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Abstract

For the solution of the multi-input pole placement problem we derive explicit formulas
for the subspace from which the feedback gain matrix can be chosen and for the feedback
gain as well as the eigenvector matrix of the closed-loop system. We discuss which Jordan
structures can be assigned and also when diagonalizability can be achieved. Based on
these formulas we study the conditioning of the pole-placement problem in terms of per-
turbations in the data and show how the conditioning depends on the condition number
of the closed loop eigenvector matrix, the norm of the feedback matrix and the distance
to uncontrollability.
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1 Introduction

In this paper we continue the analysis of the conditioning of the pole placement problem in
[21] with the multi-input case. We study multi-input time-invariant linear systems

& = dz(t)/dt = Az(t) + Bu(t), z(0) = zo, (1)

with A € C"*", B € C™*™. For such systems we analyse the numerical properties of the
following problem:

Problem 1 Multi-input pole placement (MIPP):Given a set of n complex numbers P =
{A,..., A} CC, find a matrix F € C™*", such that the set of eigenvalues of A(A - BF)
is equal to P. (lere we assume in the real case that the set P is closed under complex
conjugation.)
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It is well-known {13, 34] that a feedback gain matrix F that solves this problem for all possible
sets P C C exists if and only if (A, B) is controllable (reachable), i.e.,

rank[A — AL, B] = n, VA€ C (2)

or

rank[B,AB,..., A" 'B] = n. (3)

Note that there is a change in notation in the modern control literature. The condition in (2)
(or equivalently (3)) is now usually called reachability in the engineering literature, while it
was and still is usually called controllability in the mathematical literature.

Due to its wide range of applications, many numerical algorithms were developed for this
problem, see [26, 33, 14, 23, 24]. For some of these methods numerical backward stability
has been established, see e.g. [14, 24, 23, 5, 6, 2]. Nonetheless it is observed very often
that the numerical results (even from numerically stable methods) are very inaccurate. This
observation led to the conjecture in [4] (supported by intensive numerical testing) that the
pole placement problem becomes inherently ill-conditioned when the system size is increasing.
This conjecture has been heavily debated, since some of the perturbation results derived in
recent years do not seem to support this conjecture [1, 16, 28, 17].

The reason for the discrepancy in opinions about the conditioning of the pole assigment
problem is that one has to distinguish between two aspects of the pole placement problem, the
computation of the feedback F' and the computation of the closed loop matrix A — BF or its
spectrum, respectively. Both can be viewed as result of the pole placement problem but they
observe different pertubation results. A striking example for the difference is given in [21] for
the single-input case, where the exact feedback was used but the poles of the computed closed
loop system were nowhere near to the desired poles. In our opinion the most important goal
of the pole placement is that the implemented poles of the closed loop system are close to
the desired ones. If the desired poles of the exact closed loop system are very sensitive to
perturbations then this ultimate goal cannot be guaranteed. And this may happen even if
the computation of F is reliable or even exact.

A new analysis that covers all the aspects of the problem is therefore necessary and it was
given for the single-input case in [21]. In this paper we will continue this analysis for the
multi-input case.

Here the situation is much more complicated, since the feedback matrix F' is (for m > 1)
not uniquely determined from the data A, B,P. As is usual practice in underdetermined
problems, several directions can be taken. The most common approach is to try to minimize
the norm of the feedback matrix F' under all possible feedbacks F' that achieve the desired
pole assigment, see [23, 26, 33, 24, 15]. Another approach is to optimize the robustness of the
closed-loop system [14]. In this paper we study the whole solution set, i.e., the set of feedbacks
that place the poles and describe it analytically. We also derive formulas for the closed-loop
eigenvector matrix. This analysis then yields the multi-input versions of the analysis of the
single-input problem and shows the problems that can arise when choosing one or the other
method for making the feedback unique.

Throughout the paper we will assume that (A, B) is controllable and that rank B = m. We
will use the superscript H to represent the conjugate transpose. All used norms are spectral
norms.



2 The null space of [A — A\, B]

We begin our analysis with a characterization of the nullspace of [A — A1, B] for a given
A € C. Since (A, B) is controllable, from (2) we have that rank[4 — AI, B] = n, VA € C. So
the dimension of the null space is m.

Let [ U‘j }, with Uy € C™*™,V\ € C™*™, be such that its columns span the null space
— VA

U } of [A — A, B, i.e.,
Vi
U | _
[ A=, B][_VA]_O, (4)
or
(A= AU\ = BVj. (5)

Before we can characterize this nullspace, we have to introduce some notation and recall some
well-known facts from linear systems theory. ,

The hasis for most of the results concerning the analysis and also the numerical solution of
the control problem under consideration are canonical and condensed forms. The most useful
- from in the context of numerical methods is the staircase form of Van Dooren [31, 32].

Lemma 1 [32] Let A € C™*", B € C"*™, (A, B) controllable and rank(B) = m. Then there
exists a unitary matriz ) € C**™ such that

ny no Ng

~ - n),=m
i Al,l A1'2 Al,s ny Bl
o A2,1 Ag'z e ‘e A2,s Ny 0
Q"AQ=mn3 | 0 A3, . ... As,|, Q"B=mns N (6)
ns | As,s—l As,s ) s 0
with By, Ayy,..., A, s square, By nonsingular, and the matrices A;;.y € C™X™-1, § =

2,...,n all have full row rank. (ny > ny > ... 2 ny).

