
New studies on the degree of ill-posedness

BERND HOFMANN

TU Chemnitz
Faculty of Mathematics

09107 Chemnitz, GERMANY

Talk presented for the
“Joint Fudan - RICAM Seminar on Inverse Problems”

at the Johann Radon Institute (RICAM), Linz, April 24, 2024

Research supported by the Germany Research Foundation (Grant HO 1454/13-1)

Email: hofmannb@mathematik.tu-chemnitz.de
Internet: www.tu-chemnitz.de/mathematik/ip/



The talk partially presents joint work with:

Stefan Kindermann (Linz)

Frank Werner (Würzburg)

Robert Plato (Siegen)

Hans-Jürgen Fischer (Dresden)

Peter Mathé (Berlin)
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Introduction

Let X and Y be infinite dimensional separable Hilbert spaces.

We consider operator equations modelling inverse problems.

Although this seems like the more trivial case, today our focus

is on ill-posedness phenomena for the ill-posed linear case

A x = y (x ∈ X , y ∈ Y ) (∗)

characterized by bounded linear operators A ∈ L(X ,Y ),

for which the range R(A) is a non-closed subset of Y , or

in other words, the Moore-Penrose inverse A† is unbounded.

For simplicity, we suppose in the sequel that A is injective.
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Nashed’s ill-posedness concept applied to linear
problems (∗) in Hilbert spaces

B M. Z. NASHED: A new approach to classification and regularization of ill-posed
operator equations. In: H. W. Engl and C. W. Groetsch (Eds.), Inverse and Ill-posed
Problems (Sankt Wolfgang, 1986), volume 4 of Notes Rep. Math. Sci. Engrg.,
pp. 53–75. Academic Press, Boston, MA, 1987.

Definition
The ill-posed linear operator equation (∗) is called
– ill-posed of type I if the range R(A) contains an infinite
dimensional closed subspace, and alternatively
– ill-posed of type II if A is compact.

Please allow two small digressions on the next slides:
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More diverse ill-posedness types in Banach spaces

B J. FLEMMING, B.H. AND I. VESELIĆ: On `1-regularization in light of Nashed’s
ill-posedness concept. Computational Methods in Applied Mathematics 15 (2015),
pp. 279–289.

operator compact

operator not

strictly singular

operator strictly
singular

well-posed
ill-posed of type II

ill-posed of type I

Operator A ∈ L(X ,Y ) in Banach spaces X and Y is strictly singular if R(A) does not
contain an infinite dimensional closed subspace.

T. KATO 1958: Is every strictly singular operator compact? In Hilbert spaces: Yes!

In Banach spaces: No! Embedding operator from `p (1≤p<2) to `2 is strictly singular.
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In consideration of the 30th anniversary of the article

B B.H. AND O. SCHERZER: Factors influencing the ill-posedness of nonlinear
problems. Inverse Problems 10 (1994), pp. 1277–1297.

a little sideways look at ill-posed nonlinear operator equations

F (x) = y (x ∈ D(F ) ⊆ X , y ∈ Y ) (∗∗)

Definition
The equation (∗∗) is called locally well-posed at the solution
point x† ∈ D(F ) if there is a ball Br (x†) around x† with radius
r > 0 such that for each sequence {xn}∞n=1 ⊂ Br (x†) ∩ D(F )

lim
n→∞

‖F (xn)− F (x†)‖Y = 0 =⇒ lim
n→∞

‖xn − x†‖X = 0

holds true. Otherwise (∗∗) is called locally ill-posed at x†.

In the sequel, we return to the linear case (∗) in Hilbert spaces:
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Ill-posedness of type II (compact case)

Definition
For an injective compact operator A : X → Y between infinite
dimensional Hilbert spaces X and Y and decreasingly ordered
singular values {σn(A)}n∈N with σn(A)→ 0 as n→∞ we call
the operator equation (∗)

mildly ill-posed whenever the sequence {σn(A)}n∈N
decays slower than any polynomial rate.
moderately ill-posed whenever the sequence {σn(A)}n∈N
decays polynomially. If σn(A) � n−κ as n→∞ with some
κ > 0, then we call (∗) moderately ill-posed of degree κ.
severely ill-posed whenever the sequence {σn(A)}n∈N
decays faster than any polynomial rate.
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For combinations of polynomial and logarithmic terms in the
decay rates, it can helpful to define:

Definition
We introduce the interval of ill-posedness as

[κ, κ] :=

[
lim inf
n→∞

− log(σn(A))

log(n)
, lim sup

n→∞

− log(σn(A))

log(n)

]
⊂ [0,∞].

