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Part I

Deterministic Finance and Elements of
Stochastics

11





1Terms and Definitions

1.1 glossary of common terms frequently used in finance

Bid (Geld): the highest price a buyer is willing to pay for a given security at a given time; also called bid
price.

Ask (Brief): the lowest price that any investor or dealer has declared that she/ he will sell a given security
or commodity for. For over-the-counter stocks, the ask is the best quoted price at which a Market
Maker is willing to sell a stock. For mutual funds, the ask is the net asset value plus any sales charges.

Spread (Spanne): the difference between the current bid and the current ask (in over-the-counter trading)
or offered (in exchange trading) of a given security; also called bid/ ask spread.

Basis Point A basis point is 1/100th of a percent. Often denoted as ‱ or bp, and often—collo-
quially—referred to as “bip” (“bips”, pl.).

Liquidity describes the degree to which an asset or security can be quickly bought or sold in the market
without affecting the asset’s price. Liquidity refers to the extent to which a market, such as a country’s
stock market or a city’s real estate market, allows assets to be bought and sold at stable prices. Cash
is the most liquid asset, while real estate, fine art and collectibles are all relatively illiquid.

Orders different orders include

⊲ Market order: a buy or sell order in which the broker is to execute the order at the best price
currently available, also called at the market. These are often the lowest-commission trades
because they involve very little work by the broker.

⊲ Limit order: in commodities and securities trading, a client’s instructions to a broker to buy
(or sell) an item at a specific maximum (or minimum) price. If the entire order cannot be
filled (executed) at the same time, the balance may be kept for later execution according to the
instructions. Also called resting order. See also away from the market order, market order, not
held order, and stop order.

⊲ Stop order: client’s order to a broker to buy or sell a commodity or security when a specified
price is reached, either above (on a buy order) or below (on a sell order) the price current at the
time the order is given. A stop order becomes a market order when the item is offered at or
below the specified price.

⊲ Stop-Loss: a stop order for which the specified price is below the current market price and the
order is to sell.

⊲ Stop-Buy: variation of a stop order in which a broker is instructed to buy a commodity or
security when its price reaches a certain level.

OTC (over the counter, also called unlisted): a security which is not traded on an exchange, usually due to
an inability to meet listing requirements. For such securities, broker/ dealers negotiate directly with
one another over computer networks and by phone, and their activities are monitored by the national
association of securities dealers (NASD). OTC stocks are usually very risky since they are the stocks

13



14 terms and definitions

that are not considered large or stable enough to trade on a major exchange. They also tend to trade
infrequently, making the bid-ask spread larger. Also, research about these stocks is more difficult to
obtain.

Complete market (vollständiger Markt) A complete market (aka Arrow-Debreu market) is a market with
two conditions:

(i) Negligible transaction costs and therefore also perfect information,
(ii) there is a price for every asset in every possible state of the world.

Arbitrage it the possibility of a risk-free profit after transaction costs. For instance, an arbitrage is present
when there is the opportunity to instantaneously buy low and sell high.

Stock split ratio (Bezugsverhältnis)

Warrant (Zertifikat) is a corporate bond, which gives the owner the right/ option to buy at a predetermined
date a predetermined number of stocks at a predetermined price.

Derivative (Derivat): contracts based on another asset, contract, etc. Examples include options (based on
a stock, e.g.), futures, swaps, credit derivatives (based on a portfolio of loans)

Forward (Forward) is an OTC contract to buy a fixed quantity at a fixed time (in the future) at an agreed,
predetermined price.

Future (Future) is a contract to buy (or sell) a standard quantity (a stock, commodity, etc.) at a future date
at a fixed price. In contrast to the forward contract the future is traded on a stock exchange.

Option (Option) is a contract which gives the holder the right to buy (sell) a stock at a predetermined
price (the strike price) at a fixed date (European option) or during a prespecified period (American
Option).

Greeks the Greeks are the quantities representing the sensitivity of the price of derivatives to a change in
underlying parameters on which the value of an instrument or portfolio of financial instruments is
dependent.

⊲ Delta (also called hedge ratio): the change in price for every move in the price of the underlying
security: Δ = 𝜕𝑉

𝜕𝑆
.1

⊲ Gamma: Rate at which the delta of an option changes in response to a change in the price of
the underlying asset. Positive gamma indicates positive convexity of the trading position: an
up or down move in the price of the underlying asset will give the position a value higher than
that predicted by delta: Γ = 𝜕2𝑉

𝜕𝑆2 = 𝜕Δ
𝜕𝑆
.

⊲ Speed is the derivative of Γ, 𝜕3𝑉
𝜕𝑆3

⊲ Lambda 𝜆 (or Omega Ω, also called elasticity or gearing; effektiver Hebel): a measure for
leverage.
The relative change in an option’s value as a price change in the underlying security. Allows
the investor to see the relationship between an option’s price and the underlying’s price. For
example, a stock option with an omega of 2 indicates that the price of the option will increase
2% for every 1% increase in the price of the stock:

𝜆 =
𝜕𝑉

𝜕𝑆
· 𝑆
𝑉

= Δ · 𝑆
𝑉
.

1The derivative may be approximated by 𝜕𝑉
𝜕𝑆
≈ 𝑉 (𝑆+Δ𝑆)−𝑉 (𝑆−Δ𝑆)2Δ𝑆 or 𝜕𝑉

𝜕𝑆
≈ 𝑉 (𝑆+Δ𝑆)−𝑉 (𝑆)

Δ𝑆
for some Δ𝑆 which is small and

appropriate for the desired accuracy. This holds for other derivatives (Greeks) as well.
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1.1 glossary of common terms frequently used in finance 15

⊲ Omega-to-Delta, Ω
Δ
= 𝜆

Δ
= 𝑆
𝑉

;
⊲ Theta (also called time decay): the ratio of the change in an option’s price to the decrease in

its time to expiration: Θ = − 𝜕𝑉
𝜕𝑡

.
⊲ Rho: the Euro-change in a given option’s price that results from changing in interest rates:
𝜌 = 𝜕𝑉

𝜕𝑟
. − 𝜌

𝑉
is also called the duration.

⊲ Vega: the change in the price of an option that results from changing the volatility: 𝜈 = 𝜕𝑉
𝜕𝜎

.

Leverage (also gearing; Hebel): a general technique of multiplying gains and losses (cf. derivatives).

Volatility a measure for variation of price of a financial instrument over time.

Implied volatility a theoretical value designed to represent the volatility of the security underlying an
option as determined by the price of the option. The factors that affect implied volatility are the
exercise price, the riskless rate of return, maturity date and the price of the option. Implied volatility
appears in several option pricing models, including the Black–Scholes Option Pricing Model.

Moneyness is a measure of the degree to which a derivative is likely to have positive monetary value at its
expiration, in the risk-neutral measure. It can be measured in percentage probability, or in standard
deviations.
Moneyness is often defined as the probability of a positive monetary value at expiration.

⊲ in the money (im Geld): Situation in which an option’s strike price is below the current market
price of the underlying (for a call option) or above the current market price of the underlying
(for a put option). Such an option has intrinsic value.
The option has positive value if exercised.

⊲ at the money (am Geld): A condition in which the strike price of an option is equal to (or
nearly equal to) the market price of the underlying security.
The option has value 0 if exercised.

⊲ out of the money (aus dem Geld): A call option whose strike price is higher than the market
price of the underlying security, or a put option whose strike price is lower than the market
price of the underlying security.
Option has negative value if exercised.

Par value Stated value, or face value.

⊲ over par (über pari): over the par value.
⊲ at par (pari): at the par value.
⊲ under par (unter pari): under the par value.

Option values

⊲ Intrinsic value: is the value of exercising the option now
⊲ Option value: is the market (purchase) price of the option
⊲ Time value: is the gap between option value − intrinsic value.

Cash settlement or physical settlement (Barausgleich): a transaction settled with a cash payment in
the amount of profit or loss rather than the physical delivery of a commodity or other underlying.
Examples include futures and options contracts for indices, which cannot be delivered.
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16 terms and definitions

ETF Exchange Traded Fund. A fund that tracks an index, but can be traded like a stock. ETFs always
bundle together the securities that are in an index; they never track actively managed mutual fund
portfolios (because most actively managed funds only disclose their holdings a few times a year, so
the ETF would not know when to adjust its holdings most of the time). Investors can do just about
anything with an ETF that they can do with a normal stock, such as short selling. Because ETFs
are traded on stock exchanges, they can be bought and sold at any time during the day (unlike most
mutual funds). Their price will fluctuate from moment to moment, just like any other stock’s price,
and an investor will need a broker in order to purchase them, which means that she/ he will have to
pay a commission. On the plus side, ETFs are more tax-efficient than normal mutual funds, and
since they track indexes they have very low operating and transaction costs associated with them.
There are no sales loads or investment minimums required to purchase an ETF. The first ETF created
was the Standard and Poor’s Deposit Receipt (SPDR, pronounced "Spider") in 1993. SPDRs gave
investors an easy way to track the S&P 500 without buying an index fund, and they soon become
quite popular.

1.2 particular insurance terms

Premium insurance premiums need to cover both the expected cost of losses, plus the cost of issuing and
administering the policy, adjusting losses, and supplying the capital needed to reasonably assure that
the insurer will be able to pay claims.

Actuarial Reserve a liability equal to the present value of the future expected cash flows of a contingent
event

Life table (mortality table or actuarial table) is a table which shows, for each age, what the probability
is that a person of that age will die before his or her next birthday.

Policyholder The person holding an insurance contract.

Insured Person The person whose life is covered by the insurance contract.

Premium payer The person paying the insurance premium

Beneficiary The recipient of the benefits defined in the insurance contract
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1.3 stock exchange 17

bid, orders to buy ask, orders to sell
price/ =C volume price/ =C volume

105 400 109 200
103 300 111 100
101 300 113 300

(a) No transaction takes place

bid, orders to buy ask, orders to sell
price/ =C volume price/ =C volume

111 200 95 200
109 100 98 100
106 200 102 300
103 300 105 200
100 200

(b) Transaction

Table 1.1: Order books

1.3 stock exchange
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(a) The bid-ask spread is 4, cf. Table 1.1a
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(b) 600 units are traded at a price of 103, cf. Table 1.1b

Figure 1.1: Clearing

To see how a stock exchange determines prices consider the order books depicted in the Tables 1.1. No
transaction can take place in the first case, as the prices offered to buy are all below the prices offered to
sell a stock. The highest price a market participant is willing to buy is 105, while the lowest price of some
market participant is 109: no x-actn (transaction) can take place.

This situation is different in case of the order book in Table 1.1b. Indeed, by fixing the price at 103,
600 units can be traded (cf. Figure 1.1b).

The stock exchange fixes the price in such a way that the transacted volume is maximized, since the
fees earned by the stock exchanges are dependent on traded volumes.

In recent years, automated trading by computer algorithms has become the main mechanism for placing
and changing orders. High-frequency traders place and cancel thousands of computer calculated orders
within seconds. The time ticks for electronic stock exchanges are now measured in microseconds (10−6
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18 terms and definitions

seconds).
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2Interest Rates

We employ international actuarial notation and follow Gerber [7].

2.1 definitions

Interest is a fee paid by a borrower of assets to the owner as a form of compensation for the use of the
assets. It is most commonly the price paid for the use of borrowed money, or money earned by deposited
funds. The interest rate1 is the percentage relative to the initial amount, the principal. Interest rates are
usually given on the basis of an entire year, and this is sometimes indicated by adding “p.a.” (per annum,
lat.) to the interest rate.

Interest rates are denoted by 𝑖 here. Quantities related to the interest rate 𝑖 are collected in Table 2.1. Of
particular importance in finance (for example in life insurance to compute expected values) is the discount
factor 𝑣 = 1

1+𝑖 . The force of interest, 𝛿 = ln(1 + 𝑖),2 is important to evaluate fixed interest rates during a
year, as 1 + 𝑖 = exp 𝛿.

2.2 compound interest

Compound interest is the concept of adding accumulated interest back to the principal, so that interest is
earned on interest from that moment on. Declaring interest to be principal is called compounding (i.e.,
interest is compounded).

2.3 basic relations

In case the interest stays constant and does not vary over time, then the initial capital will grow in a time
period of 𝑡 years to the amount of (1 + 𝑖)𝑡 . The amount on a savings book thus is

𝐵𝑡 = (1 + 𝑖)𝑡 · 𝐵0

1sometimes also: yield
2Natural Logarithm with basis 𝑒 = 2.718 28

symbol relation to 𝑖 relation to 𝛿 examples

interest rate 𝑖 – 𝑒𝛿 − 1 3 % 3.045 %
force of interest 𝛿 ln (1 + 𝑖) – 2.96 % 3 %
discount rate 𝑑 𝑖

1+𝑖 1 − 𝑒−𝛿 2.91 % 2.955 %
percentage rate 𝑟 1 + 𝑖 𝑒𝛿 1.03 1.031
discount factor 𝑣 1

1+𝑖 𝑒−𝛿 0.971 0.97

Table 2.1: Quantities related to the interest rate
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Figure 2.1: Tizian: der Zinsgroschen, 1516. Gemäldegalerie Alte Meister, Dresden
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2.4 the present value of certain future payments. definition and relations 21

after 𝑡 years and given a constant, annual interest rate of 𝑖. In different words, today’s value of a payment
𝐵𝑡 , which is due in 𝑡 years and given a constant interest yield 𝑖, is

𝐵0 = 𝐵𝑡 · 𝑣𝑡 .

2.4 the present value of certain future payments. definition and
relations

The present value (PV, aka. time value) is the value of a future cash flow 𝐶𝑡 (we shall sometimes write 𝑃𝑡
to indicate cash flows representing payments) or series of future payments on a given date, discounted
to reflect the time value, or today’s value of money and other factors such as investment risk. Present
value calculations are widely used in business and economics to provide a means to compare cash flows at
different times on a meaningful like to like basis.

The present value of a certain, single payment being due in 𝑡 years in the future is

𝑃𝑉 =
𝐶𝑡

(1 + 𝑖)𝑡
= 𝐶𝑡 · 𝑣𝑡 = 𝐶𝑡 · 𝑒−𝛿𝑡

assuming constant interest. In presence of a varying interest rates the respective quantity—notice the
reverse situation in comparison to (2.11)—is

𝑃𝑉 = 𝐶𝑡 · 𝑒−
∫ 𝑡
𝑡0
𝛿 (𝑠)𝑑𝑠

.

The present value may be considered as a function in time itself, as

𝑃𝑉𝑡0 = 𝑃𝑉𝑡 · 𝑒−
∫ 𝑡
𝑡0
𝛿 (𝑠)𝑑𝑠

.

In case of a sequence of cash flows in the future the present value is given by

𝑃𝑉 =
∑︁
𝑘

𝐶𝑡𝑘

(1 + 𝑖)𝑡𝑘
=

∑︁
𝑘

𝐶𝑡𝑘𝑣
𝑡𝑘 =

∑︁
𝑘

𝐶𝑘𝑒
−𝛿 ·𝑡𝑘 , (2.1)

or again more generally for a varying interest rate

𝑃𝑉𝑡0 =
∑︁
𝑘

𝐶𝑡𝑘 · 𝑒
−

∫ 𝑡𝑘
𝑡0
𝛿 (𝑠)𝑑𝑠

. (2.2)

2.5 interest on month-by-month basis

To facilitate compounding on, say, month-by-month basis, the quantities 𝑖 (𝑚) and 𝑑 (𝑚) have proven useful.
They reflect interest rates (discount rates, resp.), which are regularly added to the principal. The quantities
are defined implicitly by (

1 + 𝑖
(𝑚)

𝑚

)𝑚
= 1 + 𝑖 and

(
1 − 𝑑

(𝑚)

𝑚

)𝑚
= 1 − 𝑑. (2.3)

Useful quantities derived from the interest and discount rate include

𝛼 (𝑚) :=
𝑖 𝑑

𝑖 (𝑚) 𝑑 (𝑚)
and 𝛽 (𝑚) :=

𝑖 − 𝑖 (𝑚)

𝑖 (𝑚) 𝑑 (𝑚)
. (2.4)
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22 interest rates

𝑖 = 3% 𝑖 (𝑚) 𝑑 (𝑚) 𝛼 (𝑚) 𝛽 (𝑚)

𝑚 = 1 𝑖 𝑑 1 0
𝑚 = 1 3 % 2.913 % 1 0
𝑚 = 12 2.960 % 2.952 % 1.000 07 0.4632
𝑚 = 360 2.956 % 2.956 % 1.000 07 0.5035
𝑚 = ∞ 2.956 % 2.956 % 1.000 07 0.5050
𝑚 = ∞ log (1 + 𝑖) log (1 + 𝑖) 𝑒𝛿−2+𝑒−𝛿

𝛿2
𝑒𝛿−1−𝛿
𝛿2

Table 2.2: Example for an interest rate of 𝑖 = 3%

They are useful to simplify the computation of present values of payments which are due regularly 𝑚-times
during a year, with regular intervals (cf. (2.7) in Lecture 2.6.2 below).

The quantities 𝑖 (𝑚) , 𝑑 (𝑚) , 𝛼 (𝑚) and 𝛽 (𝑚) satisfy the following relations:

(i) 𝑖 (𝑚) = 𝑚
(
𝑣−1/𝑚 − 1

)
and 𝑑 (𝑚) = 𝑚

(
1 − 𝑣1/𝑚);

(ii) 1
𝑑 (𝑚)
− 1
𝑖 (𝑚)

= 1
𝑚

;

(iii) 1 + 𝛽 (𝑚)𝑑 (𝑚) = 𝑖

𝑖 (𝑚)
;

(iv) 𝑑 (𝑚) = 𝑑

𝛼(𝑚)−𝛽 (𝑚) 𝑑 and 𝑑 = 𝛼(𝑚) 𝑑 (𝑚)

1+𝛽 (𝑚) 𝑑 (𝑚) ;

(v) 𝑑 ≤ 𝑑 (𝑚) ≤ 𝛿 ≤ 𝑖 (𝑚) ≤ 𝑖 whenever the interest rate is nonnegative, 𝑖 ≥ 0 and 𝑚 ≥ 1 (employing
Bernoulli’s inequality is an option here);

(vi) 𝑑 (𝑚) → 𝛿 and 𝑖 (𝑚) → 𝛿 whenever 𝑚 →∞ (note that 𝑚 →∞ corresponds to regular, but smaller
payments, which become more and more frequent during the year; one may employ de l’Hôpital’s
rule).

Taylor series expansions around 𝛿 = 0 (this choice corresponds to no interest, i.e., 𝑖 = 0%) are

(vii) 𝑖 (𝑚) = 𝑖
(
1 − 𝛽 (𝑚)

𝛼(𝑚)
𝑑

)
= 𝑚

(
𝑒
𝛿
𝑚 − 1

)
= 𝛿 + 𝛿2

2𝑚 +
𝛿3

6𝑚2 + 𝛿4

24𝑚3 + 𝛿5

120𝑚4 + . . .

(viii) 𝑑 (𝑚) = 𝑑

𝛼(𝑚)−𝑑 ·𝛽 (𝑚) = 𝑚
(
1 − 𝑒− 𝛿𝑚

)
= 𝛿 − 𝛿2

2𝑚 +
𝛿3

6𝑚2 − 𝛿4

24𝑚3 + . . .

(ix) 𝛼 (𝑚) = 1 + 𝑚2−1
12𝑚2 𝛿

2 + O
(
𝛿4

)
(x) 𝛽 (𝑚) = 𝑚−1

2𝑚 +
𝑚2−1
6𝑚2 𝛿 + 𝑚

2−1
24𝑚2 𝛿

2 + . . .

Remark 2.1. Banks sometimes use simply
(
1 + 𝑖

𝑚

)𝑚 ≈ 1 + 𝑖 to account for regular (monthly, say) interest
rates. However this is not entirely correct and as 𝑖 (𝑚) ≤ 𝑖 rather an overestimation of the underlying interest
rate.

2.6 the present value of important investments

We provide the present value of some important investments. This gives us the opportunity to introduce
the notation conventions, which are common in actuarial science and finance.
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2.6 the present value of important investments 23

2.6.1 Lump-sum payment

The present value of a single payment of 1 monetary unit,3 which is due 𝑡 years from now, is

𝑃𝑉 = 𝑣𝑡 .

2.6.2 Annuity
An annuity consists of a sequence of 𝑛 payments of 1, each due at the beginning of the corresponding
year at the times 𝑡 = 0, 1, . . . 𝑛 − 1. Its present value is denoted ¥𝑎𝑛 . A closed form expression for ¥𝑎𝑛 is
available due to the well-known sum of the geometric series,

¥𝑎𝑛 =

𝑛−1∑︁
𝑡=0

𝑣𝑡 =
1 − 𝑣𝑛
1 − 𝑣 =

1 − 𝑣𝑛
𝑑

. (2.5)

A useful approximation is ¥𝑎𝑛 ≃ 𝑛
2 (1 + 𝑣

𝑛).
An annuity, which does not pay 1 at the beginning of the respective year, but the fraction 1

𝑚
€ at the

beginning of each of all 𝑚 fractions of the year (𝑚 =12 for months) has the present value

¥𝑎 (𝑚)
𝑛

:=
𝑛·𝑚−1∑︁
𝑡=0

1

𝑚
· 𝑣 𝑡

𝑚 =
1 − 𝑣𝑛

𝑚

(
1 − 𝑣 1

𝑚

) =
1 − 𝑣𝑛

𝑑 (𝑚)
(2.6)

= (1 − 𝑣𝑛)
(
1

𝑑

𝑖 𝑑

𝑑 (𝑚) 𝑖 (𝑚)
− 𝑖 − 𝑖 (𝑚)

𝑑 (𝑚) 𝑖 (𝑚)

)
= 𝛼 (𝑚) · ¥𝑎𝑛 − 𝛽 (𝑚) · (1 − 𝑣𝑛) , (2.7)

the common abbreviation is ¥𝑎 (𝑚)
𝑛

.
Note the useful approximation

¥𝑎 (𝑚)
𝑛
≈ ¥𝑎𝑛 −

𝑚 − 1
2𝑚

(1 − 𝑣𝑛) , (2.8)

which is based on the Taylor expansion in (ix) and (x).

2.6.3 Perpetuity
A perpetuity is an annuity without definite end, or a stream of cash payments that continues forever. As
above (let 𝑛→∞ in (2.7)) the present value is

¥𝑎 := ¥𝑎∞ =

∞∑︁
𝑡=0

𝑣𝑡 =
1

1 − 𝑣 =
1

𝑑
,

or
¥𝑎 (𝑚) := ¥𝑎 (𝑚)∞ =

1

𝑑 (𝑚)

for the perpetuity with payments 1
𝑚
€.

3In what follows, we will use € synonymously for monetary unit.
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2.6.4 Loan
When repaying a loan on annual basis, a series of payments (installments) is due at the times 1, 2, ... 𝑛
(note this essential difference in comparison with an annuity in Lecture 2.6.2). Based on these installments
the present value of the loan is

𝑎𝑛 :=
𝑛∑︁
𝑡=1

𝑣𝑡 = 𝑣 ·
𝑛−1∑︁
𝑡=0

𝑣𝑡 = 𝑣
1 − 𝑣𝑛
1 − 𝑣 =

1 − 𝑣𝑛
𝑖

.

It should be stressed that this is the amount which can be borrowed to a client who will repay 1 every year.
In particular, this is the present value just an instant after borrowing the specified amount to the customer.

A usual loan, being repaid on fractional (monthly, e.g.) basis, has the present value

𝑎
(𝑚)
𝑛

:=
1

𝑚

𝑛·𝑚∑︁
𝑡=1

𝑣
𝑡
𝑚 =

𝑣
1
𝑚

𝑚
·
𝑛·𝑚−1∑︁
𝑡=0

𝑣
𝑡
𝑚 =

𝑣
1
𝑚

𝑚
· 1 − 𝑣

𝑛

1 − 𝑣 1
𝑚

=
1 − 𝑣𝑛

𝑖 (𝑚)
. (2.9)

This present value represents the amount of cash that can be borrowed to a client, provided he will repay 1
𝑚

in every month during the following 𝑛 successive years.
Notice here as well that this is just the present value an instant after borrowing. The present value

before borrowing is 0.
An approximation in common use is

𝑎
(𝑚)
𝑛
≈ ¥𝑎𝑛 −

𝑚 + 1
2𝑚

(1 − 𝑣𝑛) ,

which is even an exact formula for 𝑚 = 1 (compare with (2.8)).

2.6.5 Perpetual interest
An investment provides a return of 1 at the end of each period. To obtain the present of the investment
value let 𝑛→∞ in (2.9), such that

𝑎 (𝑚) := 𝑎 (𝑚)∞ =
1

𝑖 (𝑚)
.

The formula 1/𝑖 is in frequent use to obtain the present value for a house or flat, which is rented out.

2.7 varying interest rates and non-regular interest payments

In a typical situation the interest rate changes frequently, say, on a day-by-day basis. This has to be reflected
in the formulae, and the according interest rate has to be taken into account for the respective time period.
Assuming that interest is still given on an annual basis (p.a.) the formula thus rewrites

𝐵𝑡𝑛 = 𝐵𝑡0 ·
(
1 + 𝑖𝑡0

) 𝑡1−𝑡0 · (1 + 𝑖𝑡1 ) 𝑡2−𝑡1 · · · · · (1 + 𝑖𝑡𝑛−1 ) 𝑡𝑛−𝑡𝑛−1 , (2.10)

where the interest is constantly 𝑖𝑘 during the time interval from 𝑡𝑘 to 𝑡𝑘+1 (𝑘 = 0, 1, 2 . . . ).
The product (2.10), however, is not an easy to handle expression. By employing the force of interest

Eq. (2.10) rewrites as

𝐵𝑡𝑛 = 𝐵𝑡0 · 𝑒𝛿𝑡0 (𝑡1−𝑡0 ) · 𝑒𝛿𝑡1 (𝑡2−𝑡1 ) · · · · · 𝑒𝛿𝑡𝑛−1 (𝑡𝑛−𝑡𝑛−1 )

= 𝐵𝑡0 · 𝑒𝛿𝑡0 (𝑡1−𝑡0 )+𝛿𝑡1 (𝑡2−𝑡1 )+... 𝛿𝑡𝑛−1 (𝑡𝑛−𝑡𝑛−1 ) .
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2.8 bonds, and the coupon correction 25

This quantity easily is seen to be

𝐵𝑡𝑛 = 𝐵𝑡0 · 𝑒
∫ 𝑡𝑛
𝑡0

𝛿 (𝑡 )𝑑𝑡
, (2.11)

where 𝛿(·) is the simple function
𝛿(𝑡) := 𝛿𝑡𝑖 for 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1

accounting for the varying force of interest. The expression (2.11) may and will be used now in a general
environment with varying interest rates, i.e., for general function 𝛿 representing the varying force of interest.

2.8 bonds, and the coupon correction

A bond is a formal contract to repay borrowed money with interest at fixed intervals (cf. O’Sullivan and
Sheffrin [17]). A bond thus is a debt security, in which the authorized issuer owes the holders a debt.
Depending on the terms of the bond the issuer is obliged to pay interest (the coupon) and/ or to repay the
principal at a later date, termed maturity.

The bond’s price with coupon 𝑐 at the market is 𝑝. The internal rate of return thus satisfies4

𝑝 = 𝑐 · 𝑣 · ¥̃𝑎𝑛 + 𝑣𝑛, (2.12)

where 𝑣 = 1
1+𝑖̃ and ¥̃𝑎𝑛 = 1−𝑣𝑛

1−𝑣 as usual, but computed with interest rate 𝑖̃ (internal rate of return, cf. (2.17)).

Coupon Correction

It is well accepted to compare different investment vehicles by comparing their internal rate of return. For
this purpose, however, Eq. (2.12) has to be solved. This is typically complicated and there is no general,
closed form solution.

It is an alternative to consider the price of the corresponding zero-coupon bond 𝑣𝑛 instead of 𝑝. Solving
Eq. (2.12) numerically can be avoided by accepting the useful (and very good) proxy

𝑣𝑛 � 𝑣𝑛 + (𝑝 − 100%) 𝑛 · 𝑣
𝑛

¥𝑎𝑛
+ O (𝑝 − 100%)2 , (2.13)

where the coupon takes the role of the interest, 𝑣 = 1
1+𝑐 and ¥𝑎𝑛 = 1−𝑣𝑛

1−𝑣 .
The formula (2.13) is even exact for a bond

⊲ at par (i.e., 𝑝 = 1),

⊲ for a zero-coupon bond (𝑐 = 0, hence 𝑣 = 1 and 𝑣𝑛 = 𝑝 = 1 + (𝑝 − 1) 𝑛·1
𝑛

), or

⊲ at maturity (𝑛 = 0).

Formula (2.13) allows to quickly compute an approximation of the internal interest rate, as5

𝑖̃ = (𝑣𝑛)−
1
𝑛 − 1 � (1 + 𝑖)

(
1 + (𝑝 − 100%) 𝑛¥𝑎𝑛

)− 1
𝑛

− 1 � 𝑖 − 𝑝 − 1¥𝑎𝑛
.

4compare this to 1 = 𝑣𝑛 + 𝑖 · 𝑣 · ¥𝑎𝑛 , that is to say the present value of the bond is 𝑝 = 1 if the coupon 𝑐 = 𝑖 just reflects the
market interest.

5The very short approximation 𝑖̃ � 𝑖 − 𝑝−1
¥𝑎𝑛|

is enlightening, though a bit worse.
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market price of the bond 60% 80% 100% 120% 140%

internal rate of return 12.11% 7.98% 5% 2.69% 0.82%
zero-coupon bond price 𝑣𝑛 31.9% 46.4% 61.39% 76.7% 92.2%

interest rate, approximated 12.39% 8.02% 5% 2.71% 0.87%
by 𝑣𝑛 + (𝑝 − 1) 𝑛·𝑣𝑛¥𝑎𝑛| 31.1% 46.3% 61.39% 76.6% 91.7%

Table 2.3: Internal rate of return and the corresponding zero-coupon bond (cf. Example 2.2)

Figure 2.2: Treasury bond with a coupon of 5%: when the bond was issued 5% was a reasonable interest
rate.

Remark. The next order to approximate 𝑣𝑛 (cf. (2.13)) is

𝑣𝑛 � 𝑣𝑛 + (𝑝 − 1) 𝑛 · 𝑣
𝑛

¥𝑎𝑛
+ (𝑝 − 1)2

(
𝑛+1
2 ¥𝑎𝑛 − ¥𝑎

𝑖𝑛𝑐
𝑛

) 𝑛 · 𝑣𝑛
¥𝑎3
𝑛

+ O (𝑝 − 1)3 ,

where

¥𝑎𝑖𝑛𝑐
𝑛

:=
𝑛−1∑︁
𝑡=0

(𝑡 + 1) 𝑣𝑡 = 1 − (𝑛 + 1) 𝑣𝑛 + 𝑛 𝑣𝑛+1

(1 − 𝑣)2
(2.14)

is the linearly increasing annuity.

Example 2.2 (Quality of the coupon correction formula (2.13), exposed in selected situations). Consider
a bond with term 𝑛 = 10 years and a coupon 𝑐 = 5%. Table 2.3 exposes the interest rate, as well as the
convincing quality of the approximation according (2.13).

Example 2.3. Figure 2.2 displays observed prices of an exchange traded bond, as well as the price of the
corresponding zero-coupon bond. When the bond was issued, the nominal value (100%) (almost exactly)
reflects an interest rate of 5%.

rough draft: do not distribute
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2.9 recursions

The present value, as defined above in (2.2), satisfies the recursion

𝑃𝑉𝑡𝑘 = 𝐶𝑡𝑘 +
1

1 + 𝑖𝑡𝑘
𝑃𝑉𝑡𝑘+1 .

This is called the prospective recursion, as the recursion takes only values into account which correspond
to payments and present values in the future.

The retrospective formula for the present value is

𝑃𝑉𝑡𝑘−1
(
1 + 𝑖𝑡𝑘−1

)
−

(
1 + 𝑖𝑡𝑘−1

)
𝐶𝑡𝑘−1 = 𝑃𝑉𝑡𝑘 .

In practice, retrospective recursions are not used, but prospective recursions occur very frequently. In
what follows we list prospective recursions for selected present values outlined in Lecture 2.6. Recursion
have notably a very natural interpretation, they describe the time evolution of the entire process of
accumulated, discounted cashflows.

(i) Lump-sum payment: The recursion is trivial, as there is no cash flow:

𝑣𝑡 = 𝑣 · 𝑣𝑡−1;

(ii) Annuity:
¥𝑎𝑛 = 1 + 𝑣 · ¥𝑎𝑛−1 ;

(iii) Monthly annuity:

¥𝑎 (𝑚)
𝑛

= ¥𝑎 (𝑚)
1
+ 𝑣 · ¥𝑎 (𝑚)

𝑛−1
;

(iv) Perpetuity:
¥𝑎 = 1 + 𝑣 · ¥𝑎;

(v) Loan: the present value can be considered before or after the respective payment at given time. For
the sake of consistency we shall restrict ourselves to the situation of payments just an instance before
the respective payments. The present value thus are 𝑃𝑉0 = 0 and 𝑃𝑉𝑡 = ¥𝑎 (𝑚)

𝑛+1−𝑡
, and the respective

cash flows are 𝐶0 = −𝑎 (𝑚)
𝑛

and 𝐶𝑡 = 1
𝑚

.

The recursion therefore is just as in the situation of an annuity,

¥𝑎 (𝑚)
𝑛

= ¥𝑎 (𝑚)
1
+ 𝑣 · ¥𝑎 (𝑚)

𝑛−1
, (2.15)

in particular
¥𝑎𝑛 = 1 + 𝑣 ¥𝑎𝑛−1

for an annually paid loan.

(For the sake of completeness, the recursion after the payments is 𝑎𝑛 = 𝑣 + 𝑣 · 𝑎𝑛−1 .)
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2.10 the annual percentage rate

In the previous lecture (Lecture 2.6) we have computed the present value of some important investments
with constant interest rate following the baseline formula (2.1). In this lecture we consider the inverse
question, that is, we are interested in the constant yield corresponding to a sequence of future payments
and a given present value.

To make the dependence on the yield 𝑖 and the cashflows 𝐶 = (𝐶𝑡 ) explicit in (2.1) we write

𝑃𝑉𝐶 (𝑖) :=
∑︁
𝑡

𝐶𝑡

(1 + 𝑖)𝑡 . (2.16)

Consider a cash flow 𝐶𝑡 and the corresponding present value 𝑃𝑉𝐶 , computed according (2.16) with a
particular interest rate 𝑖. Define the cashflow

𝐶′𝑡 :=

{
𝐶0 − 𝑃𝑉𝐶 if 𝑡 = 0

𝐶𝑡 else.

By construction, this modified cash flow 𝐶′ satisfies the equation

𝑃𝑉𝐶
′ (𝑖) = 0

for the initial interest 𝑖 we started with.
For a general sequence of cash flows the particular interest rate 𝑖̃ solving the equation

𝑃𝑉𝐶 (𝑖̃) = 0 (2.17)

is called annual percentage rate (APR) or internal rate of return. Notice, that the cash flows must change
signs in time in order to get a meaningful APR.
Remark 2.4. The solution of (2.17) is – possibly – not unique. In this situation the biggest solution is the
APR.
Remark 2.5 (Z-spread). The Z-spread of a bond is the number of basis points one needs to apply to a series
of zero rates such that the present value of the bond, accounting for accrued interest, equals the sum of all
future cash flows discounted using the adjusted zero rate. The spread is calculated iteratively and provides
a more accurate reflection of value than other measures as it uses the entire yield curve to value the cash
flows.
Remark. For a fixed interest rate the Z-spread satisfies the equation

𝑃𝑉 (𝑖 + 𝑍) = 0

(i.e., 𝑖̃ = 𝑖 + 𝑍).

2.11 problems

Exercise 2.1. Motivate and explain the approximation (2.8).

Exercise 2.2. Compute 𝑖 (𝑚) and 𝑑 (𝑚) for 𝑚 = 1, 12, 365 and for 𝑚 = ∞ and for an interest rate of your
choice.

Exercise 2.3. Compute 𝛼 (𝑚) and 𝛽 (𝑚) for 𝑚 = 1, 12, 365 and for 𝑚 = ∞ (and again choose the interest
rate).
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Exercise 2.4. Show that
1 = 𝑑 (𝑚) · ¥𝑎 (𝑚)

𝑛
+ 𝑣𝑛; (2.18)

what does the formula mean economically?

Exercise 2.5. Verify the last line in Table 2.2.

Exercise 2.6. Verify the relations (i)–(x) on page 22.

Exercise 2.7. A savings book offers the following annual returns:
months 0–11 12–23 24–35 36–47 48–60
yield 1.1% 1.3% 2.1% 2.6% 3.0% After the entire period of 5 years the principal

amount of 1000 will grow to 1000 € ∗ 1.011 ∗ 1.03 ∗ 1.021 ∗ 1.026 ∗ 1.03 = 1500 €. What is the average,
constant yield (the APR) of the investment?

Exercise 2.8. The savings time/ year 0 1 2 3 4
amount 1000 2000 0 4000 7000 accumulate to 15000 in year

5. What is the APR of these investments?

Exercise 2.9. Compute 𝛿, 𝑑, 𝑟 and 𝑣 for 𝑖 = 1%, 2% and an up-to-date interest rate of a 10 years
governmental bond.

Exercise 2.10. Express the interest rate etc. by completing the following table:

𝑖 𝛿 𝑑 𝑟 𝑣

interest rate 𝑖 𝑖 𝑒𝛿 − 1
force of interest 𝛿 ln(1 + 𝑖) 𝛿

discount rate 𝑑 𝑖
1+𝑖 𝑑

percentage rate 𝑟 1 + 𝑖 𝑟

discount factor 𝑣 1
1+𝑖 𝑣
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3Hedging Interest: Duration and Convexity

The problem with socialism is that you
eventually run out of other people’s money.

Margaret Thatcher, 1925 – 2013

3.1 definition and relations

The present value, as defined in its general context in (2.16), depends on the future interest rate. The
financial instrument usually is not based on some fixed, future interest rate, and an initial amount 𝐵0 will
be compounded (by the bank, say) to the quantity 𝐵𝑡 = 𝐵0 · 𝑒𝛿 ·𝑡 . Or reverse, a future, fixed payment of 𝐵𝑡 ,
discounted, is worth

𝐵𝑡 · 𝑒−𝛿 ·𝑡

today (𝑡 = 0), reflected by the present value.
The concept of duration was introduced by Macaulay.1

Definition 3.1. The duration is defined as

𝐷 := −
𝜕
𝜕𝛿
𝑃𝑉𝑡

𝑃𝑉𝑡
= − 𝜕

𝜕𝛿
log 𝑃𝑉𝑡 .