The indices n; play an important role in the following constructions and we will also need the
following indices derived form the n,. Set

di:=n;~nipy, t=1,...,8—-1, dy := n,, (7)

and

Tii=di+...+d;, i=1,...,8, 7 =m. (8)

An immediate consequence of the staircase form is that the indices n;,d;, 7; are invariant
under adding multiples of the identity to A, i.e., these indices are the same for the pairs
(A, B) and (A — A, B). This follows, since the subdiagonal blocks in the staircase form,
which determine these invariants, are the same if we add a shift to the diagonal.

The staircase form is a condensed from under unitary equivalence. If we allow nonunitary
transformations we get a more condensed form or even the canonical form.

For our analysis we do not need the complete canonical form but rather the following
condensed form, similar to the Luenberger canonical form [20], which follows directly from
the staircase form.



Lemma 2 [20] Let A € C**", B € C"*™, (A, B) controllable and rank(B) = m. Then there
ezist nonsingular matrices § € C**™, T € C™*™ such that

A = 5745 (9)
d] noy d2 ns [ ds—l Ng ds
mo A 0 Ay 0 o A,y 00 Ay, ]
na 0 L, Ay 0 ... Ay, 0 Az,
na 0 Ing s A3,3_1 0 A3,3
Ng-1 As—],s—l 0 A{—l,s
Ng | 0 In, As,s _

B := §s7'BT = [Ig’ ]

where the indices n; and d; are related as in (7).

Let us further introduce the Krylov matrices

Ky:=[B,AB,...,A*'B], k; := [B,AB,... A*1B), (10)
and the block matrices
[ Xl,l . Xl,k ]
Xy = wr eckm, (11)
L kak i
[ X1_1 Xl,k ]
Xp = .t | = diag(T,...,T) X, € Ck™xmx (12)
| Xk |
Rk = [AI,I,AIJ, . -,Al,kL Rk = TRk € me"rkv (13)
where
d;
) i1 i 0
Xi,i = di Id.‘ y 1= 1,' ’k9
Nit+1 L 0
d;
- . 0
Xi' = ! ( - ,i:I,...,'k, .=i+1,...,k,
? nip1 | —Aig ’
Xi; = TX;j,i=1,....k, j=1,...,k.

Let us also abbreviate X := X,, R := R,, K := K,. Then we can characterize the nullspace
of [A, B] as follows.

Lemma 3 Let X, Xk, Rk, Rk, Ki, K¢ be as introduced in (10)-(13). Then
AKX = BRy, AI;’ka‘—‘BRk, k=1,...,s (14)
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and the columns of

span the nullspace [ Z;O ] of (A, B).
0

Proof. The proof follows directly from the fact that AKX = S(fif\"k)z'k), BRy = S(BRy)
and the special structure of the block columns in Ky, i.e., for 1 <1< s,

d] e d[_2 dl—l n;

-~

n [ * “e * Al,l—l 07

o my | ox + Al 0

AR = 0 0 0 L, |, (15)
41 0 0 0 0
ng LO ... 0 0 0 ]

by just multiplying out both sides of the equations in (14). Note that it follows directly from
the controllability assumption and the staircase form (6) that the full nullspace is obtained
for k = s, since then the dimension of the space spanned by the columns of

%3]

is m = ny, which, as noted before, is the dimension of the nullspace of (A, B]. 0O
We need some further notation. Let

J J

0;;:= ZAI_iBXI‘j, éi,j 1= ZA‘“‘BX’,J, t=1,...,8, 7=1,...,8, (16)
(=1 1=t
and set
Wi [Oi,iv--'voi,s]ecnxnia i:]-v""s,
W o= [Wi,Wa...,W,]eCmn, (17)
Yi = [Xii.. .., Xi g €C™*™M i=1,...,s,
Y = ,Y,,...,Y,]eCcm™ .

Furthermore define
nj—mn; n

Ly=n | 0 I, i>}, (18)
and - o -
IZ,] 0 0 {m
N:=| 0 Ia, , N =
: . 0 16"
L 0 ... 0 I,y O




Lemma 4 The matrices W, W, defined in (17) have the following properties.
i)

Wi=KX, W=KZX, X=[Xx NX,...,N"X]. (19)

i)
W = AWN + BY. (20)

ii) W is nonsingular.

Proof.
i) follows directly from the definition of W, and W.
ii) Using the form of W, N we have

AWN = AWy, W,, ... W,|N
= A[0,Wy;...;0,W,_ ;0]
= [0,402,,...,40,,;...;0, AO, ;0]
= [0,01,2,...,01,6;...;0,0,_; ,;0]
-B[0,X12,..., X1 ;.. 30, X1 .5 0]
= W - BY.

iii) We have

W = S§(57'w)
- S[(:)l,lv---,(:)l,s;'";és——l,s—lvé)s—l,s’(:)ss]

'

I, * ... x

—_ S 1"2 I)
*
I,

for a proper permutation matrix P, which follows directly from the definition of (:),'_]- in (16).
Thus W is nonsingular. O

Remark 1 If m = 1 (the single input case), then X = l[a1,...,an-1,1]T, R = —ag, and by
(3) K = [B,...,A" ! B] is nonsingular. Since AKX = BR, we find that ag,...,a,_, are the
coefficiences of the (monic) characteristic polynomial of A, ie.,

n—1
E(N) == A" 4+ > ax A = det(AI, — A).
k=0
Setting adj(Al, ~ A) := T"R20 AxA*, where adj(A) represents the adjoint matrix of the square

matrix A, it is not difficult to verify that Wy = AgB and W = [A0B,... A, B).

