22 (27)

and

</01/01 p,(21)Fz(zz)f,-'5(zl)f]fe(22)dzl dz2>

1 g1
- /0 ,/0 Fi(21) Fy(22) 32?52322 Rije(21,22) d2y d2g (28)

further considerations are required.

3 Limit theorems for derivatives of weakly correlated func-
tions

The aim of this section is to describe analogous limit theorems to Theorem 1 which allow
to consider expansions of integrals of the form

/01 /01 G(z1, 21)G (22, 22)h1(21) h2(22) <fg€(zl)fj’-€(22)> dzy dzy (29)
and Lo
/0/0G(a:l,m)G(zz,zz)hx(zl)hg(zg)< fe(zl)f;5(22)> dz dz, (30)

with respect to the correlation length . In Section 4 these limit theorems are applied
to boundary value problem (3), where the functions hy(z) and hy(z) have the form

uf,k)(z) (ke{0,1,2})or 1.

Theorem 3

Let (fie(x,w), f2e(z,w)) be a weakly correlated connected vector function on [0, 1) with cor-
relation length €. For fized i,j € {1,2} the function fie(z,w) is assumed to be continuous
in the sense of the continuity of the sample functions (a. s.) and in the mean-square sense
and fje(z,w) is assumed to be continuously differentiable in the sense of the differentiability
of the sample functions (a.s.) and in the mean-square sense, too. Further we assume

<fk25(17)>502<00 for k=12, Ve.

Let Fy(z) and Fy(z) be continuous functions on [0, 1] and F,(z) be piecewise continuously
differentiable on [0, 1].

Then it holds
1 1

([ [ BCOPG feo) (o) dov )
0 Ju

= ¢ {— /Ul Fi(2)F3(2)aij(2) dz + Fy (1) Fp(1)b55 - FI(O)Fz(O)@} +o(e), (31)
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where a;j(z) is the intensity with respect to fie and fie and bj; and bj; are defined by

1

E_hm1 Rz, 1)dz_hml el 1)) de

el0 € ej0 €
and
bi=lim: [ R 1 d
0ji = 611](')15/0 ,]E(Z,O) zZ= eli](}€/ (fts f]6(0)> Z.
Proof.
Denoting

=([ [ B P o) o) &) |

then with Rij.(21,2;) = (fie(21) fie(22)) it holds (cf. Remark 6)

. 1 1
I,’j = [) -/“) Fl(zl)FZ(ZZ)a_z;Rije(zlyz2) le d22 .

We get by partial integration

i / Fi(z) ( / Fy(22) & ,Je(zl,n)dzz) dz
/FI(ZI ([Fz(zz) 115(21,22)]22 l) dz

—/u Fi(2)) (/0 F2/(22)Rij5(21,22)dz2) dz,

1 1
l)[) F](Zl)joE(Zl,l) dZI_F2(0)/0 FI(ZI)R,‘J'E(ZI,O) le

1 gt
- /0 /0 f‘l (ZI)FZ,(Zz)R,'je(Zl s 22) dzl d22 .
First, regarding the integral
11
L /0 F‘l (ZI)FZI(ZQ)R{]'S(ZI, 22) le d22
with the help of Theorem 1 the relation

/ / Fi(21) Fy(22) Rije (1, ) dzy dz, -e/ Fi(2) Fl(2)ai;(2) dz + o(e)

can be obtained.

Now we turn to the integral

/l Fi(2)Rije(z, 1) dz.
(1]

15
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Because of the property of (fi.(z,w), f2e(z,w)) to be weakly correlated connected, the
domain of integration can be reduced and it follows

/l Fi(2)Rije(2,1) dz
0

1
= Fi(2)Rije(2,1) dz

l1-¢

/ll (Fi(2) - Fi(1))Rije(2, 1) dz + Fy(1) ll_ER,-J-E(z,l)dz. (36)

-&

Considering the assumptions for the weakly correlated connected vector function it follows
for z,y € [0, 1]

Riselz,0)| < /Riele, ) Byzelwrv) = 1/ (72(2)) (F20) < 2.

Let K.(z) denote the interval (z — g,z + ¢€). Defining
M.(F;z)=  sup |F(y) - F(z)|
yEK (z)N(0,1)

it holds

limM,(F;z)=0Vz€[0,1]] and 3IC(F)>0: |M(F;z)|<C(F)

el0

for all continuous functions F(z) on [0, 1].