Note, that the dimension of 𝐷𝑡 is time ([𝐷𝑡 ] = [year]), which justifies the term duration, at least to
some extend.

The duration of the present value given (2.16), in explicit terms, is

𝐷 = −
𝜕
𝜕𝛿
𝑃𝑉𝑡

𝑃𝑉𝑡
= − 1

𝑃𝑉𝑡

𝜕

𝜕𝛿

∑︁
𝑡

𝐶𝑡 · 𝑒−𝛿 ·𝑡 =
1

𝑃𝑉𝑡

∑︁
𝑡

𝐶𝑡 · 𝑡 · 𝑒−𝛿 ·𝑡 ,

which is a weighted average.
Remark 3.2. For the present value 𝑃𝑉𝑡 =

∑𝑛
ℓ=0 𝑒

−𝛿𝑡ℓ𝐶𝑡ℓ , the duration is

𝐷 =

∑𝑛
ℓ=0 𝑒

−𝛿𝑡ℓ 𝐶𝑡ℓ · 𝑡ℓ∑𝑛
ℓ=0 𝑒

−𝛿𝑡ℓ 𝐶𝑡ℓ
=

𝑛∑︁
ℓ=0

𝑒−𝛿𝑡ℓ 𝐶𝑡ℓ∑𝑛
𝑗=0 𝑒

−𝛿𝑡 𝑗 𝐶𝑡 𝑗︸             ︷︷             ︸
𝑤ℓ

·𝑡ℓ =
𝑛∑︁
ℓ=0

𝑤ℓ · 𝑡ℓ ,

where 𝑤ℓ are weights with
∑𝑛
ℓ=1 𝑤ℓ = 1.

Recall, that 𝑖 = 𝑒𝛿 − 1 is a function of 𝛿, and thus 𝑑𝑖
𝑑𝛿

= 𝑒𝛿 = 1 + 𝑖: this is the reason for

𝐷 = −
𝑑
𝑑𝑖
𝑃𝑉𝑡

𝑃𝑉𝑡
· 𝑑𝑖
𝑑𝛿

= −1 + 𝑖
𝑃𝑉𝑡
· 𝜕
𝜕𝑖
𝑃𝑉𝑡 ,

1Frederick Macaulay, 1882–1970, Canadian economist
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32 hedging interest: duration and convexity

which is frequently used as an alternative definition for the duration. However, the factor 1 + 𝑖 is usually
small (1.03, e.g.) and thus may be neglected in real-world situations. Recall moreover that

𝑑𝛿

𝑑𝑖
=
𝑑

𝑑𝑖
log (1 + 𝑖) = 1

1 + 𝑖 = 𝑣,

which relates the derivative with to the force of interest 𝛿 and 𝑖 the interest directly.

3.2 examples

3.2.1 Lump-Sum Payment

Recall, the present value for the lump sum payment of 1 in 𝑡 years is 𝑃𝑉 = 𝑣𝑡 = 𝑒−𝛿 ·𝑡 . The duration thus is
the term of the contract,

𝐷 = − 1

𝑒−𝛿 ·𝑡
𝑑

𝑑𝛿
𝑒−𝛿 ·𝑡 = − 1

𝑒−𝛿 ·𝑡

(
−𝑡 · 𝑒−𝛿 ·𝑡

)
= 𝑡.

3.2.2 Annuity
The closed form

𝐷 −
𝑑
𝑑𝛿
¥𝑎 (𝑚)
𝑛

¥𝑎 (𝑚)
𝑛

= −
𝑑
𝑑𝛿

1
𝑚

∑𝑛𝑚−1
𝑗=0 𝑒−𝛿 𝑗/𝑚

1
𝑚

∑𝑛𝑚−1
𝑗=0 𝑒−𝛿 𝑗/𝑚

= −
𝑑
𝑑𝛿

1−𝑒−𝛿𝑛
1−𝑒−𝛿/𝑚

1−𝑒−𝛿𝑛
1−𝑒−𝛿/𝑚

= −
𝑛𝑒−𝛿𝑛

1−𝑒−𝛿/𝑚 −
1
𝑚

(1−𝑒−𝛿𝑛 )𝑒−𝛿/𝑚
(1−𝑒−𝛿/𝑚 )2

1−𝑒−𝛿𝑛
1−𝑒−𝛿/𝑚

=
1

𝑖 (𝑚)
− 𝑛 · 𝑣𝑛
1 − 𝑣𝑛 =

1

𝑖 (𝑚)
− 1

𝑖 (1/𝑛)
(3.1)

can be found by taking the derivative after some simplifications.2 Asymptotically, it holds that

𝐷 =
𝑚𝑛 − 1
2𝑚

− 𝑛
2𝑚2 − 1
12𝑚2

𝛿 + O
(
𝛿2

)
.

3.2.3 Perpetuity
The closed form

𝐷 =
1

𝑖 (𝑚)

can be found by letting 𝑛→∞ in (3.1).
This quantity is∞, if the interest rate 𝑖 = 0. However – and this may somehow contradict the intuition,

as the annuity itself never will stop – is finite for positive interest rates.

3.2.4 Loan
The closed form is

𝐷 =
1

𝑖 (𝑚)
− 𝑛 · 𝑣𝑛
1 − 𝑣𝑛 .

Notice, that the duration is 𝐷 = 𝑛
2 +

1
2𝑚 − O (𝑖).

2Differentiate (2.5) with respect to 𝑣 to get
∑𝑛−1
𝑘=0 𝑘 · 𝑣

𝑘−1 =
1−𝑛·𝑣𝑛−1+(𝑛−1)𝑣𝑛

(1−𝑣)2
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3.3 remark

(i) Notice, usually it does not make sense to compute the duration for cash flows which have different
signs. In this situation it may be advantageous to compute the duration for the positive and negative
cash flows separately.

(ii) A usual bank has loans on the asset side, and savings books on the liability side of the balance sheet.
Both sides have durations, and they may differ: for example, if there are loans with a fixed interest
rate in the portfolio, or savings books with fixed interest rates on the other side.

(iii) The duration is related to a quantity denoted 𝜌, which will be considered and described as well in the
sequel; 𝜌 = 𝜕

𝜕𝑖
𝑃𝑉 is the derivative with respect to the interest rate. 𝜌 is, in contrast, not adjusted by

the additional quotient −𝑃𝑉 of the financial instrument.

3.4 hedging interest — duration matching

A financial position is immunized against a change of the interest rate, if the weighted durations on long
and short positions coincide – this is often referred to as duration matching. Such a position may be
considered as zero coupon bond.

In this case the profit is not vulnerable with respect to changing interest rates.

3.5 convexity

Convexity measure of the sensitivity of the duration of a financial instrument to changes in interest rates.

Definition 3.3. Convexity is

𝐶 : =
1

𝑃𝑉𝑡
· 𝜕

2

𝜕𝛿2
𝑃𝑉𝑡

=
1

𝑃𝑉𝑡

(
(1 + 𝑖)2 𝜕

2

𝜕𝑖2
𝑃𝑉𝑡 + (1 + 𝑖)

𝜕

𝜕𝑖
𝑃𝑉𝑡

)
(3.2)

The related formulae are

𝐶 =
1

𝑃𝑉𝑡
·
∑︁
𝑡

𝑡2 · 𝐶𝑡 · 𝑒−𝛿 ·𝑡 =
1

𝑃𝑉𝑡
·
∑︁
𝑡

𝑡2 · 𝐶𝑡

(1 + 𝑖)𝑡
.

3.6 problems

Exercise 3.1. Verify the durations provided in the examples above (Lecture 3.2.1–3.2.4).

Exercise 3.2. Verify (3.2) to compute the convexity.
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4Duality in Optimization

4.1 duality

Proposition 4.1 (Max–min inequality). Any real-valued function 𝐿 on 𝐷 × Λ satisfies the max-min-
inequality

sup
𝜆∈Λ

inf
𝑥∈𝐷

𝐿 (𝑥;𝜆)︸        ︷︷        ︸
=:𝑑 (𝜆)︸              ︷︷              ︸
𝑑∗

≤ inf
𝑥∈𝐷

sup
𝜆∈Λ

𝐿 (𝑥;𝜆)︸              ︷︷              ︸
𝑝∗

. (4.1)

⊲ the inequality 𝑑∗ ≤ 𝑝∗ is called weak duality, and

⊲ 𝑝∗ − 𝑑∗ ≥ 0 is the duality gap;

⊲ in case of 𝑑∗ = 𝑝∗, 𝐿 is said to have the strong max-min property, strong duality or saddle-point
property;

⊲ the function1

𝑑 (𝜆) := inf
𝑥∈𝐷

𝐿 (𝑥;𝜆) (4.2)

is called dual function. Obviously, 𝑑 (𝜆) ≤ 𝑑∗ ≤ 𝑝∗.

Definition 4.2 (Saddle point). A point (𝑥∗, 𝜆∗) is a saddle point if

𝐿 (𝑥∗;𝜆) ≤ 𝐿 (𝑥;𝜆∗) for all 𝑥 and all 𝜆

(in this case, 𝐿 (𝑥∗;𝜆) ≤ 𝐿 (𝑥∗;𝜆∗) ≤ 𝐿 (𝑥;𝜆∗)).

Remark 4.3. Any saddle point satisfies sup𝜆∈Λ 𝐿 (𝑥∗;𝜆) ≤ inf 𝑥∈𝐷 𝐿 (𝑥;𝜆∗).
Existence of a saddle point implies the strong max-min property and 𝑑∗ = 𝑑 (𝜆∗) = 𝐿 (𝑥∗;𝜆∗) = 𝑝∗,

because

𝑝∗ = inf
𝑥∈𝐷

sup
𝜆∈Λ

𝐿 (𝑥;𝜆)

≤ sup
𝜆∈Λ

𝐿 (𝑥∗;𝜆)

≤ inf
𝑥∈𝐷

𝐿 (𝑥;𝜆∗) = 𝑑 (𝜆∗) (4.3)

≤ sup
𝜆∈Λ

inf
𝑥∈𝐷

𝐿 (𝑥;𝜆) = 𝑑∗.

Definition 4.4. A function 𝑓 : 𝑋 → R is lower semi-continuous (lsc) if {𝑥 : 𝑓 (𝑥) > 𝛼} is open for every
𝛼 ∈ R (i.e., the level sets {𝑥 : 𝑓 (𝑥) ≤ 𝛼} are closed).

1By convention, inf {} = +∞, sup {} = −∞, resp. (cf. Footnote 11 on page 49).
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Figure 4.1: Saddle point

Lemma 4.5. For a metric space 𝑋 , 𝑓 : 𝑋 → R is lsc. if lim inf 𝑥→𝑥0 𝑓 (𝑥) ≥ 𝑓 (𝑥0) for every 𝑥0 ∈ 𝑋 .

Sion’s minimax theorem provides a sufficient condition for strong duality to hold.

Theorem 4.6 (Sion’s minimax theorem, cf. Sion [23] or Komiya [12]).

(i) Let 𝐷 and Λ be convex and (at least) one of these sets compact,

(ii) 𝑥 ↦→ 𝐿 (𝑥, 𝜆) (quasi-)convex and lsc. for any 𝜆 ∈ Λ and

(iii) 𝜆 ↦→ 𝐿 (𝑥, 𝜆) (quasi-)concave and usc. for any 𝑥 ∈ 𝐷,

then 𝐿 has the strong max-min property.

4.2 lagrangian

To investigate the primal problem

minimize (in x) 𝑓 (𝑥)
subject to 𝑔 𝑗 (𝑥) ≤ 0, 𝑗 = 1, . . . , 𝑛,

ℎ𝑖 (𝑥) = 0, 𝑖 = 1, . . . , 𝑚,
𝑥 ∈ 𝐷

(P)

define the Lagrange-function2 on 𝐷 × Λ with Λ := R𝑚 × R𝑛≥0 as

𝐿 (𝑥;𝜆, 𝜇) := 𝑓 (𝑥) +
𝑚∑︁
𝑖=1

𝜆𝑖 ℎ𝑖 (𝑥) +
𝑛∑︁
𝑗=1

𝜇 𝑗 𝑔 𝑗 (𝑥), (4.4)

(𝜆𝑖 ∈ R for all 𝑖 = 1, . . . , 𝑛 and 𝜇 𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑚). The Lagrange dual function, as defined in (4.2), is
the concave function

𝑑 (𝜆, 𝜇) := inf
𝑥∈𝐷

𝐿 (𝑥;𝜆, 𝜇); (4.5)

2Joseph–Louis Lagrange, 1736–1813
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note that 𝑑 (𝜆, 𝜇) is concave, as it is the infimum of linear functions.
The (unconstrained) Lagrange dual problem is the concave problem

maximize 𝑑 (𝜆, 𝜇)
subject to 𝜆 ∈ R𝑚,

𝜇 ∈ R𝑛 with 𝜇 𝑗 ≥ 0 for all 𝑗 .
(D)

Theorem 4.7. (𝑥∗, 𝜆∗, 𝜇∗) is a saddle point for the Lagrangian 𝐿 (Eq. (4.4)) iff3

(i) 𝑥∗ is primal optimal,

(ii) (𝜆∗, 𝜇∗) is dual optimal and

(iii) strong duality is obtained.

In addition, 𝑑∗ = 𝑑 (𝜆∗, 𝜇∗) = 𝐿 (𝑥∗;𝜆∗, 𝜇∗) = 𝑓 (𝑥∗) = 𝑝∗ and 𝜇∗
𝑗
𝑔 𝑗 (𝑥∗) = 0 (complementary slackness).

Corollary. Let 𝑥∗ be primal optimal and (𝜆∗, 𝜇∗) dual optimal, but with strictly positive duality gap. Then
there does not exist any saddle-point, but the following inequalities hold:

𝑑∗ = 𝑑 (𝜆∗, 𝜇∗) ≤ 𝐿 (𝑥∗;𝜆∗, 𝜇∗) = 𝐿 (𝑥∗; 0, 𝜇∗) ≤ 𝑓 (𝑥∗) = 𝑝∗,

and consequently 0 ≤ −𝜇∗⊤𝑔 (𝑥∗) ≤ 𝑝∗ − 𝑑∗. The saddle point inequality rewrites

𝐿 (𝑥∗;𝜆, 𝜇) − 𝑓 (𝑥∗) ≤ 0 ≤ 𝐿 (𝑥;𝜆∗, 𝜇∗) − 𝑑 (𝜆∗, 𝜇∗)

for all 𝑥, 𝜆 and 𝜇 ≥ 0.

Proof of Theorem 4.7. Let (𝑥∗, 𝜆∗, 𝜇∗) be a saddle point, then

𝑑 (𝜆, 𝜇) ≤ 𝐿 (𝑥∗;𝜆, 𝜇) ≤ inf
𝑥∈𝐷

𝐿 (𝑥;𝜆∗, 𝜇∗) = 𝑑 (𝜆∗, 𝜇∗) ,

which shows that (𝜆∗, 𝜇∗) is optimal for the dual, thus (ii).
Strong duality (i.e., (iii)) follows via (4.3) since we assume a saddle-point.
In addition

𝑓 (𝑥∗) + 𝜆⊤ℎ (𝑥∗) + 𝜇⊤𝑔 (𝑥∗) = 𝐿 (𝑥∗;𝜆, 𝜇)
≤ 𝐿 (𝑥∗;𝜆∗, 𝜇∗)
= 𝑓 (𝑥∗) + 𝜆∗⊤ℎ (𝑥∗) + 𝜇∗⊤𝑔 (𝑥∗)

for all 𝜆 and 𝜇 ≥ 0, hence ℎ (𝑥∗) = 0 and 𝑔 (𝑥∗) ≤ 0, which shows that 𝑥∗ is feasible for the primal problem.
Consequently 𝜇⊤𝑔 (𝑥∗) ≤ 𝜇∗⊤𝑔 (𝑥∗) ≤ 0 for all 𝜇 ≥0, so we deduce 𝜇∗

𝑗
𝑔 𝑗 (𝑥∗) = 0 (complementary

slackness).
Again from the saddle-point-property

𝑓 (𝑥∗) = 𝐿 (𝑥∗;𝜆∗, 𝜇∗)
≤ 𝐿 (𝑥;𝜆∗, 𝜇∗)
= 𝑓 (𝑥) + 𝜆∗⊤ ℎ (𝑥)︸︷︷︸

=0

+ 𝜇∗⊤𝑔 (𝑥)︸    ︷︷    ︸
≤0

and so it follows that 𝑥∗ is indeed optimal for the primal problem, thus (i).
3John von Neumann, 1903–1957
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Conversely, observe that

sup
𝜇≥0, 𝜆

𝑓 (𝑥) + 𝜆⊤ℎ(𝑥) + 𝜇⊤𝑔(𝑥)︸                          ︷︷                          ︸
𝐿 (𝑥;𝜆,𝜇)

=

{
𝑓 (𝑥) if ℎ𝑖 (𝑥) = 0 and 𝑔 𝑗 (𝑥) ≤ 0,
∞ else.

Thus, assuming that 𝑥∗ is primal optimal and (𝜆∗, 𝜇∗) dual optimal,

𝑑∗ = 𝑑 (𝜆∗, 𝜇∗) ≤ 𝐿 (𝑥∗;𝜆∗, 𝜇∗) ≤ 𝑓 (𝑥∗) = 𝑝∗,

and consequently 0 ≤ 𝜇∗⊤𝑔 (𝑥∗) ≤ 𝑝∗ − 𝑑∗.
Moreover,

𝐿 (𝑥∗;𝜆, 𝜇) ≤ sup
𝜆,𝜇≥0

𝐿 (𝑥∗;𝜆, 𝜇)

= inf
𝑥∈𝐷

sup
𝜆,𝜇≥0

𝐿 (𝑥;𝜆, 𝜇)

=
(4.1)

sup
𝜆,𝜇≥0

inf
𝑥∈𝐷

𝐿 (𝑥;𝜆, 𝜇) + 𝑝∗ − 𝑑∗

= sup
𝜆,𝜇≥0

𝑑 (𝜆, 𝜇) + 𝑝∗ − 𝑑∗

= 𝑑 (𝜆∗, 𝜇∗) + 𝑝∗ − 𝑑∗

≤ 𝐿 (𝑥, 𝜆∗, 𝜇∗) + 𝑝∗ − 𝑑∗

for all 𝑥, 𝜆 and 𝜇 ≥ 0, establishing the saddle-point inequality. □

4.3 linear programs

The linear programs in Table 4.1 are dual – in the sense described – to each other.4

Example 4.8. Consider the fifth primal problem in Table 4.1. With 𝐷 = {𝑥 ≥ 0} and 𝑔(𝑥) = 𝑏 − 𝐴𝑥 the
Lagrange-dual function (4.5) is

𝑑 (𝜇) = inf
𝑥≥0

𝑐⊤𝑥 + 𝜇⊤ (𝑏 − 𝐴𝑥) = inf
𝑥≥0

𝜇⊤𝑏 +
(
𝑐⊤ − 𝜇⊤𝐴

)
𝑥 =

{
𝜇⊤𝑏 if 𝑐⊤ − 𝜇⊤𝐴 ≥ 0,

−∞ else.

The dual problem (D) thus is the first dual in Table 4.1.

Remark 4.9. Suppose that the dual program in Table 4.1 has a unique solution 𝜇 and/ or 𝜆. Then the
derivative of the primal program with respect to 𝑏 is 𝜇 for inequality constraints, and 𝜆 for the equality
constraint.

4.4 quadratic programs

Consider the problem

minimize
1

2
𝑥⊤𝐻𝑥 + 𝑐⊤𝑥

subject to 𝐴1𝑥 = 𝑏1,

𝐴2𝑥 ≥ 𝑏2.
4George Dantzig, 1914–2005; Leonid Kantorovich, 1912–1983
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Linear Program (primal) Dual Program

minimize (in 𝑥) 𝑐⊤𝑥
subject to 𝐴1𝑥 = 𝑏1

𝐴2𝑥 ≥ 𝑏2

maximize (in 𝜆,𝜇) 𝜆⊤𝑏1 + 𝜇⊤𝑏2
subject to 𝜆⊤𝐴1 + 𝜇⊤𝐴2 = 𝑐⊤

𝜇 ≥ 0

minimize (in 𝑥) 𝑐⊤𝑥
subject to 𝐴1𝑥 = 𝑏1

𝐴2𝑥 ≥ 𝑏2
𝑥 ≥ 0

maximize (in 𝜆,𝜇) 𝜆⊤𝑏1 + 𝜇⊤𝑏2
subject to 𝜆⊤𝐴1 + 𝜇⊤𝐴2 ≤ 𝑐⊤

𝜇 ≥ 0

minimize (in 𝑥) 𝑐⊤𝑥
subject to 𝐴𝑥 = 𝑏

maximize (in 𝜆) 𝜆⊤𝑏
subject to 𝜆⊤𝐴 = 𝑐⊤

minimize (in 𝑥) 𝑐⊤𝑥
subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

maximize (in 𝜆) 𝜆⊤𝑏
subject to 𝜆⊤𝐴 ≤ 𝑐⊤

minimize (in 𝑥) 𝑐⊤𝑥
subject to 𝐴𝑥 ≥ 𝑏

maximize (in 𝜇) 𝜇⊤𝑏
subject to 𝜇⊤𝐴 = 𝑐⊤

𝜇 ≥ 0

minimize (in 𝑥) 𝑐⊤𝑥
subject to 𝐴𝑥 ≥ 𝑏

𝑥 ≥ 0

maximize (in 𝜇) 𝜇⊤𝑏
subject to 𝜇⊤𝐴 ≤ 𝑐⊤

𝜇 ≥ 0

Table 4.1: Duality of important linear programs

The Lagrangian is

𝐿 (𝑥;𝜆, 𝜇) := 1

2
𝑥⊤𝐻𝑥 + 𝑐⊤𝑥 + 𝜆⊤ (𝑏1 − 𝐴1𝑥) + 𝜇⊤ (𝑏2 − 𝐴2𝑥)

=
1

2
𝑥⊤𝐻𝑥 +

(
𝑐⊤ − 𝜆⊤𝐴1 − 𝜇⊤𝐴2

)
𝑥 + 𝜆⊤𝑏1 + 𝜇⊤𝑏2.

Note, that 0 = 𝜕𝐿
𝜕𝑥

= 𝑥⊤𝐻 + (𝑐⊤ − 𝜆⊤𝐴1 − 𝜇⊤𝐴2) and we abbreviate the optimal solution with 𝑢 :=
−𝐻−1

(
𝑐 − 𝐴⊤1 𝜆 − 𝐴⊤2 𝜇

)
. The dual function is

𝑑 (𝜆, 𝜇) = inf
𝑥
𝐿 (𝑥;𝜆, 𝜇)

= 𝐿 (𝑢;𝜆, 𝜇)

=
1

2
𝑢⊤𝐻𝑢 − 𝑢⊤𝐻𝑢 + 𝜆⊤𝑏1 + 𝜇⊤𝑏2

= −1
2
𝑢⊤𝐻𝑢 + 𝜆⊤𝑏1 + 𝜇⊤𝑏2.

Following (D), the dual problem thus is

maximize − 1

2
𝑢⊤𝐻𝑢 + 𝜆⊤𝑏1 + 𝜇⊤𝑏2

subject to 𝜆⊤𝐴1 + 𝜇⊤𝐴2 − 𝑢⊤𝐻 = 𝑐⊤ and
𝜇 ≥ 0,

as 𝜆⊤𝐴1+ 𝜇⊤𝐴2−𝑢⊤𝐻 = 𝑐. Table 4.2 collects these results and generalizes the linear problems in Table 4.1.
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Quadratic Program (primal) Dual Program

minimize (in 𝑥) 1
2𝑥
⊤𝐻𝑥 + 𝑐⊤𝑥

subject to 𝐴1𝑥 = 𝑏1
𝐴2𝑥 ≥ 𝑏2

maximize (in 𝜆,𝜇) − 1
2𝑢
⊤𝐻𝑢 + 𝜆⊤𝑏1 + 𝜇⊤𝑏2

subject to 𝜆⊤𝐴1 + 𝜇⊤𝐴2 − 𝑢⊤𝐻 = 𝑐⊤

𝜇 ≥ 0

minimize (in 𝑥) 1
2𝑥
⊤𝐻𝑥 + 𝑐⊤𝑥

subject to 𝐴1𝑥 = 𝑏1
𝐴2𝑥 ≥ 𝑏2
𝑥 ≥ 0

maximize (in 𝜆,𝜇) − 1
2𝑢
⊤𝐻𝑢 + 𝜆⊤𝑏1 + 𝜇⊤𝑏2

subject to 𝜆⊤𝐴1 + 𝜇⊤𝐴2 − 𝑢⊤𝐻 ≤ 𝑐⊤
𝜇 ≥ 0

minimize (in 𝑥) 1
2𝑥
⊤𝐻𝑥 + 𝑐⊤𝑥

subject to 𝐴𝑥 = 𝑏

maximize (in 𝜆) − 1
2𝑢
⊤𝐻𝑢 + 𝜆⊤𝑏

subject to 𝜆⊤𝐴 − 𝑢⊤𝐻 = 𝑐⊤

minimize (in 𝑥) 1
2𝑥
⊤𝐻𝑥 + 𝑐⊤𝑥

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

maximize (in 𝜆) − 1
2𝑢
⊤𝐻𝑢 + 𝜆⊤𝑏

subject to 𝜆⊤𝐴 − 𝑢⊤𝐻 ≤ 𝑐⊤

minimize (in 𝑥) 1
2𝑥
⊤𝐻𝑥 + 𝑐⊤𝑥

subject to 𝐴𝑥 ≥ 𝑏
maximize (in 𝜇) − 1

2𝑢
⊤𝐻𝑢 + 𝜇⊤𝑏

subject to 𝜇⊤𝐴 − 𝑢⊤𝐻 = 𝑐⊤

𝜇 ≥ 0

minimize (in 𝑥) 1
2𝑥
⊤𝐻𝑥 + 𝑐⊤𝑥

subject to 𝐴𝑥 ≥ 𝑏
𝑥 ≥ 0

maximize (in 𝜇) − 1
2𝑢
⊤𝐻𝑢 + 𝜇⊤𝑏

subject to 𝜇⊤𝐴 − 𝑢⊤𝐻 ≤ 𝑐⊤
𝜇 ≥ 0

Table 4.2: Duality of important quadratic programs

4.5 fenchel–transform

It is useful here to naturally extend the (concave) Lagrange-dual function by

𝑑 (𝜆, 𝜇) =
{
𝑑 (𝜆, 𝜇) if 𝜇 𝑗 ≥ 0,

−∞ else.

We may state the dual problem (D) equivalently as

minimize (in 𝜆, 𝜇) −𝑑 (𝜆, 𝜇)
subject to −𝜇 𝑗 ≤ 0,

(the same form as (P) without ℎ, but 𝑔(𝜇) := −𝜇) and start from this problem as initial problem: the
Lagrangian is 𝐿̃ (𝜆, 𝜇; 𝑦) = −𝑑 (𝜆, 𝜇) − 𝑦⊤𝜇, the corresponding concave dual function is

𝑑 (𝑦) = inf
𝜆,𝜇≥0

𝐿̃ (𝜆, 𝜇; 𝑦)

= inf
𝜆,𝜇
−𝑦⊤𝜇 − 𝑑 (𝜆, 𝜇)

= − sup
𝜆,𝜇

(0, 𝑦)⊤
(
𝜆

𝜇

)
+ 𝑑 (𝜆, 𝜇)

= − (−𝑑)∗ (0, 𝑦) ,

where
𝑓 ∗ (𝑦) := sup

𝑥
𝑦⊤𝑥 − 𝑓 (𝑥)
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4.6 karush–kuhn–tucker (kkt) 41

is 𝑓 ’s convex conjugate function ( 𝑓 ∗ is always convex and lsc.; other names are Fenchel transform,
Legendre-Fenchel transform; note the Fenchel-Young inequality 𝑥⊤𝑦 ≤ 𝑓 (𝑥) + 𝑓 ∗ (𝑦); we shall call − (− 𝑓 )∗
concave conjugate).

The dual-dual problem, in view of (D), thus is

maximize (in y) 𝑑 (𝑦)
subject to 𝑦 𝑗 ≥ 0.

(DD)

We may start here again with the Lagrangian ˜̃
𝐿 (𝑦; 𝜇) = −𝑑 (𝑦) − 𝜇⊤𝑦, the corresponding dual function

thus is ˜̃
𝑑 (𝜇) = inf 𝑦≥0 −𝑑 (𝑦) − 𝜇⊤𝑦 = − sup𝑦 𝜇⊤𝑦 + 𝑑 (𝑦) = −

(
−𝑑

)∗
(𝜇), and the dual-dual-dual thus is

maximize (in 𝜇) −
(
−𝑑

)∗
(𝜇)

subject to 𝜇 𝑗 ≥ 0.
(DDD)

This is the same as (DD), but 𝑑 replaced by its concave conjugate −
(
−𝑑

)∗
. The difference to the dual (D)

is that we finally got rid of 𝜆.
Repeating the procedure will lead us back to the (DD), as for convex (lsc.) functions

(
−𝑑

)∗∗
= −𝑑.

Note the optimal values 𝑑∗ = 𝑑 (𝜆∗, 𝜇∗) = 𝑑 (𝑦∗) = −
(
−𝑑

)∗
(𝜇∗) etc..

4.6 karush–kuhn–tucker (kkt)

Let 𝐿 be differentiable in the saddle point (𝑥∗, 𝜆∗, 𝜇∗), then ∇𝐿 (𝑥∗, 𝜆∗, 𝜇∗) = 0 (notice the simultaneous
differentiation with respect to all 3 variables).

From Theorem 4.7 we deduce: For any optimization problem with differentiable objective and
constraint functions for which strong duality obtains, any pair of primal and dual optimal points must
satisfy the conditions (KKT)

(i) Stationarity: 0 ∈ 𝜕 𝑓 (𝑥∗) +∑
𝑖 𝜆
∗
𝑖
· 𝜕ℎ𝑖 (𝑥∗) +

∑
𝑗 𝜇
∗
𝑗
· 𝜕𝑔 𝑗 (𝑥∗) (0 = ∇𝑥𝐿),

(ii) Primal feasibility: ℎ𝑖 (𝑥∗) = 0, 𝑔 𝑗 (𝑥∗) ≤ 0 (∇𝜆𝐿 = 0, ∇𝜇𝐿 = 0),

(iii) Dual feasibility: 𝜇∗
𝑗
≥ 0 and

(iv) Complementary slackness: 𝜇∗
𝑗
· 𝑔 𝑗 (𝑥∗) = 0.

An element 𝑢∗ out of the (locally convex) linear space’s dual is called subgradient, iff the subgradient
inequality 𝑢∗ ∈ 𝜕 𝑓 (𝑥) :⇐⇒ 𝑓 (𝑧) ≥ 𝑓 (𝑥) + 𝑢∗ (𝑧 − 𝑥) holds for all 𝑧.

𝜕 𝑓 (𝑥), the (convex and closed) set of all subgradients in 𝑥, is called subdifferential.

Theorem 4.10. Let 𝑥∗ be primal optimal for the primal (P) (plus some regularity conditions), then there
exist 𝜆∗ and 𝜇∗ such that (KKT).

Remark. If the primal problem is convex, then (KKT) are also sufficient conditions for optimality of 𝑥∗,
(𝜆∗, 𝜇∗).

For differentiable 𝑓 , 𝑔 and ℎ the problem

maximize (in 𝜆, 𝜇) 𝐿 (𝑥;𝜆, 𝜇)
subject to 𝜇 𝑗 ≥ 0,

∇𝑥𝐿 (𝑥;𝜆, 𝜇) = 0
(WD)

is called Wolfe dual problem.

Version: April 29, 2024



42 duality in optimization

4.7 farkas’ lemma

Theorem 4.11 (A Theorem on the Alternative). Exactly one of these following two statements holds true:

⊲ There exists 𝑦 such that𝑊𝑦 = 𝑧 and 𝑦 ≥ 0;

⊲ There exists 𝜎 such that 𝜎⊤𝑊 ≤ 0 and 𝜎⊤𝑧 > 0.

4.8 derivative

Theorem 4.12. Consider the function

𝑓 (𝑥) := min { 𝑓 (𝑥, 𝑦) : 𝑔(𝑥, 𝑦) ≤ 0 and ℎ(𝑥, 𝑦) = 0}

with minimizing argument 𝑦 (𝑥) satisfying (KKT) for any 𝑥. Let 𝑓 , 𝑔, ℎ and 𝑦 ∈ 𝐶1, then

𝑓 ′ (𝑥) = 𝑓𝑥
(
𝑥, 𝑦(𝑥)

)
+ 𝜆(𝑥)⊤ℎ𝑥

(
𝑥, 𝑦(𝑥)

)
+ 𝜇(𝑥)⊤𝑔𝑥

(
𝑥, 𝑦(𝑥)

)
with respective Lagrange multipliers (dependent on 𝑥).

Proof. As for the proof notice first that ℎ (𝑥, 𝑦 (𝑥)) = 0, thus ℎ𝑥 + ℎ𝑦𝑦′ (𝑥) = 0. Then we find
either 𝑔𝑖 (𝑥, 𝑦 (𝑥)) = 0 or 𝑔𝑖 (𝑥, 𝑦 (𝑥)) < 0 ∧ 𝜇𝑖 = 0 by complementary slackness, that is again
𝜇𝑖

(
𝑔𝑖,𝑥 + 𝑔𝑖,𝑦𝑦′ (𝑥)

)
= 0 and 𝜇⊤

(
𝑔𝑥 + 𝑔𝑦𝑦′ (𝑥)

)
= 0.

Now recall that 𝑓 (𝑥) = 𝑓 (𝑥, 𝑦 (𝑥)) and 𝑓𝑦 + 𝜆⊤ℎ𝑦 + 𝜇⊤𝑔𝑦 = 0 (KKT ). Thus

𝑓 ′ (𝑥) = 𝑓𝑥 + 𝑓𝑦𝑦′ (𝑥)
= 𝑓𝑥 − 𝜆⊤ℎ𝑦𝑦′ (𝑥) − 𝜇⊤𝑔𝑦𝑦′ (𝑥)
= 𝑓𝑥 + 𝜆⊤ℎ𝑥 + 𝜇⊤𝑔𝑥 .

□

4.9 problems

Exercise 4.1. Verify the duality relations in Table 4.1 as outlined in Example 4.8.
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5Elements of Probability

Recap of ingredients from probability theory and statistics to fix the notation.

5.1 the probability space

Definition 5.1 (Probability space). The probability space is a triple

(Ω, F , 𝑃),

where Ω is the sample space, F is the sigma algebra on Ω and 𝑃 : F → [0, 1] the probability measure.

5.1.1 The Sample Space
The sample space is an arbitrary set and usually denoted Ω. The elements 𝜔 ∈ Ω are occasionally called
outcomes and Ω collects all outcomes.

5.1.2 Sigma Algebra
Definition 5.2 (Algebra). Let Ω be a set. A collection F of subsets of Ω is called an algebra on Ω (or
algebra of subsets of Ω) if

(i) Ω ∈ F ,

(ii) for each 𝐸 ∈ F we have that 𝐸c ∈ F , where 𝐸c := {𝜔 ∈ Ω : 𝜔 ∉ 𝐸} = Ω\𝐸 is the complement of
𝐸 , and

(iii) if 𝐸, 𝐹 ∈ F , then 𝐸 ∪ 𝐹 ∈ F .

Note that 𝐸 ∩ 𝐹 = (𝐸c ∪ 𝐹c)c. An algebra on Ω thus is a family of subsets of Ω which is stable under
finitely many set operations.

Definition 5.3 (Sigma algebra). An algebra F is a sigma algebra, or field of subsets if

(i) F is an algebra, and

(ii) for a countable sequence 𝐸1, 𝐸2, . . . of events it holds that
⋃∞
𝑛=1 𝐸𝑛 ∈ F .

An element 𝐸 ∈ F is often called an event, or a possible event. Sigma algebras are often denoted by F ,
sometimes also by Σ.
Remark 5.4. Note that by (ii) and Exercise 5.7 below we can say that a sigma algebra on Ω is a family of
subsets of Ω which is stable under any countable collection of set operations.

Definition 5.5 (Borel sigma algebra). On a topological space (Ω, 𝜏), the Borel1 sigma algebra B is the
smallest sigma algebra containing 𝜏 and denoted (with slight abuse of notation)

B(Ω) := 𝜎(𝜏).
1Émile Borel, 1871–1956
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46 elements of probability

Remark 5.6. It is in fact difficult (but not impossible without the Axiom of Choice) to find a subset 𝐸 ⊂ R
which is not contained in B(R).
Remark 5.7. It was a famous mistake made by Lebesgue to assume that the projection of a Borel set in R2

is a Borel set in R.

Definition 5.8. The pair (Ω, F ) is called measurable space.

Remark 5.9. The sigma algebra is designed to model information. More information is available for F ′, if
F ′ ⊇ F .

5.1.3 Probability Measure
Definition 5.10 (Probability measure). A function

𝑃 : F → [0, 1]

is said to be a probability measure if the following are satisfied

(i) 𝑃
(
{}

)
= 0 and

(ii) 𝑃 is countably additive, i.e., for a countable sequence of events 𝐸1, 𝐸2, · · · ∈ F which are pairwise
disjoint (i.e., 𝐸𝑚 ∩ 𝐸𝑛 = ∅ whenever 𝑚 ≠ 𝑛) it holds that

𝑃

( ∞⋃
𝑛=1

𝐸𝑛

)
=

∞∑︁
𝑛=1

𝑃(𝐸𝑛).

Remark 5.11. The inequality 𝑃
(⋃∞

𝑛=1 𝐸𝑛
)
≤ ∑∞

𝑛=1 𝑃(𝐸𝑛) for measurable sets is called Boole’s inequality
of union bound.
Remark 5.12. Note that the role of a sigma algebra is to provide sets, such that it is possible to assign a
probability. In practice, it is difficult to find a non-measurable set (cf. Remark 5.6).