We are now able to give a simple characterization of the nullspace of [A ~ Al, B} for an
arbitrary .



Theorem 5 Let E) ; := (I — AN)~! [ IS" ] Then the columns of

U)\k W E/\k
’ = ' , k=1,2,...,s,
[ Vi ] [ —(Rk — AY Ex ) ] ° (21)

span the subspaces { Z{j‘\'k of the nullspace of [A — AI, B of dimension wy. In particular,
Ak

Jor k = s we obtain the whole nullspace spanned by the columns of

U WE),
[ “‘2\ ] = [ -(R - A;’Ex,s) ] (22)

which has dimension ns = m. Hence, we have (A — AUy = BV,
Proof. By (20) we have
(A=ANW = AW — AW = AW — AAWN - ABY = AW(I — AN) - ABY.
Since I — AN is nonsingular, we get

(A= ADW(I - AN)™' = AW — ABY (I — AN)™!
L I . .
and then multiplying by { 0“ ] from the right we obtain

I,

(A= A)WEy; = AW [ 0

} ~ ABY Ey .

By Lemma 3 and (19) we have that AW [ IS" ] = BRy and hence the result follows. The

Uk

v ] is directly determined from the fact that
Ak

dimension of [

rank Uy x = rank WE) ; = rank E) = 7.

D .
In this section we have derived explicit formulas for matrices whose columns span the right
nullspace of [A — Al, B]. These formulas will be used in the following section to derive explicit
expressions for F' and also the closed loop eigenvector matrix.

3 Formulas for F' and the closed loop eigenvector matrix

In this section we derive explicit expressions for the feedback matrix F' and the closed loop
eigenvector matrix.
Let (A, g) be an eigenpair of A — BF, i.e.

(A-BF)g=MAgor (A~ M)g= BFg =: Bz.



Using the representation of the nullspace of [A — AJ, B] in (22) there is a vector ¢ € C™ such

that g = Ux¢, z = Vy¢. Clearly U) is just the space containing all possible eigenvectors of
A — BF associated with A.

Let us first consider a single Jordan block J, = Al + N,, where

01 0 ... 0

L 4

Lemma 6 Suppose that A — BF has a Jordan block of size p x p associated with A\ and the
corresponding chain of principle vectors is gy,...,gp, i.e.,

(A_BF)[gl"”’gP]:[gl""?gP]JP' (23)

Let Gy :={g1,...,89p), Zp =: FGp =:[21,...,2p). Then there exist matrices ®, = [¢1,...,¢,] €
C™*? and I', € C™*P such that

Gp=WIy, Z,= R, - YT, Jp, (24)
where
o,
r=| (25)
I,,1<1>;J;—1

satisfies rank ', = p. (Here the matrices I;, are as defined in (18).)
Proof. By adding —AW N on both sides of (20) we obtain

W(I — AN)=(A- A)WN + BY.

Hence we have that

W=(A-AO)WN({I - AN)"'+BY(I - AN)"" (26)
Let £ = 18‘ then via induction we prove that there exist vectors ¢; € C™ such that the

following expressions hold for gy, 2.

k . .

g = WY NYI-AN)7E¢rs1-;, (27)

j=1

k . .
s = Vage =Y D NXI = AN)7 Edpy1-;, (28)
j=2

fork=1,2,...,p.



For k = 1 we have from (23) that g, is an eigenvector of A — BF. So there exists a ¢; € C™
such that

91 =WE) ¢1 = W(I - AN) ' E¢y, 21 = Vi¢y. (29)

Suppose now that (27) and (28) hold for k, we will show that they also hold for k + 1. By
(23), (A = AM)gik41 = Bziy1 + gk. By (27), (26) it follows that

k
g = (A=ADWI NII - AN)"UDE¢ ., _;
=1
k . .
+ BY Y N7YI-AN)=UtDEg.,, ;.

i=1

Then there exists ¢4y € C™, (note that N*¥ = 0 for k > s,) such that

k
gkt1 = WL = AN)'E¢pyr + Y NI(I = AN)"UtDEg, .,
=1
k+1 ] )
= WY N7"YI=AN) 7 E¢pya-;
J=1

and

k
Zp1 = WVagepr =Y D NI T = AN)"UHIEg .
=1
k41 ' )
= Wik =Y D NI = AN) 7 E¢rya-j.
j=2

Now with (27) and (28) we obtain
p . . .
G, = WY N1 I- AN)TIE® N =: WT,,
3=1

P
V\@, -Y Y N’} - AN)E®,Ni~!,
i=2

Zp

]

Using the formula

NJ—I(I _ /\N)_j — Z (k - ;) /\k—ij—l’
J —

k=j

we obtain

§ s k _ 1 ) )
o= SO0 ( 1),\’°-1N’°-1)E<I>,,N,§-‘
i=1 k=j

]' —
3 s k _ 1 k_] 0 ]-__1
= 200 )N Ty,
J=1 k=j 0



i
@
—
e
-
A
b
—~
Lol
-
AN
LTI
—
\_/
>
b
[}
<
3
|
—
~—

k=1 '0 Jj= 1
i . o,
s 119,J
- Ti1®p (M, + N)k=t | = | “217P07
k=1 0 :