We get .
/1 (Fi(2) = F() Risela, 1) dz = ofe) (37)

—£&

using the relations

/11 (Fi(2) — Fi(1)) Rije(z,1) dz

—&

< M. (F1;1) cz¢, lilmU M.(F;1)=0,

and
1

R.-je(z, l) dz = 0(6)

1-¢
from

1
‘ Rije(2,1)dz| < ;€.
1—-¢

Using the definition of b;; from (32) the expansion
l ——
Rije(z,1)dz=bj; - € + o(¢) (38)

1-¢

can be obtained. With the help of (37) and (38) Eq. (36} leads to

/01 Fi(2)Rije(z,1)dz = Fy(1)bj; - £ + o(g) . (39)
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In an analogous manner, we obtain

/UlFl(z)R;je(z,O) dz= Fy(0)bji - € + o(¢) , (10)

where bj; is defined by Eq. (33).
Finally it can be seen that

fj=¢- {_/0‘ Fy(2)Fy(2)ai;(2) dz + Fy (1) Fy(1)b;; — Fl(O)Fz(O)gﬂ} +o(e),

and therefore Theorem 3 is proved. 0

Remark 9
It is easy to see that Theorem 3 leads to

</01-[J1F](21)Fz(22)fi,e(zl)fj€(zz)dzl dz2>
= 6.{_/01 F]I(Z)F2(z)al](z)d2+Fl(l)Fz(l)E;—FI(O)FZ(O)?H}+0(€) (41)

by use of the corresponding assumptions (change of the properties of fie(z,w) and

je(x"‘)))~

Theorem 4

Let (fie(z,w), f2e(z,w)) be a weakly correlated connected vector function on [0, 1] with
correlation length £. Thereby, fie(z,w) and fae(z,w) are assumed to be continuously
differentiable in the sense of the differentiability of the sample functions (a.s.) and in
the mean-square sense, further we assume

<fl?e(m)>SC2<00 Jor k=12, Ve.

Let Fi(z) and F)(z) be continuous functions on [0, 1] which are piecewise continuously
1

differentiable on [0, 1].
Then it holds

1 1
</0 /0 Fi(z1) Fy(22) fio (21) fe(22) dy d22>
= F(1)F(1)Rije(1, 1) + Fi(0) F2(0) Ri; (0, 0)

te-{ [ F@RE0) & - B0 F0E - RO RS,
+HOFO + FOF, ‘(O)E} +o(e) (42)

where a;j(z) is the intensity with respect to f;, and fic and b and b,, are defined in (32)
and (33).
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Proof.
Denoting

1 r1
s = ([ [ AR fua) fulen) dandan)
then it holds (cf. Remark 6)

1 1
Iij:/u /0 Fl(zl)F2(z2)—‘3z?g2)Z2Rije(zla22)dzldz'z-

By partial integration it follows

i; = /ng(zz) (/1Fl(zl)a;?;z—zR,-jE(zl,zz)dzl)dzg
/ Fy(zy) ([Fl 7 azzR,,e(zl,zz)]zi—l) dzy
/ Fy(z2) ( / Fi(21) & Rise (1, 22) dzl> dz,
= [ Bl (RO Rs(1,2) - RO R0, 2)) de

- ,/u ‘/0 F{(ZI)F2(Z2)£;R3'J'E(L’1, 22) le d22 .

The application of Theorem 3 to the integral

1 r1
—[) [) F{(Zl)Fg(ZQ)TZ;R,‘je(Zl,Zz) d21d22

leads to

/ / Fl Zl Fz 22 R'JE(ZI,Zz) dzl dz,

e { [ B FeIas (o) dz — FORAE + RO F0)bs )+ ().

Regarding the first summand in Eq. (13) it holds
/ Fy(2) (Fr(1) & Rije(1, 2) — Fy(0) & R (0, 2)) dz
= R ([Fg(z)R;jE(l,z)]Z;—A Fj(2)Rus1,2)
~Fy(0) ([Fz(z)R;je(O, - B (2) Rijo(0, 2) dz)

= Fi(1)F2(1)Rije(1, 1) — Fi(1)F2(0)R;;.(1,0)
—F1(0)F2(1) Rije(0, 1) + F1(0) F»(0) R;(0, 0)

_Fy(1) / Fi(2)Rije(l, 2) dz+ F,(0 /F’ 2)Ri;e(0, 2) dz.

Since (fie(z,w), fae(z,w)) is defined on [0, 1] we can assume £ < 1 and therefore

Ri;ie(1,0) = R;;(0,1)=0.