If the well-defined κ and κ from [0,∞] are both finite positive,
then we have moderate ill-posedness, and if they even
coincide as κ = κ = κ, then the equation (∗) is ill-posed of
degree κ > 0. Severe ill-posedness occurs if the interval
degenerates as κ = κ =∞, and vice versa mild ill-posedness
is characterized by a degeneration as κ = κ = 0.

B B.H. AND U. TAUTENHAHN: On ill-posedness measures and space change in
Sobolev scales. Z. Anal. Anwendungen 16 (1997), pp. 979–1000.
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Example: Fractional integration of order κ > 0
We have for operator equation (∗) with X = Y = L2(0, 1) and A = Jκ defined as

[Jκx ](s) :=

∫ s

0

(s − t)κ−1

Γ(κ)
x(t) dt (s ∈ [0, 1])

that σn(Jκ) � n−κ as n→∞ and (∗) is ill-posed of degree κ.

B R. RAMLAU, CH. KOUTSCHAN AND B.H.: On the singular value decomposition of
n-fold integration operators. In: Inverse Problems and Related Topics (Eds.: J. Cheng,
S. Lu and M. Yamamoto). Springer Nature, Singapore, 2020 , pp. 237–256.

Example: d-dimensional multivariate integration
We have for operator equation (∗) with X = Y = L2((0, 1)d ) and A = Jd defined as

[Jd x ](s1, ..., sd ) :=

∫ s1

0
...

∫ sd

0
x(t1, ..., td ) dtd ...dt1 ((s1, ..., sd ) ∈ (0, 1)d )

that the equation (∗) is ill-posed of degree one and independent of d, because

σn(Jd ) �
[log(n)]d−1

n
as n→∞ and lim

n→∞

− log( [log(n)]d−1

n )

log(n)
= 1.

Hence the interval of ill-posedness degenerates to the single point κ = 1.

B B.H. AND H.-J. FISCHER: A note on the degree of ill-posedness for mixed
differentiation on the d-dimensional unit cube. J. Inverse Ill-Posed Probl. 31 (2023),
pp. 949–957.
In contrast: Ill-posedness degree κ = p

d > 0 strongly depends on d for embedding
operator Ed : Hp((0, 1)d )→ L2((0, 1)d ) with σn(Ed ) � n−

p
d as n→∞.
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Ill-posedness characterization in literature: rough selection

B G. WAHBA: Ill-posed problems: Numerical and statistical methods for mildly,
moderately and severely ill-posed problems with noisy data. Technical Report No. 595.
Madison, University of Wisconsin, 1980.

B J. BAUMEISTER: Stable Solution of Inverse Problems. Vieweg, Braunschw., 1987.

B A. K. LOUIS: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart, 1989.

B H. W. ENGL, M. HANKE AND A. NEUBAUER: Regularization of Inverse Problems.
Kluwer, Dordrecht, 1996.

B O. SCHERZER, M. GRASMAIR, H. GROSSAUER, M. HALTMEIER, F. LENZEN:
Variational Methods in Imaging. Springer, New York, 2009.

B T. SCHUSTER, B. KALTENBACHER, B.H. AND K. S. KAZIMIERSKI: Regularization
Methods in Banach Spaces. Walter de Gruyter, Berlin/Boston, 2012.

B S. LU AND S. V. PEREVERZEV: Regularization Theory for Ill-Posed Problems.
Walter de Gruyter, Berlin/Boston, 2013.

B B.H. AND R. PLATO: On ill-posedness concepts, stable solvability and saturation.
J. Inverse Ill-Posed Probl. 26 (2018), pp. 287–297.
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Impact of non-compact operators on the degree of
ill-posedness in compositions with compact operators

Ill-posedness of type I (non-compact case)

In his seminar paper, Nashed states 1987:

“An equation involving a bounded non-compact operator with non-closed range is less
ill-posed than an equation with a compact operator with infinite-dimensional range.”