- L1 8,75
Since ,
Y NTHI—AN)TE®,NI™' = (I - AN)~'T,N,,
i=2

we get Z, = Vy®, - Y(I — AN)"'T',N, and then with V) = R — AY (I — AN)"1E, we obtain

,J,
1y19,J,N
Z,=R®,—Y(I - AN)"' | PP

I,J(I),,J;‘l N,

It is then easy to check that Z, = R®, — YT, J, by using the explicit formula for the inverse
of (I — AN)™! and by calculating the blocks from top to bottom. Then rankI', = p follows
from rank W = n and rank G, = p. 0O

After having obtained the formula for each different Jordan block, we have the following
theorem for a general Jordan matrix.

Theorem 7 Let :
J = diag(Jm, S J])T] ye ey J,l'], ey Jq,rq)9 (30)
where Jij = Aily, + Ny, ;. There exists an F' so that J is the Jordan canonical form of A — BF
if and only if there ezists a matriz ® € C™*™ so that

i

Iy,9J
: (31)

Is’lq)Js—l

is nonsingular. If such a nonsingular T' ezists, then with G := WI and Z := R® — YTJ, we

have that F = ZG™! is a feedback gain that assigns the desired eigenstructure and moreover
A-BF =GJG™.

Proof. The necessity follows directly from Lemma 6. For sufficiency, using (19), (14) and
(20), we have

. 1,.9J
AWT = AW, + A[W,, ..., W] _
Ty ®J°)
= AW @ + A[0,W,;...;0, W 0]l'J

= BR® + AWNTJ
= BR®+WIJ-BYIJ=BZ+WTJ.

10



Since I' and W are nonsingular, we get
A—BZ(WT)™! = WIJ(WT)~!

and thus I = Z(WT)~! is a feedback matrix which completes the task. O

Remark 2 Notethat Z :=[R, -Y] [ I(‘I.)] =: [R, -Y]¥, and one can easily verify that ¥I'~!

has a condensed form as the Luenberger like form (9). This fact indicates the relationship of
the formula (31) to the formulas used in the well known assignment methods via canonical
forms [34].

The following results follow from the special structure of T.

Corollary 8 Consider the pole placement problem of Theorem 7, with J given as in (30). A
necessary condition for the existence of F' with J as the Jordan canonical form of A — BF is
that & is chosen so that (J™,®) is controllable. A sufficient condition is that there exists
Ve C"x™ so that (J!,WH) is controllable and has the same indices ny, as (A, B).

Proof. 'The necessary condition is obvious. For the sufficient condition observe that we can
write 3 = BT with T" as in(9). Then W = WH, where
W = [B,ABI1},,..., A" BIH)),
H = diag(Zo,,...,L,0)[X,NX,...,N*' X).
Thus W has a dual structure to I'. Therefore ® = UT can be used to determine a feedback
gain F, where T" € C™*™ is nonsingular and is determined by computing the condensed from
(9) for (J, W), O

Theorem 7 also leads to a characterization of the set of feedbacks that assign a desired
Jordan structure.

Corollary 9 The set of all feedbacks F' that assign the Jordan structure in (30) is given by
{F=2ZG™'=(R®—-YTJ)WT)™!|detT #0, Tas in (31)}. (32)

Remark 3 Note that we do not have to choose a matrix J in Jordan form in Theorem 7. In
fact J can be chosen arbitrarily, since for an arbitrary nonsingular Q,

®Q &
rQ - Zz,l‘I’Q(Q—IJQ) 1 12,1.‘1’-] ’
Z,,2Q(Q™'JQ)*! Z,19J51

'

where & = ®Q, J = Q~'JQ. In particular for a real problem we can choose J in real
canonical form and also choose a real ®.

11



Remark 4 In single input case, i.e., m = 1, the Jordan form must be nondegenerate, see
[21]. Hence for J in (30), we need r; = ... = r, = 1. Let ® = [¢1,...,¢,] and ¢ =
(k1 -y Phpi) € C1XPR let E(A) = det(A], — A), Z(A) = adj(A], — A), as in Remark 1. Then
we can easily verify that

G = WT =[Gy, ...,G,) diag($4,...,9,),

Z=-2y,...,2,) diag(®,...,d,),

where
Gr = [E()B,ZMOB, ..., 2= ()\)B), (33)
Zr = [E(), €M), ..., €@, (34)
. k-1
b, =

Z ¢kvj+1 N‘ng ‘
i=0

Here £%) and =¥ represent the k-th derivatives about A. Obviously we need &, nonsingular
for 1 < k < ¢, so in this case the formulas reduce to

G:=[G,...,Gy), F=-[Z,...,2,)G7",

with Gy, Zi defined in (33) and (34).
Note that this is another variation of the formulas for the single input case, see [21]. By using
the properties of £(A) and Z(A), it is easy to rederive the formulas in [21] when A(A)NP = .

Though it is well known that for an arbitrary pole set P, if (A, B) is controllable then there
always exists an F' that assigns the elements of P as eigenvalues, it is not true that we can
assign an arbitrary Jordan structure in A — BF when there are multiple poles. This already
follows from the single input case. See also [21, 7, 29, 30, 3, 9]. We see from Theorem 7 in
order to have a desired Jordan structure, the existence of a nonsingular matrix I' as in (31)
is needed.