Theorem 5.13 (Carathéodory’s2 Extension Theorem). Let Ω be a set, F0 and define F := 𝜎(F0). For
a countably additive map 𝜇0 : F0 → [0, 1] there exists a measure 𝜇 : F → [0, 1] which extends 𝜇0, i.e.,
𝜇 = 𝜇0 on F0.

5.2 borel–cantelli lemmas

Lemma 5.14 (First Borel–Cantelli Lemma). Let 𝐸𝑛 be a sequence of events such that
∑
𝑛=1 𝑃(𝐸𝑛) < ∞.

Then
𝑃

(
lim sup
𝑛→∞

𝐸𝑛

)
= 𝑃 (𝐸𝑛, infinitely often) = 0,

where
lim sup 𝐸𝑛 :=

⋂
𝑚≥1

⋃
𝑛≥𝑚

𝐸𝑛 = {𝜔 : 𝜔 ∈ 𝐸𝑛 for infinitely many 𝑛} .

Proof. Define 𝐺𝑚 :=
⋃
𝑛≥𝑚 𝐸𝑛. Then 𝐺𝑚 ⊃ 𝐺 := lim sup 𝐸𝑛 and consequently

𝑃(𝐺) ≤ 𝑃(𝐺𝑚) ≤
∑︁
𝑛≥𝑚

𝑃(𝐸𝑛) −−−−−→
𝑚→∞

0.

This is the assertion. □
2Constantin Carathéodory, 1873–1950
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Lemma 5.15 (Second Borel–Cantelli Lemma). If 𝐸𝑛 is a sequence of independent events and
∑
𝑛=1 𝑃(𝐸𝑛) =

∞, then

𝑃

(
lim sup
𝑛→∞

𝐸𝑛

)
= 1.

Proof. Note first that 𝐺𝑚 ⊃ 𝐺𝑚+1, and thus
⋂
𝑛≥𝑚 𝐸

𝑐
𝑛 = 𝐺𝑐𝑚 is increasing, as 𝑚 increases. It follows for

𝑚′ > 𝑚 that

𝑃

( ⋂
𝑛≥𝑚

𝐸𝑐𝑛

)
≤ 𝑃

( ⋂
𝑛≥𝑚′

𝐸𝑐𝑛

)
=

∏
𝑛≥𝑚′

(1 − 𝑃(𝐸𝑛)) ≤ exp

(
−

∑︁
𝑛≥𝑚′

𝑃(𝐸𝑛)
)
→ 0.

by independence and as 1 − 𝑥 ≤ 𝑒−𝑥 whenever 𝑥 ≥ 0, for every 𝑚. Hence

𝑃 ((lim sup 𝐸𝑛)𝑐) = 𝑃
(⋃
𝑚

⋂
𝑛≥𝑚

𝐸𝑐𝑛

)
≤

∑︁
𝑚=0

𝑃

( ⋂
𝑛≥𝑚

𝐸𝑐𝑛

)
= 0,

from which the assertion follows. □

5.3 random variables

Definition 5.16 (Random variable). Let (Ω, F ) and (𝑆, Σ) be measurable spaces. A function

𝑋 : Ω→ 𝑆

is said to be measurable if
𝑋−1 (𝑆) ∈ F whenever 𝑆 ∈ Σ.

Let (Ω, F , 𝑃) be a probability space and (𝑆, Σ) a measurable space. A random variable 𝑋 is a measurable
function defined on a probability space.

Definition 5.17. For a random variable 𝑋 : (Ω, F ) → (𝑆, Σ),

𝑃𝑋 (𝐴) := 𝑃
(
𝑋−1 (𝐴)

)
(𝐴 ∈ Σ)

defines a probability measure on Σ, called the image measure (a.k.a. pushfoward measure and denoted 𝑋∗𝑃
or 𝑋#𝑃).

𝑋−1 (𝐴) := {𝜔 ∈ Ω : 𝑋 (𝜔) ∈ 𝐴}

is the preimage (or inverse image).

5.4 expectation and integration

For a random variable 𝑋 : Ω→ 𝑆, the expectation is denoted

E 𝑋 =

∫
𝑋𝑑𝑃 =

∫
Ω

𝑋 (𝜔)𝑃(𝑑𝜔) =
∫
𝑆

𝑥 𝑃(𝑋 ∈ 𝑑𝑥).

For a simple random variable 𝑋 =
∑𝑛
𝑖=1 𝑋𝑖 1𝐸𝑖 and a function 𝑔 : 𝑆 → R this isE 𝑔(𝑋) = ∑𝑛

𝑖=1 𝑔(𝑋𝑖)𝑃(𝐸𝑖).
More generally,

E 𝑔(𝑋) =
∫

𝑔(𝑋)𝑑𝑃 =

∫
Ω

𝑔
(
𝑋 (𝜔)

)
𝑃(𝑑𝜔) =

∫
𝑆

𝑔(𝑥) 𝑃(𝑋 ∈ 𝑑𝑥).
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𝜇1 = 𝜅1 𝜅1 = 𝜇1 mean 𝜇 = E 𝑋

𝜇2 = 𝜅2 + 𝜅21 𝜅2 = 𝜇2 − 𝜇21 = 𝜎2 variance 𝜎2 = E (𝑋 − 𝜇)2

𝜇3 = 𝜅3 + 3𝜅2𝜅1 + 𝜅31 𝜅3 = 𝜇3 − 3𝜇2𝜇1 + 2𝜇31 skewness 𝛾1 = E
(
𝑋−𝜇
𝜎

)3
𝜇4 = 𝜅4 + 4𝜅3𝜅1 + 3𝜅22 + 6𝜅2𝜅21 + 𝜅41 𝜅4 = 𝜇4 − 4𝜇3𝜇1 − 3𝜇22 + 12𝜇2𝜇21 − 6𝜇41 kurtosis 𝜅 = E

(
𝑋−𝜇
𝜎

)4
excess := kurtosis − 3

Table 5.1: Selected relations of moments and cumulants

Definition 5.18. The moment generating function is

𝑚𝑋 (𝑡) := E 𝑒𝑡𝑋, (5.1)

the cumulant-generating function is
𝐾𝑋 (𝑡) := logE 𝑒𝑡𝑋 . (5.2)

By linearity of the expectation and the Taylor series expansion 𝑒𝑥 = 1 + 𝑥 + 1
2𝑥

2 + 1
3!𝑥

3 + . . . it follows
that

𝑚𝑋 (𝑡) = 1 + 𝑡 E 𝑋 + 𝑡
2

2
E 𝑋2 + 𝑡

3

3!
E 𝑋3 + . . . ,

where 𝜇𝑘 (𝑋) := E 𝑋 𝑘 is the 𝑘th moment (see Table 5.1 for the derived quantities skewness3 and kurtosis4,
). The cumulants (aka semi-invariants) 𝜅𝑛, 𝑛 = 1, 2, . . . are defined by the Taylor series expansion

𝐾 (𝑡) =
∞∑︁
𝑛=1

𝜅𝑛
𝑡𝑛

𝑛!
.

The characteristic function (i.e., Fourier transform) is

𝜑𝑋 (𝑡) := E 𝑒𝑖𝑡𝑋 (5.3)

and the Laplace transform 𝐿𝑋 (𝑡) := E 𝑒−𝑡𝑋: note the relations 𝜑𝑋 (𝑡) = 𝑚𝑋 (𝑖𝑡) = 𝐿𝑋 (−𝑖𝑡).

5.5 real-valued random variables

Let 𝑋 : Ω→ R be a real-valued random variable (often denoted as 𝑋 ∈ R).

Definition 5.19. The variance is

var 𝑋 := E (𝑋 − E 𝑋)2 = E
(
𝑋2) − (E 𝑋)2 ,

the standard deviation is
𝜎(𝑋) :=

√︁
var(𝑋).

Proposition 5.20. It holds that var (𝛼𝑋 + 𝛽) = 𝛼2 var 𝑋 , where 𝛼 ∈ R.

Proposition 5.21. If 𝑋 has the density 𝑓 , then var 𝑋 = 1
2

∫ ∞
−∞

∫ ∞
−∞ (𝑢 − 𝑣)

2 𝑓 (𝑢) 𝑓 (𝑣)𝑑𝑢𝑑𝑣.

Proposition 5.22. The following hold true:
3Schiefe, dt.
4Wölbung, dt.
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⊲ If E 𝑋 < ∞, then E 𝑋 = 𝑚′
𝑋
(0) and

⊲ if var 𝑋 < ∞, then var 𝑋 = 𝑚′′
𝑋
(0) + 𝑚′

𝑋
(0)

(
1 − 𝑚′

𝑋
(0)

)
.

Theorem 5.23 (Chebyshev’s and Markov’s5 inequality cf. Exercise 5.40). For a random variable 𝑋 : Ω→ R
it holds that

(i) 𝑃( |𝑋 | ≥ 𝜆) ≤ 1
𝜆𝑝
E |𝑋 |𝑝 for 𝑝 > 0,

(ii) 𝑃( |𝑋 − E 𝑋 | ≥ 𝑥) ≤ 𝑀𝑘
𝑥𝑘

, where 𝑀𝑘 = E |𝑋 − E 𝑋 |𝑘 is the absolute 𝑘th moment;

(iii) in particular, 𝑃( |𝑋 − E 𝑋 | ≥ 𝑘𝜎) ≤ 1
𝑘2

, where 𝜎 =
√
var 𝑋 is the standard deviation of 𝑋 .

Corollary 5.24 (Chernoff6 bounds). Let 𝑋 ∈ R be a random variable, then

𝑃 (𝑋 ≥ 𝑎) ≤ inf
𝑡>0

𝑒−𝑡𝑎 E 𝑒𝑡𝑋,

𝑃 (𝑋 ≤ 𝑎) ≤ inf
𝑡<0

𝑒−𝑡𝑎 E 𝑒𝑡𝑋 .

Theorem 5.25 (Jensen’s inequality,7 cf. Exercise 5.41). Let 𝜑 : R→ R be convex, then

𝜑 (E 𝑋) ≤ E 𝜑(𝑋).

Theorem 5.26 (Hölder’s8 inequality). The norm in 𝐿 𝑝-spaces is ∥𝑋 ∥ 𝑝 := (E |𝑋 |𝑝)1/𝑝. Then

E |𝑋 · 𝑌 | ≤ ∥𝑋 ∥ 𝑝 · ∥𝑌 ∥𝑞

whenever the exponents are Hölder conjugate, i.e., 1
𝑝
+ 1
𝑞
= 1.

Definition 5.27 (Cumulative distribution function, cdf). The cumulative distribution function (cdf, cf.
Figure 5.1a) or just distribution function of a R-valued random variable 𝑋 is9

𝐹𝑋 (𝑥) := 𝑃(𝑋 ≤ 𝑥). (5.4)

The quantile function10 is the generalized inverse distribution function (cdf, cf. Figure 5.1b),11

V@R𝛼 (𝑋) := 𝑞𝛼 (𝑋) := 𝐹−1𝑋 (𝛼) := inf {𝑥 : 𝐹𝑋 (𝑥) ≥ 𝛼} .

Further names of the quantile function are Value-at-Risk, or inverse distribution function, V@R𝛼 (𝑋) :=
𝐹−1
𝑋
(𝛼).

Remark 5.28. The cdf 𝐹𝑋 (·) is non-decreasing and right-continuous and hence càdlàg (French: “continue
à droite, limite à gauche”).
Remark 5.29. The cdf and the inverse distribution function can be used to evaluate a expectations. Indeed
(cf. also Exercise 5.21),

E 𝑔(𝑋) =
∫ +∞

−∞
𝑔(𝑥)𝑑𝐹𝑋 (𝑥) =

∫ 1

0

𝑔(𝐹−1𝑋 (𝑢))𝑑𝑢, (5.5)

where the first integral on the real line is a Riemann–Stieltjes integral.
5Andrey Markov, 1856–1922
6Herman Chernoff, 1923, student of Abraham Wald
7Johan Jensen, 1859–1903
8Otto Hölder, 1859–1937
9Note that 𝐹𝑋 ( ·) is càdlàg, i.e., continue à droite, limite à gauche: right continuous with left limits

10This is sometimes called right quantile, and sup {𝑞 : 𝑃 (𝑋 ≤ 𝑞) ≤ 𝛼} the left quantile.
11Note, that inf ∅ = +∞.
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𝑥

𝐹 (𝑥)

0

1

(a) cdf

𝐹−1 (𝑝)

𝛼
0 1

(b) Quantile function, the generalized inverse of Fig-
ure 5.1a

Figure 5.1: Cumulative distribution, and the corresponding quantile function

5.6 discrete probability measures

Definition 5.30. A random variable is said to be discrete if its range (or image) 𝑋 (Ω) is finite or countably
infinite.

5.6.1 Elements of discrete probability measures

Definition 5.31. The Dirac12 measure is

𝛿𝜔 (𝐸) :=
{
1 if 𝜔 ∈ 𝐸
0 else.

Note, that the measure is well-defined on Ω’s entire power set P(Ω), 𝛿𝜔 further is a probability measure
taking only the values 0 or 1. As well it holds that 1𝐸 (𝜔) = 𝛿𝜔 (𝐸) where 1𝐸 is the indicator function of
the event 𝐸 .

Definition 5.32. A discrete probability measure on Ω can be written in the form (cf. Exercise 5.1)

𝑃(·) =
∑︁
𝜔∈Ω

𝑝𝜔 · 𝛿𝜔 (·). (5.6)

For a discrete measure, the function 𝜔 ↦→ 𝑃({𝜔}) is called the probability mass function.

12Paul Dirac, 1902–1984, English theoretical physicist
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5.6.2 Selected examples of discrete probability measures

Binomial distribution

A random variable 𝑋 follows a Binomial distribution with parameters 𝑛 ∈ N and 𝑝 ∈ [0, 1], denoted
𝑋 ∼ 𝐵(𝑛, 𝑝), if the probability mass function is

𝑃(𝑋 = 𝑘) =
(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 , 𝑘 = 0, 1, . . . , 𝑛,

its moment generating function is 𝑚𝑋 (𝑡) = (1 + 𝑝(𝑒𝑡 − 1))𝑛.
As a rule of thumb, the Binomial distribution 𝐵(𝑛, 𝑝) is sufficiently well approximated by a normal

distribution N
(
𝑛𝑝, 𝑛𝑝(1 − 𝑝)

)
if 𝜎2 = 𝑛𝑝(1 − 𝑝) > 9; cf. Figure 5.2a.

Bernoulli distribution

The distribution
𝐵(1, 𝑝)

is a special case of the binomial distribution (𝑛 = 1) and called Bernoulli.

Poisson distribution

The probability mass function of the Poisson distribution 𝑃(𝜆) is (cf. Exercise 5.44)

𝑃(𝑋 = 𝑘) = 𝑒−𝜆𝜆
𝑘

𝑘!
, 𝑘 = 0, 1, . . . , .

Observe in Figure 5.2b that 𝑋 ∼ N (𝜆, 𝜆).

5.7 continuous probability measures

Definition 5.33. A random variable is continuous if its range 𝑋 (Ω) is uncountably infinite. (Cf.
Definition 5.30).

5.7.1 Elements of continuous probability measures
Definition 5.34. The measure 𝑄 is said to be absolutely continuous with respect to the measure 𝑃 if

𝑃(𝐴) = 0 =⇒ 𝑄(𝐴) = 0.

Theorem 5.35 (Radon–Nikodým13). The probability measure 𝑄 is absolutely continuous with respect to
the measure 𝑃, if and only if there is a density 𝑓 : Ω→ [0,∞) such that

𝑃(𝐴) =
∫
𝐴

𝑓 𝑑𝑄 =

∫
𝐴

𝑓 (𝜔)𝑄(𝑑𝜔).

13Johann Radon (1887–1956) proved the special case R𝑛 in 1913 and Otton Marcin Nikodým (1887–1974) the general case in
1930.
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𝑘

𝑃(𝑋 = 𝑘)

0.1

𝑛 = 20

𝑝 = 35%

0 5 10 15 20
(a) Binomial distribution

𝑘

𝑃(𝑋 = 𝑘)

0.1

𝜆 = 7

0 5 10 15 20
(b) Poisson distribution

Figure 5.2: Probability mass function

𝑓𝑋

𝑓𝑋 (𝑥)

d𝑥
𝑥

𝑃(𝑋 ∈ d𝑥)
= 𝑓𝑋 (𝑥) · d𝑥

Figure 5.3: Density, cf. Remark 5.38
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Definition 5.36. The probability density function (pdf) satisfies

𝑃(𝑋 ∈ 𝐴) =
∫
𝐴

𝑓𝑋 (𝑥)𝑑𝑥, (5.7)

where 𝑑𝑥 denotes the usual Lebesgue measure. Note, that 𝑓𝑋 (𝑥) = 𝐹′𝑋 (𝑥).

Remark 5.37. A random variable 𝑋 is absolutely continuous (with respect to the Lebesgue measure) if it
has a density. Note the difference to discrete (Definition 5.30) and continuous (Definition 5.33) random
variables.
Remark 5.38. The identity (5.7) justifies the shorthand notation 𝑃(𝑋 ∈ [𝑥, 𝑥 + 𝑑𝑥]) = 𝑓𝑋 (𝑥) · 𝑑𝑥 for
the density; or even shorter, 𝑃(𝑋 ∈ 𝑑𝑥) = 𝑓𝑋 (𝑥) · 𝑑𝑥 (cf. Figure 5.3), where 𝑑𝑥 is an interval with
small/ infinitesimal width containing 𝑥.

5.8 transformation of random variables

For an invertible, and nondecreasing function 𝑔 the transform 𝑍 := 𝑔(𝑋) has distribution function

𝐹𝑔 (𝑋) (𝑥) = 𝑃
(
𝑔(𝑋) ≤ 𝑥

)
= 𝑃

(
𝑋 ≤ 𝑔−1 (𝑥)

)
= 𝐹𝑋

(
𝑔−1 (𝑥)

)
. (5.8)

The density function of 𝑔(𝑋) is found by differentiating,

𝑓𝑔 (𝑋) (𝑥) = 𝑓𝑋
(
𝑔−1 (𝑥)

)
·
(
𝑔−1

) ′ (𝑥) = 𝑓𝑋
(
𝑔−1 (𝑥)

)
𝑔′

(
𝑔−1 (𝑥)

) .
The result for vector valued 𝑋 follows from the change of variables formula.

Proposition 5.39 (Transformation of densities). Let 𝑔 be invertible, then

𝑓𝑔 (𝑋) (𝑥) =
𝑓𝑋

(
𝑔−1 (𝑥)

)��det 𝑔′ (𝑔−1 (𝑥)) �� = 𝑓𝑋
(
𝑔−1 (𝑥)

)
·
��det(𝑔−1)′ (𝑥)��︸            ︷︷            ︸

Jacobian

. (5.9)

Proof. It holds that∫
𝐴

𝑓𝑔 (𝑋) (𝑧)𝑑𝑧 = 𝑃
(
𝑔(𝑋) ∈ 𝐴

)
= 𝑃

(
𝑋 ∈ 𝑔−1 (𝐴)

)
=

∫
𝑔−1 (𝐴)

𝑓𝑋 (𝑥)𝑑𝑥 =
∫
𝐴

𝑓𝑋
(
𝑔−1 (𝑥)

)
(𝑔−1)′ (𝑥)𝑑𝑥 =

∫
𝐴

𝑓𝑋
(
𝑔−1 (𝑥)

)��det 𝑔′ (𝑔−1 (𝑥)) ��𝑑𝑥.
The results follows by comparing the integrands. □

Proof. For another proof, let ℎ(·) be any test function. Observe that

E ℎ
(
𝑔(𝑋)

)
=

∫
ℎ
(
𝑔(𝑥)

)
𝑓𝑋 (𝑥)𝑑𝑥 =

∫
ℎ(𝑦)

𝑓𝑋
(
𝑔−1 (𝑦)

)��det 𝑔′ (𝑔−1 (𝑦)) ��𝑑𝑦
and

E ℎ
(
𝑔(𝑋)

)
=

∫
ℎ(𝑦) 𝑓𝑔 (𝑋) (𝑦)𝑑𝑦.

The result follows now by comparing the integrands. Of course, one may choose ℎ = 1𝐴 to get the
preceding proof. □
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68.3%

95.4%

𝜇 𝜇 + 𝜎
𝜇 + 2𝜎

𝜇 + 3𝜎

Figure 5.4: Normal distribution: the 68 − 95 − 99.7 rule

5.9 examples of continuous probability distributions

Many probability distributions on R𝑛 are given in terms of densities of the Lebesgue measure.

Uniform distribution

𝑈 follows a continuous uniform distribution, if 𝑃(𝑈 ∈ [𝑐, 𝑑]) = 𝑑−𝑐
𝑏−𝑎 . The density is 𝑓 (𝑥) = 1

𝑏−𝑎 1[𝑎,𝑏] (𝑥)
and the mean is E 𝑈 = 1

2 (𝑎 + 𝑏) and variance var𝑈 = 1
12 (𝑏 − 𝑎)

2. More generally, the uniform
distribution on a compact set 𝐾 ⊂ R𝑑 is the measure 𝑃(𝑈 ∈ 𝐴) = 𝜆(𝐴)

𝜆(𝐾 ) , where 𝜆 is the Lebesgue measure.

Normal distribution

The density of the normal distribution in the univariate case, the pdf is often denoted as

𝜑 (𝑥) = 1
√
2𝜋
𝑒−

1
2
𝑥2 , (5.10)

the cdf as
Φ (𝑥) = 1

√
2𝜋

∫ 𝑥

−∞
𝑒−

1
2
𝑢2𝑑𝑢. (5.11)

For the univariate normal distribution the moment generation function is (replace 𝑥 ← 𝜇 + 𝜎𝑥)

𝑚𝑋 (𝑡) := E 𝑒𝑡𝑋 =

∫ ∞

−∞
𝑒𝑡 𝑥𝜑(𝑥)𝑑𝑥 =

∫ ∞

−∞
𝑒𝑡 𝑥

1

𝜎
√
2𝜋
𝑒
− 1

2𝜎2 (𝑥−𝜇)2𝑑𝑥

=

∫ ∞

−∞
𝑒𝑡 (𝜇+𝜎𝑥 )

1
√
2𝜋
𝑒−

1
2
𝑥2𝑑𝑥

= 𝑒𝑡 𝜇+
𝑡2

2
𝜎2 ·

∫ ∞

−∞

1
√
2𝜋
𝑒−

1
2
(𝑥−𝑡 𝜎)2𝑑𝑥 = 𝑒𝑡 𝜇+

𝑡2

2
𝜎2

. (5.12)

The moments of the univariate normal distribution 𝑋 ∼ N(0, 𝜎2) are

𝑚𝑘 (𝑋) =
{
0 if 𝑘 is odd,
𝑘
2 ! 2

𝑘/2𝜎𝑘 if 𝑘 is even.

Note in particular that

𝑚2 (𝑋) = 𝜎2, 𝑚4 (𝑋) = 3𝜎4, 𝑚6 (𝑋) = 15𝜎6 and 𝑚8 (𝑋) = 105𝜎8; (5.13)
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note as well that var(𝑋2) = 2𝜎4.
The cumulants of the normal distribution are 𝜅1 = 𝜇 and 𝜅2 = 𝜎2, all other cumulants are 𝜅𝑘 = 0,

𝑘 = 3, 4, . . . .

𝑥
−2 −1 0 1 2

𝜇 = 0, 𝜎 = 1/2

𝜇 = 0, 𝜎 = 1
𝜇 = 0, 𝜎 = 2

𝜇 = −1, 𝜎 = 1

(a) Normal distribution N
(
𝜇, 𝜎2

) 𝑥
0 1 2

𝜇 = 0, 𝜎 = 1/4

𝜇 = 0, 𝜎 = 1/2

𝜇 = 0, 𝜎 = 1

(b) Log-normal distribution

Figure 5.5: Densities of the normal and log-normal distribution

Lemma 5.40 (Stein’s lemma14). The random variable 𝑋 is standard normally distributed, iff

E
(
𝑓 ′ (𝑋) − 𝑋 · 𝑓 (𝑋)

)
= 0

for every bounded 𝑓 ∈ 𝐶1. For a general normal distribution 𝑋 ∼ N(𝜇, 𝜎2) it holds that

𝜎2 · E 𝑓 ′ (𝑋) = E(𝑋 − 𝜇) 𝑓 (𝑋).

Exponential, Erlang and Gamma distribution

The exponential distribution with density 𝑓 (𝑥) = 𝜆𝑒−𝜆𝑥 has mean 1
𝜆

and variance 1
𝜆2

. The sum of
independent Exponential variables follows an Erlang 𝐸 (𝑛, 𝜆) ∼ 𝑋1 + · · · + 𝑋𝑛 =: 𝑆𝑛 distribution with pdf
and cdf are (cf. Figure 5.6a)

𝑓𝑛 (𝑥) =
𝜆𝑛𝑥𝑛−1

(𝑛 − 1)! 𝑒
−𝜆𝑥 , 𝐹𝑛 (𝑥) =

𝛾(𝑛, 𝜆𝑥)
Γ(𝑛) (𝑥 ≥ 0). (5.14)

Its mean is E 𝑆𝑛 = 𝑛
𝜆

, the variance is var 𝑆𝑛 = 𝑛
𝜆2

and − 1
𝜆
ln(𝑈1 · · · · ·𝑈𝑛) is 𝐸 (𝑛, 𝜆) distributed, whenever

𝑈𝑖 are independent and [0, 1] uniform.

Lemma 5.41. Let 𝑋 ∼ 𝐸 (𝑚, 𝜆) and 𝑌 ∼ 𝐸 (𝑛, 𝜆) be independent. Then 𝑋 + 𝑌 ∼ 𝐸 (𝑚 + 𝑛, 𝜆).

Proof. The convolution is

𝑓𝑋+𝑌 (𝑥) =
∫ 𝑥

0

𝑓𝑚 (𝑦) 𝑓𝑛 (𝑥 − 𝑦)𝑑𝑦 =
∫ 𝑥

0

𝜆𝑚𝑦𝑚−1

(𝑚 − 1)! 𝑒
−𝜆𝑦 𝜆

𝑛 (𝑥 − 𝑦)𝑛−1
(𝑛 − 1)! 𝑒−𝜆(𝑥−𝑦)𝑑𝑦

=
𝑦←𝑥𝑢

𝜆𝑚+𝑛𝑥𝑚+𝑛−1

(𝑚 + 𝑛 − 1)! 𝑒
−𝜆𝑥 · (𝑚 + 𝑛 − 1)!(𝑚 − 1)!(𝑛 − 1)!

∫ 1

0

𝑢𝑚−1 (1 − 𝑢)𝑛−1𝑑𝑢.

□
14Charles Stein, 1920–2016
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𝑥1/𝜆 2/𝜆 3/𝜆

𝜆/2

𝜆/4

Exponential, 𝑘 = 1

𝑘 = 2

𝑘 = 3
𝑘 = 4

(a) Erlang distribution 𝐸𝑘 (𝜆) (Γ
(
𝑘, 1
𝜆

)
distribution)

𝑥𝜇 𝜇 + 2𝜎

1/5𝜎

Fréchet, 𝜉 = 1/4

Gumbel, 𝜉 = 0

Weibull
𝜉 = −1/4

(b) Generalized extreme value distributions

Figure 5.6: Densities of extreme value distributions

More generally, a distribution with density (5.14) is said to follow a gamma distribution with shape
𝑘 > 0 and rate 𝜆 > 0. The moment generating function of an 𝐸 (𝑛, 𝜆) variable is (cf. Exercise 5.33)

𝑚(𝑡) =
(
𝜆

𝜆 − 𝑡

)𝑛
(5.15)

and notably only finite for 𝑡 < 𝜆.

Lemma 5.42. The sum of independent Gamma variables is Gamma again,

Γ

(𝛾1𝑡
𝜆
,
𝛾1𝑡

𝜆2

)
+ Γ

(𝛾2𝑡
𝜆
,
𝛾2𝑡

𝜆2

)
∼ Γ

(
(𝛾1 + 𝛾2)𝑡

𝜆
,
(𝛾1 + 𝛾2)𝑡

𝜆2

)
.

𝜒2-distribution

Suppose that 𝑋𝑖 ∼ N(0, 1) are independent standard Gaussians, then

𝑘∑︁
𝑖=1

𝑋2
𝑖 ∼ 𝜒2𝑘 (5.16)

has 𝜒2 distribution with 𝑘 degrees of freedom. Its density is

𝑓𝜒2
𝑘
(𝑥) = 1

2
𝑘
2 Γ

(
𝑘
2

) 𝑥 𝑘2 −1𝑒− 𝑥2
(Exercise 5.33 relates 𝜒2 and Erlang distributions).

Remark 5.43. Occasionally, the 𝜒 distribution is
√︁
𝜒2. Its density, by (5.9), is

𝑓𝜒𝑘 (𝑥) =
21−

𝑘
2

Γ

(
𝑘
2

) 𝑥𝑘−1𝑒− 𝑥22 .
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Logistic distribution

The logistic distribution follows the density 𝑓 (𝑥; 𝜇, 𝑠) = 1
𝑠

1

𝑒
𝑥−𝜇
𝑠 +2+𝑒−

𝑥−𝜇
𝑠

.

5.9.1 Heavy-tailed distributions

Log-normal distribution

The log-normal random variable 𝑋 = exp(𝑌 ) with 𝑌 ∼ N
(
𝜇, 𝜎2

)
has pdf

1

𝑥 · 𝜎𝜑
(
ln 𝑥 − 𝜇
𝜎

)
=

1

𝑥
√
2𝜋𝜎2

𝑒
− 1

2𝜎2 (ln 𝑥−𝜇)2 (5.17)

and cdf Φ
(
ln 𝑥−𝜇
𝜎

)
(cf. the transformation of random variables in Lecture 5.8). All moments of the

log-normal distribution exist,
E 𝑋𝑛 = 𝑒𝑛𝜇+

1
2
𝑛2𝜎2

(5.18)

(cf. (5.12) and Exercise 5.47), but they grow very fast and the moment generating function does not exist. It
follows thatE 𝑋 = 𝑒𝜇+

1
2
𝜎2 and the variance is var 𝑋 =

(
𝑒𝜎

2 − 1
)
𝑒2𝜇+𝜎

2 (cf. Exercise 5.50). An important
example is the geometric Brownian motion, i.e., the stochastic process 𝑆𝑡 = 𝑆0 exp

(
(𝜇 − 𝜎2/2)𝑡 + 𝜎𝐵𝑡

)
,

where 𝐵𝑡 is a Brownian motion.

Cauchy distribution

The Cauchy distribution (aka Lorentz distribution in physics) follows the density

𝑓 (𝑥) = 𝛾

𝜋

1

𝛾2 + (𝑥 − 𝛿)2 . (5.19)

It does not have finite moments and E |𝑋 | = ∞. The characteristic function is 𝜑(𝑡) = exp(𝑖𝜇 − 𝛾 |𝑡 |). Note,
that the law of large numbers (LLN, Theorem 7.7 below) does not hold for the Cauchy distribution.

Proposition 5.44. If 𝑋1 ∼ 𝐶 (𝑥1, 𝛾1) and 𝑋2 ∼ 𝐶 (𝑥2, 𝛾2), then 𝑋1 + 𝑋2 ∼ 𝐶 (𝑥1 + 𝑥2, 𝛾1 + 𝛾2). Moreover,
for 𝑋𝑖 ∼ 𝐶 (𝑥𝑖 , 𝛾𝑖) it holds that 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 ∼ 𝐶

(
1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 ,

1
𝑛

∑𝑛
𝑖=1 𝛾𝑖

)
. In particular, for 𝑋𝑖 ∼ 𝐶 (𝑥, 𝛾), then

1
𝑛

∑𝑛
𝑖=1 𝑋𝑖 ∼ 𝐶 (𝑥, 𝛾).

Lévy distribution

The Lévy distribution follows the density

𝑓 (𝑥) = 1
√
2𝜋𝑥3

𝑒−
1
2𝑥

(if 𝑋 ∼ N(0, 1), then 1
𝑋2 is Lévy distributed).

The standard Lévy distribution satisfies the condition

𝑋1 + 𝑋2 + · · · + 𝑋𝑛 ∼ 𝑛2𝑋 = 𝑛
1/𝛼𝑋

(i.e., 𝛼-stable with 𝛼 = 1/2), where 𝑋𝑖 and 𝑋 are standard Lévy distributed.
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Inverse Gaussian distribution

The cdf of the inverse Gaussian distribution 𝐼𝐺 (𝜆, 𝜇) is

𝑓 (𝑥) =
√︂

𝜆

2𝜋𝑥3
𝑒
− 𝜆(𝑥−𝜇)

2

2𝜇2𝑥 .

If 𝑋𝑖 ∼ 𝐼𝐺 (𝜇𝑖 , 2𝜇2𝑖 ), then
∑𝑛
𝑖=1 𝑋𝑖 = 𝐼𝐺

(∑𝑛
𝑖=1 𝜇, 2

(∑𝑛
𝑖=1 𝜇𝑖

)2) .

Student’s t-distribution

Let 𝑋1 𝑋2, . . . be iid. with 𝑋𝑖 ∼ N(𝜇, 𝜎2). Let 𝑋𝑛 := 1
𝑛

∑𝑛
𝑖=1 𝑋𝑖 be the sample mean and 𝑆2 :=

1
𝑛−1

∑𝑛
𝑖=1

(
𝑋𝑖 − 𝑋𝑛

)2
be the (Bessel corrected) sample variance. Then

√
𝑛
𝑋𝑛 − 𝜇
𝜎

∼ N(0, 1) and
√
𝑛
𝑋𝑛 − 𝜇
𝑆

∼ 𝑡𝑛−1. (5.20)

The density of Student’s15 t-distribution with 𝜈 degrees of freedom is

𝑓𝑡𝜈 (𝑥) =
Γ

(
𝜈+1
2

)
√
𝜋𝜈Γ

(
𝜈
2

) · 1(
1 + 𝑥2

𝜈

) 𝜈+1
2

(cf. Exercise 5.32 for a relation between Student’s and Cauchy’s distribution; Γ(𝑠) :=
∫ ∞
0
𝑥𝑠−1𝑒−𝑥𝑑𝑥 is

Euler’s Gamma function).

5.9.2 Extreme value distributions
The cdf of the generalized extreme value (or Fisher–Tippett) distribution is the parametric family
𝐹 (𝑥, 𝜉) = exp

(
− (1 + 𝜉𝑥)−1/𝜉

)
, 𝜉 ∈ R, on the domain {𝑥 : 1 + 𝜉𝑥 > 0} (cf. Figure 5.6b). The following

distributions are variates of the generalized extreme value distribution.

5.9.2.1 Fréchet distribution (type II extreme value distribution, 𝛼 = 1/𝜉 > 0)

has the cdf Φ𝛼 (𝑥) = exp(−𝑥−𝛼), 𝑥 ≥ 0.

5.9.2.2 Gumbel distribution (type I extreme value distribution, 𝜉 = 0)

has the cdf Λ(𝑥) = exp(−𝑒−𝑥), 𝑥 ∈ R. The distribution function follows by letting 𝜉 → 0 in the Fréchet or
Weibull distribution. The expectation is E 𝑋 = 𝛾, where 𝛾 = 0.577 215 66 . . . is the Euler-Mascheroni
constant.

5.9.2.3 Weibull distribution (type III extreme value distribution, 𝜉 = −1/𝛼 < 0)

has the cdf Ψ𝛼 (𝑥) = exp(−(−𝑥)𝛼), 𝑥 ≤ 0.

Proposition 5.45 (cf. Embrechts et al. [6, p. 123]). The extreme value distributions are related as follows:

𝑋 has cdf Φ𝛼 ⇐⇒ ln 𝑋𝛼 has cdf Λ ⇐⇒ −𝑋−1 has cdf Ψ𝛼 .
15Introduced by William Sealy Gosset (aka “Student”), an employee of the Brewery Guinness in Dublin.
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Proposition 5.46 (The extreme value distribution is closed under maximization). Let (𝜀𝑖)𝑛𝑖=1 be independent
random variables which are Gumbel distributed with mean 𝜇𝑖 and common scale parameter 𝑏 > 0. Then
the maximum 𝜀 := max {𝜀𝑖 + 𝑐𝑖 : 𝑖 = 1, . . . 𝑛} of the shifted variables is again Gumbel distributed with
mean

E (𝜀) = 𝜇 := 𝑏 · log
(
𝑛∑︁
𝑖=1

exp
( 𝜇𝑖 + 𝑐𝑖

𝑏

))
(5.21)

and the same scale parameter 𝑏, where 𝑐𝑖 ∈ R are arbitrary constants.

Proof. From the cumulative distribution function of the Gumbel distributions with respective means it
follows that

𝑃

(
max

𝑖∈{1,...𝑛}
𝜀𝑖 + 𝑐𝑖 ≤ 𝑧

)
= 𝑃

(
𝜀1 + 𝑐1 ≤ 𝑧, 𝜀2 + 𝑐2 ≤ 𝑧, . . . , 𝜀𝑛 + 𝑐𝑛 ≤ 𝑧

)
=

𝑛∏
𝑖=1

𝑃 (𝜀𝑖 ≤ 𝑧 − 𝑐𝑖) =
𝑛∏
𝑖=1

exp
(
−𝑒−

𝑧−𝑐𝑖−𝜇𝑖
𝑏

−𝛾
)

= exp

(
−

𝑛∑︁
𝑖=1

𝑒−
𝑧−𝑐𝑖−𝜇𝑖

𝑏
−𝛾

)
= exp

(
−𝑒−

𝑧
𝑏
−𝛾 ·

𝑛∑︁
𝑖=1

𝑒
𝜇𝑖+𝑐𝑖
𝑏

)
= exp

(
−𝑒−

𝑧
𝑏
−𝛾 · 𝑒

𝜇

𝑏

)
= exp

(
−𝑒−

𝑧−𝜇
𝑏
−𝛾

)
,

because
∑𝑛
𝑖=1 𝑒

𝜇𝑖+𝑐𝑖
𝑏 = 𝑒

𝜇

𝑏 . This reveals the assertion. □

The following proposition addresses the probability of choice. Again, an explicit formula is available
for shifted Gumbel variables.