18
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The integrals

1 1
/ F(2)Rije(L,2)dz  and / F}(2) Rije(0, 2) dz
0 0

can be calculated by use of the considerations in the proof of Theorem 3 (cf. Eq. (39),
respectively Eq. (40)). It is

/01 F(2)Ryje(1, 2)dz = /1 Fy(2)Rjie(2,1) dz = Fy(1)b;; - + o(e) (16)
and . .
/0 Fy(2)Rije (0, z) dz = /0 F}(2) Ryie(2,0) dz = F}(0)b; - € + ofe) (47)

Summarizing the results of (44), (45), (16) and (47) we get

L = R)F(D)Ri(1,1) + F(0) Fy(0) Rije (0, 0)
ve-{ [ BB G 4 - BOFOE - B0 B
+ RO F0)b; + FOF0)8] +o(e)

and Theorem 1 is proved. 0O

Remark 10

Theorem § shows, that expansions for the second-order moments of integrals of the first
derivatives of weakly correlated functions do not necessarily possess order O(c). In depen-
dence on the structure of the deterministic functions F; at the boundaries of the domain
of integration it is possible, that the ezpansions have order O(1).

Now, regarding Eq. (20), Theorem 3 and Theorem 4 allow to complete the solution method
contained in [2].

4 Application of the limit theorems

As in Section 2.2 the aim is to get expansions of second-order moments of the solution
u(z,w) of the considered boundary value problem (3). Therefore we assume the property

((u(e1) = vo(z1)) (w(22) ~ up(za))) = (ur(z1)ui(z2)) + ofe),

where wug(z) is given in (10) and u(z,w) in (11). It should be noted that it is easy
to show this property with the help of the considerations contained in [1]. If only the
ideas contained in [2] are used, further investigations concerning the moments of higher
order derivatives would be necessary. In addition, moments of higher than second order
of integrals of derivatives of weakly correlated functions had to be considered.
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L.et us start with

1 1
(ur(z1)ur(z2)) = /u /(; G(21,21)G (22, 22)s(21, 22) d2y d2y (48)
where s(z1, 2;) (in this more general case as Eq. (21)) is given by

s(z1,22) = Rgg(z1,22) + Ryq(21, 22) uo(21) uo(22)
+Rpp(21, 22)ug(21) ug(22) + 52 ,,,,(zl,zg) o(z1)ug(z2)

32 Rop(21, 22)ug (Zl)uo(zl) + 3055 az,az2 Ryp(21, 22)ug(21) up(22)

—Rgq(21, 22)u0(22) — Ryq(21, 22)un(21)

+Rgp(21, 22)up(22) + Ryg(21, 22)ug(21) (49)
+35 Rop(21, 22)uf(22) + 52 Ry (21, 22) (1)

= Rop(21, 22)uo(21)u5(22) — Rpg(21, 22)ug (1) uo(22)

~ a2y Rap(21, 22)uo(21)uf(22) — 52 Rpg (21, 22)uf(21) w0 (22) ,

in order to derive an expansion of second-order moments of u(z,w) using the method of
Bovyce, Xia [2].

The vector process  (pi(z,w), q1(z,w), g1(z,w)) was assumed to be weakly correlated
connected with correlation length ¢, which fulfills the assumptions of Theorems 1, 3 and 4.

It is easy to see that the deterministic functions G(z, z) (for fixed z, 0 < z < 1) and u((j)(z)
(¢ =0, 1,2) which are involved in the subsequent considerations fulfill the assumptions of
the mentioned theorems, too.

Therefore Theorem 1 can be applied to the terms of (uj(z;)uz(z3)) which contain no
derivatives of (cross) correlation functions. This leads to

[Jl /Ul G(l'ly ZI)G(.'E2, 22)h1(21)h2(22)R,_(zl, 22) dz, dz,
/ G(z1, 2)G (3, 2)hi(2)ha(2)a..(2) dz + o(¢€) , (50)

where  hg € {1,ug,uj}, k=1,2.

Theorem 3 and Remark 9 are applied to terms of (u;(z;)uy(z,)) containing first order
derivatives of (cross) correlation functions. It follows

/ / C .'131,21 z),,zz)hl(zl)h (Zz)aa R,J(ZI,ZI) dzl dzz
e f- /Czl, G(22, 2 (2)hh(2)ais (2) d (51)

/ G(z1, 2)G (22, 2)hy () ha(2)ai; (2) dz
+G(21, )G (@2, Dha(Dha(1)55 ~ G(z1,0)G (@2, 0)ha(0)ha (05 } + ofe)
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and

/ / C 171,21 C((l?z,Z)) (Zl)h2(22) R,](21,22) le d22
/ G(z1, 2)G (x2 2), (2)ha(2)a; (2) dz (52)

- [ 6er G e, a2 )haz)ay 2) do
+G(IL‘1, l)G(Z‘g, )h (l)hl( ) i C’(.’lfl, )C(z;,O)hl(O)hz(O)bi} +0(€) y
where 7,5 € {g,q,p} and hy € {1, ug, up, ug}, k=1,2.