However, this claim is problematic, and finding appropriate
approaches for measuring the strength of type I ill-posedness
is a never ending story. For example, it was tried in:

B B.H. AND G. FLEISCHER: Stability rates for linear ill-posed problems with compact
and non-compact operators. Z. Anal. Anwendungen 18 (1999), pp. 267–286.
B B.H. AND S. KINDERMANN: On the degree of ill-posedness for linear problems with

non-compact operators. Methods and Applications of Analysis 17 (2010), pp. 445–461.
B P. MATHÉ, B.H. AND M. T. NAIR: Regularization of linear ill-posed problems

involving multiplication operators. Appl. Anal. 101 (2022), pp. 714–732.
B F. WERNER AND B.H.: A unified concept ... under the auspices of the spectral

theorem. Paper in preparation, 2024.
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Compositions of both ill-posedness types

We consider for Hilbert spaces X ,Y ,Z the ill-posed equation

A x = y (x ∈ X , y ∈ Y ) (∗)

with a linear compact composite operator

A : X D−−−−→ Z B−−−−→ Y ,

where A = B ◦ D is a composition of the compact linear
operator D having infinite dimensional range and the
bounded non-compact linear operator B having
non-closed range, too.
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Then the inner problem

D x = z ,

is ill-posed of type II due to the compactness of D,
whereas the outer problem

B z = y

is ill-posed of type I, since B is non-compact.

General question:
Can the non-compact operator B with non-closed range in
A = B ◦ D ‘destroy’ the ill-posedness degree of the compact D?
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Compared to the compact original operator D, the ill-posedness degree of A = B ◦ D

can only grow or stay at the same level, because we have the upper estimate

σn(A) ≤ ‖B‖L(Z,Y ) σn(D) (n ∈ N) .

The following lower estimate the conditional stability result of Theorem 2.1 from

B B.H. AND P. MATHÉ: The degree of ill-posedness of composite linear ill-posed
problems with focus on the impact of the non-compact Hausdorff moment operator.
ETNA 57 (2022), pp. 1–16.

Theorem 1
Suppose that there exists an index function Ψ : (0,∞)→ (0,∞) such that for
0 < δ ≤ ‖A‖L(X,Y ) the conditional stability estimate

sup{ ‖Dx‖Z : ‖Ax‖Y ≤ δ, ‖x‖X ≤ 1} ≤ Ψ(δ)

holds. Then we have
Ψ−1(σn(D)) ≤ σn(A) (n ∈ N) .
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Multiplication operators in L2(0,1) may be harmless

Setting X=Y =Z=L2(0,1) we have, for the integration operator
[Jx ](s):=

∫ s
0 x(t)dt and non-compact classes of multiplication

operators [Mx ](t):=m(t)x(t) with multiplier functions m∈L∞(0,1)

having essential zeros, that

σn(M ◦ J) � σn(J) � n−1 as n→∞.

The non-compact B := M does not ‘destroy’ the singular
value decay rate of D := J by the composition A = M ◦ J.

B M. FREITAG AND B.H.: Analytical and numerical studies on the influence of
multiplication operators for the ill-posedness of inverse problems. J. Inv. Ill-Posed
Problems 13 (2005), pp. 123–148.
B B.H. AND L. VON WOLFERSDORF: Some results and a conjecture on the degree of

ill-posedness for integration operators with weights. Inverse Problems 21 (2005),
pp. 427–433.
B B.H. AND L. VON WOLFERSDORF: A new result on the singular value asymptotics

of integration operators with weights. Journal of Integral Equations and Applications 21
(2009), pp. 281–295.
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Cesàro operator in L2(0,1) is expected powerful

We consider now with X=Y =Z=L2(0,1) the composition of the
compact integration operator [Jx ](s):=

∫ s
0 x(t)dt and the

(continuous) Cesàro operator C : L2(0,1)→ L2(0,1) as

[C x ](s) :=
1
s

∫ s

0
x(t) dt (0 < s ≤ 1),

which is comprehensively characterized by
B A. BROWN, P. R. HALMOS AND A. L. SHIELDS: Cesàro operators. Acta Sci. Math.

(Szeged) 26 (1965), pp. 125–137.

The operator C is non-compact and has a non-closed range.

However, the Cesàro operator B := C has the power to amend
(increase) in the composition A = C ◦ J the singular value
decay rate of the compact operator D := J.
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For the Hilbert-Schmidt operator A = C ◦ J : L2(0, 1)→ L2(0, 1), we have

[Ax ](s) :=
1
s

∫ s

0
(s − t) x(t)dt =

∫ s

0

s − t
s

x(t)dt (0 < s ≤ 1) ,

which is connected to the twofold integration operator J2 with σn(J2) � 1
n2 by

J2 = M ◦ A for the multiplication operator [Mx ](s) = s x(s) (0 ≤ s ≤ 1) in L2(0, 1).

This implies: σn(J2) ≤ ‖M‖L(L2(0,1))
σn(A) ≤ σn(A) ≤ ‖C‖L(L2(0,1))

σn(J) (n ∈ N).