Proposition 5.47 (Choice probabilities for shifted Gumbel variables). Let (𝜀𝑖)𝑛𝑖=1 be independent Gumbel
distributed random variables with individual mean 𝜇𝑖 and common scale parameter 𝑏 > 0. Then the
probability of choice for the variables shifted by 𝑐𝑖 is

𝑃

(
𝜀1 + 𝑐1 = max

𝑖∈{1,2,...𝑛}
𝜀𝑖 + 𝑐𝑖

)
=

exp
( 𝑐1+𝜇1

𝑏

)
exp

( 𝑐1+𝜇1
𝑏

)
+ · · · + exp

( 𝑐𝑛+𝜇𝑛
𝑏

) .
Proof. Without loss of generality one may consider a pair (𝜀1, 𝜀2) of independent Gumbel variables with
location parameter 0, because the maximum in (5.21) itself is Gumbel distributed by Proposition 5.46.

Thus

𝑃 (𝜀1 + 𝑐1 ≥ 𝜀2 + 𝑐2) = 𝑃 (𝜀2 ≤ 𝜀1 + 𝑐1 − 𝑐2)

=

∫ ∞

−∞
𝑓 (𝑥1)

∫ 𝑥1+𝑐1−𝑐2

−∞
𝑓 (𝑥2) 𝑑𝑥2𝑑𝑥1

=

∫ ∞

−∞
𝑓 (𝑥1) exp

(
−𝑒−

𝑥1+𝑐1−𝑐2
𝑏

)
𝑑𝑥1, (5.22)

where the cdf of the Gumbel distribution has been substituted. By substituting the probability density
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function (pdf) 𝑓 , Eq. (5.22) continues as

𝑃 (𝜀1 + 𝑐1 ≥ 𝜀2 + 𝑐2) =
∫ ∞

−∞

1

𝑏
exp

(
−𝑥1
𝑏
− 𝑒−

𝑥1
𝑏

)
exp

(
−𝑒−

𝑥1+𝑐1−𝑐2
𝑏

)
𝑑𝑥1

=

∫ ∞

−∞

1

𝑏
𝑒−

𝑥1
𝑏 exp

(
−𝑒−

𝑥1
𝑏

(
1 + 𝑒−

𝑐1−𝑐2
𝑏

))
𝑑𝑥1

=


exp

(
−𝑒−

𝑥1
𝑏

(
1 + 𝑒−

𝑐1−𝑐2
𝑏

))
1 + 𝑒−

𝑐1−𝑐2
𝑏


∞

𝑥1=−∞

=
1

1 + 𝑒−
𝑐1−𝑐2
𝑏

=
𝑒
𝑐1
𝑏

𝑒
𝑐1
𝑏 + 𝑒

𝑐2
𝑏

. (5.23)

This completes the proof. □

Finally we give a proof that the difference of Gumbel variables enjoys a logistic distribution (cf.
Nadarajah [14]).

Corollary 5.48. If 𝜀1 and 𝜀2 are Gumbel distributed with mean 𝜇1 and 𝜇2 and common scale parameter
𝑏 > 0. Then the difference 𝜀 := 𝜀2 − 𝜀1 follows a logistic distribution with mean 𝜇 = 𝜇2 − 𝜇1 and
cumulative distribution function

𝐹𝜀 (𝑧) =
1

1 + exp
(
− 𝑧−𝜇

𝑏

) ,
which is the distribution function of a logistic variable.

Proof. If follows from (5.23) in the proof of the preceding theorem that

𝐹𝜀 (𝑧) = 𝑃(𝜀2 − 𝜀1 ≤ 𝑧) = 𝑃(𝜀1 + 𝑧 ≥ 𝜀2) =
1

1 + 𝑒−
𝑧−(𝜇2−𝜇1 )

𝑏

,

which completes the proof. □

5.10 problems

Exercise 5.1. Show, that there are at most countably many 𝜔 ∈ Ω for which 𝑝𝜔 > 0 in (5.6).

Exercise 5.2. Let F and G be sigma algebras. Prove that F ∩ G is a sigma algebra. Is F ∪ G necessarily
a sigma algebra?

Exercise 5.3. Show that F :=
⋂
𝑖∈𝐼 F𝑖 is a sigma algebra, where F𝑖 is a sigma algebra for every 𝑖 ∈ 𝐼.

Exercise 5.4. Let 𝐸1, 𝐸2, · · · ∈ F be events. Show that there is a sequence of sets 𝐸 ′1, 𝐸
′
2, · · · ∈ F which

are pairwise disjoint (i.e., 𝐸 ′𝑚 ∩ 𝐸 ′𝑛 = ∅ whenever 𝑚 ≠ 𝑛) so that
⋃∞
𝑛=1 𝐸𝑛 =

⋃∞
𝑛=1 𝐸

′
𝑛.

Exercise 5.5. What is the smallest sigma algebra containing 𝐸1, 𝐸2, . . . 𝐸𝑛 ⊂ Ω?

Exercise 5.6. On algebra F define and discuss the operations 𝐸 + 𝐹 := 𝐸Δ𝐹 := (𝐸 ∪ 𝐹)\(𝐸 ∩ 𝐹) and
𝐸 · 𝐹 := 𝐸 ∩ 𝐹.

Exercise 5.7. Show that
⋂∞
𝑛=1 𝐸𝑛 ∈ F whenever 𝐸𝑛 ∈ F for all 𝑛 ∈ N.

Exercise 5.8. Show that 𝑃(Ω) = 1.
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Exercise 5.9. What of the following is a sigma algebra?

(i) F = {𝐸 ⊆ R : 0 ∈ 𝐸},

(ii) F = {𝐸 ⊆ R : 𝐸 is finite},

(iii) F = {𝐸 ⊆ R : 𝐸 or 𝐸c is finite},

(iv) F = {𝐸 ⊆ R : 𝐸 is open},

(v) F = {𝐸 ⊆ R : 𝐸 is open or 𝐸 is closed},

Exercise 5.10. The preimage 𝑋−1 preserves all set operations, as 𝑋−1 (⋃𝛼∈𝐴 𝐸𝛼) =
⋃
𝛼∈𝐴 𝑋

−1 (𝐸𝛼),
𝑋−1 (𝐸c) =

(
𝑋−1 (𝐸)

)c, etc.

Exercise 5.11. Describe and plot the cdf and generalized inverse of a Bernoulli distribution with
𝑃(𝑋 = 0) = 1 − 𝑝 and 𝑃(𝑋 = 1) = 𝑝.

Exercise 5.12 (A degenerate situation). Describe and plot the cdf and generalized inverse of a random
variable 𝑋 with 𝑃(𝑋 = 7) = 1. Discuss this situation in detail.

Exercise 5.13. Show that for a binomially distributed random variable 𝑋 ∼ 𝐵(𝑛, 𝑝) it holds that E 𝑋 = 𝑛𝑝

and var 𝑋 = 𝑛𝑝(1 − 𝑝).

Exercise 5.14. Give the Value-at-Risk for 𝛼 = 10% for the following distribution 𝑋:

𝑥𝑖 −10.1 −7.2 −3.3 −1.8 2.8 3.1 3.2 3.7 4.1 5.1 8.2
P (𝑋 = 𝑥𝑖) 0.02 0.03 0.10 0.12 0.20 .11 .07 .03 .08 .14 .10

Also, compute 𝑋’s expected value and variance.

Exercise 5.15. Show thatV@R𝛼 (𝑋) = inf {𝑥 : 𝐹𝑋 (𝑥) ≥ 𝛼} = sup {𝑥 : 𝐹𝑋 (𝑥) < 𝛼} and inf {𝑥 : 𝐹𝑋 (𝑥) > 𝛼} =
sup {𝑥 : 𝐹 (𝑥) ≤ 𝛼}.

Exercise 5.16. Show that V@R𝛼 (𝑐 + 𝜆 · 𝑋) = 𝑐 + 𝜆 · V@R𝛼 (𝑋) whenever 𝜆 ≥ 0.

Exercise 5.17 (Cf. van der Vaart [24, Lemma 21.1]). For every 0 < 𝛼 < 1 and 𝑥 ∈ R,

(i) 𝐹𝑋 (·) is continuous from the right, the quantile function 𝐹−1
𝑋

is nondecreasing and continuous from
the left.

(ii) 𝐹−1 (𝛼) ≤ 𝑥 if and only if 𝛼 ≤ 𝐹 (𝑥);

(iii) 𝐹
(
𝐹−1 (𝛼)

)
≥ 𝛼 for 0 < 𝛼 < 1 with equality, iff 𝛼 ∈ {𝐹 (𝑥) : 𝑥 ∈ R}, i.e., 𝛼 is in the range of 𝐹;

(iv) 𝐹−1
(
𝐹 (𝑥)

)
≤ 𝑥 for all 𝑥 ∈ R; equality fails iff 𝑥 is in the interior or at the right of a “flat” of 𝐹;

(v) 𝐹
(
𝐹−1

(
𝐹 (𝑥)

) )
= 𝐹 (𝑥) and 𝐹−1

(
𝐹
(
𝐹−1 (𝛼)

) )
= 𝐹−1 (𝛼);

(vi) 𝑃
(
𝑋 = 𝐹−1

𝑋
(𝐹𝑋 (𝑋))

)
= 1; in words: the generalized inverse 𝐹−1

𝑋
is indeed the inverse with

probability 1.

(vii) 𝐹 ◦ 𝐹−1 ◦ 𝐹 = 𝐹,
(
𝐹−1

)−1
= 𝐹 and (𝐹 ◦ 𝐺)−1 = 𝐺−1 ◦ 𝐹−1.

Exercise 5.18. With reference to the Figures 5.1a and 5.1b:

⊲ Discuss, why the red realizations will not happen (i.e., will happen with probability 0);
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⊲ Discuss, why the green realization will happen with strictly positive probability.

Exercise 5.19. Let 𝐹 be continuous, and 𝑔 monotone and continuous from the left. Show that

⊲ 𝐹−1
𝑔 (𝑋) (𝑝) = 𝑔

(
𝐹−1 (𝑝)

)
if 𝑔 is increasing, and

⊲ 𝐹−1
𝑔 (𝑋) (𝑝) = 𝑔

(
𝐹−1 (1 − 𝑝)

)
if 𝑔 is decreasing.

Give the explicit formula to compute E 𝑋 for the Dirac measure and the discrete probability measure 𝑃.

Exercise 5.20. Give the explicit formula to compute E 𝑋 for the Dirac measure and the discrete probability
measure 𝑃(·) = ∑𝑛

𝑖=1 𝑝𝑖𝛿𝑥𝑖 (·).

Exercise 5.21. Prove formula (5.5) to compute the expectation.

Exercise 5.22. Suppose that 𝑋 ∈ R has a density 𝑓𝑋 and let 𝑐 ∈ R be a constant. Verify that

(i) 𝑓𝑋+𝑐 (𝑥) = 𝑓𝑋 (𝑥 − 𝑐),

(ii) 𝑓𝑐·𝑋 (𝑥) = 1
𝑐
𝑓𝑋 (𝑥/𝑐) and

(iii) 𝑓𝑐/𝑋 (𝑥) = 𝑐
𝑥2
𝑓𝑋 (𝑐/𝑥).

Exercise 5.23. Equip [0, 1] with the usual Lebesgue measure and consider the functions 𝑈1 (𝑢) := 𝑢,

𝑈2 (𝑢) := 1 − 𝑢 and 𝑈3 :=

{
2𝑢 if 𝑢 ≤ 1/2,
2 − 2𝑢 if 𝑢 ≥ 1/2

. Show that 𝑈1, 𝑈2 and 𝑈3 are all uniformly distributed

random variables.

Exercise 5.24. Explain E 𝑔 (𝑋) for some examples, e.g., for

𝑔 : R → R,
𝑥 ↦→ 1

𝑔 : R → R,
𝑥 ↦→ 𝑥

𝑔 : R → R.
𝑥 ↦→ 1

How can we denote E 𝑔 (𝑋) for discrete (continuous, respectively) random variables explicitly?

Exercise 5.25 (Summation by parts, aka Abel’s lemma). For discrete random variables with 𝑃(𝑋 ≥ 𝑥0) = 1
and possible outcomes {𝑥𝑘 : 𝑘 = 0, 1, . . . 𝑛} set 𝑝𝑘 := 𝑃 (𝑋 = 𝑥𝑘). Discuss, verify and explain

E 𝑔(𝑋) =
𝑛∑︁
𝑘=0

𝑔(𝑥𝑘)𝑝𝑘 = 𝑔(𝑥0) +
𝑛−1∑︁
𝑘=0

(
𝑔(𝑥𝑘+1) − 𝑔(𝑥𝑘)

)
·

𝑛∑︁
𝑗=𝑘+1

𝑝 𝑗 (5.24)

= 𝑔(𝑥0) +
𝑛−1∑︁
𝑘=0

(
𝑔(𝑥𝑘+1) − 𝑔(𝑥𝑘)

)
· 𝑃(𝑋 > 𝑥𝑘).

Exercise 5.26. Verify formula (5.24) for the random variable 𝑋 given by
𝑘 0 1 2 3 4 5
𝑥𝑘 −3.1 −1.2 −0.3 −1.8 2.8 3.1
P (𝑋 = 𝑥𝑘) 5% 10% 15% 10% 20% 40%
𝑔(𝑥𝑘) 4 7 6 3 5 1

Exercise 5.27 (Integration by parts, Fubini’s theorem). Show that

E 𝑔(𝑋) = 𝑔(𝑎) +
∫ ∞

𝑎

𝑔′ (𝑥)
(
1 − 𝐹 (𝑥)

)
𝑑𝑥, if 𝑃(𝑔(𝑋) ≥ 𝑔(𝑎)) = 1, (5.25)

= 𝑔(𝑏) −
∫ 𝑏

−∞
𝑔′ (𝑥)𝐹 (𝑥)𝑑𝑥, if 𝑃(𝑔(𝑋) ≤ 𝑔(𝑏)) = 1.
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Exercise 5.28. Relate and compare (5.24) and (5.25).

Exercise 5.29. Verify the 4th moment for the normal distribution in (5.13) and show that var 𝑋2 = 2𝜎4.

Exercise 5.30. Show that Student’s t-distribution (5.20) with 𝜈 degrees of freedom has a finite 𝑛th moment
provided that 𝑛 < 𝜈. For 𝑛 > 𝜈, the 𝑛th moment is∞.

Exercise 5.31. Verify the summation formula for the Gamma distribution, Lemma 5.42.

Exercise 5.32. Relate Student’s t and Cauchy’s distribution.

Exercise 5.33. Relate the 𝜒2 and Erlang distributions.

Exercise 5.34. Let 𝑋𝑖 be independent copies of the random variable from the previous Exercise 5.11.
Define 𝑍 :=

∑𝑛
𝑖=1 𝑋𝑖 and compute E 𝑍 and var 𝑍 for this resulting random variable.

Exercise 5.35. Show that 𝑍’s distribution (the previous example) is

𝑃(𝑍 ≤ 𝑘) =
∑︁
𝑖≤𝑘

(
𝑛

𝑖

)
𝑝𝑖 (1 − 𝑝)𝑛−𝑖

for 0 < 𝑝 < 1 and 𝑛 ∈ N; explain, using an appropriate plot.

Exercise 5.36. Given the random variable 𝑍 from Exercise 5.34, state

E 𝑔 (𝑋)

in explicit terms.

Exercise 5.37. Show that the density of 1/𝑋 is 𝑓1/𝑋 (𝑥) = 𝑥 · 𝑓𝑋 (1/𝑥).

Exercise 5.38. Prove Proposition 5.20.

Exercise 5.39. Verify Proposition 5.21.

Exercise 5.40. Verify Chebyshev’s inequality, Theorem 5.23.

Exercise 5.41. Verify Jensen’s inequality, Theorem 5.25.

Exercise 5.42. Use Jensen’s inequality (Theorem 5.25) to show that ∥𝑋 ∥ 𝑝 ≤ ∥𝑋 ∥ 𝑝′ whenever 𝑝 ≤ 𝑝′.

Exercise 5.43 (Large deviation). Use Corollary 6.15 to show that 𝑃
(
𝑋𝑛 ≥ 𝛼

)
≤ 𝑒−𝑡 𝛼 E 𝑒𝑡𝑋𝑛 =

𝑒−𝑡 𝛼 𝑚𝑋
(
𝑡
𝑛

)𝑛 and further
1

𝑛
log 𝑃

(
𝑋𝑛 ≥ 𝛼

)
≤ −Λ∗ (𝛼),

where Λ∗ (𝑧) := sup𝑡∈R 𝑡𝑧 − log𝑚𝑋 (𝑡) is the convex conjugate of Λ(𝑡) := log𝑚𝑋 (𝑡).

Exercise 5.44. Show that the moment generating function of the Poisson distribution with parameter 𝜆 is

𝑚𝑋 (𝑡) = E 𝑒𝑡𝑋 = exp
(
𝜆(𝑒𝑡 − 1)

)
.

Exercise 5.45. Show the moment generating function for the Erlang distribution, Eq. (5.15).

Exercise 5.46. Verify and discuss the inverse transform method 𝑋 ∼ 𝐹−1
𝑋
(𝑈).
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Exercise 5.47. Compute the moments of the log-normal distribution (cf. (5.18)) and show that the
moment generating function does not exist outside {0}, although it is monotone, finite and bounded in
{𝑥 ∈ R : 𝑥 ≤ 0}.

Exercise 5.48. Verify Stein’s lemma, Lemma 5.40.

Exercise 5.49. Verify the density (5.17) of the log-normal distribution.

Exercise 5.50. Give the variance for the log-normal distribution. What is the formula for small 𝜎?

Exercise 5.51. Verify the moment generating function (5.12) of the normal distribution (at least in one
dimension).

Exercise 5.52 (Mills ratio,16 cf. Williams [27, Section 14.8]). Show that

𝑥

𝑥2 + 1
1
√
2𝜋
𝑒−

𝑥2/2 ≤
∫ ∞

𝑥

1
√
2𝜋
𝑒−

𝑢2/2𝑑𝑢 ≤ 1

𝑥

1
√
2𝜋
𝑒−

𝑥2/2, 𝑥 > 0,

i.e.,
𝑥

𝑥2 + 1𝜑(𝑥) ≤ 1 −Φ(𝑥) ≤ 1

𝑥
𝜑(𝑥), 𝑥 > 0

and thus
Φ(−𝑥) = 1 −Φ(𝑥) ∼ 1

𝑥
𝜑(𝑥), 𝑥 ≫ 1. (5.26)

Hint: for 𝜑 defined in (5.10) we have 𝜑′ (𝑢) = −𝑢𝜑(𝑢) and thus 𝜑(𝑥) = −
∫ ∞
𝑥
𝜑′ (𝑢)𝑑𝑢 = . . . . For

the second inequality note that
(
1
𝑢
𝜑(𝑢)

) ′
= − (1 + 1/𝑢2) 𝜑(𝑢). A similar computation as before for

𝜑 (𝑥 )
𝑥

=
∫ ∞
𝑥
(1 + 1/𝑢2) 𝜑(𝑢)𝑑𝑢 leads to the result.

Indeed, and more generally,∫ ∞

𝑥

1
√
2𝜋
𝑒−

𝑢2/2𝑑𝑢 ∼ 1
√
2𝜋
𝑒−

𝑥2/2
(
1

𝑥
− 1

𝑥3
+ 3

𝑥5
− 15

𝑥7
+ 105

𝑥9
− 905

𝑥11
+ · · · ∓ (2𝑘)!

𝑘!2𝑘
± . . .

)
.

Exercise 5.53 (The probit function). Show that (cf. https://dlmf.nist.gov/7.17)

logΦ(𝑥) ∼ −𝑥
2

2
− log |𝑥 | − 1

2
log(2𝜋) − 1

𝑥2
+ 5

2𝑥4
− 37

3𝑥6
+ . . . , 𝑥 ≪ −1 (5.27)

and verify that

Φ−1 (𝑝) ∼ −

√√√
log

1

𝑝2
− log log 1

𝑝2
− log(2𝜋) +

log log 1
𝑝2

log 1
𝑝2

, 𝑝 ∼ 0.

Hint: substitute 𝑝 ← Φ(𝑥) in the latter display, note that log 1
𝑝2

= −2 log 𝑝 and expand 𝑥2 = Φ−1 (Φ(𝑥))2
by employing (5.27).

Exercise 5.54 (Inverse Mills ratio). Show that

E
(
𝑋 | 𝑋 ≥ 𝜇 + 𝜎Φ−1 (𝛼)

)
= 𝜇 + 𝜎

𝜑
(
Φ−1 (𝛼)

)
1 − 𝛼 for 𝑋 ∼ N(𝜇, 𝜎2)

(note that the approximation E (𝑋 | 𝑋 ≥ 𝑥) ∼ 𝜇 + 𝜎(𝑥 − 𝜇) derived from (5.26) is usually not very good
and not in use).

16John P. Mills
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Exercise 5.55. For 𝑋 ∼ N
(
𝜇, 𝜎2

)
we have that

AV@R𝛼 (𝑋) = 𝜇 +
𝜎

1 − 𝛼 · 𝛼
√︁
−2 log 𝛼 (1 + 𝑜(1))

for 𝛼→ 0.

Exercise 5.56. Show for 𝑋 ∼ N(𝜇, 𝜎2) that E 𝑋+ = 𝜇Φ
( 𝜇
𝜎

)
+ 𝜎𝜑

( 𝜇
𝜎

)
and E 𝑋− = 𝜇

(
1 −Φ

( 𝜇
𝜎

) )
−

𝜎𝜑
( 𝜇
𝜎

)
.

Exercise 5.57 (Cf. Øksendal [16, Exercise 2.1]). Suppose that 𝑋 : Ω→ R assumes only countably many
values 𝑎1, 𝑎2, · · · ∈ R.

(i) Show that 𝑋 is a random variable if and only if 𝑋−1 (𝑎𝑘) ∈ F for all 𝑘 = 1, 2, . . .

(ii) Show that E 𝑓 (𝑋) = ∑∞
𝑘=1 𝑓 (𝑎𝑘)𝑃(𝑋 = 𝑎𝑘), where 𝑓 : R→ R is bounded and measurable.

Use a standard software as Matlab or R for the following exercises.

Exercise 5.58. Simulate 100 realizations of an

(i) Exponential distribution using the Inverse Transform Method (𝜆 = 1 and 𝜆 = 5);

(ii) Compute the sample average of your sample;

(iii) Plot a historgram of your samples obtained;

(iv) Same with 10 000 samples.

Exercise 5.59. Same as Exercise 5.58, but for a Gumbel distribution.

Exercise 5.60. Same as Exercise 5.58, but for a Cauchy distribution. What happens with the mean if you
repeat the simulations a couple of times, particularly for large sample sizes? What goes wrong here?

Exercise 5.61. Same as Exercise 5.58 for a normal distribution, using the acceptance rejection method
(rejection sampling).

Exercise 5.62. What are the difficulties to generate variates of the normal distributions using the inverse
transform method?

Exercise 5.63. Same as Exercise 5.58 for a Binomial distribution.

Exercise 5.64. Same as Exercise 5.58 for a Poisson distribution.

Exercise 5.65. For some of the distributions mentioned above with mean 𝜇 and variance 𝜎, plot the
histogram of (100 realizations of) 𝑍 :=

1
𝑛

∑𝑛
𝑖=1 𝑋𝑖−𝜇
𝜎

.

Exercise 5.66. Verify the 𝜒2 density (5.16) by sampling and plotting the histogram.

Exercise 5.67. Verify Student’s density (5.20) by sampling and plotting the histogram for some 𝑘 of your
choice.

Exercise 5.68. Same as the previous Exercise 5.65 for the Cauchy distribution with 𝜇 = 0 and 𝜎 = 𝛾 = 1
in (5.19). What do you observe? What is wrong here?

Lemma 5.49. The minimum of independent exponential distributions 𝑋𝑘 ∼ 𝐸 (𝜆𝑘) is exponential again,
min {𝑋1, . . . 𝑋𝑛} ∼ 𝐸 (𝜆1 + · · · + 𝜆𝑛), as

𝑃 (min (𝑋1, 𝑋2) ≥ 𝑥) = 𝑃 (𝑋1 ≥ 𝑥) · 𝑃 (𝑋2 ≥ 𝑥) = 𝑒−(𝜆1+𝜆2 )𝑥 .

Note, that the maximum of exponentials is not exponentially distributed.
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6Random Vectors

Random vectors have already be considered in the previous lecture. Here we collect some further details
on random vectors to build the idea.

Suppose that 𝑓 is a measurable function R𝑛 (with respect to the Lebesgue measure). Then

𝑃(𝐴) =
∫
𝐴

𝑓 (𝑡)𝑑𝑡 =
∫
· · ·

∫
𝐴

𝑓𝑋1 ,...𝑋𝑛 (𝑡1, . . . 𝑡𝑛)𝑑𝑡1, . . . 𝑑𝑡𝑛

is a measure on R𝑛. 𝑓𝑋1 ,...𝑋𝑛 is the density (pdf, cf. Definition 5.36) of the random vector (𝑋1, . . . 𝑋𝑛) if

𝑃 (𝑋1 ∈ 𝐴1, . . . 𝑋𝑛 ∈ 𝐴𝑛) =
∫
𝐴×···×𝐴𝑛

𝑓𝑋1 ,...𝑋𝑛 (𝑡)𝑑𝑡 =
∫
𝐴1

· · ·
∫
𝐴𝑛

𝑓𝑋1 ,...𝑋𝑛 (𝑡1, . . . 𝑡𝑛)𝑑𝑡1, . . . 𝑑𝑡𝑛.

The corresponding cdf is

𝐹𝑋1 ,...𝑋𝑛 (𝑥1, . . . 𝑥𝑛) :=
∫ 𝑥1

−∞
· · ·

∫ 𝑥𝑛

−∞
𝑓 (𝑡1, . . . 𝑡𝑛)𝑑𝑡1, . . . 𝑑𝑡𝑛,

where integration is effective on rectangle

(−∞, 𝑥1] × · · · × (−∞, 𝑥𝑛] .

Note the relation
𝑓𝑋1 ,...𝑋𝑛 (𝑥1, . . . 𝑥𝑛) =

𝜕

𝜕𝑥1
. . .

𝜕

𝜕𝑥𝑛
𝐹𝑋1 ,...𝑋𝑛 (𝑥1, . . . 𝑥𝑛).

Definition 6.1. Let (𝑋1, . . . 𝑋𝑛) be a random vector. The distribution of the marginal variables (the
marginal distribution) is obtained by marginalizing over the distribution of the variables being discarded,
and the discarded variables are said to have been marginalized out.

The marginal distribution of 𝑋𝑘 has cdf

𝐹𝑋𝑘 (𝑥𝑘) = lim
𝑥1→∞,𝑥𝑘−1→∞,𝑥𝑘+1→∞,𝑥𝑛→∞

𝐹𝑋1 ,...𝑋𝑛 (𝑥1, . . . 𝑥𝑘−1, 𝑥𝑘 , 𝑥𝑘+1, . . . 𝑥𝑛). (6.1)

More generally,

𝐹𝑋𝑘1 ,...𝑋𝑘 𝑗 (𝑥𝑘1 , . . . 𝑥𝑘 𝑗 ) = lim
𝑥𝑘→∞ for all 𝑘∉{𝑘1 ,...𝑘 𝑗 }→∞

𝐹 (𝑥1, . . . 𝑥𝑛) (6.2)

is the cdf of the (sub-)vector
(
𝑋𝑘1 , . . . 𝑋𝑘 𝑗

)
.

Remark 6.2. The density of the marginal distribution (6.1) is

𝑓𝑋𝑘 (𝑥𝑘) :=
∫ ∞

−∞
· · ·

∫ ∞

−∞
𝑓𝑋1 ,...𝑋𝑛 (𝑡1, . . . 𝑡𝑘−1, 𝑥𝑘 , 𝑡𝑘+1, . . . 𝑡𝑛)𝑑𝑡1, . . . 𝑑𝑡𝑘−1𝑑𝑡𝑘+1𝑑𝑡𝑛,

the generalization for (6.2) is apparent.
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Figure 6.1: Bivariate distribution and its marginals

Example 6.3 (Linear combination of random variables). Consider the transform 𝑔

(
𝑥

𝑦

)
:=

(
𝑎 𝑥 + 𝑏 𝑦 + 𝑐

𝑦

𝑎

)
with 𝑔−1

(
𝑧1
𝑧2

)
=

(
𝑧1−𝑐
𝑎
− 𝑏 𝑧2
𝑎 𝑧2

)
and 𝑔′

(
𝑥

𝑦

)
=

(
𝜕𝑔1
𝜕𝑥

𝜕𝑔1
𝜕𝑦

𝜕𝑔2
𝜕𝑥

𝜕𝑔2
𝜕𝑥

)
=

(
𝑎 𝑏

0 1
𝑎

)
in the setting of Lecture 5.8. Then

𝑓𝑎 𝑋+𝑏𝑌+𝑐,𝑌/𝑎 (𝑧1, 𝑧2) = 𝑓𝑋,𝑌
( 𝑧1−𝑐
𝑎
− 𝑏 𝑧2, 𝑎𝑧2

)
, and thus

𝑓𝑎 𝑋+𝑏𝑌+𝑐 (𝑧) =
∫ ∞

−∞
𝑓𝑋,𝑌

( 𝑧 − 𝑐
𝑎
− 𝑏𝑧2, 𝑎𝑧2

)
𝑑𝑧2

and particularly

𝑓𝑋±𝑌 (𝑧) =
∫ ∞

−∞
𝑓𝑋,𝑌 (𝑧 ∓ 𝑦, 𝑦) 𝑑𝑦.

For independent random variables we get the well-known formula for the convolution,

𝑓𝑋±𝑌 (𝑧) =
∫ ∞

−∞
𝑓𝑋 (𝑧 ∓ 𝑦) · 𝑓𝑌 (𝑦)𝑑𝑦. (6.3)

Example 6.4 (Ratio distribution). As an example consider 𝑔
(
𝑥

𝑦

)
:=

(
𝑥/𝑦
𝑦

)
with 𝑔−1

(
𝑥

𝑦

)
=

(
𝑥 · 𝑦
𝑦

)
and

(𝑔−1)′
(
𝑥

𝑦

)
=

(
𝑦 𝑥

0 1

)
. Then 𝑓𝑋/𝑌,𝑌 (𝑧, 𝑦) = 𝑓𝑋,𝑌 (𝑥 · 𝑦, 𝑦) · |𝑦 |, and thus

𝑓𝑋/𝑌 (𝑧) =
∫ ∞

−∞
|𝑦 | · 𝑓𝑋,𝑌 (𝑧 · 𝑦, 𝑦)𝑑𝑦 (6.4)

(cf. the t-distribution (5.20) as an example).

The product distribution is derived in the same way (note that det 𝑔′
(
𝑥

𝑦

)
= det

(
1/𝑦 −𝑥/𝑦2
0 1

)
= 1
𝑦

), it

has the density

𝑓𝑋·𝑌 (𝑧) =
∫ ∞

−∞

1

|𝑥 | · 𝑓𝑋,𝑌
(
𝑥,
𝑧

𝑥

)
𝑑𝑥. (6.5)

(As an example cf. the 𝜒2-distribution (5.16)).
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6.1 covariance

Definition 6.5. The covariance of two R-valued random variables 𝑋 and 𝑌 is the number

cov(𝑋,𝑌 ) := E
(
(𝑋 − E 𝑋) · (𝑌 − E𝑌 )

)
.

The variance (Definition 5.19) is a special case of the covariance, var(𝑋) = cov(𝑋, 𝑋).

Definition 6.6 (Pearsons’s 𝜌, Pearson1 product-moment correlation coefficient). The correlation of two
random variables 𝑋 and 𝑌 is

𝜌𝑋,𝑌 := corr(𝑋,𝑌 ) := cov(𝑋,𝑌 )
√
var 𝑋 ·

√
var𝑌

.

Proposition 6.7 (Cauchy–Schwarz2 inequality, cf. Exercise 6.16). It holds that −1 ≤ corr(𝑋,𝑌 ) ≤ 1
(cf. Theorem 5.26).

Proposition 6.8 (Hoeffding’s3 covariance identity, cf. Lehmann [13] and Exercise 6.14.). It holds that

cov(𝑋,𝑌 ) =
x

R×R
𝐹𝑋,𝑌 (𝑥, 𝑦) − 𝐹𝑋 (𝑥)𝐹𝑌 (𝑦)𝑑𝑥𝑑𝑦,

where 𝐹𝑋,𝑌 (·, ·) is the joint distribution function of (𝑋,𝑌 ) and 𝐹𝑋 (·) and 𝐹𝑌 (·) its marginals.

Proof. (cf. Lehmann [13]). Let (𝑋,𝑌 ) be an independent copy of (𝑋,𝑌 ), i.e., 𝑃(𝑋 ≤ 𝑥,𝑌 ≤ 𝑦) = 𝑃(𝑋 ≤
𝑥,𝑌 ≤ 𝑦) = 𝐹 (𝑥, 𝑦). Then

2E(𝑋𝑌 ) − 2E(𝑋)E(𝑌 ) = E(𝑋 − 𝑋) (𝑌 − 𝑌 )

= E

∫ ∞

−∞

∫ ∞

−∞

(
𝐼 (𝑢, 𝑋) − 𝐼 (𝑢, 𝑋)

) (
𝐼 (𝑣,𝑌 ) − 𝐼 (𝑣,𝑌 )

)
𝑑𝑢𝑑𝑣,

where 𝐼 (𝑢, 𝑥) =
{
1 if 𝑥 ≤ 𝑢,
0 else.

= 1(−∞,𝑢] (𝑥). We can exchange the integral and the expectation, as all are

assumed to be finite. Hence∫ ∞

−∞

∫ ∞

−∞
E𝐼 (𝑢, 𝑋)𝐼 (𝑣,𝑌 ) − 𝐼 (𝑢, 𝑋)𝐼 (𝑣,𝑌 ) − 𝐼 (𝑢, 𝑋)𝐼 (𝑣,𝑌 ) + 𝐼 (𝑢, 𝑋)𝐼) (𝑣,𝑌 )𝑑𝑢𝑑𝑣

=

∫ ∞

−∞

∫ ∞

−∞
2𝐹 (𝑢, 𝑣) − 2𝐹 (𝑢)𝐹 (𝑣)𝑑𝑢𝑑𝑣,

from which the assertion follows. □

Definition 6.9. The cross covariance (also dispersion matrix or simply covariance matrix) of a random
vector 𝑋 ∈ R𝑚 and a random vector 𝑌 ∈ R𝑛 is

cov(𝑋,𝑌 ) := E
[
(𝑋 − E 𝑋) · (𝑌 − E𝑌 )⊤

]
∈ R𝑚×𝑛.

Note that the dispersion matrix is an 𝑚 × 𝑛 matrix and particularly not (necessarily) symmetric.
1Karl Pearson, 1857–1936
2Karl Hermann Amandus Schwarz, 1843–1921
3Wassily Hoeffding, 1914–1991
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Proposition 6.10. It holds that

cov(𝑋,𝑌 ) = E
(
𝑋 · 𝑌⊤

)
− (E 𝑋) · (E𝑌 )⊤. (6.6)

and cov(𝑋,𝑌 ) = cov(𝑌, 𝑋)⊤.

Proposition 6.11. For linear transformations (also vector-valued transformations) it holds that

cov(𝐴𝑋 + 𝛼, 𝐵𝑌 + 𝛽) = 𝐴 cov(𝑋,𝑌 )𝐵⊤

and
var(𝐴𝑋 + 𝐵𝑌 ) = 𝐴 var(𝑋)𝐴⊤ + 𝐵 var(𝑌 )𝐵⊤ + 𝐴 cov(𝑋,𝑌 )𝐵⊤ + 𝐵 cov(𝑌, 𝑋)𝐴⊤;

for 𝑋,𝑌 ∈ R particularly,

var(𝛼𝑋 + 𝛽𝑌 ) = 𝛼2 var(𝑋) + 𝛽2 var(𝑌 ) + 2𝛼𝛽 cov(𝑋,𝑌 ). (6.7)

Proposition 6.12. It holds that

cov

(
𝑛∑︁
𝑖=1

𝛼𝑖𝑋𝑖 ,

𝑚∑︁
𝑗=1

𝛽 𝑗𝑌 𝑗

)
=

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝛼𝑖𝛽 𝑗 cov(𝑋𝑖 , 𝑌 𝑗 ).

6.2 independence

Definition 6.13. Sub-sigma algebras G1, G2, . . . of F are called independent if, whenever 𝐺𝑖 ∈ G𝑖 and
𝑖1, . . . 𝑖𝑛 are distinct, then

𝑃(𝐺𝑖1 ∩ · · · ∩ 𝐺𝑖𝑛 ) = 𝑃(𝐺𝑖1 ) · . . . · 𝑃(𝐺𝑖𝑛 ). (6.8)

Random variables 𝑋1, 𝑋2, . . . are called independent if the sigma algebras

𝜎(𝑋1), 𝜎(𝑋2), . . .

are independent. Independence of random variables 𝑋 and 𝑋 ′ is occasionally denoted by

𝑋 ⊥ 𝑋 ′.

Theorem 6.14 (cf. Exercise 6.17 and Øksendal [16, Exercise 2.5]). Suppose that 𝑋 and 𝑌 are independent.
Then E[𝑋 · 𝑌 ] = E[𝑋] · E[𝑌 ] and particularly 𝑃(𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏) = 𝑃(𝑋 ≤ 𝑎) · 𝑃(𝑌 ≤ 𝑏).

Corollary 6.15. Suppose that the random variables 𝑋𝑖 , 𝑖 = 1, 2, . . . are independent and identically
distributed. Then the moment generating (cf. (5.1)) function of the sample mean 𝑋𝑛 := 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 is

𝑚
𝑋𝑛
(𝑡) = 𝑚𝑋

( 𝑡
𝑛

)𝑛
.

6.3 convolution

Proposition 6.16 (Convolution). Let 𝑋1 and 𝑋2 be independent with density 𝑓𝑋1
and 𝑓𝑋2

, then 𝑋1 + 𝑋2

has density

𝑓𝑋1+𝑋2
(𝑥) = 𝑓𝑋1

∗ 𝑓𝑋2
(𝑥) =

∫
𝑓𝑋1
(𝑥 − 𝑦) 𝑓𝑋2

(𝑦)𝑑𝑦,

the cdf is

𝐹𝑋1+𝑋2
(𝑥) =

∫
𝐹𝑋1
(𝑥 − 𝑦) 𝑑𝐹𝑋2

(𝑦).
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6.4 problems

Exercise 6.1. Show that (6.3), (6.4) and (6.5) are densities.