We will now discuss when we can obtain a diagonalizable A — BF. Note that in order
to have a robust closed loop system, it is absolutely essential that the closed loop system is
diagonalizable and even more that all the eigenvalues are simple, since it is well known from
the perturbation theory for eigenvalues [11, 27], that otherwise small perturbations may lead
to large perturbations in the closed loop eigenvalues.

Nonetheless for the completeness of the theory we allow multiplicities in the following results
and we study necessary and sufficient conditions for the existence of a feedback that assigns
for a given controllable matrix pair (4, B) and poles Ay, ..., A, with multiplicities ry,..., 7,
a diagonal Jordan canonical form of the closed loop system

A - BF = Gdiag(M1y,,..., A\, )G =: GAG™. (35)

This problem has already been solved in [25, 18] using the theory of invariant polynomials. It
is also discussed in [14], where necessary conditions are given even if (A, B) is uncontrollable.

Here we will give a different characterization in terms of the results of Theorem 7 and the
multiplicites ry,...,7,. In the proof we will also show a way to explicitely construct the
eigenvector matrix G and the feedback gain F', provided they exist.

12



Notice that multiplication with E) , defined in Theorem 5 sets up a one to one mapping
between C™ and the eigenspace of A — BF associated with a pole A. By (21) a vector

e [{] s

uniquely determines an eigenvector as g = W(I — AN)"'E¢ ¢ Uk

Lemma 10 Given arbitrary poles Ay,...,\;. For each pole \; choose an arbitrary vector
gi € U, 1, If k> Zle d;t, then the vectors gy, ..., g are linear dependent.

Proof. Since g; € Uy, , there exists a corresponding ¢; = [ %i ], with qZ),' € C™ such that

D
) Ip1PrAx
gi = Uy, s¢p. Let @, 1= [b1,...,¢], Ak := diag(Ay,..., ) and Ty = . By
| 13,1¢kAZ—1
Lemma 6, Gy = [g1,...,95] = WTk and since W is invertible, rank G} = rank [';. Applying
RI3
. . f‘k - Pi2Ak
an appropriate row permutation [y can be transformed to N E I'y = . , Where
| drany!

®p1 = [d1,.. ., $x], ®k; is the bottom (m —di—1) x k submatrix of <i>k'1. Because the number
of rows of [} is Zf:l(m —diy) = Zf-=1 d;i,

’ l
rank Gy = rank I'; = rank [y < Zdii~

=1
So k> Zf—___l d;i implies that ¢q,..., gk are linearly dependent. O

Theorem 11 Let (A, B) be controllable. Given poles ), .. -y Aq with multiplicities vy, ..., 71,
satisfying ry > ry > -+ > ro. Then there exists a feedback matriz F so that A — BF is
diagonalizable if and only if

k k
ZT{SZni,kzl,...,q. (36)
i=1 i=1

Proof. 'To prove the necessity, suppose that a feedback matrix F' and a nonsingular G exist,
such that (35) holds. Partition ¢ := [G},...,G,], where G; € C™*™ with range G; C U,,. We
will prove (36) by induction.

If £ = 1, then from Theorem 5 we have that dimi/y, = m = n;. Since rangeG; C Uy,
rank Gy < ny. On the other hand, G nonsingular implies that rank G; = r, and therefore
ry < ny.

Now suppose that (36) holds for k. If (36) would not hold for k + 1 then by applying the
induction hypothesis, we obtain 7y > ... > 7ty > ngyq. Since G; is of full column rank and

13



by Theorem 5, ngy1 = m — mp = dim Uy, — dim Uy, x, it follows that dim(range G; N Uy, ;) >
Ti— Ny, 0= L, k+ 1. As

k+1- k k
Z(T’,‘ - Ngyp) > Z(n, — Ngy1) = Zd,‘i,
i=1 1=1 i=1

by Lemma 10 for arbitrary nonzero vectors g; € rangeG; N U\, k, G1,---,9k4+1 are linear
dependent. In other words, there exists a nonzero vector v such that [Gy,...,Grp]v = 0.
Hence G is singular, which is a contradiction.

To prove sufficiency, using Theorem 7, we construct a matrix ® € C™*" so that

o
12,90

7,801

is nonsingular, where ¥ is diagonal and permutationally similar to A of (35). Let

di 2d2 ... sdg
dl @1'1 (1)1'2 q)l,s ( ) (')
d2 4)2,2 . @2,8 ¢1r] ¢l,d,
® = . . , with ®;; =
: - ()
d-’ q)s,s ¢d.,d.
and ¢§1]) = wgi'j),...,wfi’j) € C'* with w,(i’j) £Z0forali=1,...,s,5 =1,...,d;,
I =1,...,i. Partition ¥ accordingly as
dl 2d2 “e Sd.,»
(11 ‘I’l
Y
2d ) ,
. ’ 2 N with \I’,' =
:sd, . v, Vi,
and '(pi,]' = (]ia'g(ul(i'j), ey l/‘(i’j)),
Then we obtain
] q’l,l ‘D],z (I)l_‘9 1
;. Dy,
‘ ‘I)s,s
@2,2\112 . . (1)2'8\113
= . -
(I)s,s\ps
(ps-—l,s—-l ‘I’::f q’,_l',‘l’:_2
0 ®,, V2
- ®,, 057" |
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It follows from the form of @, that, by applying a row permutation, I can be transformed
to the form

l:‘l * * fgl’)l * *
. i R (1)
I'= Ty ,  with I'; = T2z
L, Ff,’)d
and
1 . 1
(i.4) (4,5)
~ ; l/ ... I/i . i . i .
I‘;'J) = 1: : dlag(wi A .,w,( 2y,
(V{id))i—l o (V_(f:f))i—l

g']) is a product of a nonsingular diagonal
matrix and a Vandermonde matrix, which is nonsingular if Vf"”,...,u}"]) are distinct, it
follows that the matrix I, or equivalently T, is nonsingular. So it remains to show that the
(4.4)
v