Finally, we obtain by means of Theorem 4 the expansion for the term of (ur(zy)uy(zy))
which contains 82332 Rpp(z1, 22),

/O /0 G(@1, 21)G (w2, 22) (1)t (22) 52 By (21, 72) dy dzg

= G(z1, )G (22, 1)(ug(1)* Rpp(1, 1)
+G(21,0)G (22, 0)(15(0))* Ryp(0, 0)

te / Gl (21, 2)G (22, 2) (u(2)) app(2) dz
+ [ Gllen, DG, ()l gy () d
+/1G' (21, 2)G (22, 2)ug(2)uf(2) app(z) dz (563)

+ / Glar, 2)G (2, 2)(u(2)) app(2) d2

(311,1) (22, 1) + Gi(z1, 1 )G(z2, 1)) (up(1))? by

~2G (21, 1)G(za, D up(1)uy(1)b,,

+(G($1,0)G 122, )+C,(1L‘11 C(xb )(uU(O
(21,0)G

+2G(21,0)G (22, 0)up(0)uf(0)byy } + 0fe) .

~

Next we will prove, that the term of order O(1) and the quantities connected with b_ and
b.. vanish in the considered case.

Using Remark 3 it follows

[G(z, 2)up(2)pu (2, w)]’;‘) -0 as (54)
forafixedz, 0<z<1.
Therefore we obtain
Gle, Dup(Dp(Lw) = G, 0)u0)p(0,w) as. (55)

and
G(z, Dug(1) (pr(Dpi(1)) = G(z,0)uh(0) (py (0)py (1)) .
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Since the considered vector process (pi(z,w), ¢1(z,w), g1{z,w)) is weakly correlated con-
nected with correlation length € < 1, it holds

(P1(0)p1(1)) = Rpp(0,1) = 0
and therefore
G(z, Dup(1) (1 (1)pr(1)) = G(, Vug(1) Rpp(1, 1) = 0. (56)
In the same way it is possible to show that
G(z,0))(0) (p1 (0)p1(0)) = Gz, 0)u(0) Ryy(0,0) = 0. (57)
Applying these results to Eq. (53) it can be seen, that the terms of order O(1) in the
expansion of the considered second-order moments of u,(zr,w) vanish.
Furthermore, it follows from (55) for0 <z <1and 0 < 2 <1
G(z, Dug(l) (r(1)pr(2)) = G(z,0)u(0) (p1(0)pr(2)) -
1 .
For ¢ < 3 and z € [1 — ¢, 1] it holds
(p1(0)p1(2)) = Rpp(0,2) =0

and therefore
G(z, Dug(1) Rpp(1, 2) = G(z, V(1) (p1(D)pa(2)) =

and consequently
J— 1 /!
Gz, 1)u(1) By = Gz, (1) - lim g/ Ryp(z,1)dz = 0.
€ 1-¢

By analogy to these considerations it is easy to see that

G(z,0)up(0) - by = 0,
Glo, 1)us(1) Ty = 0,
G(z,0)up(0) - by, = 0,
Gle, )up(1) By = 0,
G(z,0)uy(0) - by, = 0

Considering (51), (52) and (53) it can be seen, that all terms connected with the quantities
b.. and b, vanish.

22



Summarizing the results of Eq. (50) through (63) and using (48) and (19) the expansion
of the second-order moments of the solution can be written as

(m(z)ur(zy)) =
= ¢ {/0l G(21, 2)Gl23, 2)agy () dz
+ /0 G, )G 2, 2) (0(2)) gy (2) dz
+ [ Gl G2, 2) (15(2)? app(2) do
- 2/01 G(21,2)G (2, 2)u0(2)agg (2) d2
- /01 (Gla1, 2)Gi (22, 2) + Gl (21, 2) G2, 2)) Uh(2)agy(2) dz
+ 01 (G(e1, 2)GL(w2, 2) + G, 2)G (22, 7)) uh(2)uo(2)apg(2) dz}

+o(e) .

This result corresponds with the result of the solution method contained in (1] (see
Theorem 2) and we obtained the same result by means of the expansions of integrals
which contain derivatives of weakly correlated functions represented in Theorem 3 and
Theorem 4.

Comparing the considered solution methods we recapitulate, that the solution method
contained in [1] consists in a formulation of the given boundary value problem by partial
integration. Then limit theorems (cf. Theorem 1) are used. In this case it is not necessary
to consider limit theorems for derivatives of weakly correlated functions.

The solution method of [2] avoids a transformation of the boundary value problem by
partial integration. A disadvantage of this method is, that it is difficult to deduce the
structure of the expansion of the considered moments with respect to the correlation
length £ (see Remark 5). On the other hand, with this method it seems to be possible to
investigate problems without the requirements in connection with the boundary conditions
given in Eq. (4).
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