Exercise 6.2. Verify the identity (6.6).

Exercise 6.3. Show that var(𝛼𝑋1 + 𝛽𝑋2) = 𝛼2 var 𝑋1 + 𝛽2 var 𝑋2, whenever 𝑋1 and 𝑋2 are independent.

Exercise 6.4 (Convolution of Dirac measures). Suppose that 𝑋 ∼ 𝛿𝑎 and 𝑌 ∼ 𝛿𝑎. Show that 𝑋 +𝑌 ∼ 𝛿𝑎+𝑏.

Exercise 6.5. Verify that distributions of 𝑋 and 𝑌 in Tables 6.1a and 6.1b have the same marginals.
Moreover, compute the expectation, variance and in particular the covariance of both distributions.

P
[
𝑋 = 𝑥𝑖 ,

𝑌 = 𝑦𝑖

]
𝑥1 = 3 𝑥2 = 4 𝑥3 = 6

𝑦1 = 2 10 % 10 % 0 %
𝑦2 = 5 0 % 30 % 0 %
𝑦3 = 7 0 % 10 % 40 %

(a) Measure

P
[
𝑋 = 𝑥𝑖 ,

𝑌 = 𝑦𝑖

]
𝑥1 = 3 𝑥2 = 4 𝑥3 = 6

𝑦1 = 2 0 % 0 % 20 %
𝑦2 = 5 0 % 10 % 20 %
𝑦3 = 7 10 % 40 % 0 %

(b) Measure

Table 6.1: Probabilities with coinciding marginals

Exercise 6.6. Give the marginal probabilities of this following bivariate probability distribution
1% 2% 5% 2% 1% 4% 1%
3% 5% 1% 3% 7% 2% 1%
0% 0% 1% 2% 3% 20% 2%
1% 2% 9% 2% 1% 15% 4%

Give some (at least two) other bivariate probability distribution, which have the same marginal
distribution.

Is there a “natural” one?

Exercise 6.7. Give another bivariate distribution such that the covariance in Exercise 6.5 vanishes (is 0).

Exercise 6.8. Explain and motivate the formula for the convolution for the random variable introduced
in (6.3) above.

Exercise 6.9. Let𝑈1 and𝑈2 ∼ 𝑈 [0, 1] be uniformly distributed and independent. Use (6.3) to compute
the density of𝑈1 +𝑈2.

Exercise 6.10. Let𝑈1 and𝑈2 ∼ 𝑈 [0, 1] be uniformly distributed and independent. Show that

𝑃
(
𝑈2

1 +𝑈2
2 ∈ 𝑑𝑢

)
=

{
𝜋
4 𝑑𝑢 if 𝑢 ∈ [0, 1],(
𝜋
4 − arctan

√
𝑢 − 1

)
𝑑𝑢 if 𝑢 ∈ [1, 2] .

Note particularly that 𝑃
(
𝑈2

1 +𝑈2
2 ≤ 𝑢 | 𝑈2

1 +𝑈2
2 ≤ 1

)
= 𝑢, i.e., 𝑅2 := 𝑈2

1 +𝑈2
2 is uniformly distributed

provided that 𝑅 ≤ 1.

Exercise 6.11. Give the distribution of

⊲ 𝑋 + 𝑌 ,
⊲ 𝑋 − 𝑌 ,
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72 random vectors

⊲ 𝑋 ∗ 𝑌 ,
⊲ 1/𝑋 and
⊲ 𝑋/𝑌

for 𝑋 and 𝑌 as in Exercise 6.5.

Exercise 6.12 (What is fair about a fair game? Cf. Williams [27, Exercise 4.7]). Let 𝑋1, 𝑋2, . . . be the
random variables

𝑋𝑛 :=

{
𝑛2 − 1 with probability 1/𝑛2
−1 with probability 1 − 1/𝑛2.

Show that E 𝑋𝑛 = 0 for all 𝑛 ∈ N, but if 𝑆𝑛 := 𝑋1 + 𝑋2 + . . . 𝑋𝑛 it holds that

𝑆𝑛

𝑛
→ −1, a.s.

(Hint: apply the first Borel–Cantelli lemma, Lemma 5.14).

Exercise 6.13. Verify Proposition 6.11.

Exercise 6.14. Verify Hoeffdings identity, Proposition 6.8 (an optional simplification is by assuming that
𝑋 and 𝑌 have a common density and −𝐶 ≤ 𝑋 ≤ 0 and −𝐶 ≤ 𝑌 ≤ 0 and then employing Proposition 6.11).

Exercise 6.15. Convolution: verify Proposition 6.16.

Exercise 6.16. Show Cauchy–Schwarz’s inequality (Proposition 6.7) by employing Hölder’s inequality
(Theorem 5.26).

Exercise 6.17. Verify Theorem 6.14 by assuming that 𝑋 and 𝑌 are bounded.

Exercise 6.18. Show that 𝑋1+𝑋2 has a density, provided that the random vector (𝑋1, 𝑋2) has a multivariate
density.

Exercise 6.19. Is 𝑋1+𝑋2 continuous, provided that both, 𝑋1 and 𝑋2 are continuous? (Hint: Exercise 5.23.)
Relate to the previous example.

Exercise 6.20. If both 𝑋1 and 𝑋2 have a density, does 𝑋1 + 𝑋2 necessarily have a density?

Exercise 6.21. Let the random variables 𝑋𝑖 , 𝑖 = 1, 2, . . . , 𝑛 have identical variance (var 𝑋𝑖 = 𝜎2) and
satisfy corr

(
𝑋𝑖 , 𝑋 𝑗

)
≤ 𝜌. Show that 𝜌 ≥ − 1

𝑛−1 . (Hint: 0 ≤ var (𝑋1 + · · · + 𝑋𝑛) and (6.7).)
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7Convergence of Random Variables

Some parts of this section follow van der Vaart [24, Section 2].

7.1 basic theory

Definition 7.1. A sequence of random variables (𝑋𝑛) converges almost surely to 𝑋 iff

𝑃
(
𝑋 = lim

𝑛→∞
𝑋𝑛

)
= 1,

i.e., 𝑃
(
{𝜔 : 𝑋 (𝜔) = lim𝑛→∞ 𝑋𝑛 (𝜔)}

)
= 1; we write 𝑋𝑛

𝑎.𝑠.−−−→ 𝑋 .

Definition 7.2. A sequence of random variables (𝑋𝑛) converges in probability to the random variable 𝑋 iff

𝑃
(
|𝑋𝑛 − 𝑋 | > 𝜀

)
−−−−→
𝑛→∞

0

i.e., 𝑃
(
{|𝑋𝑛 (𝜔) − 𝑋 (𝜔) | > 𝜀}

)
−−−−→
𝑛→∞

0 for every 𝜀 > 0; we write 𝑋𝑛
𝑃−→ 𝑋 .

Theorem 7.3. Convergence almost surely implies convergence in probability, i.e., 𝑋𝑛
𝑎.𝑠.−−−→ 𝑋 =⇒ 𝑋𝑛

𝑃−→
𝑋 .

Proof. Define 𝐴𝑛 :=
⋃
𝑚≥𝑛 {|𝑋𝑚 − 𝑋 | > 𝜀} and observe that 𝐴𝑛 ⊇ 𝐴𝑛+1 ⊇ · · · ⊇ 𝐴∞ :=

⋂
𝑛>0 𝐴𝑛.

Choose 𝜔 ∈ 𝐵 := {𝑋 = lim𝑛→∞ 𝑋𝑛}, i.e., 𝑋𝑛 (𝜔) → 𝑋 (𝜔) and |𝑋𝑛 (𝜔) − 𝑋 (𝜔) | < 𝜀 for 𝑛 > 𝑁 . Hence
𝜔 ∉ 𝐴𝑛 and for all 𝑛 > 𝑁 and thus𝜔 ∉ 𝐴∞, i.e., 𝐵 ⊆ 𝐴c

∞ or 𝐵c ⊇ 𝐴∞ and consequently 𝑃(𝐴∞) ≤ 𝑃(𝐵c) = 0

as we have that 𝑋𝑛
𝑎.𝑠.−−−→ 𝑋 . Note finally that 𝑃

(
|𝑋𝑛 − 𝑋 | > 𝜀

)
≤ 𝑃(𝐴𝑛) = 𝑃(𝐴∞) +

∑∞
𝑘=𝑛 𝑃 (𝐴𝑘\𝐴𝑘+1), as

these sets are pairwise disjoint. It follows that 𝑃
(
|𝑋𝑛 − 𝑋 | > 𝜀

)
≤ 𝑃(𝐴𝑛) → 𝑃(𝐴∞) = 0, the assertion. □

Definition 7.4. A sequence of random variables 𝑋𝑛 converges to 𝑋 in 𝐿 𝑝 (or 𝑝-th mean), ifE |𝑋 − 𝑋𝑛 |𝑝 → 0
(i.e.

∫
Ω
|𝑋 − 𝑋𝑛 |𝑝dP→ 0), as 𝑛→∞.

Theorem 7.5. Convergence in 𝐿 𝑝 implies convergence in probability.

Proof. It follows from Markov’s inequality (Theorem 5.23) that 𝑃 ( |𝑋 − 𝑋𝑛 | > 𝜀) ≤ 1
𝜀𝑝
E |𝑋 − 𝑋𝑛 |𝑝 → 0

as 𝑛→∞. □

Theorem 7.6 (𝐿2 weak law of large numbers (LLN), cf. Durrett [4, Theorem 2.2.3.], cf. Proposition 7.16
below). Let 𝑋𝑖 be uncorrelated random variables (i.e., not necessarily independent) with E 𝑋𝑖 = 𝜇 and
var 𝑋𝑖 ≤ 𝐶 < ∞. Then 𝑋𝑛 → 𝜇 in 𝐿2 (i.e.,E

(
𝑋𝑛−𝜇

)2 → 0) and in probability (i.e., 𝑃
(��𝑋𝑛−𝜇�� > 𝜀) → 0.

Proof. Note first that E 𝑋𝑛 = 𝜇. Then

0 ≤ E
(
𝑋𝑛 − 𝜇

)2
= var 𝑋𝑛 =

1

𝑛2
(var 𝑋1 + · · · + var 𝑋𝑛) ≤

𝐶𝑛

𝑛2
−−−−→
𝑛→∞

0.

Further, by Chebyshev’s inequality (Theorem 5.23 or Theorem 7.5 directly) it follows that

𝑃

(��𝑋𝑛 − 𝜇�� > 𝜀) ≤ 1

𝜀2
E

(
𝑋𝑛 − 𝜇

)2
−−−−→
𝑛→∞

0.

□
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74 convergence of random variables

Remark 7.7. More specifically, if the random variables are identically distributed with 𝜎2 = var 𝑋𝑖 , then
𝑃

(��𝑋𝑛 − 𝜇�� < 𝜀) > 1 − 𝜎2

𝑛·𝜀 .

Definition 7.8. A sequence of R𝑘-valued random variables (𝑋𝑛) converges in distribution to the random
variable 𝑋 iff

𝑃(𝑋𝑛 ≤ 𝑥) −−−−→
𝑛→∞

𝑃(𝑋 ≤ 𝑥) (7.1)

at every point 𝑥 where the cdf. 𝐹𝑋 : 𝑥 ↦→ 𝑃(𝑋 ≤ 𝑥) is continuous. We (occasionally) write 𝑋𝑛
D−−→ 𝑋 (some

authors prefer 𝑋𝑛 ⇝ 𝑋).

Alternatively, this is called weak convergence, weak* convergence or convergence in law.

Remark 7.9. Note, that a.s. convergence and convergence in probability only make sense if 𝑋 and 𝑋𝑛 are
defined on the same probability space. This is, however, not the case for convergence in distribution.

Theorem 7.10. Convergence in probability implies convergence in distribution.

Proof. Note first that (cf. also Exercise 7.1 and 𝐴 = (𝐴 ∩ 𝐵) ∪ 𝐴 ∩ 𝐵𝑐)

{𝑋 ≤ 𝑥} = {𝑋 ≤ 𝑥, 𝑋𝑛 − 𝑋 ≤ 𝜀} ∪ {𝑋 ≤ 𝑥, 𝑋𝑛 − 𝑋 > 𝜀}
⊂ {𝑋𝑛 ≤ 𝑥 + 𝜀} ∪ {|𝑋 − 𝑋𝑛 | > 𝜀}

and thus
𝑃(𝑋 ≤ 𝑥) ≤ 𝑃(𝑋𝑛 ≤ 𝑥 + 𝜀) + 𝑃( |𝑋 − 𝑋𝑛 | > 𝜀). (7.2)

It follows that

𝑃(𝑋 ≤ 𝑥 − 𝜀) − 𝑃( |𝑋 − 𝑋𝑛 | > 𝜀) ≤ 𝑃(𝑋𝑛 ≤ 𝑥) ≤ 𝑃(𝑋 ≤ 𝑥 + 𝜀) + 𝑃( |𝑋 − 𝑋𝑛 | > 𝜀),

where the roles of 𝑋 and 𝑋𝑛 are interchanged in the second application of inequality (7.2).
By sending 𝑛→∞,

𝑃(𝑋 ≤ 𝑥 − 𝜀) ≤ lim inf
𝑛→∞

𝑃(𝑋𝑛 ≤ 𝑥) ≤ lim sup
𝑛→∞

𝑃(𝑋𝑛 ≤ 𝑥) ≤ 𝑃(𝑋 ≤ 𝑥 + 𝜀).

As 𝐹𝑋 is continuous at 𝑥 by assumption, it follows that the limit exists and 𝑃(𝑋𝑛 ≤ 𝑥) → 𝑃(𝑋 ≤ 𝑥), the
assertion. □

Lemma 7.11 (Portmanteau theorem). The following are equivalent:

(i) 𝑋𝑛
D−−→ 𝑋 (see Definition 7.8);

(ii) E 𝑓 (𝑋𝑛) → E 𝑓 (𝑋) for all bounded and continuous functions 𝑓 ;

(iii) E 𝑓 (𝑋𝑛) → E 𝑓 (𝑋) for all bounded and Lipschitz continuous functions 𝑓 ;

(iv) lim inf𝑛→∞ 𝑃(𝑋𝑛 ∈ 𝐺) ≥ 𝑃(𝑋 ∈ 𝐺) for every open set 𝐺;

(v) lim sup𝑛→∞ 𝑃(𝑋𝑛 ∈ 𝐹) ≤ 𝑃(𝑋 ∈ 𝐹) for every closed set 𝐹;

(vi) 𝑃(𝑋𝑛 ∈ 𝐵) → 𝑃(𝑋 ∈ 𝐵) for every Borel set 𝐵 with 𝑃(𝑋 ∈ 𝜕𝐵) = 0.
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7.1 basic theory 75

Proof. (i) =⇒ (ii). Assume that the distribution of 𝑋 is continuous and without loss of generality that
𝑓 ∈ [−1, 1]. Then (i) implies that 𝑃 (𝑋𝑛 ∈ 𝐼) → 𝑃(𝑋 ∈ 𝐼) for every rectangle 𝐼. Choose a sufficiently
large rectangle, compact 𝐼 so that 𝑃(𝑋 ∈ 𝐼) > 1 − 𝜀. 𝑓 is uniformly continuous on 𝐼 and thus 𝐼 =

⋃𝑘
𝑗=1 𝐼 𝑗

such | 𝑓 (𝑥) − 𝑓 (𝑦) | < 𝜀 for every 𝑥, 𝑦 ∈ 𝐼 𝑗 . Define 𝑓𝜀 =
∑𝑘
𝑗=1 𝑓 (𝑥 𝑗 ) 1𝐼 𝑗 for 𝑥 𝑗 ∈ 𝐼 𝑗 . Let 𝑛 be large enough

so that 𝑃(𝑋𝑛 ∉ 𝐼) < 𝜀. It follows that

|E 𝑓 (𝑋𝑛) − E 𝑓𝜀 (𝑋𝑛) | < 𝜀 + 𝑃(𝑋𝑛 ∉ 𝐼) < 2𝜀,

|E 𝑓 (𝑋) − E 𝑓𝜀 (𝑋) | < 𝜀 + 𝑃(𝑋 ∉ 𝐼) < 2𝜀 and

|E 𝑓𝜀 (𝑋𝑛) − E 𝑓𝜀 (𝑋) | <
𝑘∑︁
𝑗=1

��𝑃(𝑋𝑛 ∈ 𝐼 𝑗 ) − 𝑃(𝑋 ∈ 𝐼 𝑗 )�� �� 𝑓 (𝑥 𝑗 )�� < 𝜀
for 𝑛 large enough. It follows that |E 𝑓 (𝑋𝑛) − E 𝑓 (𝑋) | < 5𝜀.

For a general random variable the preceding arguments still hold true provided that 𝑃(𝑋 ∈ 𝜕𝐼) = 0 —
a set 𝐴 with 𝑃(𝑋 ∈ 𝜕𝐴) = 0 is called a continuity set. But only countably many intervals can satisfy
𝑃(𝑋 ∈ 𝜕𝐼) > 0, so that it is possible to find intervals in the general situation.

(ii) =⇒ (iii) is clear.
(iii) =⇒ (iv) for 𝐺 open define 𝑓𝑚 (𝑥) := min

{
1, 𝑚 inf 𝑦∉𝐺 ∥𝑥 − 𝑦∥

}
so that 0 ≤ 𝑓𝑚 ↗ 1𝐺 . Then

lim inf
𝑛→∞

𝑃(𝑋𝑛 ∈ 𝐺) ≥ lim inf
𝑛→∞

E 𝑓𝑚 (𝑋𝑛) = E 𝑓𝑚 (𝑋)

and E 𝑓𝑚 (𝑋) → 𝑃(𝑋 ∈ 𝐺) by the monotone convergence theorem.
(iv)⇐⇒(v) by taking complements.
(iv)+(v) =⇒ (vi).

𝑃(𝑋 ∈ 𝐵◦) ≤
(𝑖𝑣)

lim inf 𝑃(𝑋𝑛 ∈ 𝐵◦) ≤ lim sup 𝑃(𝑋𝑛 ∈ 𝐵) ≤
(𝑣)

𝑃(𝑋 ∈ 𝐵). (7.3)

If 𝑃(𝑋 ∈ 𝜕𝐵) = 0, then the left and right side are equal and all inequalities in (7.3) are equalities, (vi)
follows.

(vi) =⇒ (i). Every point of continuity of the function 𝑥 ↦→ 𝑃(𝑋 ≤ 𝑥) satisfies 𝑃(𝑋 ∈ 𝜕 (−∞, 𝑥]) = 0
(a continuity set), so that (7.1) follows, i.e., (i). □

Theorem 7.12 (Continuous mapping theorem). Let 𝑔 : R𝑘 → R𝑚 be continuous at every point of 𝐶 with
𝑃(𝑋 ∈ 𝐶) = 1. Then

(i) If 𝑋𝑛
𝑎.𝑠.−−−→ 𝑋 , then 𝑔(𝑋𝑛)

𝑎.𝑠.−−−→ 𝑔(𝑋);

(ii) If 𝑋𝑛
𝑃−→ 𝑋 , then 𝑔(𝑋𝑛)

𝑃−→ 𝑔(𝑋);

(iii) If 𝑋𝑛
D−−→ 𝑋 , then 𝑔(𝑋𝑛)

D−−→ 𝑔(𝑋).
Proof. As for (iii) apply (ii) of the portmanteau theorem. □

Lemma 7.13 (Slutsky1). Let 𝑋𝑛
D−−→ 𝑋 and 𝑌𝑛

D−−→ 𝑐 where 𝑐 ∈ R is a constant. then

(i) 𝑋𝑛 + 𝑌𝑛
D−−→ 𝑋 + 𝑐,

(ii) 𝑋𝑛 · 𝑌𝑛
D−−→ 𝑐𝑋 and

(iii) 𝑋𝑛/𝑌𝑛
D−−→ 𝑋/𝑐 provided that 𝑐 ≠ 0.

Remark 7.14. It is essential in Slutsky’s lemma that 𝑌𝑛
D−−→ 𝑐, a constant: there are distributions with

𝑋𝑛
D−−→ 𝑋 and 𝑌𝑛

D−−→ 𝑌 , but (𝑋𝑛, 𝑌𝑛) ̸̸→ (𝑋,𝑌 ) in distribution (Exercise 7.8).
1Jewgeni Jewgenjewitsch Sluzki, 1880–1948
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76 convergence of random variables

7.2 convergence in distribution and the characteristic function

Cf. (5.3) for the characteristic function.

Theorem 7.15 (Lévy’s2 continuity theorem). Let 𝑋𝑛 and 𝑋 be random vectors in R𝑘 . Then 𝑋𝑛
D−−→ 𝑋 iff

𝜑𝑋𝑛 (𝑡) → 𝜑𝑋 (𝑡) for every 𝑡 ∈ R𝑘 . Moreover, if 𝜑𝑋𝑛 (𝑡) → 𝜑(𝑡) at every 𝑡 ∈ R𝑘 and 𝜑(·) is continuous at
𝑡 = 0, then 𝜑 is the characteristic function of a random vector 𝑋 and 𝑋𝑛

D−−→ 𝑋 .

Proposition 7.16 (Weak law of large numbers, LLN, cf. Theorem 7.6). Let 𝑋𝑛 be i.i.d. random variables
with characteristic function 𝜑. Then 𝑋𝑛

𝑃−→ 𝜇 iff 𝜑 is differentiable at 0 and in this case 𝜇 = −𝑖 𝜑′ (0).
Proof. It holds that

E 𝑒𝑖𝑡𝑋𝑛 = E

𝑛∏
𝑗=1

𝑒𝑖
𝑡
𝑛
𝑋 𝑗 =

𝑛∏
𝑗=1

E 𝑒𝑖
𝑡
𝑛
𝑋 𝑗 = 𝜑

( 𝑡
𝑛

)𝑛
=

(
1 + 𝑡

𝑛
𝑖𝜇 + 𝑜 (1/𝑛)

)𝑛
−−−−→
𝑛→∞

𝑒𝑖𝑡 𝜇 (7.4)

where 𝜑′ (0) = 𝑖𝜇. But 𝑡 ↦→ 𝑒𝑖𝑡 𝜇 is the characteristic function of the constant random variable, 𝑋 = 𝜇.
Hence, by Lévy’s continuity theorem, 𝑋𝑛

D−−→ 𝜇. □

Proposition 7.17 (Central limit theorem, CLT). Let 𝑋𝑖 be i.i.d. random variables with E 𝑋𝑖 = 𝜇 and
var 𝑋𝑖 = 𝜎

2. Then
√
𝑛 ·

(
𝑋𝑛 − 𝜇

) D−−→ 𝑋,

where 𝑋 ∼ N(0, 𝜎2).
Proof. Assume that 𝜇 = 0. Similarly to (7.4) above we have that

E 𝑒𝑖𝑡
√
𝑛·𝑋𝑛 = E

𝑛∏
𝑗=1

𝑒
𝑖 𝑡√
𝑛
·𝑋 𝑗

=

𝑛∏
𝑗=1

E 𝑒
𝑖 𝑡√
𝑛
·𝑋 𝑗

= 𝜑𝑋 𝑗

(
𝑡
√
𝑛

)𝑛
=

(
1 + 𝑖 𝑡√

𝑛
E𝑌 𝑗 −

𝑡2

2𝑛
E𝑌2

𝑗 + 𝑜 (1/𝑛)
)𝑛

=

©­­­«1 + 𝑖
𝑡
√
𝑛
E𝑌 𝑗︸︷︷︸

0

− 𝑡
2

2𝑛
𝜎2 + 𝑜 (1/𝑛)

ª®®®¬
𝑛

=

(
1 −

𝑡2𝜎2

2

𝑛
+ 𝑜 (1/𝑛)

)𝑛
−−−−→
𝑛→∞

𝑒−
1
2
𝑡2𝜎2

.

The right hand side 𝑡 ↦→ 𝑒−𝑡
2𝜎2/2 is the characteristic function of the normal distribution with 0 mean and

variance 𝜎, cf. (5.12). By Lévy’s continuity theorem again,
√
𝑛

(
𝑋𝑛 − 𝜇

) D−−→ 𝑋 , where 𝑋 ∼ N
(
0, 𝜎2

)
is

normally distributed. □

Recall that 𝑔(𝑥 + ℎ) = 𝑔(𝑥) + 𝑔′𝑥 (ℎ) + 𝑜(ℎ) as ℎ→ 0 for differentiable 𝑔 and the linear form

𝑔′𝑥 (ℎ) :=
©­­­«
𝜕𝑔1
𝜕𝑥1

. . .
𝜕𝑔1
𝜕𝑥𝑘

...
...

𝜕𝑔𝑚
𝜕𝑥1

. . .
𝜕𝑔𝑚
𝜕𝑥𝑘

ª®®®¬
©­­«
ℎ1
...

ℎ𝑘

ª®®¬ .
Theorem 7.18 (The Delta method, Δ-theorem, cf. van der Vaart [24], Shapiro et al. [21]). Let 𝑔 : R𝑘 → R𝑚

be differentiable at 𝜃 ∈ R𝑘 . If 𝑟𝑛 (𝑋𝑛 − 𝜃)
D−−→ 𝑋 for some numbers 𝑟𝑛 →∞, then

𝑟𝑛 ·
(
𝑔(𝑋𝑛) − 𝑔(𝜃)

) D−−→ 𝑔′𝜃 (𝑋).

Further, 𝑟𝑛 ·
(
𝑔(𝑋𝑛) − 𝑔(𝜃)

)
− 𝑔′

𝜃

(
𝑟𝑛 · (𝑋𝑛 − 𝜃)

)
→ 0 in probability.

2Paul Lévy, 1886–1971
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7.3 problems

Exercise 7.1. Verify (7.2) formally.

Exercise 7.2. Prove the statement in Remark 7.7.

Exercise 7.3. Show that if 𝑋𝑛 has a t-distribution with n degrees of freedom, then 𝑋𝑛
D−−→ N(0, 1).

Exercise 7.4. Approximate the 𝜒2
𝑘

distribution with 𝑘 degrees of freedom by a normal distribution.

Exercise 7.5. Find an example for which 𝑋𝑛
D−−→ 𝑋 and 𝑌𝑛

D−−→ 𝑌 , but (𝑋𝑛, 𝑌𝑛) does not converge in
distribution.

Exercise 7.6. Let 𝑃(𝑋𝑛 = 𝑖/𝑛) = 1/𝑛 for 𝑖 = 1, . . . , 𝑛. Then 𝑋𝑛
D−−→ 𝑋 ∼ 𝑈 [0, 1] (the uniform distribution).

Find a Borel set so that 𝑃(𝑋𝑛 ∈ 𝐵) = 1, but 𝑃(𝑋 ∈ 𝐵) = 0.

Exercise 7.7. Find a sequence of random variables with 𝑋𝑛
D−−→ 0, but E 𝑋𝑛 → ∞ (hint: use (ii) of the

portmanteau theorem)

Exercise 7.8. Verify Remark 7.14 on Slutsky’s lemma.

Exercise 7.9. Use characteristic functions for 𝑋𝑛 ∼ 𝐵 (𝑛, 𝜆/𝑛)(binomial) to show that 𝑋𝑛
D−−→ 𝑋 , where

𝑋 ∼ 𝑃(𝜆) (Poisson).
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8Conditional Expectation

8.1 introduction

Historically, expectation was already considered by Blaise Pascal,1 who was interested in a problem by
Chevalier de Méré. Conditional expectation was considered much later, about 1780 by Pierre-Simon
Laplace2 for conditional densities. A. Kolmogorov3 formalized the statement of conditional expectation
about 1930 by employing the Theorem by Radon–Nikodym (Theorem 5.35). P. Halmos4 (1950) and
J. Doob5 (1953) formulated the statement for conditional expectation on sigma sub-algebras on abstract
spaces.

8.2 conditioning on a sigma algebra

Example 8.1. Consider the random variable 𝑋 : Ω := {𝜔1, . . . , 𝜔5} → 𝑆 := R with

𝑋 (𝜔) :=


40 if 𝜔 = 𝜔1,

60 if 𝜔 = 𝜔2,

. . .

20 if 𝜔 = 𝜔5,

with E 𝑋 = 36, cf. Figure 8.1. This random variable is measurable with respect to the sigma algebra
F = P(Ω), but not with respect to the sub sigma algebra

G := 𝜎
(
{𝜔1, 𝜔2} , {𝜔3, 𝜔4, 𝜔5}

)
.

Intuitively, it is evident that the conditional expectation should be

𝑌 (𝜔) :=
{
45 (= 40 ∗ 75% + 60 ∗ 25%) if 𝜔 ∈ {𝜔1, 𝜔2} ,
30 (= 30 ∗ 2/6 + 60 ∗ 1/6 + 20 ∗ 3/6) if 𝜔 ∈ {𝜔3, 𝜔4, 𝜔5} .

Note, that 𝑌 is measurable with respect to the sigma algebra G (and F ). Further, the random variable 𝑌
enjoys the property (cf. Exercise ??)∫

𝐺

𝑋 𝑑𝑃 =

∫
𝐺

𝑌 𝑑𝑃 for every set 𝐺 ∈ G. (8.1)

This motivates the following definition, implicitly contained in the theorem.

1Blaise Pascal, 1623–1662
2Pierre–Simon Marquis de Laplace, 1749–1827
3Andrei N. Kolmogorov, 1903–1987
4Paul Halmos, 1916–2006
5Joseph L. Doob, 1910–2004
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Ω

{𝜔1}

{𝜔2}

{𝜔3}

{𝜔4}

{𝜔5}

40

60

30

60

20

30%

10%

20%

10%

30%

𝑆{∅,Ω} P(Ω) = 𝜎({𝜔1}, . . . , {𝜔5})
(a) Expectation

Ω

{𝜔1}

{𝜔2}

{𝜔3}

{𝜔4}

{𝜔5}

40

60

30

60

20

{𝜔1, 𝜔2}

{𝜔3, 𝜔4, 𝜔5}

40%

75%

25%

60% 2/6
1/6
3/6

𝑆{∅,Ω} 𝜎({𝜔1, 𝜔2}, {𝜔3, 𝜔4, 𝜔5})
(b) Conditional expectation

Figure 8.1: Random variable 𝑋 : Ω→ 𝑆; indicated are the probabilities and the sigma algebras
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𝑋

E [𝑋 |G]

𝐿2 (F )

𝐿2 (G)

(a) Projection

(Ω, F ) 𝑆

(𝑈, U)

E
[
𝑋 |𝜎(𝑇)

]
= E

[
𝑋 |𝑇

]
◦ 𝑇

𝑋

𝑇 E
[
𝑋 |𝑇

]

(b) The diagram commutes on average

Figure 8.2: Conditional expectation

Theorem 8.2 (Conditional expectation). Let 𝑋 be a random variable withE |𝑋 | < ∞. Let G be a sub-sigma
algebra of F . Then there exists a random variable 𝑌 such that

(i) 𝑌 is G-measurable,

(ii) E |𝑌 | < ∞,

(iii) it holds that ∫
𝐺

𝑋 𝑑𝑃 =

∫
𝐺

𝑌 𝑑𝑃 for every set 𝐺 ∈ G. (8.2)

Further, if 𝑌 is another random variable with these properties (i)–(iii), then 𝑌 = 𝑌 a.s. A random variable
with the properties (i)–(iii) is called a version of the conditional expectation E(𝑋 | G) of 𝑋 given G and
we write 𝑌 = E(𝑋 | G).

For the proof of Theorem 8.2 we shall verify the following statement on existence of the projection in
the Hilbert space first.

Proposition 8.3. Let K ⊂ 𝐻 be a closed subspace of the Hilbert space 𝐻. Let 𝑋 ∈ 𝐻 be given. Then
there exists 𝑌 ∈ K such that (cf. Figure 8.2a)

⊲ ∥𝑋 − 𝑌 ∥ = inf𝑊∈K ∥𝑋 −𝑊 ∥ and

⊲ 𝑋 − 𝑌 ⊥ 𝑍 , i.e.,
⟨𝑋, 𝑍⟩ = ⟨𝑌, 𝑍⟩ (8.3)

for all 𝑍 ∈ K.

Proof. Choose 𝑌𝑛 ∈ K such that ∥𝑋 − 𝑌𝑛∥ → Δ := inf𝑊∈K ∥𝑋 −𝑊 ∥. By the parallelogram law,6

∥𝑋 − 𝑌𝑛∥2︸      ︷︷      ︸
→Δ2

+ ∥𝑋 − 𝑌𝑚∥2︸       ︷︷       ︸
→Δ2

= 2


𝑋 − 1

2 (𝑌𝑚 + 𝑌𝑛)


2︸                     ︷︷                     ︸

≥2Δ2

+2


 1
2 (𝑌𝑚 − 𝑌𝑛)



2 . (8.4)

6The parallelogram law follows by adding the lines

∥𝑥 + 𝑦 ∥2 = ⟨𝑥 + 𝑦, 𝑥 + 𝑦⟩ = ∥𝑥 ∥2 + 2 ⟨𝑥, 𝑦⟩ + ∥𝑦 ∥2 and

∥𝑥 − 𝑦 ∥2 = ⟨𝑥 − 𝑦, 𝑥 − 𝑦⟩ = ∥𝑥 ∥2 − 2 ⟨𝑥, 𝑦⟩ + ∥𝑦 ∥2 ;

here, chose 𝑥 := 𝑋 − 1
2 (𝑌𝑚 +𝑌𝑛 ) and 𝑦 := 1

2 (𝑌𝑚 − 𝑌𝑛 ) .
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It follows that ∥𝑌𝑚 − 𝑌𝑛∥ → 0, and 𝑌𝑛 thus is a Cauchy sequence with a limit 𝑌 ∈ K . It follows from (8.4)
further that ∥𝑋 − 𝑌 ∥ = Δ; hence, the first assertion.

Now choose any 𝑍 ∈ K. Clearly, ∥𝑋 − 𝑌 − 𝑡 𝑍 ∥2 ≥ ∥𝑋 − 𝑌 ∥2, hence −2𝑡 ⟨𝑍, 𝑋 − 𝑌⟩ + 𝑡2 ∥𝑍 ∥2 ≥ 0.
This can only hold true for all 𝑡 ∈ R if ⟨𝑍, 𝑋 − 𝑌⟩ = 0. This is (8.3), completing the proof. □

Proof of Theorem 8.2. We divide the proof into three steps.

(i) Uniqueness: suppose that 𝑌 ≠ 𝑌 a.s., then there is (without loss of generality) 𝜀 > 0 such that
𝑃

(
𝑌 − 𝑌 > 𝜀

)
> 0. But 𝐺 :=

{
𝑌 − 𝑌 > 𝜀

}
∈ G, and hence

∫
𝐺
𝑌 − 𝑌𝑑𝑃 > 𝜀 · 𝑃(𝐺) > 0 which

contradicts (iii).

(ii) Existence of E (𝑋 | G) for 𝑋 ∈ 𝐿2 (F ). We employ the inner product ⟨𝑋,𝑌⟩ := E 𝑋𝑌 on the Hilbert
space 𝐻 = 𝐿2 (F ). Suppose that 𝑋 ∈ 𝐿2 (F ) and recall that 𝐿2 (G) is a closed subspace of the
Hilbert space 𝐿2 (F ). Thus, by Proposition 8.3, there is 𝑌 ∈ 𝐿2 (G) such that 𝑋 − 𝑌 ⊥ 𝑍 (i.e.,
E(𝑋 − 𝑌 )𝑍 = 0) for all 𝑍 ∈ 𝐿2 (G). For 𝐺 ∈ G set 𝑍 := 1𝐺 and observe with (8.3) that∫

𝐺

𝑋𝑑𝑃 =

∫
Ω

𝑋𝑍𝑑𝑃 = E 𝑋𝑍 = E𝑌𝑍 =

∫
Ω

𝑌𝑍𝑑𝑃 =

∫
𝐺

𝑌𝑑𝑃,

so 𝑌 has the desired property (8.2).

(iii) Existence of E (𝑋 | G) for 𝑋 ∈ 𝐿1 (F ). First, write 𝑋 = 𝑋+ − 𝑋− with 𝑋+, 𝑋− ≥ 0. Hence
𝑌𝑛 := E (𝑋 ∧ 𝑛 | G) exists and it holds true that 0 ≤ 𝑌𝑛 ≤ 𝑌𝑛+1, so the limit 𝑌 (𝜔) := lim𝑌𝑛 (𝜔)
exists pointwise. For any 𝑍 = 1𝐺 with 𝐺 ∈ G it holds that∫

𝐺

𝑌𝑑𝑃 = E𝑌𝑍 = lim
𝑛→∞

E𝑌𝑛𝑍 = lim
𝑛→∞

∫
𝐺

𝑌𝑛𝑑𝑃

= lim
𝑛→∞

∫
𝐺

𝑋 ∧ 𝑛 𝑑𝑃 = lim
𝑛→∞

E(𝑋 ∧ 𝑛)𝑍 = E 𝑋𝑍 =

∫
𝐺

𝑋𝑑𝑃

by Lebesgue’s monotone convergence theorem.

Hence the result. □

Proposition 8.4. Suppose that K ⊂ 𝐻 is spanned by independent vectors 𝑢𝑖 , 𝑖 = 1, . . . , 𝑛, and 𝑋 ∈ H .
Then closest to 𝑋 on K is 𝑌 =

∑𝑛
𝑗=1 𝑤 𝑗 𝑢 𝑗 , where 𝐾 𝑤 = 𝑓 , 𝐾 :=

〈
𝑢𝑖 , 𝑢 𝑗

〉𝑛
𝑖, 𝑗=1

is the Gram matrix and
𝑓 :=

(
⟨𝑋, 𝑢𝑖⟩

)𝑛
𝑖=1; more explicitly,

𝑌 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

⟨𝑋, 𝑢𝑖⟩ 𝐾−1𝑖 𝑗 𝑢 𝑗 .