J

Since I' is block upper triangular and since each I’

can be chosen from the eigenvalues so that all the occuring Vandermonde matrices are
nonsingular. It is easy to see that condition (36) guarantees this choice. 0

4 Perturbation Theory

In this section we consider how the feedback gain and the actual poles of the closed loop system
change under small perturbations to the system matrices and the given poles. It is clear
from the perturbation theory for the eigenvalue problem [27] that we need a diagonalizable
closed loop system with simple poles if we want that the closed loop system is insensitive to
perturbations. The following result, which is a generalization of the perturbation result of
Sun [28], also holds in the case of multiple poles if diagonalizable closed loop systems exist
for some choice of feedback.

Theorem 12 Given a controllable matriz pair (A, B), and a set of poles P = {),.. Sy An}.
Consider a perturbed system (A,B) which is also controllable and a perturbed set of poles
P={A,...,0). Set A— A = 6A, B— B =: 6B and i — Ak =: 6, k= 1,...,n.
Suppose that both the pole placement problems with A,B,P and A, B, P have solutions with
a diagonalizable closed loop matriz. Set

€:=|[6A,6B]|. (37)
and suppose that
' €+ |6/\,'| 3
- 38
X oA —NI,B]) < @ (38)

Then there exists a feedback gain F := F 4 § F of (A, B) such that

: 7 - L+ (|BYA = MD)])? (e + |6
1671 < 2 [T T ) R
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MA = BEY=P and A — BF is diagonalizable. )
Moreover, for each eigenvalue p; of the closed loop matriz A — BFE, (i.e., the perturbed
feedback is used for the unperturbed system), there is a corresponding \; € P such that

i — Al < 6] + eky/1 + | F)2. (40)

Here K, i are the scaled spectral condition numbers of A— BF and A — BF, respectively (cf.
[8]), o0a(A) is the smallest singular value of A, and B is the Moore-Penrose pseudoinverse
of B.

Proof. Suppose A — BF = Gdiag(A,...,2,)G7 L Let G := [g1,...,00], lgi| = 1, ¢ =

1

I,...,n. Let Z = FG :=[z,...,2,) and w; = [ g," ],then

[A— A\, Blw; = 0. (41)
Consider a singular value decomposition
[A—NI,B|=U [ T 0 ] VA with ¥ = diag(o1,...,00), 01 > ... > an.  (42)

The controllability of (A, B) implies that o, # 0. Set V = [V,V,] with V, € C**™, then
range V3 = kernel{A — A;I, B]. So there exists a nonzero a € C™ such that w; = Voa. Since
we require |g;] = 1, from (41) it follows that Jz;| < |BY(A — A\;T)] and thus -

lod = lgil? + 12302 < /1 + 1Bt (A = XD (43)

Similarly for the perturbed problem there exists a matrix V2 € C™"™ with Vz"Vz = I,
such that [A - /\ I,B\V, = 0, or [A = NI, BlVy = —[6A — 6)\;1,8B]V;. Using (42) we have
that ViV, = n-1yH [6A = 6);1,6B)V,. Hence

(]

ViVl < (e 68X /o =7 < =

-

Performing a singular value decomposition V2 V, = Yy 22}”’ we obtain from [,, = VH Vy =
(VHTV) (V) + (VI V) H(VH), that |1, — B2 = ||V1HV2||2 < 72, Hence ||1,,1—L2|| < 7l
L.et w; be chosen analogous to w; but for the perturbed problem and assume that @; = V,

with @ = Y,Y;Ha. Note that it may happen that for this choice of & the related ¢} is Slllgll]dl‘
We can overcome this difficulty as follows. By our hypothesns a nonsingular G always exists
for the perturbed problem. Consider the matrix G’(t) G + tG. Since det & (t) # 0 for
sufficiently large ¢ and det G(t) is a polynomial in ¢, it has at most n roots. So we can choose
a nonsingular G/(t) with |t| > 0 arbitrary small. This is equivalent to chosing a w; for each i,
which tends to @;. Moreover, in this sense, the determined F makes A — B F° diagonalizable.
By (38), (43) we obtain

(V2 = VaYo)Yf ol = [VH(VY; - VoY,V o
VIVIRY Y al? + (L = YAVIVYa) Y a2

- " -~ 5
Lol VIV Val? + 1 = Saf? < a7+ 70 < 7.

| w; — ;]

IA
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Let G, Z be constructed analogous to G, Z, then F = ZG~!, FF = F 4+ 6F = 2G-1.