Hence, there exist positive constants K1 and K2 such that

K1

n2
≤ σn(A) ≤

K2

n
(n ∈ N).

By the Hilbert-Schmidt-type inequality
∑∞

i=n+1 σ
2
i (A) ≤

∑∞
i=n+1 ‖Aei‖2

L2(0,1)
for

orthonormal systems {ei}∞i=1 derived from shifted Legendre polynomials we show in

B Y. DENG, H.-J. FISCHER AND B.H.: The degree of ill-posedness for some
composition governed by the Cesàro operator. arXiv:2401.11411, Jan. 2024.

Theorem 2
The Cesàro operator C raises the ill-posedness degree of J by one such that

σn(A) = σn(C ◦ J) �
1
n2

as n→∞ .
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Some mystery and a curiosity of the Hausdorff
moment operator in compositions

We recall the Hausdorff moment operator H : L2(0,1)→ `2

[H x ]j :=

∫ 1

0
t j−1x(t)dt (j = 1,2, ...) .

The subsequent propositions is from:

B D. GERTH, B.H., C. HOFMANN AND S. KINDERMANN: The Hausdorff moment
problem in the light of ill-posedness of type I. Eurasian Journal of Mathematical and
Computer Applications 9 (2021), pp. 57–87.

Proposition
H : L2(0, 1)→ `2 is a bounded, injective and non-compact linear operator with
non-closed range. The adjoint operator H∗ : `2 → L2(0, 1) attains the form

[H∗y ](t) =
∞∑
j=1

yj t j−1 (0 ≤ t ≤ 1).

We have H = LQ with an isometry Q : L2(0, 1)→ `2 and a lower triangular operator
L : `2 → `2 being the lower Cholesky factor of the infinite Hilbert matrix
H =

(
1

i+j−1

)∞
i,j=1

: `2 → `2. This means that LL∗ = H = H H∗.

B. Hofmann New studies on the degree of ill-posedness 24



In our framework we set now B := H and D := J. Hence,
we consider the compact composition A = H ◦ J : L2(0,1)→ `2

Proposition
There is a positive constant C0 such that

sup{ ‖Jx‖L2(0,1) : ‖H(Jx)‖`2 ≤ δ, ‖x‖L2(0,1) ≤ 1} ≤ C0

log(1/δ)
.

This proposition yields with Theorem 1 by setting
X = Z = L2(0,1), Y = `2 and Ψ(δ) = C0

log(1/δ) the following

Corollary 1
There exists a positive constant C such that

exp(−C n) ≤ σn(H ◦ J) (n ∈ N).
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Again based on Hilbert-Schmidt-type estimates we find from:
B B.H. AND P. MATHÉ: The degree of ill-posedness of composite linear ill-posed

problems with focus on the impact of the non-compact Hausdorff moment operator.
ETNA 57 (2022), pp. 1–16.

Theorem 3
For A = H ◦ J there exist positive constants C and C such that

exp(−C n) ≤ σn (A) ≤ C
n 3/2 (n ∈ N).

The non-compact Hausdorff moment operator H is able to increase in a composition
the degree of ill-posedness of J at least by 1/2. However, the gap between lower and
upper bounds for σn(A) is too large.

Open question (Hausdorff mystery)
Is the linear operator equation (∗) with forward operator
A = H ◦ J moderately or severely ill-posed?

By now there is no final unveiling of this mystery!

B. Hofmann New studies on the degree of ill-posedness 26



Arguments pro moderate ill-posedness:

For the Hilbert-Schmidt operator A = H ◦ J we have

[A∗Ax ](s)=
1∫
0

k(s,t) x(t) dt (0≤s≤1) with k(s,t)=
∞∑
j=1

(1−s j )(1−t j )

j 2 .

Kernel k is smooth, but partial derivative ∂k
∂s has a pole at s = 1.
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Arguments against moderate ill-posednes:
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Semi-logarithmic plot of singular values of n × n-matrices with n = 104 supporting

points representing discretization matrices of the operators A, B(H) := H and J.

Singular values of A = H ◦ J decay exponentially in the numerical experiments.

Is numerics reaching its limits here to evaluate the degree of
ill-posedness for the infinite dimensional problem?
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Kindermann’s curiosity observation on Hausdorff operator

Stefan Kindermann observed that the non-compact operators C and H, both with
non-closed range, have the property that they can lead to compact compositions.