Proof. Let 𝑍 =
∑𝑛
𝑖=1 𝑎𝑖 𝑢𝑖 ∈ K. We have that

⟨𝑌, 𝑍⟩ =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖 𝑤 𝑗
〈
𝑢𝑖 , 𝑢 𝑗

〉
=

𝑛∑︁
𝑖=1

𝑎𝑖

𝑛∑︁
𝑗=1

𝐾𝑖 𝑗 𝑤 𝑗 =

𝑛∑︁
𝑖=1

𝑎𝑖 𝑓𝑖 =

𝑛∑︁
𝑖=1

𝑎𝑖 ⟨𝑋, 𝑢𝑖⟩ = ⟨𝑋, 𝑍⟩ ,

i.e., ⟨𝑌, 𝑍⟩ = ⟨𝑋, 𝑍⟩ for every 𝑍 ∈ K. This is the characterizing equation (8.3). □
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Conditional expectation cheat sheet. The following properties of the conditional expectation hold true:

(i) Trivial sigma algebra: E [𝑋 | {∅,Ω}] (𝜔) = E 𝑋 for all 𝜔 ∈ Ω

(ii) The law of total expectation: EE [𝑋 | G] = E 𝑋 (choose 𝐺 = Ω in (8.1))

(iii) If 𝑋 is G-measurable, then E [𝑋 | G] = 𝑋
Remark 8.5. It follows that 𝑃 : 𝑋 ↦→ E [𝑋 | G] is a projection, i.e., 𝑃 = 𝑃2.

(iv) linear: E [𝜆1𝑋1 + 𝜆2𝑋2 | G] = 𝜆1E [𝑋1 | G] + 𝜆2E [𝑋2 | G]

(v) positive: E [𝑋 | G] ≥ 0, if 𝑋 ≥ 0

(vi) monotone: if 0 ≤ 𝑋𝑛 ↑ 𝑋 , then E [𝑋𝑛 | G] ↑ E [𝑋 | G]

(vii) Fatou: if 𝑋𝑛 ≥ 0, then E [lim inf𝑛→∞ 𝑋𝑛 | G] ≤ lim inf𝑛→∞E [𝑋𝑛 | G] a.s.

(viii) dominated convergence: if 𝑋𝑛 → 𝑋 a.s. and 𝑋𝑛 ≤ 𝑉 , E𝑉 < ∞, then E [𝑋𝑛 | G] → E [𝑋 | G]

(ix) Jensen: 𝜑 (E [𝑋 | G]) ≤ E [𝜑(𝑋) | G] for 𝜑(·) convex; particularly ∥E [𝑋 | G]∥ 𝑝 ≤ ∥𝑋 ∥ 𝑝 , 𝑝 ≥ 1
(cf. Theorem 5.25).

(x) Tower property:7 E [E [𝑋 | G] | H] = E [𝑋 | H], forH ⊂ G a sub sigma algebra;

(xi) Taking out what is known: E [𝑍 · 𝑋 | G] = 𝑍 · E [𝑋 | G], if 𝑍 is G-measurable;

(xii) Role of independence: ifH is independent from 𝜎 (G, 𝜎(𝑋)), then E [𝑋 | 𝜎(G,H)] = E [𝑋 | G]

Remark 8.6. For an atom 𝐺 ∈ G, we may also set E(𝑋 | 𝐺) := 1
𝑃 (𝐺)

∫
𝐺
𝑋 𝑑𝑃. Note, that E(𝑋 | 𝐺) ∈ 𝑆,

while E(𝑋 | G) : Ω→ 𝑆 is a random variable. It holds that E(𝑋 | 𝐺) = E(𝑋 | 𝐺) (𝜔) for a.e. 𝜔 ∈ 𝐺.

8.3 conditioning on a random variable

The random variable
𝑇 : (Ω, F ) → (𝑈,U)

generates the sigma algebra
𝜎(𝑇) := 𝜎

( {
𝑇−1 (𝐵) : 𝐵 ∈ U

} )
⊂ F . (8.5)

Theorem 8.7 (Doob–Dynkin lemma, aka. factorization lemma). Let 𝑇 : Ω→ R𝑚, 𝑋 : Ω→ R𝑛 be random
variables. Then 𝑋 is 𝜎(𝑇)-measurable if and only if there is a Borel measurable function 𝜑 : R𝑚 → R𝑛

such that 𝑋 = 𝜑 ◦ 𝑇 , i.e., 𝑋 (𝜔) = 𝜑
(
𝑇 (𝜔)

)
.

Proof. Let 𝑋 =
∑𝑛
𝑖=1 𝑓𝑖 1𝐴𝑖 be a simple function with 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ for 𝑖 ≠ 𝑗 which is 𝜎(𝑇) measurable.

Then there are 𝐵𝑖 ∈ R𝑚 such that 𝐴𝑖 = {𝜔 : 𝑇 (𝜔) ∈ 𝐵𝑖} = 𝑇−1 (𝐵𝑖). Set 𝜑 :=
∑𝑛
𝑖=1 𝑓𝑖 1𝐵𝑖 . For 𝜔 ∈ 𝐴𝑖 we

have that 𝑋 (𝜔) = 𝑓𝑖 and 𝜑
(
𝑇 (𝜔)

)
= 𝑓𝑖 and hence 𝑋 = 𝜑 ◦ 𝑇 .

For 𝑋 ≥ 0 measurable there exists a sequence of simple functions 𝑋𝑛 so that 𝑋𝑛 (𝜔) ↗ 𝑋 (𝜔) a.s. and
𝑋𝑛 (𝜔) = 𝜑𝑛

(
𝑇 (𝜔)

)
. Let 𝐵′ denote the Borel set

𝐵′ :=
{
𝑥 ∈ R𝑚 : lim

𝑛→∞
𝜑𝑛 (𝑥) exists

}
.

On 𝐵′ define 𝜑(𝑥) := lim𝑛→∞ 𝜑𝑛 (𝑥), which is 𝜎(𝑇) measurable. Apparently, it holds that 𝑋 = 𝜑(𝑇)
a.e. □

7Glättungsregel
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For the following Doob–Dynkin lemma see as well Kallenberg [9, Lemma 1.13] or Shiryaev [22,
Theorem II.4.3].

Definition 8.8. The random variable E
(
𝑋 | 𝜎(𝑇)

)
is measurable with respect to 𝜎(𝑇). By the

Doob–Dynkin lemma, there is a measurable function 𝜑 so that 𝜑 ◦𝑇 = E
(
𝑋 | 𝜎(𝑇)

)
. For this function we

write
E(𝑋 | 𝑇) := 𝜑.

Remark 8.9. The preceding definition also justifies writing E(𝑋 | 𝑇 = 𝑡) = 𝜑(𝑡), the function is

E(𝑋 | 𝑇) : 𝑈 → 𝑆

𝑡 ↦→ E(𝑋 | 𝑇 = 𝑡),

cf. Figure 8.2b. By definition,
E(𝑋 | 𝑇) ◦ 𝑇 = E

(
𝑋 | 𝜎(𝑇)

)
. (8.6)

There is a factorization on average in the following sense.

Theorem 8.10 (Radon–Nikodým). The functionE(𝑋 | 𝑇) is the Radon–Nikodým derivative of the measure
𝑃𝑇
𝑋
= 𝑃𝑋 ◦ 𝑇−1 with respect to the image measure 𝑃𝑇 = 𝑃 ◦ 𝑇−1,

E(𝑋 | 𝑇) =
𝑑𝑃𝑇

𝑋

𝑑𝑃𝑇
,

where 𝑃𝑋 (𝐶) :=
∫
𝐶
𝑋 𝑑𝑃. I.e.,∫

𝑇−1 (𝐵)
𝑋 𝑑𝑃 =

∫
𝑇−1 (𝐵)

E(𝑋 | 𝑇) ◦ 𝑇 𝑑𝑃 for all 𝐵 ∈ U. (8.7)

Proof. Note that 𝑃𝑇 (𝐵) = 𝑃
(
𝑇−1 (𝐵)

)
= 0 implies that 𝑃𝑇

𝑋
(𝐵) = 𝑃𝑋

(
𝑇−1 (𝐵)

)
= 0. Hence, 𝑃𝑇

𝑋
≪ 𝑃𝑇 ,

i.e., 𝑃𝑇
𝑋

is absolutely continuous with respect to 𝑃𝑇 . By the change of variables formula it holds that∫
𝐵

E(𝑋 | 𝑇) 𝑑𝑃𝑇 =

∫
𝑇−1 (𝐵)

E(𝑋 | 𝑇) ◦ 𝑇 𝑑𝑃

=
(8.6)

∫
𝑇−1 (𝐵)

E
(
𝑋 | 𝜎(𝑇)

)
𝑑𝑃

=
(8.2)

∫
𝑇−1 (𝐵)

𝑋 𝑑𝑃

= 𝑃𝑇𝑋 (𝐵),

i.e., E (𝑋 | 𝑇) is the Radon–Nikodým derivative of the measure 𝑃𝑇
𝑋

with respect to the measure 𝑃𝑇 , the
assertion. □

8.4 law of total variance

Definition 8.11. The conditional variance is

var (𝑌 | 𝑍) := E
( (
𝑌 − E(𝑌 | 𝑍)

)2��� 𝑍)
= E

(
𝑌2 − E(𝑌 | 𝑍)2

�� 𝑍 )
= E

(
𝑌2

�� 𝑍 )
−

(
E(𝑌 | 𝑍)

)2
. (8.8)

Theorem 8.12 (The rule of double variance, aka. law of total variance). The variance for 𝑌 ∈ 𝐿2 can be
stated as

var𝑌 = E var (𝑌 | 𝑍) + varE(𝑌 | 𝑍).
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Proof. We have that

var𝑌 = E𝑌2 − (E𝑌 )2 = EE
(
𝑌2

�� 𝑍 )
−

(
EE [𝑌 | 𝑍]

)2
= E

[
var (𝑌 | 𝑍) +

(
E (𝑌 | 𝑍)

)2] − (
EE [𝑌 | 𝑍]

)2
= E var (𝑌 | 𝑍) + E

(
E (𝑌 | 𝑍)

)2 − (
EE (𝑌 | 𝑍)

)2
= E var (𝑌 | 𝑍) + varE (𝑌 | 𝑍) ,

which is the assertion. □

Definition 8.13. The conditional covariance is

cov(𝑋,𝑌 | 𝑍) := E
( (
𝑋 − E(𝑌 | 𝑍)

)
·
(
𝑌 − E(𝑌 | 𝑍)

) �� 𝑍 )
(8.9)

= E
(
𝑋𝑌 − E(𝑋 | 𝑍) · E(𝑌 | 𝑍) | 𝑍

)
. (8.10)

Theorem 8.14 (The law of total covariance). The covariance for 𝑋 ∈ 𝐿2 and 𝑌 ∈ 𝐿2 can be stated as

cov(𝑋,𝑌 ) = E cov(𝑋,𝑌 | 𝑍) + cov
(
E(𝑋 | 𝑍), E(𝑌 | 𝑍)

)
.

8.5 conditional probabilities

Notably, we have introduced the conditional expectation without defining conditional probabilities. This
was different in the motivating Example 8.1.

Definition 8.15. The conditional probability is

𝑃(𝐴 | G) := E (1𝐴 | G) .

Lemma 8.16 (Bayes’ theorem8). Suppose that G = 𝜎 (𝐵𝑖 : 𝑖 = 1, 2, . . . ) with 𝐵𝑖 ∩ 𝐵 𝑗 = ∅. Then

𝑃(𝐴 | G)(𝜔) = 𝑃(𝐴 ∩ 𝐵𝑖)
𝑃(𝐵𝑖)

=: 𝑃(𝐴 | 𝐵𝑖) for almost every 𝜔 ∈ 𝐵𝑖 ,

provided that 𝑃(𝐵𝑖) > 0, 𝑖 = 1, 2, . . . .

Proof. From measurability and from 𝐵𝑖 ∩ 𝐵 𝑗 = ∅ it follows that 𝑃(𝐴 | G) is constant on each atom 𝐵𝑖 ,
𝑐 = 𝑃(𝐴 | G) a.e., say. Then, as 𝐵𝑖 ∈ G,

𝑃(𝐴 ∩ 𝐵𝑖) =
∫
𝐵𝑖

1𝐴 𝑑𝑃 =

∫
𝐵𝑖

E(1𝐴 | G)𝑑𝑃 =

∫
𝐵𝑖

𝑃(𝐴 | G)𝑑𝑃 = 𝑐 · 𝑃(𝐵𝑖)

and thus the assertion. □

Corollary 8.17. For densities we have that

𝑓𝑋 (𝑥 | 𝑦) · 𝑓𝑌 (𝑦) = 𝑓𝑋,𝑌 (𝑥, 𝑦), (8.11)

where
𝑓𝑌 (𝑦) =

∫
R
𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥 (8.12)

is the density of the marginal distribution.
8Thomas Bayes, 1701–1761
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Proof. Define 𝑋 := 1𝐴×R and 𝑇 (𝑥, 𝑦) := 𝑦, such that 𝑇−1 (𝐵) = R × 𝐵. Then it holds that

x

𝐴×𝐵
𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 =

x

R×𝐵
1𝐴×R 𝑑𝑃 =

x

R×𝐵
𝑃 (𝐴 × R | 𝑦) 𝑃(𝑑𝑥, 𝑑𝑦)

=

∫
𝐵

∫
R
𝑓 (𝑥, 𝑦)𝑑𝑥 𝑃 (𝑋 ∈ 𝐴 | 𝑦) 𝑑𝑦

=

∫
𝐵

𝑃 (𝑋 ∈ 𝐴 | 𝑦) 𝑓 (𝑦)𝑑𝑦 =
∫
𝐵

∫
𝐴

𝑓 (𝑥 | 𝑦)𝑑𝑥 𝑓 (𝑦)𝑑𝑦,

from which the assertion follows. □

Remark 8.18. Note, that 𝑃(𝑇 = 𝑦) = 0.

Remark 8.19. It holds that E [𝑔(𝑋) | 𝑌 = 𝑦] =
∫
𝑔(𝑥) 𝑓𝑋,𝑌 (𝑥,𝑦)

𝑓𝑌 (𝑦) 𝑑𝑥, cf. (8.12).

Remark 8.20. A different and perhaps more instructive way of writing (8.11) is

𝑓𝑋 (𝑥 | 𝑌 = 𝑦) =
𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑌 (𝑦)

, (8.13)

which relates to Bayes’ rule, Remark 8.16.

8.6 martingales

Definition 8.21 (Martingale). A process 𝑋 is a (sub-, super-) martingale (relative to (F𝑡 : 𝑡 ∈ T, 𝑃
)

if

(i) 𝑋 is adapted, i.e., 𝑋𝑡 is F𝑡 -measurable for every 𝑡 ∈ T,

(ii) E |𝑋𝑡 | < ∞ for all 𝑡 ∈ T, and

(iii) E (𝑋𝑡 ′ | F𝑡 ) = 𝑋𝑡 a.s. for all 𝑡 ≤ 𝑡′ (𝑡, 𝑡′ ∈ T) (super: 𝑋𝑡 ≥ E (𝑋𝑡 ′ | F𝑡 ), sub: 𝑋𝑡 ≤ E (𝑋𝑡 ′ | F𝑡 )).

8.7 doob’s martingale inequalities

Definition 8.22. The process 𝑀𝑡 := sup𝑠≤𝑡 𝑋𝑠 is called the running maximum process of the stochastic
process 𝑋𝑡 .

Doob’s submartingale inequality provides an upper bound of the running maximum process in terms of
the genuine process:

Theorem 8.23 (Doob’s submartingale inequality, aka Doob’s maximal inequalities). Let 𝑋 be a non-negative
and continous submartingale (i.e., 𝑡 ↦→ 𝑋𝑡 (𝜔) is continuous a.s.). Then, for 𝜆 > 0 and 𝑝 ≥ 1,

𝑃

(
sup
𝑠≤𝑡

𝑋𝑠 ≥ 𝜆
)
≤ 1

𝜆𝑝
E

(
𝑋𝑡 · 1sup𝑠≤𝑡 𝑋𝑠≥𝜆

)
≤ 1

𝜆𝑝
E 𝑋

𝑝
𝑡 . (8.14)

For 𝑝 > 1,

E

(
sup
𝑠≤𝑡

𝑋
𝑝
𝑠

)
≤

(
𝑝

𝑝 − 1

) 𝑝
E 𝑋

𝑝
𝑡 or ∥𝑀𝑡 ∥ 𝑝 ≤

𝑝

𝑝 − 1 ∥𝑋𝑡 ∥ 𝑝 .
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Proof. We prove the first part of the theorem in case of a submartingale in discrete time 𝑋 = (𝑋𝑡𝑘 )𝑛𝑘=1
(see also Williams [27, Section 14.6]). Note that 𝐸 :=

{
sup𝑠≤𝑡 𝑋𝑠 ≥ 𝜆

}
is the disjoint union 𝐸 =

𝐸𝑡0 ∪ 𝐸𝑡1 ∪ · · · ∪ 𝐸𝑡𝑛 , where

𝐸0 : =
{
𝑋𝑡0 ≥ 𝜆

}
,

𝐸𝑘 : =
{
𝑋𝑡0 < 𝜆

}
∩ · · · ∩

{
𝑋𝑡𝑘−1 < 𝜆

}
∩

{
𝑋𝑡𝑘 ≥ 𝜆

}
.

Note, that 𝐸𝑘 ∈ F𝑡𝑘 and 𝑋𝑡𝑘 ≥ 𝜆 on 𝐸𝑘 . Hence, as 𝑋 is a submaritingale (with 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑡),

E
(
𝑋
𝑝
𝑡 · 1𝐸𝑘

)
≥ E

(
𝑋
𝑝
𝑡𝑘
· 1𝐸𝑘

)
≥ 𝜆𝑝 · 𝑃(𝐸𝑘)

by Makov’s ineqaulity (Theorem 5.23). Summing over 𝑘 now yields (8.14), the first result.
We have from (8.14) that 𝑃

(
sup𝑠≤𝑡 𝑋𝑠 ≥ 𝜆

)
≤ 1
𝜆
E

(
𝑋𝑡 · 1sup𝑠≤𝑡 𝑋𝑠≥𝜆

)
and consequently∫ ∞

0

𝜆𝑝−1 · 𝑃
(
sup
𝑠≤𝑡

𝑋𝑠 ≥ 𝜆
)
𝑑𝜆 ≤

∫ ∞

0

𝜆𝑝−2 · E
(
𝑋𝑡 · 1sup𝑠≤𝑡 𝑋𝑠≥𝜆

)
𝑑𝜆.

By Fubini’s theorem thus (choose 𝑔(𝑥) = 𝑥𝑝

𝑝
in (5.25))∫ ∞

0

𝜆𝑝−1 · 𝑃
(
sup
𝑠≤𝑡

𝑋𝑠 ≥ 𝜆
)
𝑑𝜆 =

1

𝑝
E sup
𝑠≤𝑡

𝑋
𝑝
𝑠

and similarly∫ ∞

0

𝜆𝑝−2 · E
(
𝑋𝑡 1sup𝑠≤𝑡 𝑋𝑠≥𝜆

)
𝑑𝜆 =

∫ ∞

0

𝜆𝑝−2EE
(
𝑋𝑡 · 1sup𝑠≤𝑡 𝑋𝑠≥𝜆

�� 𝑋𝑡 ) 𝑑𝜆
=

∫ ∞

0

𝜆𝑝−2
∫
R
E

(
𝑥 · 1sup𝑠≤𝑡 𝑋𝑠≥𝜆

�� 𝑋𝑡 = 𝑥) 𝑃(𝑋𝑡 ∈ 𝑑𝑥)𝑑𝜆
=

∫
R
𝑥 ·

∫ ∞

0

𝜆𝑝−2𝑃

(
sup
𝑠≤𝑡

𝑋𝑠 ≥ 𝜆
���� 𝑋𝑡 = 𝑥) 𝑑𝜆 𝑃(𝑋𝑡 ∈ 𝑑𝑥)

=
(5.25)

∫
R
𝑥 · E

[
1

𝑝 − 1 sup
𝑠≤𝑡

𝑋
𝑝−1
𝑠

���� 𝑋𝑡 = 𝑥] 𝑃(𝑋𝑡 ∈ 𝑑𝑥)
=

1

𝑝 − 1 E
(
sup
𝑠≤𝑡

𝑋
𝑝−1
𝑠 · 𝑋𝑡

)
;

hence, and after applying Hölder’s inequality (Theorem 5.26, 1
𝑝
+ 1

𝑝

𝑝−1
= 1),

E sup
𝑠≤𝑡

𝑋
𝑝
𝑠 ≤

𝑝

𝑝 − 1 E
(
sup
𝑠≤𝑡

𝑋
𝑝−1
𝑠 · 𝑋𝑡

)
≤ 𝑝

𝑝 − 1

(
E sup
𝑠≤𝑡

𝑋
𝑝
𝑠

) 𝑝−1
𝑝

·
(
E 𝑋

𝑝
𝑡

) 1
𝑝 .

Consequently,

E sup
𝑠≤𝑡

𝑋
𝑝
𝑠 ≤

(
𝑝

𝑝 − 1

) 𝑝
· E 𝑋 𝑝𝑡 ,

the assertion. □

8.8 disintegration

Theorem 8.24. Let 𝑃 : A ⊗ B → [0, 1] be a probability measure on X ×Y. Then there exists a kernel
𝑃 : B × X → [0, 1] such that
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(i) 𝑥 ↦→ 𝑃(𝐵 | 𝑥) is measurable for every 𝐵 ∈ B,

(ii) 𝐵 ↦→ 𝑃(𝐵 | 𝑥) is a probability measure for every 𝑥 ∈ 𝑋 ,

(iii) 𝑃(𝐴 × 𝐵) =
∫
𝐴
𝑃(𝐵 | 𝑥) 𝑃′ (d𝑥), where 𝑃′ (𝐴) := 𝑃(𝐴 × Y) is the marginal measure.

Proof. For every 𝐵 ∈ B, the mapping 𝑃(·×𝐵) : A → [0, 1], with 𝐴 ↦→ 𝑃(𝐴×𝐵), is a measure and note that
𝑃(𝐴 × 𝐵) ≤ 𝑃′ (𝐴) for every 𝐴 ∈ A. It follows in particular, that 𝑃(· × 𝐵) ≪ 𝑃′ (·). By Radon–Nikodým,
there exists a measurable function 𝑓𝐵 with 0 ≤ 𝑓𝐵 ≤ 1 (a density) such that 𝑃(𝐴 × 𝐵) =

∫
𝐴
𝑓𝐵 (𝑥) 𝑃′ (d𝑥).

We shall write 𝑃(𝐵 | 𝑥) := 𝑓𝐵 (𝑥) so that 𝑃(𝐴 × 𝐵) =
∫
𝐴
𝑃(𝐵 | 𝑥) 𝑃′ (d𝑥), hence (i) and (iii).

Let 𝐵𝑛 ∈ B be pairwise disjoint. As 𝑓𝐵𝑛 ≥ 0, it follows with the monotone convergence theorem that∑︁
𝑛∈N

∫
𝐴

𝑓𝐵𝑛 (𝑥) 𝑃′ (d𝑥) =
∫
𝐴

∑︁
𝑛∈N

𝑓𝐵𝑛 (𝑥) 𝑃′ (d𝑥).

Further, as 𝐵𝑛 are pairwise disjoint, we have that∑︁
𝑛∈N

∫
𝐴

𝑓𝐵𝑛 (𝑥) 𝑃′ (d𝑥) =
∑︁
𝑛∈N

𝑃(𝐴 × 𝐵𝑛) = 𝑃
(
𝐴 ×

⋃
𝑛∈N

𝐵𝑛

)
=

∫
𝐴

𝑓⋃
𝑛∈N 𝐵𝑛 (𝑥) 𝑃

′ (d𝑥).

As the density is unique, it follows that 𝑃 (⋃𝑛∈N 𝐵𝑛 | 𝑥) =
∑
𝑛∈N 𝑃(𝐵𝑛 | 𝑥). That is, 𝑃(· | 𝑥) is a 𝜎-additive

measure 𝑃′- almost everywhere. Further, it holds that 𝑃′ (𝐴) = 𝑃(𝐴 × Y) =
∫
𝐴
𝑃(Y | 𝑥) 𝑃′ (d𝑥) so that

𝑃(Y | 𝑥) = 1 and 𝑃(· | 𝑥) is indeed a probability measure. □

Theorem 8.25. Let 𝑓 be a random variable and 𝑃 be a probability measure on X × Y. Then E( 𝑓 | 𝑥) =∫
Y 𝑓 (𝑥, 𝑦) 𝑃(d𝑦 | 𝑥).

Proof. Indeed, for the measurable sets 𝐺 × Y generating the 𝜎-algebra it holds that
x

𝐺×Y
E( 𝑓 | 𝑥) d𝑃 =

∫
𝐺

∫
Y
E( 𝑓 | 𝑥) 𝑃(d𝑦 | 𝑥) 𝑃′ (d𝑥)

=

∫
𝐺

E( 𝑓 | 𝑥) 𝑃′ (d𝑥)

=

∫
𝐺

∫
Y
𝑓 (𝑥, 𝑦) 𝑃(d𝑦 | 𝑥) 𝑃′ (d𝑥)

=

x

𝐺×Y
𝑓 (𝑥, 𝑦) 𝑃(d𝑥, d𝑦),

the defining equation of the conditional expectation. □

8.9 problems

Exercise 8.1. Show that (8.5) is a sigma algebra.

Exercise 8.2. Show that
{
𝐵 ⊂ 𝑈 : 𝑇−1 (𝐵) ∈ F

}
(in the setting of Section 8.3) is a sigma algebra.

Exercise 8.3. Verify the cheat list (i)–(xii).

Exercise 8.4. Show that 𝑓 (𝑥 | 𝑦) given in (8.11) is indeed a density.

Exercise 8.5. Discuss the Borel–Kolmogorov paradox.
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Exercise 8.6. Give the conditional probabilities 𝑃(𝑌 = 𝑦𝑖 | 𝑋 = 3) and 𝑃(𝑋 = 𝑥𝑖 | 𝑌 = 5) for the
distribution in Exercise 6.5.

Exercise 8.7. Verify the definition of the double variance formula, Eq. (8.8).

Exercise 8.8 (Wald’s formulas9). Let 𝑋𝑖 be iid, 𝑁 ∈ N random with 𝑁 ⊥ 𝑋𝑖 for 𝑖 = 1, 2, . . . . Then the
following hold for 𝑍 := 𝑋1 + 𝑋2 + · · · + 𝑋𝑁 (Hint: the double variance formula, or ¿¿):

(i) E 𝑍 = E 𝑋 · E 𝑁 ,

(ii) var 𝑍 = var 𝑋 · E 𝑁 + (E 𝑋)2 · var 𝑁 .

9Abraham Wald, 1902–1950

Version: April 29, 2024
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9Stochastic Processes and Martingales

9.1 stochastic processes

Definition 9.1. A filtered probability space (also known as stochastic basis) on the totally ordered set T is
a quadruple (

Ω, (F𝑡 )𝑡∈T, F , 𝑃
)
,

where

(i)
(
Ω, F , 𝑃) is a probability space, and

(ii) (F𝑡 )𝑡∈T is a filtration, that is, an increasing sequence of sub-sigma algebras of F : F𝑡 ⊂ F𝑡 ′ ⊂ . . . F
whenever 𝑡 ≤ 𝑡′.

We define F∞ := 𝜎 (⋃𝑡∈T F𝑡 ) ⊂ F .

Typical index sets include T = {0, 1, 2 . . . }, T = [0, 𝑇] and T = [0,∞).

Definition 9.2. The collection 𝑋 = (𝑋𝑡 )𝑡∈T is a stochastic process, provided that 𝑋𝑡 : Ω → (𝑆, Σ) for
every 𝑡 ∈ T.1

Interpretation. One may usually associate 𝑡 ∈ T with time and 𝜔 with particle or experiment. With this
picture 𝑋𝑡 (𝜔) describes the position (or result) of the particle (experiment) 𝜔 at time 𝑡.
Remark 9.3. The stochastic process 𝑋 can also be seen as a function,

𝑋 : T ×Ω→ (𝑆, Σ)
(𝑡, 𝜔) ↦→ 𝑋𝑡 (𝜔)

assuming that 𝑋 is jointly measurable.

Definition 9.4. For 𝜔 ∈ Ω, the mapping

𝑋 (𝜔) : T→ 𝑆

𝑡 ↦→ 𝑋𝑡 (𝜔)

is called a path. Note, that 𝑋 (𝜔) ∈ 𝑆𝑇 .

Remark 9.5. One may also define

Φ𝑋 : Ω→ 𝑆T

𝜔 ↦→ Φ𝑋 (𝜔) : T→ 𝑆

𝑡 ↦→ 𝑋𝑡 (𝜔),

where 𝑆T is the collection of all functions from T to 𝑆. The law of a stochastic process is the pushforward
measure (image measure) L𝑋 (·) := 𝑃 ◦Φ−1𝑋 (·).

1In almost all situations we consider (𝑆, Σ) = (R𝑛 , B) .
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92 stochastic processes and martingales

Definition 9.6 (Adapted process, natural filtration). A process is said to be adapted to the filtration F𝑡 , if
𝑋𝑡 is measurable with respect to F𝑡 for every 𝑡 ∈ T.

The natural filtration induced by the stochastic process 𝑋 is

F𝑡 := 𝜎
(
𝑋−1𝑠 (𝐴) : 𝐴 ∈ Σ, 𝑠 ≤ 𝑡, 𝑠 ∈ T

)
.

Remark 9.7. Notice, that we don’t have a sigma algebra on 𝑆T. However, we would like to assign
probabilities to sets as

𝐹 :=
{
𝜔 : 𝑋𝑡1 (𝜔) ∈ 𝐴𝑡1 , 𝑋𝑡2 (𝜔) ∈ 𝐴𝑡2 , . . . , 𝑋𝑡𝑛 (𝜔) ∈ 𝐴𝑡𝑛

}
∈ F

with 𝐴𝑡𝑖 ∈ Σ for all 𝑖 = 1, . . . 𝑛 as it is natural to ask for the probability

𝑃
({
𝑋𝑡1 ∈ 𝐴𝑡1 , 𝑋𝑡2 ∈ 𝐴𝑡2 , . . . , 𝑋𝑡𝑛 ∈ 𝐴𝑡𝑛

})
.

9.2 examples of stochastic processes, discrete time stochastic pro-
cesses

Often we consider processes, which are driven by a mean zero driving process 𝑍𝑡 . First order processes are
of the form

𝑋𝑡+1 = 𝐹 (𝑋𝑡 , 𝑍𝑡 ),
i.e., the value at time 𝑡 + 1 does only depend on the value 𝑋𝑡 at time 𝑡 and the driving process 𝑍𝑡 at time 𝑡.

9.2.1 The additive model (random walk model)
The simplest model is the Bernoulli random walk model. Here, the driving process is 𝑍𝑡 = 2𝑌𝑡 − 1, where
𝑌𝑡 ∼ 𝐵(1, 1/2) (cf. Section 5.6.2). The process is

𝑋𝑡+1 = 𝑋𝑡 + 𝑢 · (2𝑌𝑡 − 1)

with some starting value 𝑋0 = 𝑥0. It is easy to see that E(𝑋𝑡 ) = 𝑥0 and var(𝑋𝑡 ) = 𝑢2 · 𝑡. The process is
not stationary (i.e., the distribution of 𝑋𝑡 differs from the distribution of 𝑋𝑡 ′ whenever 𝑡 ≠ 𝑡′).

9.2.2 The multiplicative model (Black–Derman–Toy or lattice model)
The additive model has the disadvantage that the process may fall negative. The multiplicative model

𝑋𝑡+1 = 𝑋𝑡 · 𝑣2𝑌𝑡−1

avoids this. Notice that log 𝑋𝑡 follows the recursion log 𝑋𝑡+1 = log 𝑋𝑡 + (log 𝑣) · (2𝑌𝑡 − 1).

9.2.3 The autoregressive process with mean reversion
The autoregressive model specifies that the output variable depends linearly on its own previous values and
on a stochastic term (an imperfectly predictable term), as

𝑋𝑡+1 = 𝑋𝑡 + 𝑎(𝜇 − 𝑋𝑡 ) + 𝑍𝑡 ,

where (𝑍𝑡 )𝑡=1 is a zero mean i.i.d. process.

9.3 problems

Example 9.8. Discuss, why 𝐵2𝑡 is not adapted, while 𝐵𝑡/2 is.
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10Brownian Motion

Figure 10.1: Einstein [5] in 1905, his miraculous year/ annus mirabilis

10.1 informal introduction of the wiener process

Let 𝑆𝑡 be a symmetric random walk, i.e. (cf. Section 9.2.1),

𝑆0 = 0,

𝑆 𝑗 := 𝑆 𝑗−1 + 𝜉 𝑗 , 𝑗 = 1, 2, . . . , (10.1)

where 𝜉 𝑗 is a sequence of independent random variables with 𝑃(𝜉 𝑗 = ±1) = 1
2 (so that 1

2 (1 + 𝜉 𝑗 ) is
Bernoulli 𝐵(1, 1/2)). Let

𝑊𝑛 (𝑡) :=
1
√
𝑛
𝑆⌊𝑛𝑡 ⌋ =

1
√
𝑛

⌊𝑛𝑡 ⌋∑︁
𝑗=1

𝜉 𝑗 =
1
√
𝑛

∑︁
𝑗≤𝑛·𝑡

𝜉 𝑗 ,

where ⌊𝑥⌋ is the floor function.1
The process𝑊𝑛 has the following properties:

(i) E𝑊𝑛 (𝑡) = 0, var𝑊𝑛 (𝑡) = var
∑⌊𝑛𝑡 ⌋
𝑗=0

1√
𝑛
𝜉 𝑗 =

∑⌊𝑛𝑡 ⌋
𝑗=0

1
𝑛
var 𝜉 𝑗 =

⌊𝑛𝑡 ⌋
𝑛

,

1 ⌊ ·⌋ is the floor function, i.e., ⌊𝑥⌋ = 𝑚 ∈ Z and 𝑚 ≤ 𝑥 < 𝑚 + 1.
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94 brownian motion

(ii) 𝑊𝑛 has independent increments, (i.e., 𝑊𝑛 (𝑡1) − 𝑊𝑛 (𝑠1) and 𝑊𝑛 (𝑡2) − 𝑊𝑛 (𝑠2) are independent
whenever 𝑠1 < 𝑡1 < 𝑠2 < 𝑡2);

(iii) 𝑊𝑛 has stationary increments (i.e., they do not vary in time);

(iv) 𝑊𝑛 is a martingale, i.e., E [𝑊𝑛 (𝑡) | 𝑊𝑛 (𝑠)] = 𝑊𝑛 (𝑠) for 𝑠 < 𝑡 (i.e., E [𝑊𝑛 (𝑡) | 𝑊𝑛 (𝑠) = 𝑥] = 𝑥 );
further, E [𝑊𝑛 (𝑡) | 𝑊𝑛 (𝑣), 0 ≤ 𝑣 ≤ 𝑠] = 𝑊𝑛 (𝑠) for 𝑠 < 𝑡;

(v) 𝑊𝑛 is càdlàg (French: “continue à droite, limite à gauche”; the collection of càdlàg functions on a
given domain is known as Skorokhod space).

As 𝑛→∞, the process𝑊𝑛 converges (in distribution) to a limiting process, called the Wiener2 process

𝑊𝑡 := lim
𝑛→∞

𝑊𝑛 (𝑡).

The Wiener process𝑊𝑡 has following properties:

(i) 𝑊𝑡 ∼ N(0, 𝑡), in particular E𝑊𝑡 = 0 and var𝑊𝑡 = 𝑡,

(ii) The covariance is
cov

(
𝑊𝑠 ,𝑊𝑡

)
= 𝑠 ∧ 𝑡, (10.2)

where 𝑠 ∧ 𝑡 := min {𝑠, 𝑡}.

(iii) 𝑊 is a martingale: E (𝑊𝑡 |𝑊𝑣 , 0 ≤ 𝑣 ≤ 𝑠) = 𝑊𝑠 for 𝑠 < 𝑡,

(iv) 𝑊 has independent increments (i.e.,𝑊𝑡1 −𝑊𝑠1 ⊥ 𝑊𝑡2 −𝑊𝑠2 ) and

(v) 𝑊 has stationary increments. More specifically,𝑊𝑡 −𝑊𝑠 ∼ N(0, 𝑡 − 𝑠) for 𝑠 < 𝑡.

Proof. Assuming that 𝑠 < 𝑡 it holds that

cov(𝑊𝑡 −𝑊𝑠 ,𝑊𝑠) = E(𝑊𝑡 −𝑊𝑠)𝑊𝑠 = EE [(𝑊𝑡 −𝑊𝑠) ·𝑊𝑠 |𝑊𝑠]
= E [𝑊𝑠 · E [(𝑊𝑡 −𝑊𝑠) |𝑊𝑠]] = 0.

Hence
cov(𝑊𝑡 ,𝑊𝑠) = cov(𝑊𝑡 −𝑊𝑠 ,𝑊𝑠) + var(𝑊𝑠) = 0 + 𝑠 = 𝑠

and

var(𝑊𝑡 −𝑊𝑠) = var𝑊𝑡 + var𝑊𝑠 − 2 cov(𝑊𝑡 ,𝑊𝑠)
= 𝑡 + 𝑠 − 2𝑠 = 𝑡 − 𝑠.

Assuming 𝑠 < 𝑡 < 𝑢 < 𝑣 it holds further that

cov(𝑊𝑣 −𝑊𝑢,𝑊𝑡 −𝑊𝑠) = cov(𝑊𝑣 ,𝑊𝑡 ) − cov(𝑊𝑣 ,𝑊𝑠) − cov(𝑊𝑢,𝑊𝑡 ) + cov(𝑊𝑢,𝑊𝑠) =
= 𝑡 − 𝑠 − 𝑡 + 𝑠 = 0,

i.e., the Wiener process has uncorrelated, and by normality hence independent increments.
For the reamining assertions note that

𝑊𝑛 (𝑡) −𝑊𝑛 (𝑠) =
1
√
𝑛

⌊𝑛𝑡 ⌋∑︁
𝑗=⌊𝑛𝑠⌋+1

𝜉 𝑗 ∼
1
√
𝑛

⌊𝑛𝑡 ⌋−⌊𝑛𝑠⌋∑︁
𝑗=1

𝜉 𝑗 ≈
1
√
𝑛

⌊𝑛(𝑡−𝑠) ⌋∑︁
𝑗=1

𝜉 𝑗 .