Therefore
§F = 2G'-2G'=(Z2-2)G' + 2(G-' =G
. G-G
— . Gt
= —[F 0 [d1-w . b —w, |G

it

By (43) and x := JGTYIG| > |G|, we have

lor] < \/ﬁn\/1+||F||2m?x||w,-—w,-||

_ A 1+ [ BHA = MD)|2(e + |6X])
< 5—4‘Cfc 1+ | F)? max{ \/ on([A = NI, 1_;]) b

which implies (39). ) o )
For (40), rewrite A — BF as A — BF — (§A — 6BF). Since A\(A — BI") = ’P by applying
the Bauer-I'ike Theorem, e.g. [11, pp. 342], for each eigenvalue p; of A — BF there exists a

corresponding X;, so that |p; — A;| < Rl6A — 8BF| < ei\/1+ | F|2. Using A; = \; + oA, we
obtain (40). O
In the given upper bounds the norm of F and the spectral condition number & are related.

Corollary 13 Under the hypotheses of Thereom 12 we have
IF] < vk max |BY(A ~ AD)]. (44)

Proof. Using (41) we obtain that z; = BY(A—\;I)g;. Since lgil =1, Z| < /nmax; |BY(A-
M) and then F = ZG™! yields (44). O

Theorem 12 only gives upper bounds for the perturbations. This is the usual situation in
most perturbation results. To complete the perturbation theory it would be nice to show that
these bounds are tight and actually close to the exact perturbations. We will demonstrate
the tightness of the bounds via a numerical example below. The main factors that contribute
to the sensitivity of the feedback gain F and the poles of the the closed- loop system A — BE’
that is obtained with the perturbed feedback F'. These factors are S := Kv1+ |F|? and in
the bound for F' the additional factor d := 1/ min; 0,(A — A\;I, B). The latter factor is closely
related to the distance to uncontrollability

dy(A, B) = mman[A Al, B), (45)

[10]. It is obvious if d,(A, B) is small then d can be very large and the problem to compute
Fis likely to be ill-conditioned. If dy(A, B) is large, then clearly d is small and then this
factor plays a minor role in the perturbation bounds. The other dominating factor S is more
difficult to analyse. In the single input case it was discussed in [21, 22] how this factor is
influenced by the choice of poles. 1t was observed that S is essentially given by the condition
number of the Cauchy matrix C = [ /\ o—x-)> where the v; are the eigenvalues of A and the \;
are the desired poles. Unfortunately this condmon number is usually very large, in particular
if the system dimension n is large. In [22] it was also discussed how the poles A;j can be chosen
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to minimize S. The situation in the multi-input case is much more complicated. Notice that
(44) implies that S essentially behaves like k2. Furthermore we see from (19) and Theorem 7,
with a diagonal matrix J, that

G = KXT

= [B,AB,..., A’ 'B|X diag(I,T3,,...1,,) : ,
‘PJ.s—l
where K, X are as in (19). If as a special case
A = diag(vy,...,), J = diag(Ay, ..., An),
then there exists a permutation matrix P such that
(B,AB,...,A* ' B]P = [diag(bi1, - - -, bn1)Va, ..., diag(bim, . . ., bum ) Val,

with the Vandermonde matrix

1 1 Vf"
Va = E :
1 v, pi-1
We also obtain an analogous result for
L'
dJ
(I,J.s—l

with a Vandermonde matrix V; formed from the A;. It is well known that such Vandermonde
matrices are usually very ill conditioned (see [12, Chapter 21] and the references therein), in
particular if s is large.

‘T'here may be some fortunate circumstances by which the ill conditioning of the Vander-
monde factors is cancelled out by the middle term or when forming the product, but in general
that cannot be expected.

From the relationship 2 < s < n—m+1, which follows from the staircase from, we see that
for large n in order to have a small s and thus a reasonable conditioning of the Vandermonde
matrices, we need that also m is large. '

We see from this rough analysis that S depends critically on the choice of poles and we
can expect that S is large if s is large and we can conclude that if s is large then the pole
assignment problem will in general be ill conditioned. It is not difficult, however, to contrive
examples with good conditioning, by starting with A with well conditioned eigenvector matrix
(say a normal matrix) and then, choosing B and F of small norm, form 4 = A + BF, see
[1, 2]. But in general we can expect neither | F| nor S to be small.

Another way to analyze the conditioning of G is obtained from

AG - BZ =GA, Z=FG.
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If again A and J are diagonal, and if vi# A, 4,j=1,...,nand G = [gij]lnxn, then gij =
e,-HBZej/(ui — A;), where e; is the ith column of I,,. So G is a generalized Cauchy matrix
which usually has a large condition number.

Let us demonstrate the above analysis via an example.

Example 1 Let 4 = diag(1,...,20), P = {=1,...,-20} let B be formed from the first m
columns of a random 20 x 20 orthogonal matrix.

The following results were obtained on a pentium-s PC with machine precision eps =
2.22 x 1075 under Matlab Version 4.2. The MATLAB pole placement code of Miminis and
Paige [23] was used to compute the feedback gain. We ran m from 1 to 20 and in each case
we computed 20 times with 20 random updated matrices B. In Table 1 we list the geometric
means (over the 20 experiments) of &, F', bound, err, where bound=eps|[A, B]|&+\/1 + | F|?,
and err=maxj<i<o [fti — Ai|, with A; and the real parts of u; arranged in increased order. In

the second column we list the average value for s taken over the 20 random tests for each m.
Note that for all 400 tests the values of min; o, ([A ~ X1, B)) varied from 2.0 to 2.24.

m| s K F Bound Err

1 1201 35x%x10° [ 1.1 x 1077 1.7 x 10° 7.3 x 101

2 [10]1.8x10"|50x%x10° {3.9x10% |92.7x% 102

317 ]121x10'(2.4x%x109)2.2x%10° 1.4 x 102

4 15 [74x10"[58x%x107 |1.9x%x10° 2.4 x 10!