The adjoint C∗ : L2(0, 1)→ L2(0, 1) of the Cesàro operator C defined as

[C∗x ](t) =

∫ 1

t

x(s)

s
ds (0 ≤ t ≤ 1)

is also non-compact. We have in composition with operator H : L2(0, 1)→ `2 that

[H(C∗x)]j =

∫ 1

0

(∫ 1

t

x(s)

s
ds
)

t j−1 dt =
1
j

∫ 1

0
x(t) t j−1 dt =

1
j

[Hx ]j (j ∈ N) .

Evidently, H ◦C∗ : L2(0, 1)→ `2 is a compact operator. By now, as in the case H ◦ J,

a decision moderate versus severe ill-posedness has not yet been made.

For more details see:

B S. KINDERMANN AND B.H.: Curious ill-posedness phenomena in the composition
of non-compact linear operators. arXiv:2401.14701v1, Jan. 2024.
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Measuring ill-posedness of non-compact operators by
spectral theorem and decreasing rearrangements

One more option for progress in evaluating the type I ill-posedness for non-compact

operators A : X → Y is to use the Halmos spectral theorem, which says that there

exists a locally compact space Ω, a semi-finite measure µ on Ω, an a.e. non-negative

function λ ∈ L∞ (Ω, µ), and a unitary mapping U : L2 (Ω, µ)→ X such that

U∗A∗AU = Mλ ,

with the multiplication operator Mλ : L2 (Ω, µ)→ L2 (Ω, µ) defined as

[Mλξ](ω) := λ(ω) · ξ(ω) (µ− a.e. on Ω, ξ ∈ L2(Ω, µ)).

The essential range essran(λ) of the multiplier function λ coincides with the

spectrum spec(A∗A) of the self-adjoint operator A∗A.

Main idea for case µ(Ω) =∞:

Inspection of the decay rate at infinity of the decreasing rearrangement λ∗ of λ.

See for further details:

B P. MATHÉ, B.H. AND M. T. NAIR: Regularization of linear ill-posed problems
involving multiplication operators. Appl. Anal. 101 (2022), pp. 714–732.

B F. WERNER AND B.H.: A unified concept ... under the auspices of the spectral
theorem. Paper in preparation, 2024.
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A prominent role is due to the distribution function

Φλ(ε) := µ ({ω ∈ Ω : λ(ω) > ε}) (ε > 0) .

Assumption
(a) µ(Ω) =∞.
(b) It holds 0 ≤ Φλ (ε) <∞ for all ε > 0 and limε→0 Φλ(ε) =∞.

Then decreasing rearrangement λ∗ of λ with limt→∞ λ
∗(t) = 0

λ∗(t) = Φ−1
λ (t) := inf {τ > 0 : Φλ(τ) ≤ t} (0 ≤ t <∞)

is well-defined and allows for decay inspection at the infinity
in order to evaluate the degree of ill-posedness.
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Example: Severe ill-posedness of the infinite Hilbert matrix H = H H∗ : `2 → `2

For Ω = [0,∞) with the Lebsgue measure µ on R we take from
B M. ROSENBLUM: On Hilbert matrix II. Proc. Amer. Math. Soc 9 (1958), pp. 581-585.

the multiplier function

λ(ω) =
π

cosh(πω)
(ω ∈ [0,∞) a.e.).

This leads to the distribution function

Φλ(ε) ≈
1
π

log

(
2π
ε

)
for sufficiently small ε > 0 ,

which gives the asymptotics of decreasing rearrangement λ∗ = Φ−1
λ as

λ∗(t) � exp (−t) as t →∞ .

Inspection indicates kind of severe ill-posedness for the Hausdorff moment problem.

However, no statement about the degree of ill-posedness of the composition A = H ◦ J

can be concluded from this example.
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Uncharted territory at the end:

Example: Sinusoidal behaviour of multiplier function
Consider Ω = [0,∞) and the associated Lebesgue measure µ on R with µ(Ω) =∞.

Multiplier function λ(ω) = sin2(ω) (ω ∈ [0,∞)) is due to a non-compact operator A∗A

and leads to Φλ(ε) =

{
∞ for 0 < ε < 1,
0 for ε ≥ 1 as distribution function, where item

(b) of Assumption fails. Decreasing rearrangement λ∗ also fails. No idea of degree!

Example: Non-compact diagonal operator
Consider Ω = N and the counting measure µ with µ(Ω) =∞. Multiplier function

λ(n) =

{
n−2 if n = k2 for some k ∈ N,

1 else

is due to a non-compact diagonal operator A∗A : `2 → `2 and leads to Φλ(ε) =∞ for

all ε > 0 as distribution function, where item (b) of Assumption fails. No idea of degree!
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