□
2Norbert Wiener, 1894–1964
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10.2 existence of brownian motion

Remark 10.1. More generally one may define the Wiener process as the weak limit of

𝑊̃𝑛 (𝑡) :=
1
√
𝑛

⌊𝑛𝑡 ⌋∑︁
𝑗=1

𝜉 𝑗 ,

where 𝜉 𝑗 are i.i.d. variables with mean 0 and variance 1 (so in contrast to (10.1) not necessarily Binomial),
or by linear interpolation, as

˜̃
𝑊𝑛 (𝑡) := 𝑊̃𝑛 (𝑡) +

𝑛𝑡 − ⌊𝑛𝑡⌋
√
𝑛

𝜉⌊𝑛𝑡 ⌋+1.

Definition 10.2. The Wiener process is characterized by the following four properties:

(i) 𝑊0 = 0

(ii) 𝑊𝑡 is almost surely continuous

(iii) 𝑊𝑡 has independent increments, i.e., 𝑊𝑡1 −𝑊𝑠1 and𝑊𝑡2 −𝑊𝑠2 are independent for 0 ≤ 𝑠1 ≤ 𝑡1 ≤
𝑠2 ≤ 𝑡2

(iv) 𝑊𝑡 −𝑊𝑠 ∼ N(0, 𝑡 − 𝑠) for all 𝑠 < 𝑡.

Lemma 10.3 (Self similarity). Let𝑊𝑡 be a Wiener process.

(i) Symmetry: −𝑊𝑡 is a Wiener process;

(ii) Time-reversal: 𝑊𝑇 −𝑊𝑇−𝑡 is a Wiener process for 𝑡 ∈ [0, 𝑇];

(iii) Scaling: For 𝑐 > 0, the process 1√
𝑐
𝑊𝑐𝑡 is a Wiener process again;

(iv) Time-inversion: 𝑡 ·𝑊1/𝑡 is a Wiener process.

Proof. As for (iv), note that E 𝑊̃𝑠𝑊̃𝑡 = 𝑠𝑡
(
1
𝑠
∧ 1
𝑡

)
for 𝑊̃𝑡 := 𝑡 ·𝑊1/𝑡 ; see Exercise 10.3. □

10.2.1 Using Kolmogorov’s extension theorem

We demonstrate first existence of Brownian motion.3 We shall denote the transition probability by

𝑝(𝑡; 𝑥, 𝑦) := 1
√
2𝜋𝑡

𝑒−
1
2𝑡
(𝑥−𝑦)2 (10.3)

with the interpretation that 𝑝(𝑡, 𝑥, 𝑦)𝑑𝑦 is the probability of a particle located in 𝑥 to move to 𝑑𝑦 within
time 𝑡 (i.e., 𝑃(𝑋𝑡+Δ𝑡 ∈ 𝑑𝑦) = 𝑝(Δ𝑡; 𝑥, 𝑦)𝑑𝑦, cf. Remark 5.38). As an example consider the times
0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 and verify that a Brownian motion, starting at 𝑡0 = 0 in 𝑥 = 0, has the cdf. (cf.
Exercise 10.2)

𝐹(𝑊𝑡1 ,...𝑊𝑡𝑛 ) (𝑥1, . . . 𝑥𝑛) =
∫ 𝑥1

−∞

∫ 𝑥2

−∞
· · ·

∫ 𝑥𝑛

−∞
𝑝(𝑡1; 0, 𝑦1) · 𝑝(𝑡2 − 𝑡1; 𝑦1, 𝑦2) · . . . (10.4)

· 𝑝(𝑡𝑛 − 𝑡𝑛−1; 𝑦𝑛−1, 𝑦𝑛) 𝑑𝑦𝑛 . . . 𝑑𝑦2𝑑𝑦1.

Existence follows from Kolmogorov’s extension theorem:
3Robert Brown, 1773–1858, Scottish botanist
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Theorem 10.4 (Kolmogorov’s extension theorem). Let 𝜈𝑡1 ,...,𝑡𝑛 be probability measures. Suppose these
measures satisfy the following two conditions:

⊲ 𝜈𝑡1 ,...𝑡𝑛 (𝐹1 × · · · × 𝐹𝑛) = 𝜈𝑡𝜋 (1) ,...,𝑡𝜋 (𝑛) (𝐹𝜋 (1) × · · · × 𝐹𝜋 (𝑛) ) for all permutations 𝜋 of {1, 2, . . . 𝑛},

⊲ 𝜈𝑡1 ,...,𝑡𝑘 (𝐹1 × · · · × 𝐹𝑘) = 𝜈𝑡1 ,...𝑡𝑛 (𝐹1 × · · · × 𝐹𝑘 × R𝑛 × · · · × R𝑛︸           ︷︷           ︸
𝑛−𝑘 times

).

Then there exists a probability space (Ω, F , 𝑃) and a stochastic process 𝑋 : T ×Ω→ R𝑛 such that

𝑃(𝑋𝑡1 ∈ 𝐹1, . . . , 𝑋𝑡𝑛 ∈ 𝐹𝑛) = 𝜈𝑡1 ,...𝑡𝑘 (𝐹1 × · · · × 𝐹𝑛)

for all 𝑡1, . . . 𝑡𝑛 ∈ T.

10.2.2 Constructive
With the transition kernel (10.3) we find that

𝑃

(
𝑊𝑠 ∈ 𝑑𝑥,𝑊 1

2
(𝑡+𝑠) ∈ 𝑑𝑦,𝑊𝑡 ∈ 𝑑𝑧

)
= 𝑝(𝑠; 0, 𝑥)𝑝

( 𝑡 − 𝑠
2

; 𝑥, 𝑦
)
𝑝

( 𝑡 − 𝑠
2

; 𝑦, 𝑧
)
𝑑𝑥𝑑𝑦𝑑𝑧,

and by dividing by
𝑃 (𝑊𝑠 ∈ 𝑑𝑥,𝑊𝑡 ∈ 𝑑𝑧) = 𝑝(𝑠; 0, 𝑥)𝑝 (𝑡 − 𝑠; 𝑥, 𝑧) 𝑑𝑥𝑑𝑧

we conclude further (and informally) that

𝑃

(
𝑊 1

2
(𝑡+𝑠) ∈ 𝑑𝑦

��� 𝑊𝑠 = 𝑥, 𝑊𝑡 = 𝑧) = 1

𝜎
√
2𝜋
𝑒
− 1

2𝜎2 (𝑦−𝜇)2𝑑𝑦, (10.5)

where 𝜇 := 1
2 (𝑥 + 𝑧) and 𝜎2 = 1

4 (𝑡 − 𝑠).
Formula (10.5) suggests that we can construct a Brownian motion by interpolation.

Haar functions. For 𝑛 ≥ 1 and 𝑘 ∈ 𝐼 (𝑛) := {𝑖 ∈ N : 𝑖 odd and 𝑖 ≤ 2𝑛} (𝐼 (0) = {1}, 𝐼 (1) = {1},
𝐼 (2) = {1, 3} etc.) define the Haar functions on [0, 1], i.e.,

𝐻
(0)
1 (𝑡) := 1 and 𝐻

(𝑛)
𝑘
(𝑡) :=


2(𝑛−1)/2 if 𝑘−12𝑛 ≤ 𝑡 <

𝑘
2𝑛

−2(𝑛−1)/2 if 𝑘
2𝑛 ≤ 𝑡 <

𝑘+1
2𝑛

0 else.
(10.6)

Schauder functions
𝑆
(𝑛)
𝑘
(𝑡) :=

∫ 𝑡

0

𝐻
(𝑛)
𝑘
(𝑢)𝑑𝑢.

Further, consider the stochastic process

𝐵
(𝑛)
𝑡 (𝜔) :=

𝑛∑︁
𝑚=0

∑︁
𝑘∈𝐼 (𝑚)

𝜉
(𝑚)
𝑘

𝑆
(𝑚)
𝑘
(𝑡),

where 𝜉 (𝑛)
𝑘
∼ N(0, 1) are all independent standard normals.

Lemma 10.5. The sequence of functions 𝑡 → 𝑊
(𝑛)
𝑡 (𝜔) converges uniformly, as 𝑛→∞, to a continuous

function for almost every 𝜔 ∈ Ω.

Theorem 10.6. The process 𝑊𝑡 := lim𝑛→∞𝑊
(𝑛)
𝑡 is a Brownian motion on [0, 1] (cf. Figure 10.2 for

illustration).
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time

space

Figure 10.2: 4 Brownian paths

10.3 the canonical space for brownian motion and basic properties

Theorem 10.7 (Kolmogorov’s continuity theorem, often also Kolmogorov–Čentsov theorem). Suppose
the process 𝑋 satisfies the condition E |𝑋𝑡 − 𝑋𝑠 |𝛼 ≤ 𝐷 |𝑡 − 𝑠 |𝛽+1 for some 𝐷 > 0, 𝛼 > 0 and 𝛽 >0 and all
𝑠, 𝑡 ≤ 𝑇 . Then there is a continuous version, i.e., a stochastic process 𝑋 so that 𝑃

({
𝜔 : 𝑋𝑡 (𝜔) = 𝑋 (𝜔)

})
=

1 for all 𝑡 and 𝑃
(
𝑡 ↦→ 𝑋𝑡 is continuous

)
= 1.

Proof. Here is a nice proof: link. □

For the Brownian motion in R𝑛 it holds that E |𝑊𝑡 −𝑊𝑠 |4 = 3𝑛2 |𝑡 − 𝑠 |2, so the theorem applies.
The canonical space for the Brownian motion is, the one most convenient for many future developments,

is
Ω := 𝐶

(
[0,∞)

)
, (10.7)

the space of all continuous, R-valued functions on [0,∞) with metric

𝑑 (𝜔1, 𝜔2) :=
∞∑︁
𝑛=1

1

2𝑛
max
0≤𝑡≤𝑛

|𝜔1 (𝑡) − 𝜔2 (𝑡) | ∧ 1, (10.8)

(cf. Karatzas and Shreve [10, Section 2.4]).
The sigma algebra considered on Ω is the sigma algebra F generated by the finite dimensional cylinder

sets {
𝜔 ∈ 𝐶

(
[0,∞)

)
: (𝜔(𝑡1), . . . , 𝜔(𝑡𝑛)) ∈ 𝐴

}
, 𝑛 ∈ {1, 2, . . . } , 𝐴 ∈ B (R𝑛)

(the Borel sets). The triple (Ω, F , 𝑃) with Ω = 𝐶
(
[0,∞)

)
is called the canonical space. Note, however,

that the set (10.7) is not measurable with respect to the Borel sigma algebra on in (R𝑛) [0,∞) .

10.4 problems

Exercise 10.1. Simulate a few Brownian paths.

Exercise 10.2. Verify (10.4).
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Exercise 10.3. Prove Lemma 10.3.

Exercise 10.4. Show that the Haar functions 𝐻 (𝑛)
𝑘
(·) (cf. (10.6)) are a complete orthonormal system for

𝐿2 ( [0, 1]) with



𝐻 (𝑛)

𝑘





2
= 1, i.e.,

∫ 1

0
𝐻
(𝑛)
𝑘
(𝑥)𝐻 (𝑛

′ )
𝑘′ (𝑥)𝑑𝑥 =

{
1 if 𝑘 = 𝑘 ′ and 𝑛 = 𝑛′

0 else
.

Exercise 10.5. Show that 𝑑 (·, ·) is a metric on 𝐶
(
[0,∞)

)
and further,

(
𝐶

(
[0,∞)

)
, 𝑑

)
is Polish — a

complete, separable, metric space.

Exercise 10.6. Verify the covariance relation (10.2) by using the transition probabilities (10.3) explicitly.

Exercise 10.7. Show that cov
(
𝑊2
𝑠 ,𝑊

2
𝑡

)
= 2 cov (𝑊𝑠 ,𝑊𝑡 )2 = 2 (𝑠 ∧ 𝑡)2. In particular, var𝑊2

𝑡 = 2𝑡2.

rough draft: do not distribute



11Ito Integral

This section introduces Itō’s calculus1 and again follows Øksendal [16].

11.1 informal discussion

Lemma 11.1 (Quadratic variation). The integrated, squared increments recover the time expired:

𝑛∑︁
𝑖=1

(
𝑊𝑡𝑖 −𝑊𝑡𝑖−1

)2 −−−−−−−−−−→
max 𝑗 Δ𝑡 𝑗→0

𝑡, a deterministic number!!!,

where Δ𝑡 := max {𝑡𝑖 − 𝑡𝑖−1 : 𝑖 = 1, . . . 𝑛} for the partition 0 = 𝑡0 < 𝑡2 < · · · < 𝑡𝑛 = 𝑡.

Remark 11.2. The statement is immediate for Δ𝑊𝑡 = 1√
𝑛
𝜉𝑖 , where 𝑃 (𝜉𝑖 = ±1) = 1

2 .

Proof. Let 0 = 𝑡0 < 𝑡2 < · · · < 𝑡𝑛 = 𝑡 be a partition of [0, 𝑡].

E

𝑛∑︁
𝑖=1

(
𝑊𝑡𝑖 −𝑊𝑡𝑖−1

)2
=

𝑛∑︁
𝑖=1

var
(
𝑊𝑡𝑖 −𝑊𝑡𝑖−1

)
=

𝑛∑︁
𝑖=1

𝑡𝑖 − 𝑡𝑖−1 = 𝑡

and

var

(
𝑛∑︁
𝑖=1

(
𝑊𝑡𝑖 −𝑊𝑡𝑖−1

)2)
=

𝑛∑︁
𝑖=1

var
( (
𝑊𝑡𝑖 −𝑊𝑡𝑖−1

)2)
= 2

𝑛∑︁
𝑖=1

(𝑡𝑖 − 𝑡𝑖−1)2 −−−−−−−−−→
maxΔ𝑡 𝑗→0

0,

as the partition gets finer; we have used that var(𝑋2) = 2𝜎4 for 𝑋 ∼ N(0, 𝜎2), cf. (5.13). □

Recall that we have from Taylor expansions

(i) 𝑑𝑓 (𝑥) = 𝑓 ′ (𝑥) 𝑑𝑥, for example 𝑑𝑡2 = 2𝑡 𝑑𝑡;

(ii) further, informally, (𝑑𝑡)2 = 0.

For the Wiener Process, however,

(iii) (𝑑𝑊𝑡 )2 = 𝑑𝑡,

as the preceding lemma demonstrates. Indeed,
𝑛∑︁
𝑖=1

(
𝑊𝑡𝑖 −𝑊𝑡𝑖−1

)2 → ∫ 𝑇

0

(𝑑𝑊𝑡 )2 = 𝑇 (a real number!) and

𝑇 =

∫ 𝑇

0

𝑑𝑡

for all 𝑇 , whenever the discretization 0 = 𝑡0 < 𝑡2 < · · · < 𝑡𝑛 = 𝑇 gets tighter. Thus, informally,
(𝑑𝑊𝑡 )2 = 𝑑𝑡, the assertion in (iii).

1Kiyosi Itō, 1915–2008
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11.2 ito’s integral

Example 11.3. Consider the functions

𝜙
(𝑛)
1 (𝑡, 𝜔) : =

∑︁
𝑗≥0

𝑊 𝑗 ·2−𝑛 (𝜔) 1[ 𝑗 ·2−𝑛 , ( 𝑗+1)2−𝑛 ) (𝑡) and

𝜙
(𝑛)
2 (𝑡, 𝜔) :=

∑︁
𝑗≥0

𝑊( 𝑗+1) ·2−𝑛 (𝜔) 1[ 𝑗 ·2−𝑛 , ( 𝑗+1)2−𝑛 ) (𝑡).

Then it holds (put 𝑡 𝑗 := 𝑗 · 2−𝑛) that

E

∫ 𝑇

0

𝜙
(𝑛)
1 (𝑡, 𝜔) 𝑑𝑊𝑡 (𝜔) =

∑︁
𝑗≥0
E𝑊𝑡 𝑗

(
𝑊𝑡 𝑗+1 −𝑊𝑡 𝑗

)
= 0

as𝑊𝑡 is independent of later increments. But

E

∫ 𝑇

0

𝜙
(𝑛)
2 (𝑡, 𝜔) 𝑑𝑊𝑡 (𝜔) =

∑︁
𝑗≥0
E𝑊𝑡 𝑗+1

(
𝑊𝑡 𝑗+1 −𝑊𝑡 𝑗

)
=

∑︁
𝑗≥0

𝑡 𝑗+1 − 𝑡 𝑗 = 𝑇.

Hence, ∫ 𝑇

0

𝜙
(𝑛)
1 (𝑡, 𝜔) 𝑑𝑊𝑡 (𝜔) ̸→

∫ 𝑇

0

𝜙
(𝑛)
2 (𝑡, 𝜔)𝑑𝑊𝑡 (𝜔)

as 𝑛→∞.
The choice of the left or right endpoint in the integral makes a difference here. This is in contrast to the

usual Riemann–Stieltjes integral, but for these the integrator has bounded variation (which 𝑡 → 𝑊𝑡 (𝜔)
lacks almost surely).

Definition 11.4. We consider the following class of functions (processes) 𝑓 ∈ V, where

𝑓 : [0,∞) ×Ω→ R

(or 𝑓 ∈ V(𝑆, 𝑇), for functions 𝑓 : [𝑆, 𝑇) ×Ω→ R) such that

(i) (𝑡, 𝜔) ↦→ 𝑓 (𝑡, 𝜔) is B ⊗ F -measurable (B is the Borel sigma algebra on [0,∞)),

(ii) 𝜔 ↦→ 𝑓 (𝑡, 𝜔) is F𝑡 adapted for every 𝑡 fixed and

(iii) E
∫ 𝑇
𝑆
𝑓 (𝑡, 𝜔)2𝑑𝑡 < ∞.

Note that the functions in Example 11.3 satisfy 𝜙 (𝑛)1 ∈ V, but 𝜙 (𝑛)2 ∉ V.

Definition 11.5. A function 𝜙 ∈ V is elementary, if 𝜙(𝑡, 𝜔) = ∑𝑛−1
𝑗=0 𝑒 𝑗 (𝜔) · 1[𝑡 𝑗 ,𝑡 𝑗+1 ) (𝑡)2 (with 𝑆 = 𝑡0 <

𝑡1 · · · < 𝑡𝑛 = 𝑇). For an elementary function 𝜙 we define the Itō-integral as∫ 𝑇

𝑆

𝜙(𝑡, 𝜔) 𝑑𝑊𝑡 (𝜔) =
𝑛−1∑︁
𝑗=0

𝑒 𝑗 (𝜔)
(
𝑊𝑡 𝑗+1 (𝜔) −𝑊𝑡 𝑗 (𝜔)

)
for every 𝜔 ∈ Ω. (11.1)

Note, that 𝑒 𝑗 is necessarily F𝑡 -measurable provided that 𝜙 ∈ V.

2Note that 𝜙 ( ·, 𝜔) is càdlàg, cf. Footnote 9 on page 49.
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Lemma 11.6 (Itō isometry for elementary functions). If 𝜙(𝑡, 𝜔) is bounded and elementary then

E

(∫ 𝑇

𝑆

𝜙(𝑡, 𝜔) 𝑑𝑊𝑡 (𝜔)
)2

= E

(∫ 𝑇

𝑆

𝜙(𝑡, 𝜔)2 𝑑𝑡
)
.

Proof. Note first that

E 𝑒𝑖𝑒 𝑗
(
𝑊𝑡𝑖+1 −𝑊𝑡𝑖

) (
𝑊𝑡 𝑗+1 −𝑊𝑡 𝑗

)
=

{
0 if 𝑖 ≠ 𝑗

E 𝑒2
𝑖
(𝑡𝑖+1 − 𝑡𝑖) if 𝑖 = 𝑗

and hence

E

(∫ 𝑇

𝑆

𝜙 𝑑𝑊

)2
=

∑︁
𝑖, 𝑗

E 𝑒𝑖𝑒 𝑗
(
𝑊𝑡𝑖+1 −𝑊𝑡𝑖

) (
𝑊𝑡 𝑗+1 −𝑊𝑡 𝑗

)
=

∑︁
𝑖

E 𝑒2𝑖 (𝑡𝑖+1 − 𝑡𝑖)

= E
∑︁
𝑖

𝑒2𝑖 (𝑡𝑖+1 − 𝑡𝑖) = E
(∫ 𝑇

𝑆

𝜙(𝑡, 𝜔)2 𝑑𝑡
)
,

the assertion. □

The functions in 𝑓 ∈ V can be approximated by elementary functions 𝜙 ∈ V in the norm
E

∫ 𝑇
𝑆
( 𝑓 (𝑡, 𝜔) − 𝜙(𝑡, 𝜔))2 𝑑𝑡.

Definition 11.7 (Itō’s integral for functions inV). For 𝑓 ∈ V we define∫ 𝑇

𝑆

𝑓 (𝑡, 𝜔) 𝑑𝑊𝑡 (𝜔) := lim
𝑛→∞

∫ 𝑇

𝑆

𝜙𝑛 (𝑡, 𝜔) 𝑑𝑊𝑡 (𝜔) in 𝐿2 (𝑃),

where 𝜙𝑛 (𝑡, 𝜔) is a sequence of elementary functions such that E
∫ 𝑇
𝑆
( 𝑓 (𝑡, 𝜔) − 𝜙𝑛 (𝑡, 𝜔))2 𝑑𝑡 → 0.

Itō’s integral
∫ 𝑇
𝑆
𝜙 𝑑𝑊 defined for general elementary functions in (11.1) can be extended to bounded

and continuous functions first, then to bounded functions inV and finally to all functions inV.

Corollary 11.8 (to Lemma 11.6, Itō isometry). It holds that

E

(∫ 𝑇

𝑆

𝑓 (𝑡, 𝜔) 𝑑𝑊𝑡 (𝜔)
)2

= E

(∫ 𝑇

𝑆

𝑓 (𝑡, 𝜔)2 𝑑𝑡
)

(11.2)

for 𝑓 ∈ V.

Corollary 11.9. For 𝑓 ∈ V and a sequence 𝑓𝑛 ∈ V with E
(∫ 𝑇
𝑆
𝑓𝑛 (𝑡, 𝜔)2 𝑑𝑡

)
→ E

(∫ 𝑇
𝑆
𝑓 (𝑡, 𝜔)2 𝑑𝑡

)
it

holds that ∫ 𝑇

𝑆

𝑓𝑛 (𝑡, 𝜔) 𝑑𝑊𝑡 (𝜔) →
∫ 𝑇

𝑆

𝑓 (𝑡, 𝜔) 𝑑𝑊𝑡 (𝜔) in 𝐿2.

Example 11.10 (Cf. Exercise 11.3). It holds that∫ 𝑡

0

𝑊𝑠 𝑑𝑊𝑠 =
1

2
𝑊2
𝑡 −

1

2
𝑡. (11.3)
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Proof. Put 𝜙𝑛 (𝑡, 𝜔) :=
∑
𝑗𝑊𝑡 𝑗 (𝜔) · 1[𝑡 𝑗 ,𝑡 𝑗+1 ) (𝑡). Then

E

∫ 𝑡

0

(𝜙𝑛 −𝑊𝑠)2 𝑑𝑠 = E
∑︁
𝑗

∫ 𝑡 𝑗+1

𝑡 𝑗

(
𝑊𝑡 𝑗 −𝑊𝑠

)2
𝑑𝑠 =

∑︁
𝑗

∫ 𝑡 𝑗+1

𝑡 𝑗

(𝑠 − 𝑡 𝑗 )𝑑𝑠 =
∑︁
𝑗

1

2
(𝑡 𝑗+1 − 𝑡 𝑗 )2 → 0,

and by Itō’s isometry (Lemma 11.6), thus∫ 𝑡

0

𝜙𝑛𝑑𝑊𝑠 −−−−−−−−−→
maxΔ𝑡 𝑗→0

∫ 𝑡

0

𝑊𝑠𝑑𝑊𝑠 .

To verify (11.3) in 𝐿2 we need to verify that

E

(
1

2
𝑊2
𝑡 −

𝑡

2
−

∑︁
𝑗

𝑊𝑡 𝑗

(
𝑊𝑡 𝑗+1 −𝑊𝑡 𝑗

))2
−−−−−−−−−−→
max 𝑗 Δ𝑡 𝑗→0

0.

To this end,

E

(
1

2
𝑊2
𝑡 −

𝑡

2
−

∑︁
𝑗

𝑊𝑡 𝑗

(
𝑊𝑡 𝑗+1 −𝑊𝑡 𝑗

))2
=E

(
1
4𝑊

4
𝑡 + 𝑡

2

4 +
(∑

𝑗𝑊𝑡 𝑗Δ𝑊𝑡 𝑗

)2
− 𝑡2𝑊

2
𝑡 −𝑊2

𝑡

∑
𝑗𝑊𝑡 𝑗Δ𝑊𝑡 𝑗 + 𝑡 ·

∑
𝑗𝑊𝑡 𝑗Δ𝑊𝑡 𝑗

)
(11.4)

=
3

4
𝑡2 + 1

4
𝑡2+

+ E
(∑︁
𝑗

𝑊𝑡 𝑗Δ𝑊𝑡 𝑗

)2
(11.5)

− 𝑡
2

2

− E
∑︁
𝑗

𝑊𝑡 𝑗Δ𝑊𝑡 𝑗𝑊
2
𝑡 (11.6)

+ 0.

Then

(11.5) = E

(∑︁
𝑗

𝑊𝑡 𝑗Δ𝑊𝑡 𝑗

)2
=

∑︁
𝑖, 𝑗

E𝑊𝑡𝑖𝑊𝑡 𝑗Δ𝑊𝑡𝑖Δ𝑊𝑡 𝑗 =
∑︁
𝑖

E𝑊2
𝑡𝑖

(
Δ𝑊𝑡𝑖

)2
=

∑︁
𝑖

𝑡𝑖Δ𝑡𝑖

and (recall that 𝑡 𝑗 < 𝑡 𝑗+1 < 𝑡)

−(11.6) =
∑︁
𝑗

E𝑊𝑡 𝑗Δ𝑊𝑡 𝑗𝑊
2
𝑡 =

∑︁
𝑗

E𝑊𝑡 𝑗Δ𝑊𝑡 𝑗

(
𝑊𝑡 𝑗 + Δ𝑊𝑡 𝑗 + (𝑊𝑡 −𝑊𝑡 𝑗+1 )

)2
=

∑︁
𝑗

E𝑊3
𝑡 𝑗
Δ𝑊𝑡 𝑗︸︷︷︸

0

+
∑︁
𝑗

E𝑊𝑡 𝑗

(
Δ𝑊𝑡 𝑗

)3︸    ︷︷    ︸
0

+
∑︁
𝑗

E𝑊𝑡 𝑗Δ𝑊𝑡 𝑗

(
𝑊𝑡 −𝑊𝑡 𝑗+1

)2︸           ︷︷           ︸
0

+ 2
∑︁
𝑗

E𝑊2
𝑡 𝑗

(
Δ𝑊𝑡 𝑗

)2
+ 2

∑︁
𝑗

E𝑊2
𝑡 𝑗
Δ𝑊𝑡 𝑗

(
𝑊𝑡 −𝑊𝑡 𝑗+1

)
︸          ︷︷          ︸

0

+2
∑︁
𝑗

E𝑊𝑡 𝑗

(
Δ𝑊𝑡 𝑗

)2
(𝑊𝑡 −𝑊𝑡 𝑗+1 )︸         ︷︷         ︸

0

= 2
∑︁
𝑗

E𝑊2
𝑡 𝑗

(
Δ𝑊𝑡 𝑗

)2
= 2

∑︁
𝑗

𝑡 𝑗
(
𝑡 𝑗+1 − 𝑡 𝑗

)
.
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Collecting terms,

(11.4) =
1

2
𝑡2 −

∑︁
𝑗

𝑡 𝑗 (𝑡 𝑗+1 − 𝑡 𝑗 ) −−−−−−−−−→
maxΔ𝑡 𝑗→0

1

2
𝑡2 −

∫ 𝑡

0

𝑠𝑑𝑠 =
1

2
𝑡2 − 1

2
𝑡2 = 0

and hence the result. □

11.3 properties of ito’s integral

Theorem 11.11. For 𝑐 ∈ R and 𝑓 , 𝑔 ∈ V it holds that (as for the usual integral) that

(i)
∫ 𝑇
𝑆
𝑓 𝑑𝑊𝑡 =

∫ 𝑈
𝑆
𝑓 𝑑𝑊𝑡 +

∫ 𝑇
𝑈
𝑓 𝑑𝑊𝑡 ,

(ii)
∫ 𝑇
𝑆
𝑐 𝑓 + 𝑔𝑑𝑊𝑡 = 𝑐

∫ 𝑇
𝑆
𝑓 𝑑𝑊𝑡 +

∫ 𝑇
𝑆
𝑔𝑑𝑊𝑡 .

11.4 the martingale property

Theorem 11.12. Itō’s integral 𝑀𝑡 (𝜔) :=
∫ 𝑡
0
𝑓 (𝑠, 𝜔)𝑑𝑊𝑠 (𝜔) is a martingale.

Proof. Let 𝜙𝑛 be a simple function and 𝑡 < 𝑠. Then

E

(∫ 𝑠

0

𝜙𝑛𝑑𝑊

����F𝑡 ) = E

(∫ 𝑡

0

𝜙𝑛𝑑𝑊 +
∫ 𝑠

𝑡

𝜙𝑛𝑑𝑊

����F𝑡 )
= E

(∫ 𝑡

0

𝜙𝑛𝑑𝑊

����F𝑡 ) + E (∫ 𝑠

𝑡

𝜙𝑛𝑑𝑊

����F𝑡 ) =

∫ 𝑡

0

𝜙𝑛𝑑𝑊,

as
∫ 𝑡
0
𝜙𝑛𝑑𝑊 is F𝑡 measurable and Δ𝑊 𝑗 = 𝑊𝑡 𝑗+1 −𝑊𝑡 𝑗 is independent from F𝑡 whenever 𝑡 𝑗 ≥ 𝑡. □

Theorem 11.13. The martingale 𝑀𝑡 (𝜔) :=
∫ 𝑡
0
𝑓 (𝑠, 𝜔)𝑑𝑊𝑠 (𝜔) satisfies Doob’s martingale inequality and

it holds that
𝑃

(
sup
𝑠≤𝑡
|𝑀𝑠 | ≥ 𝜆

)
≤ 1

𝜆2
E

∫ 𝑡

0

𝑓 (𝑠, 𝜔)2𝑑𝑠.

Proof. The result combines Doob’s martingale inequality (Theorem 8.23) and Itō’s isometry, Corollary 11.8.
□

11.5 problems

Exercise 11.1. Use simulations to verify that
∑𝑛
𝑖=1

(
𝑊𝑡𝑖 −𝑊𝑡𝑖−1

)2 ∼ N (
𝑇, 2

∑𝑛
𝑖=1 (𝑡𝑖 − 𝑡𝑖−1)2

) D−−→ 𝑇 .

Exercise 11.2. Show that E
(
𝑊3
𝑡

��F𝑠 ) = 𝑊3
𝑠 + (𝑠 − 𝑡)𝑊𝑠 , so that𝑊3

𝑡 is not a martingale.

Exercise 11.3 (Integration by parts). Show that
∫ 𝑡
0
𝑠𝑑𝐵𝑠 = 𝑡𝐵𝑡 −

∫ 𝑡
0
𝐵𝑠𝑑𝑠. Discuss why integration by

parts holds true here, but not in (11.3).
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12Stochastic Calculus

12.1 ito’s lemma

Itô’s Lemma is the Taylor series extension for stochastic processes. To this end consider the stochastic
differential equation

𝑑𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡 )𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡 )𝑑𝑊𝑡 . (12.1)

However, we first have to give a meaning to (12.1).

Definition 12.1 (Strong solution). We say that (12.1) holds iff

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0

𝑏(𝑠, 𝑋𝑠)𝑑𝑠 +
∫ 𝑡

0

𝜎(𝑠, 𝑋𝑠)𝑑𝑊𝑠 , 0 ≤ 𝑡 < ∞.

𝑋𝑡 is called an Itō-process.

Lemma 12.2 (Itō’s lemma, also Itō–Döblin1 lemma). Suppose that 𝑋𝑡 satisfies (12.1) and 𝑔 is regular
(smooth) enough. Then the process

𝑌𝑡 := 𝑔(𝑡, 𝑋𝑡 )

satisfies

𝑑𝑌𝑡 =
𝜕𝑔

𝜕𝑡
(𝑡, 𝑋𝑡 )𝑑𝑡 +

𝜕𝑔

𝜕𝑥
(𝑡, 𝑋𝑡 )𝑑𝑋𝑡 +

1

2

𝜕2𝑔

𝜕𝑥2
(𝑡, 𝑋𝑡 ) (𝑑𝑋𝑡 )2 ,

where 𝑑𝑡 · 𝑑𝑡 = 𝑑𝑡 · 𝑑𝑊𝑡 = 𝑑𝑊𝑡 · 𝑑𝑡 = 0, 𝑑𝑊𝑡 · 𝑑𝑊𝑡 = 𝑑𝑡 (cf. Table 12.1). Or expanded using (12.1),

𝑑𝑌𝑡 =

(
𝜕𝑔

𝜕𝑡
(𝑡, 𝑋𝑡 ) + 𝑏(𝑡, 𝑋𝑡 )

𝜕𝑔

𝜕𝑥
(𝑡, 𝑋𝑡 ) +

1

2
𝜎(𝑡, 𝑋𝑡 )2

𝜕2𝑔

𝜕𝑥2
(𝑡, 𝑋𝑡 )

)
𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡 )

𝜕𝑔

𝜕𝑥
(𝑡, 𝑋𝑡 )𝑑𝑊𝑡 . (12.2)

Remark 12.3. Note that by Definition 12.1 the equation (12.2) reads

𝑔(𝑡, 𝑋𝑡 ) = 𝑔(0, 𝑋0) +
∫ 𝑡

0

(
𝜕𝑔

𝜕𝑡
+ 𝑏 𝜕𝑔

𝜕𝑥
+ 1

2
𝜎2 𝜕

2𝑔

𝜕𝑥2

)
𝑑𝑠 +

∫ 𝑡

0

𝜎
𝜕𝑔

𝜕𝑥
𝑑𝑊𝑠︸           ︷︷           ︸

Martingale

. (12.3)

Informal proof. By a usual Taylor-series expansion for the smooth function 𝑓 (·, :) we have that

𝑔(𝑡 + 𝑑𝑡, 𝑥 + 𝑑𝑥) =𝑔(𝑡, 𝑥)

+ 𝜕

𝜕𝑡
𝑔(𝑡, 𝑥)𝑑𝑡 + 𝜕

𝜕𝑥
𝑔(𝑡, 𝑥)𝑑𝑥

+ 1

2

(
𝜕2

𝜕𝑡2
𝑔(𝑡, 𝑥) (𝑑𝑡)2 + 2 𝜕2

𝜕𝑡𝜕𝑥
𝑔(𝑡, 𝑥)𝑑𝑡𝑑𝑥 + 𝜕2

𝜕𝑥2
𝑔(𝑡, 𝑥) (𝑑𝑥)2

)
+ 𝑜

(
𝑑𝑡2 + 𝑑𝑥2

)
.

1Wolfgang Döblin, 1915–1940
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It follows that

𝑑𝑌𝑡 = 𝑔(𝑡 + 𝑑𝑡, 𝑋𝑡 + 𝑑𝑋𝑡 ) − 𝑔(𝑡, 𝑋𝑡 )

=
𝜕

𝜕𝑡
𝑔(𝑡, 𝑋𝑡 )𝑑𝑡 +

𝜕

𝜕𝑥
𝑔(𝑡, 𝑋𝑡 )𝑑𝑋𝑡

+ 1

2

𝜕2

𝜕𝑥2
𝑔(𝑡, 𝑋𝑡 ) (𝑑𝑋𝑡 )2 + 𝑜

(
(𝑑𝑡)2 + 𝑑𝑡𝑑𝑋𝑡 + (𝑑𝑋𝑡 )2

)
By plugging in the formula (12.1) we obtain

𝑑𝑌𝑡 =
𝜕

𝜕𝑡
𝑔(𝑡, 𝑋𝑡 )𝑑𝑡

+ 𝜕

𝜕𝑥
𝑔(𝑡, 𝑋𝑡 ) (𝑏(𝑡, 𝑋𝑡 )𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡 )𝑑𝑊𝑡 )

+ 1

2

𝜕2

𝜕𝑥2
𝑔(𝑡, 𝑋𝑡 ) (𝑏(𝑡, 𝑋𝑡 )𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡 )𝑑𝑊𝑡 )2 + 𝑜

(
(𝑑𝑡)2 + 𝑑𝑡𝑑𝑋𝑡 + (𝑑𝑋𝑡 )2

)
and after collecting terms thus

𝑑𝑌𝑡 =

(
𝜕

𝜕𝑡
𝑔(𝑡, 𝑋𝑡 ) + 𝑏(𝑡, 𝑋𝑡 )

𝜕

𝜕𝑥
𝑔(𝑡, 𝑋𝑡 ) +

1

2
𝜎(𝑡, 𝑋𝑡 )2

𝜕2

𝜕𝑥2
𝑔(𝑡, 𝑋𝑡 )

)
𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡 )

𝜕

𝜕𝑥
𝑔(𝑡, 𝑋𝑡 )𝑑𝑊𝑡︸                        ︷︷                        ︸

martingale

,

the desired result. □

Sketch of the proof. By using Taylor’s expansion we have that

𝑔(𝑡, 𝑋𝑡 ) = 𝑔(0, 𝑋0) +
∑︁
𝑗

𝑔(𝑡 𝑗+1, 𝑋𝑡 𝑗+1 ) − 𝑔(𝑡 𝑗 , 𝑋 𝑗 )︸                          ︷︷                          ︸
Δ𝑔 (𝑡 𝑗 ,𝑋 𝑗 )

= 𝑔(0, 𝑋0)

+
∑︁
𝑗

𝜕

𝜕𝑡
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) ·

(
𝑡 𝑗+1 − 𝑡 𝑗

)︸      ︷︷      ︸
=:Δ𝑡 𝑗

(12.4)

+ 𝜕

𝜕𝑥
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) ·

(
𝑋𝑡 𝑗+1 − 𝑋𝑡 𝑗

)
︸          ︷︷          ︸

=:Δ𝑋𝑡 𝑗

(12.5)

+ 1

2

∑︁
𝑗

𝜕2

𝜕𝑡2
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) ·

(
Δ𝑡 𝑗

)2 (12.6)

+ 1

2
2
∑︁
𝑗

𝜕2

𝜕𝑡𝜕𝑥
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) · Δ𝑡 𝑗Δ𝑋 𝑗 (12.7)

+ 1

2

∑︁
𝑗

𝜕2

𝜕𝑥2
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) ·

(
Δ𝑋𝑡 𝑗

)2
(12.8)

+ 𝑜
( (
Δ𝑡 𝑗

)2 + (
Δ𝑋𝑡 𝑗

)2
+ Δ𝑡 𝑗Δ𝑋𝑡 𝑗

)
.
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For the first order terms we have

(12.4) =
∑︁
𝑗

𝜕𝑔

𝜕𝑡

(
𝑡 𝑗 ,𝑋𝑡 𝑗

)
·
(
𝑡 𝑗+1 − 𝑡 𝑗

)
−−−−−→
Δ𝑡 𝑗→0

∫ 𝑡

0

𝜕𝑔

𝜕𝑡
(𝑠, 𝑋𝑠) 𝑑𝑠,

and

(12.5) =
∑︁
𝑗

𝜕𝑔

𝜕𝑥

(
𝑡 𝑗 ,𝑋𝑡 𝑗

)
·
(
𝑋𝑡 𝑗+1 − 𝑋𝑡 𝑗

)
−−−−−→
Δ𝑡 𝑗→0

∫ 𝑡

0

𝜕𝑔

𝜕𝑥
(𝑠, 𝑋𝑠) 𝑑𝑋𝑠 .