5 |4 (1.2x10"[1.3x10° |7.3x%x10% 1.0 x 10!

6 14 121x10M[2.6x10" |2.5x 101 5.8

713 17x10"]4.2%x10* |3.1x10% 2.0

8 | 3 11.7x10"M|1.1x10* |86x 103 7.8 x 107!

9 13 ]24x10M[{9.0x10% [9.8x103 |6.6x 10!

10] 2 |21 x10"[26x10% |2.9x 103 3.8 x 10!

]2 ]11.8x108179x10% |6.5x 10! 1.0 x 104

1212 19.2x 10" | 5.0x 102 |2.0x 10! 3.6 x 1073

13] 2 15.7x 10" |45x%x10% | 1.1 1.5 x 1014

1412 [21x10"3.2x10% [3.0x 107! |6.7x 10-5

1512 134x100]28x10% {4.2x1072 |1.3% 10-5

16| 2 | 5.9x10° |26 x 102 |6.7x10~* |3.0x 10-7

17012 | 3.1x107 |2.2x10% [3.0x 1075 |1.6x 10-8

1812 1 1.6 x10° |2.0x 102 | 1.4x10~7 |1.0x 10-10

1912 17.0x10% |1.9x10% |5.9x%x10-19]9.9x 10-13

20| 1 1.0 3.5x 10" [1.5%x10°13]2.6x 10-14
Table 1

5 Analysis of pole placement strategies

We see from the perturbation analysis that serious numerical difficulties may arise in the
pole assignment problem. First of all, if s is large, then we can expect that the problem is
ill conditioned, regardless which strategy is used to resolve the freedom in F. But even if
s is small, then not every strategy to choose the freedom in F will lead to a robust closed

loop system. Clearly a minimization of | F| as approached in [3, 15] or a local minimization
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as done in [33] will improve the upper bound in (39). Corollary 13, however, indicates that
the minimization of k as described in [14] may be a better choice, since it automatically also
minimizes an upper bound for |F|. Note, however, that the computational cost is an order
of magnitude higher, than in the methods that minimize | FJ.

Certainly an optimization of § := ky/1 + | F|> would be even more promising, since then
a smaller upper bound is minimized. Using the explicit characterization of I, it is actually
possible to write down an explicit optimization problem for S in the form A

min$ = min{ [WT(@)II(@)™' W /1 +12(2)r(2)- W1}, (46)

where Z(®), I'(®) are as Theorem 7. For mn not too large, we can approach this minimization
problem with standard optimization software and actually in practice one probably usually
does not need the global minimum, but just one, where § is small enough to guarantee a
small bound (39), which then can be actually computed and used as condition estimator.

6 Future research

Pole placement is often used as a substitute problem for the solution of another problem,
like stabilization or damped stabilization, see, e.g., [4]. If this is the case, then also the poles
{A1,..., A} are free to vary in a given set  C C. For the single input case, where we have
no freedom in F, this problem was discussed in [22].

But for the substitute problem, & might not be the right measure to optimize, since one
usually also wants that the poles are robustly bounded away from the boundary of Q, eg.,
are robustly stable. Then also the distance to the complement of 2 should be included in the
measure. This topic is currently under investigation.

The analysis that we have given can also be used to study pole assignment via output
feedback, i.e., the problem of determining a feedback F' € C™*?, such that A — BFC has a
desired set of poles, where C € CP*™ describes an output equation of the form

y=Cr. (47)

It is evident from Theorem 7 that a solution to the output feedback problem exists if and
only if there exists a matrix ® € C™*" so that I' as in (31) is nonsingular and

FC =2G™! (48)
with Z as in Theorem 7. This condition is equivalent to
range(ZI"1H)H ¢ range(CW)H, (49)

If (A", CH) is also controllable, anagalous to Theorem 7, by considering the problem Al —
CH(BF)! = G-HTHGH there are Z, := R, ¥ — YT and G™H = W.I, so that

BF = (2.GMH = w7 Hr HZH, (50)

Here W., R., Y. and T, are similar as in the state feedback case but for (A”,C”), ¥ e Pt
is remain to chosen. In this case the output feedback problem is solvable if and only if there
exist ® and ¥ so that

Wwr =w Hr7H  or Tl = (WwHw)=L (51)
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Note that in this case (48) and (50) are automatically satisfied from the structures of W and
We..
It is currently under investigation to obtain more explicit formulas for this problem.
Another important variant of the pole assignment problem is when not only poles but also
some eigenvectors of the closed loop system are given, see [19].

7 Conclusion

We have continued the analysis of the pole placement problem in [21] for the multi-input case
and we have derived explicit formulas for the feedback matrix and the closed loop eigenvector
matrix as well as new perturbation results.

We observe a similar behaviour as in the single input case, and we come to a similar
conclusion, that we can expect the pole placement problem to be ill-conditioned if s the
number of blocks in the staircase form of the matrix is large. This is definitely the case when
n is large and m is small.
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