The second order terms:

(i) 𝑑𝑡2 = 0: it is evident that

(12.6) =
1

2

∑︁
𝑗

𝜕2

𝜕𝑡2
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) ·

(
Δ𝑡 𝑗

)2 −−−−−→
Δ𝑡 𝑗→0

0

(ii) 𝑑𝑡 · 𝑑𝑊 = 0: and

(12.7) = E

(∑︁
𝑗

𝜕2

𝜕𝑡𝜕𝑥
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 )Δ𝑡 𝑗Δ𝑋 𝑗

)2
=

∑︁
𝑖, 𝑗

E
𝜕2

𝜕𝑡𝜕𝑥
𝑔(𝑡𝑖 , 𝑋𝑡𝑖 )

𝜕2

𝜕𝑡𝜕𝑥
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 )Δ𝑡𝑖Δ𝑡 𝑗Δ𝑋 𝑗Δ𝑋𝑖

=
∑︁
𝑖

E

(
𝜕2

𝜕𝑡𝜕𝑥
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 )Δ𝑋𝑖

)2
· (Δ𝑡𝑖)2 −−−−−→

Δ𝑡 𝑗→0
0,

which is convergence in 𝐿2.

(iii) (𝑑𝑊)2 = 0: finally, by using (12.1),

2 · (12.8) =
∑︁
𝑗

𝜕2

𝜕𝑥2
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) ·

(
Δ𝑋𝑡 𝑗

)2
=

∑︁
𝑗

𝜕2

𝜕𝑥2
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) ·

(
𝑏 𝑗Δ𝑡 𝑗 + 𝜎𝑗Δ𝑊𝑡 𝑗

)2
=
∑︁
𝑗

𝜕2

𝜕𝑥2
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) ·

(
𝑏2𝑗

(
Δ𝑡 𝑗

)2 + 2𝑏 𝑗𝜎𝑗Δ𝑡 𝑗Δ𝑊𝑡 𝑗 + 𝜎2
𝑗

(
Δ𝑊𝑡 𝑗

)2)
=
∑︁
𝑗

𝑏2 (𝑡 𝑗 , 𝑋𝑡 𝑗 )
𝜕2

𝜕𝑥2
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) ·

(
Δ𝑡 𝑗

)2 (12.9)

+ 2
∑︁
𝑗

𝑏(𝑡 𝑗 , 𝑋𝑡 𝑗 )𝜎(𝑡 𝑗 , 𝑋𝑡 𝑗 )
𝜕2

𝜕𝑥2
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) · Δ𝑡 𝑗Δ𝑊𝑡 𝑗 (12.10)

+
∑︁
𝑗

𝜎2 (𝑡 𝑗 , 𝑋𝑡 𝑗 )
𝜕2

𝜕𝑥2
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) ·

(
Δ𝑊𝑡 𝑗

)2
. (12.11)

Now (12.9) −−−−−→
Δ𝑡 𝑗→0

0 in the same way as (12.6) above and (12.10) −−−−−→
Δ𝑡 𝑗→0

0 as (12.7).

It remains to verify that

(12.11) =
∑︁
𝑗

𝜎2 (𝑡 𝑗 , 𝑋𝑡 𝑗 )
𝜕2

𝜕𝑥2
𝑔(𝑡 𝑗 , 𝑋𝑡 𝑗 ) ·

(
Δ𝑊𝑡 𝑗

)2
−−−−−→
Δ𝑡 𝑗→0

∫ 𝑡

0

𝜎2 (𝑠, 𝑋𝑠)
𝜕2

𝜕𝑥2
𝑔(𝑠, 𝑋𝑠)𝑑𝑠 in 𝐿2.
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To this end define 𝛼(𝑡, 𝑥) := 𝜎2 (𝑡, 𝑥) 𝜕2
𝜕𝑥2

𝑔(𝑡, 𝑥) with 𝛼𝑡 := 𝛼(𝑡, 𝑋𝑡 ). Then the equation in the latter
display rewrites as

E

(∑︁
𝑗

𝛼𝑡 𝑗 ·
(
Δ𝑊𝑡 𝑗

)2
−

∑︁
𝑖

𝛼𝑡𝑖Δ𝑡𝑖

)2
= E

(∑︁
𝑗

𝛼𝑡 𝑗 ·
((
Δ𝑊𝑡 𝑗

)2
− Δ𝑡 𝑗

))2
=

∑︁
𝑖, 𝑗

E𝛼𝑡𝑖𝛼𝑡 𝑗

( (
Δ𝑊𝑡𝑖

)2 − Δ𝑡𝑖) · ((Δ𝑊𝑡 𝑗 )2 − Δ𝑡 𝑗 ) . (12.12)

The summands vanish for 𝑖 ≠ 𝑗 by independence and as E (Δ𝑊𝑡 )2 = Δ𝑡, and thus

(12.12) =
∑︁
𝑖

E𝛼2
𝑡𝑖

( (
Δ𝑊𝑡𝑖

)2 − Δ𝑡𝑖)2 =
∑︁
𝑖

E𝛼2
𝑡𝑖

( (
Δ𝑊𝑡𝑖

)4 − 2Δ𝑡𝑖Δ𝑊𝑡𝑖 + (
Δ𝑡 𝑗

)2)
=

∑︁
𝑖

E𝛼2
𝑡𝑖

(
3 (Δ𝑡𝑖)2 − 2 (Δ𝑡𝑖)2 +

(
Δ𝑡 𝑗

)2)
= 2

∑︁
𝑖

E𝛼2
𝑡𝑖
(Δ𝑡𝑖)2 −−−−−→

Δ𝑡 𝑗→0
0,

by (5.13), as desired.

□

12.2 applications of ito’s lemma

In what follows we shall typically consider the process 𝑋𝑡 = 𝑊𝑡 , i.e.,

𝑑𝑊𝑡 = 0︸︷︷︸
𝑏

𝑑𝑡 + 1︸︷︷︸
𝜎

𝑑𝑊𝑡

and apply (12.2). Following (12.2), the stochastic process

𝑌𝑡 := 𝑔(𝑡,𝑊𝑡 )

satisfies the differential equation

𝑑𝑌𝑡 =
𝜕𝑔

𝜕𝑡
(𝑡,𝑊𝑡 )𝑑𝑡 +

1

2

𝜕2𝑔

𝜕𝑥2
(𝑡,𝑊𝑡 )𝑑𝑡 +

𝜕𝑔

𝜕𝑥
(𝑡,𝑊𝑡 )𝑑𝑊𝑡 . (12.13)

Example 12.4. Let 𝑔(𝑡, 𝑥) = 1
2𝑥

2 and 𝑏 = 0, 𝜎 = 1, then 𝑋𝑡 = 𝑊𝑡 and

1

2
𝑊2
𝑡 = 𝑔(𝑡, 𝑋𝑡 ) = 𝑊0 +

∫ 𝑡

0

0 + 0 · 𝜕𝑔
𝜕𝑥
+ 1

2
𝑑𝑠 +

∫ 𝑡

0

𝑊𝑠𝑑𝑊𝑠 = 𝑊0 +
𝑡

2
+

∫ 𝑡

0

𝑊𝑠𝑑𝑊𝑠 .

This is the result obtained in (11.3).

Theorem 12.5 (Integration by parts). The usual formula (it is essential that 𝑓 does not depend on 𝜔)

𝑊𝑡 · 𝑓 (𝑡) =
∫ 𝑡

0

𝑊𝑠 𝑑𝑓 (𝑠) +
∫ 𝑡

0

𝑓 (𝑠) 𝑑𝑊𝑠 .

Proof. Let 𝑔(𝑡, 𝑥) = 𝑥 · 𝑓 (𝑡). Then 𝜕𝑔

𝜕𝑡
= 𝑥 𝑓 ′ (𝑡), 𝜕𝑔

𝜕𝑥
= 𝑓 and 𝜕2𝑔

𝜕𝑥2
= 0. Then, by (12.3) with 𝑏 = 0 and

𝜎 = 1,

𝑊𝑡 · 𝑓 (𝑡) = 0 +
∫ 𝑡

0

𝑊𝑠 𝑓
′ (𝑠) 𝑑𝑠 +

∫ 𝑡

0

𝑓 (𝑠)𝑑𝑊𝑠 ,

from which the assertion follows. □
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12.3 further martingales 109

Example 12.6 (Geometric Brownian motion). Consider the process 𝑆𝑡 = 𝑆0 exp
((
𝜇 − 𝜎2

2

)
𝑡 + 𝜎𝑊𝑡

)
.

Then it holds that
𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝑊𝑡 .

Indeed, choose 𝑔(𝑡, 𝑥) := exp
((
𝜇 − 𝜎2

2

)
𝑡 + 𝜎𝑥

)
and apply (12.2) to the process

𝑑𝑊𝑡 = 0︸︷︷︸
𝑏

𝑑𝑡 + 1︸︷︷︸
𝜎

𝑑𝑊𝑡 .

12.3 further martingales

Lemma 12.7. For 𝑔 smooth enough define 𝑎(𝑡, 𝑥) :=
(
𝜕
𝜕𝑡
+ 1

2
𝜕2

𝜕𝑥2

)
𝑔(𝑡, 𝑥), then

𝑀𝑡 := 𝑔(𝑡,𝑊𝑡 ) −
∫ 𝑡

0

𝑎(𝑠,𝑊𝑠)𝑑𝑠

is a martingale.

Proof. Put 𝑏 = 0 and 𝜎 = 1 in (12.3), then

𝑔(𝑡,𝑊𝑡 ) = 𝑔(0,𝑊0) +
∫ 𝑡

0

(
𝜕𝑔

𝜕𝑡
+ 1

2

𝜕2𝑔

𝜕𝑥2

)
𝑑𝑠 +

∫ 𝑡

0

𝜕𝑔

𝜕𝑥
𝑑𝑊𝑠 ,

thus

𝑔(𝑡,𝑊𝑡 ) −
∫ 𝑡

0

(
𝜕𝑔

𝜕𝑡
+ 1

2

𝜕2𝑔

𝜕𝑥2

)
𝑑𝑠 = 𝑔(0,𝑊0) +

∫ 𝑡

0

𝜕𝑔

𝜕𝑥
𝑑𝑊𝑠

and the right hand side is a martingale by Theorem 11.12. Thus the result. □

Corollary 12.8. If
(
𝜕
𝜕𝑡
+ 1

2
𝜕2

𝜕𝑥2

)
𝑔(𝑡, 𝑥) = 0, then

𝑀𝑡 := 𝑔(𝑡,𝑊𝑡 )

is a martingale.

Example 12.9 (Wald’s martingale). The process

𝑀𝑡 := exp

(
𝜎𝑊𝑡 −

1

2
𝜎2 𝑡

)
(12.14)

is a martingale.

Theorem 12.10 (Novikov-Condition). Suppose that E exp
(
1
2

∫ 𝑡
0
𝜎(𝑢)2𝑑𝑢

)
< ∞, then the stochastic

process

𝑀𝑡 := exp

(∫ 𝑡

0

𝜎(𝑢)𝑑𝑊𝑢 −
1

2

∫ 𝑡

0

𝜎(𝑢)2𝑑𝑢
)

(12.15)

is a martingale. The process 𝑀𝑡 is called stochastic exponential or Doléans-Dade exponential of the
process

∫ 𝑡
0
𝜎(𝑢)𝑑𝑊𝑢.
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Proof. For 𝑠 < 𝑡 it holds that

E

(
exp

(∫ 𝑡

0

𝜎(𝑢)𝑑𝑊𝑢
)����F𝑠) = E

(
exp

(∫ 𝑠

0

𝜎(𝑢)𝑑𝑊𝑢
)
· exp

(∫ 𝑡

𝑠

𝜎(𝑢)𝑑𝑊𝑢
)����F𝑠)

= exp

(∫ 𝑠

0

𝜎(𝑢)𝑑𝑊𝑢
)
· E

(
exp

(∫ 𝑡

𝑠

𝜎(𝑢)𝑑𝑊𝑢
)����F𝑠)

= exp

(∫ 𝑠

0

𝜎(𝑢)𝑑𝑊𝑢
)
· E exp

(∫ 𝑡

𝑠

𝜎(𝑢)𝑑𝑊𝑢
)
,

as the increments 𝑑𝑊𝑢 do not depend on F𝑠 for 𝑢 ≥ 𝑠. Recall now from Proposition ?? that
∫ 𝑡
𝑠
𝜎(𝑢)𝑑𝑊𝑢 ∼

N
(
0,

∫ 𝑡
𝑠
𝜎(𝑢)2𝑑𝑢

)
is normally distributed with mean 0. The expected value of the log-normal random

variable follows from (5.18) (with 𝜇 = 0 and 𝑛 = 1) and

E

(
exp

(∫ 𝑡

0

𝜎(𝑢)𝑑𝑊𝑢
)����F𝑠) = exp

(∫ 𝑠

0

𝜎(𝑢)𝑑𝑊𝑢
)
· exp

(
1

2

∫ 𝑡

𝑠

𝜎(𝑢)2𝑑𝑢
)
.

Multiply with exp
(
− 1

2

∫ 𝑡
0
𝜎(𝑢)2𝑑𝑢

)
and it follows that

E

©­­­­­«
exp

(∫ 𝑡

0

𝜎(𝑢)𝑑𝑊𝑢 −
1

2

∫ 𝑡

0

𝜎(𝑢)2𝑑𝑢
)

︸                                              ︷︷                                              ︸
𝑀𝑡

����������F𝑠
ª®®®®®¬

= exp

(∫ 𝑠

0

𝜎(𝑢)𝑑𝑊𝑢 −
1

2

∫ 𝑠

0

𝜎(𝑢)2𝑑𝑢
)

︸                                              ︷︷                                              ︸
𝑀𝑠

· exp
(
1

2

∫ 𝑡

𝑠

𝜎(𝑢)2𝑑𝑢 − 1

2

∫ 𝑡

𝑠

𝜎(𝑢)2𝑑𝑢
)

︸                                                ︷︷                                                ︸
=1

,

which is the assertion. □

12.4 ito’s lemma in higher dimensions

Theorem 12.11 (Multi-dimensional Itō formula). Let 𝑌 (𝑡, 𝜔) := 𝑔(𝑡, 𝑋𝑡 ), where 𝑑𝑋𝑡 = 𝑏𝑑𝑡 + 𝜎 · 𝑑𝑊𝑡 , i.e.,

©­­­«
𝑑𝑋
(1)
𝑡
...

𝑑𝑋
(𝑛)
𝑡

ª®®®¬ =
©­­«
𝑏1 (𝑡, 𝑋𝑡 )

...

𝑏𝑛 (𝑡, 𝑋𝑡 )

ª®®¬ 𝑑𝑡 +
©­­«
𝜎1,1 (𝑡, 𝑋𝑡 ) . . . 𝜎1,𝑚 (𝑡, 𝑋𝑡 )

...
...

𝜎𝑛,1 (𝑡, 𝑋𝑡 ) . . . 𝜎𝑛,𝑚 (𝑡, 𝑋𝑡 )

ª®®¬ ·
©­­­«
𝑑𝑊

(1)
𝑡
...

𝑑𝑊
(𝑚)
𝑡

ª®®®¬ ,
then

𝑑𝑌𝑘 =
𝜕𝑔𝑘

𝜕𝑡
(𝑡, 𝑋𝑡 )𝑑𝑡 +

∑︁
𝑖

𝜕𝑔𝑘

𝜕𝑥𝑖
(𝑡, 𝑋𝑡 )𝑑𝑋𝑖 +

1

2

∑︁
𝑖, 𝑗

𝜕2𝑔𝑘

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝑡, 𝑋𝑡 )𝑑𝑋𝑖𝑑𝑋 𝑗 ,

where 𝑑𝑊 (𝑖)𝑡 𝑑𝑊
(𝑡 )
𝑡 = 𝛿𝑖, 𝑗𝑑𝑡, etc. Table 12.1 collects the rules for Itō’s calculus in higher dimensions.

Proof. The proof of Itō’s lemma (Lemma 12.2) applies, but it remains to be shown that 𝑑𝑊 (1)𝑡 𝑑𝑊
(2)
𝑡 = 0,
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12.5 problems 111

𝑑𝑡 𝑑𝑊
(1)
𝑡 𝑑𝑊

(2)
𝑡

𝑑𝑡 0 0 0

𝑑𝑊
(1)
𝑡 0 𝑑𝑡 0

𝑑𝑊
(2)
𝑡 0 0 𝑑𝑡

Table 12.1: Itō calculus for Brownian motion including higher dimensions

i.e., we claim that
∫ 𝑡
0
𝑓 𝑑𝑊

(1)
𝑠 𝑑𝑊

(2)
𝑠 = 0. Let 𝜙𝑛 be simple. Then

E

(∫ 𝑡

0

𝜙𝑛𝑑𝑊
(1)
𝑡 𝑑𝑊

(2)
𝑡

)2
= E

(∑︁
𝑖

𝑒𝑡𝑖

(
𝑊
(1)
𝑡𝑖+1 −𝑊

(1)
𝑡𝑖

) (
𝑊
(2)
𝑡𝑖+1 −𝑊

(2)
𝑡𝑖

))2
= E

∑︁
𝑖, 𝑗

𝑒𝑡𝑖 𝑒𝑡 𝑗

(
𝑊
(1)
𝑡𝑖+1 −𝑊

(1)
𝑡𝑖

) (
𝑊
(2)
𝑡𝑖+1 −𝑊

(2)
𝑡𝑖

) (
𝑊
(1)
𝑡 𝑗+1 −𝑊

(1)
𝑡 𝑗

) (
𝑊
(2)
𝑡 𝑗+1 −𝑊

(2)
𝑡 𝑗

)
= E

∑︁
𝑖

𝑒2𝑡𝑖

(
𝑊
(1)
𝑡𝑖+1 −𝑊

(1)
𝑡𝑖

)2 (
𝑊
(2)
𝑡𝑖+1 −𝑊

(2)
𝑡𝑖

)2
=

∑︁
𝑖

E 𝑒2𝑡𝑖 (𝑡𝑖+1 − 𝑡𝑖)
2 −−−−−→

Δ𝑡 𝑗→0
0,

thus the assertion. □

12.5 problems

Exercise 12.1. Use 𝑔(𝑡, 𝑥) := 𝑥2 − 𝑡 to show that𝑊2
𝑡 − 𝑡 is a martingale (and𝑊2

𝑡 = 𝑡 + 2
∫ 𝑡
0
𝑊𝑠𝑑𝑊𝑠).

Example 12.12. Use 𝑔(𝑡, 𝑥) :=
(
𝑥2 − 𝑡

)2 to show that
(
𝑊2
𝑡 − 𝑡

)2 − 4 ∫ 1

0
𝑊2
𝑠 𝑑𝑠 is a martingale.

Exercise 12.2. Verify that the exponential martingale (12.14) is a martingale for every 𝜎 ∈ R fixed.

Example 12.13. Define the stochastic processes

𝑌𝑡 :=

∫ 𝑡

0

𝜎(𝑢)𝑑𝑊𝑢 and 𝑍𝑡 := 𝑓 (𝑡, 𝑌𝑡 )

with 𝑓 (𝑡, 𝑥) := exp
(
𝑥 − 1

2

∫ 𝑡
0
𝜎(𝑢)2𝑑𝑢

)
. Use Itō’s formula to show that 𝑑𝑍𝑡 = 𝑍𝑡𝜎𝑡𝑑𝑊𝑡 , i.e., 𝑍𝑡 =∫ 𝑡

0
𝑍𝑠𝜎𝑠𝑑𝑊𝑠 is a martingale. Use this result to deduce (12.15).

Exercise 12.3 (Depreciation). Assume that the profit of an asset evolves according a geometric Brownian
motion. The discounted value of the asset, which is in use up to time 𝑇 , is E

∫ 𝑇
0
𝑒−𝑟𝑡𝑒−(𝜇−𝜎

2/2)𝑡+𝜎𝐵𝑡 𝑑𝑡 =∫ 𝑇
0
𝑒−(𝑟+𝜇)𝑡 = 1

𝑟+𝜇
(
1 − 𝑒−(𝑟+𝜇)𝑇

)
. Given that the time of a failure is random as well, with exponential

distribution, then the time value of the asset is

E

∫ ∞

0

𝜆𝑒−𝜆𝑡
∫ 𝑡

0

𝑒−𝑟𝑡
′
𝑒−(𝜇−𝜎

2/2)𝑡 ′+𝜎𝐵𝑡′ 𝑑𝑡 =
1

𝑟 + 𝜇 −
𝜆

(𝑟 + 𝜇) (𝑟 + 𝜇 + 𝜆) =
1

𝑟 + 𝜇 + 𝜆 .
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13Stochastic Differential Equations

13.1 linear equation examples

Definition 13.1. A (arithmetic) Brownian motion (ABM) with drift 𝜇 is the solution of the SDE
𝑑𝑆𝑡 = 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 .

Lemma 13.2. The explicit solution of the Brownian motion with drift is 𝑆𝑡 = 𝑆0 + 𝜇 𝑡 + 𝜎𝑊𝑡 .

Proof. Note that 𝑆𝑡 = 𝑔(𝑡,𝑊𝑡 ) for the function 𝑔(𝑡, 𝑥) := 𝑆0 + 𝜇 𝑡 + 𝜎 𝑥. The Employing (12.13) (Ito’s
lemma) we see that 𝑑𝑆𝑡 = 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 , as required. □

Note, that the pdf of the marginal distribution 𝑆𝑡 is 𝑆𝑡 ∼ N
(
𝑆0 + 𝜇 𝑡, 𝑡𝜎2

)
so that

𝑃 (𝑆𝑡 ∈ 𝑑𝑦) =
1

√
2𝜋𝑡𝜎

𝑒
− 1

2𝑡𝜎2 (𝑦−𝑆0−𝜇𝑡 )2𝑑𝑦.

Definition 13.3. A geometric Brownian motion (GBM) with drift 𝜇 is the solution of the SDE 𝑑𝑆𝑡 =

𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 .

Lemma 13.4. The explicit solution of the GBM is

𝑆𝑡 = 𝑆0 · 𝑒
(
𝜇− 𝜎2

2

)
𝑡+𝜎𝑊𝑡

= 𝑆0 𝑒
𝜇 𝑡 · exp

(
𝜎𝑊𝑡 −

1

2
𝜎2 𝑡

)
.︸                      ︷︷                      ︸

exponential martingale, (12.14)

The corresponding marginal pdf is

𝑃 (𝑆𝑡 ∈ 𝑑𝑦) =
1

𝜎 𝑦
√
2𝜋𝑡

𝑒
− 1

2𝜎2𝑡

(
log

𝑦

𝑆0
−
(
𝜇− 𝜎2

2

)
𝑡

)2
𝑑𝑦. (13.1)

Proof. The Employing (12.13) to the function 𝑔(𝑡, 𝑥) := 𝑆0 · 𝑒
(
𝜇− 𝜎2

2

)
𝑡+𝜎 𝑥 .

As for the marginal density consider the cdf

𝑃(𝑆𝑡 ≤ 𝑦) = 𝑃
(
𝑊𝑡 ≤

1

𝜎

(
ln

𝑦

𝑆0
−

(
𝜇 − 1

2
𝜎2

)
𝑡

))
= Φ

(
1

𝜎
√
𝑡

(
ln

𝑦

𝑆0
−

(
𝜇 − 1

2
𝜎2

)
𝑡

))
,

where Φ is the cdf of the standard normal distribution. The density (13.1) follows by differentiating. □

13.2 the general, one-dimensional linear equation

The Black–Scholes differential equation (17.1) (also (12.1)) is linear. The general linear stochastic
differential equation driven by a Wiener process𝑊𝑡 is

𝑑𝑆𝑡 =
(
𝑟 (𝑡)𝑆𝑡 + 𝑎(𝑡)

)
𝑑𝑡 +

(
𝜎(𝑡)𝑆𝑡 + 𝑏(𝑡)

)
𝑑𝑊𝑡 . (13.2)

113



114 stochastic differential equations

Its solution (cf. Karatzas and Shreve [10, Section 5.6]) can be given explicitly. To this end define the
auxiliary quantities

𝜁𝑡 :=

∫ 𝑡

0

𝜎(𝑢)𝑑𝑊𝑢 −
1

2

∫ 𝑡

0

𝜎(𝑢)2𝑑𝑢 and

𝑍𝑡 := exp

(
𝜁𝑡 +

∫ 𝑡

0

𝑟 (𝑢)𝑑𝑢
)
.

Then
𝑆𝑡 = 𝑍𝑡

(
𝑆0 +

∫ 𝑡

0

1

𝑍𝑢

(
𝑎(𝑢) − 𝜎(𝑢)𝑏(𝑢)

)
𝑑𝑢 +

∫ 𝑡

0

𝑏(𝑢)
𝑍𝑢

𝑑𝑊𝑢

)
. (13.3)

In particular, the solution of
𝑑𝑆𝑡 = 𝑟 (𝑡)𝑆𝑡𝑑𝑡 + 𝜎(𝑡)𝑆𝑡𝑑𝑊𝑡

is
𝑆𝑡 = 𝑆0 · exp

(∫ 𝑡

0

𝑟 (𝑢) − 1

2
𝜎(𝑢)2𝑑𝑢 +

∫ 𝑡

0

𝜎(𝑢)𝑑𝑊𝑢
)
.

Pham [19]

13.3 problems

Exercise 13.1. Discuss (13.3) in the non-stochastic case.

Exercise 13.2. Verify (13.1) explicitly.
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14Kolmogorov Differential Equations

14.1 backward equation

Consider the stochastic process, or Kolmogorov–Feller diffusion process

𝑑𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡 )𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡 )𝑑𝑊𝑡 , (14.1)
𝑋0 = 𝑥0.

Define the linear operator

(A 𝑔) (𝑡, 𝑥) := lim
Δ𝑡↘0

1

Δ𝑡
E

(
𝑔(𝑡 + Δ𝑡, 𝑋𝑡+Δ𝑡 ) − 𝑔(𝑡, 𝑋𝑡 ) | 𝑋𝑡 = 𝑥

)
. (14.2)

We shall often write E𝑡 ,𝑥 𝑓 (𝑋𝑇 ) := E ( 𝑓 (𝑋𝑇 ) | 𝑋𝑡 = 𝑥) and E𝑡 ,𝑋𝑡 𝑓 (𝑋𝑇 ) := E ( 𝑓 (𝑋𝑇 ) | F𝑡 ) for 𝑡 ≤ 𝑇 .

Lemma 14.1. We have that

(A 𝑔) (𝑡, 𝑥) = 𝜕

𝜕𝑡
𝑔(𝑡, 𝑥) + 𝑏(𝑡, 𝑥) 𝜕

𝜕𝑥
𝑔(𝑡, 𝑥) + 1

2
𝜎(𝑡, 𝑥)2 𝜕

2

𝜕𝑥2
𝑔(𝑡, 𝑥).

Proof. We have from Itō’s representation (12.2) that

𝑔(𝑡 + Δ𝑡, 𝑋𝑡+Δ𝑡 ) = 𝑔(𝑡, 𝑥) (14.3)

+
(
𝜕𝑔

𝜕𝑡
(𝑡, 𝑋𝑡 ) + 𝑏(𝑡, 𝑋𝑡 )

𝜕𝑔

𝜕𝑥
(𝑡, 𝑋𝑡 ) +

1

2
𝜎(𝑡, 𝑋𝑡 )2

𝜕2𝑔

𝜕𝑥2
(𝑡, 𝑋𝑡 )

)
Δ𝑡

+ 𝜎(𝑡, 𝑋𝑡 )
𝜕𝑔

𝜕𝑥
(𝑡, 𝑋𝑡 )Δ𝑊𝑡 .

The result follows by taking expectations and by sending Δ𝑡 → 0. □

Remark 14.2. The operator A is a linear differential operator.

Proposition 14.3 (Dynkin’s formula). We have

E𝑥 𝑔(𝜏, 𝑋𝜏) = 𝑔(𝑡, 𝑥) +
∫ 𝜏

0

E𝑥 (A 𝑔) (𝑠, 𝑋𝑠)𝑑𝑠.

Proof. The result follows by integrating the expectation of (14.3). □

Definition 14.4. It is often useful to decompose the operator A = 𝜕
𝜕𝑡
+ 𝐺𝑥 .

Theorem 14.5 (Kolmogorov backward equation). The function

𝑢(𝑡, 𝑥) := E
(
𝑓 (𝑋𝑇 ) | 𝑋𝑡 = 𝑥

)
(14.4)

satisfies the Kolmogorov backward equation

−𝑢𝑡 = 𝐺𝑥𝑢 or A 𝑢 = 0 and (14.5)
𝑢(𝑇, 𝑥) = 𝑓 (𝑥) (terminal condition at 𝑡 = 𝑇).
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116 kolmogorov differential equations

Proof. We have from Ito’s Lemma that

𝑢(𝑡 + Δ𝑡, 𝑋𝑡+Δ𝑡 ) = 𝑢(𝑡, 𝑥) (14.6)

+
(
𝜕𝑢

𝜕𝑡
(𝑡, 𝑋𝑡 ) + 𝑏(𝑡, 𝑋𝑡 )

𝜕𝑢

𝜕𝑥
(𝑡, 𝑋𝑡 ) +

1

2
𝜎(𝑡, 𝑋𝑡 )2

𝜕2𝑢

𝜕𝑥2
(𝑡, 𝑋𝑡 )

)
Δ𝑡

+ 𝜎(𝑡, 𝑋𝑡 )
𝜕𝑢

𝜕𝑥
(𝑡, 𝑋𝑡 )Δ𝑊𝑡 .

Taking expectations with respect to E (· | 𝑋𝑡 = 𝑥) gives

E [𝑢(𝑡 + Δ𝑡, 𝑋𝑡+Δ𝑡 ) | 𝑋𝑡 = 𝑥] = 𝑢(𝑡, 𝑥) + Δ𝑡 ·A 𝑢(𝑡, 𝑥). (14.7)

From the Markov property we deduce for the particular function (14.4) that

E [𝑢(𝑡 + Δ𝑡, 𝑋𝑡+Δ𝑡 ) | 𝑋𝑡 = 𝑥] = E
[
E

(
𝑓 (𝑋𝑇 ) | 𝑋𝑡+Δ𝑡

)
| 𝑋𝑡 = 𝑥

]
= E ( 𝑓 (𝑋𝑇 ) | 𝑋𝑡 = 𝑥)
= 𝑢(𝑡, 𝑥)

and hence A 𝑢 = 0 follows from (14.7), the result. □

Remark 14.6. Denote by 𝑝(𝑥, 𝑟; 𝑦, 𝑡) the probability to be in 𝑦 at time 𝑡, given that the process is in 𝑥 at
time 𝑟 . For a time homogeneous process this density does not depend on 𝑡, i.e.,

𝑃𝑥 (𝑋𝑡+Δ𝑡 ∈ 𝑑𝑦 | 𝑋𝑡 = 𝑥) = 𝑝(Δ𝑡; 𝑥, 𝑦) 𝑑𝑦. (14.8)

Then, for 𝑦 fixed, the density (𝑡, 𝑥) ↦→ 𝑝(𝑡; 𝑥, 𝑦) satisfies the backward equation (14.5).

Corollary 14.7. For every 𝑦 fixed it holds that

𝜕

𝜕𝑡
𝑝(𝑡; 𝑥, 𝑦) = 𝐺𝑥 𝑝(𝑡; 𝑥, 𝑦).

Proof. Consider the function 𝑓𝐵 (𝑥) := 1
𝜆(𝐵) 1𝐵 (𝑥) with 𝑦 ∈ 𝐵. Then

𝑢(𝑡, 𝑥) = E ( 𝑓𝐵 (𝑋𝑇 ) | 𝑋𝑡 = 𝑥) =
𝑃 (𝑋𝑇 ∈ 𝐵 | 𝑋𝑡 = 𝑥)

𝜆(𝐵) −−−−−−−→
𝜆(𝐵)→0

𝑝(𝑇 − 𝑡; 𝑥, 𝑦),

as the process is time homogeneous. The result follows from (14.5), as the time 𝑡 reverses. □

14.2 forward equation

Proposition 14.8. The adjoint (or conjugate) of 𝐺𝑥 is the operator

𝐺∗𝑥 𝑓 = −
𝜕

𝜕𝑥

(
𝑏(𝑡, 𝑥) 𝑓 (𝑡, 𝑥)

)
+ 1

2

𝜕2

𝜕𝑥2

(
𝜎(𝑡, 𝑥)2 𝑓 (𝑡, 𝑥)

)
.

Theorem 14.9 (Kolmogorov forward equation, Fokker–Planck equation; cf. Corollary 14.7). For every 𝑥
fixed it holds that

𝜕

𝜕𝑡
𝑝(𝑡; 𝑥, 𝑦) = 𝐺∗𝑦 𝑝(𝑡; 𝑥, 𝑦),

𝑝(0, 𝑥, 𝑦) = 𝛿𝑥 (𝑦) initial condition at 𝑡 = 0.

rough draft: do not distribute



14.2 forward equation 117

Proof. Consider again 𝑢(𝑡, 𝑥) := E ( 𝑓 (𝑋𝑇 ) | 𝑋𝑡 = 𝑥). As 𝑥 is fixed we abbreviate 𝑝(𝑡, 𝑦) := 𝑝(𝑡, 𝑥, 𝑦) so
that

E 𝑓 (𝑋𝑇 ) = EE [ 𝑓 (𝑋𝑇 ) | 𝑋𝑡 ] = E 𝑢(𝑡, 𝑋𝑡 ) =
∫
R
𝑢(𝑡, 𝑦)𝑃𝑥 (𝑋𝑡 ∈ 𝑑𝑦) =

∫
R
𝑢(𝑡, 𝑦)𝑝(𝑡, 𝑦)𝑑𝑦,

which does not depend on time.
Differentiate the latter to get with the backward equation (14.5)

0 =

∫ ∞

−∞

(
𝜕

𝜕𝑡
𝑢(𝑡, 𝑦)

)
𝑝(𝑡, 𝑦) + 𝑢(𝑡, 𝑦) 𝜕

𝜕𝑡
𝑝(𝑡, 𝑦) 𝑑𝑦

= −
∫ ∞

−∞

(
𝐺𝑦𝑢(𝑡, 𝑦)

)
𝑝(𝑡, 𝑦) 𝑑𝑦 +

∫ ∞

−∞
𝑢(𝑡, 𝑦) 𝜕

𝜕𝑡
𝑝(𝑡, 𝑦) 𝑑𝑦

= −
∫ ∞

−∞
𝑢(𝑡, 𝑦)𝐺∗𝑦 𝑝(𝑡, 𝑦) 𝑑𝑦 +

∫ ∞

−∞
𝑢(𝑡, 𝑦) 𝜕

𝜕𝑡
𝑝(𝑡, 𝑦)𝑑𝑦

=

∫ ∞

−∞
𝑢(𝑡, 𝑦)

(
𝜕

𝜕𝑡
𝑝(𝑡, 𝑦) − 𝐺∗𝑦 𝑝(𝑡, 𝑦)

)
𝑑𝑦.

As 𝑓 (·) was arbitrary, the assertion follows. □

14.2.1 Scaled Brownian motion

The process 𝑑𝑋𝑡 = 𝜎 𝑑𝑊𝑡 has the probabilities 𝑝(𝑡, 𝑦) = 1

𝜎
√
2𝜋𝑡

𝑒
− 1

2𝜎2𝑡
𝑦2 which satisfies 𝑝𝑡 = 1

2𝜎
2𝑝𝑦𝑦 .

14.2.2 Brownian motion with drift

The process 𝑑𝑋𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 has the probabilities 𝑝(𝑡, 𝑦) = 1

𝜎
√
2𝜋𝑡

𝑒
− 1

2𝜎2𝑡
(𝑦−𝜇𝑡−𝑥0 )2 which satisfy

𝑝𝑡 = −𝜇 𝑝𝑦 +
1

2
𝜎2 𝑝𝑦𝑦 .

14.2.3 Geometric Brownian motion with drift

The process 𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 +𝜎𝑋𝑡𝑑𝑊𝑡 has the probabilities 𝑝(𝑡, 𝑦) = 1

𝑦𝜎
√
2𝜋𝑡

𝑒
− 1

2𝜎2𝑡

(
ln

𝑦

𝑥0
−(𝜇− 1

2
𝜎2 )𝑡

)2
which

satisfy

𝑝𝑡 = −
(
𝜇 − 𝜎2) 𝑝 − (

𝜇 − 2𝜎2) 𝑦𝑝𝑦 + 𝜎2

2
𝑦2𝑝𝑦𝑦 .
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15Cox-Ross-Rubinstein-Model, or Binomial Model

We start with the Bernoulli model, which we extend to the binomial model, cf. Cox et al. [3]. The binomial
model extends asymptotically to the log-normal distribution, describing the evolution of the stock under
the risk free measure.
Remark 15.1. It is common in financial mathematics to distinguish the interest rate and the risk free interest
rate. We follow this practice and denote the force of interest by 𝑟 ( 1

1+𝑖 = 𝑒
−𝑟 , instead of 𝛿).

15.1 the bernoulli model

We motivate the idea of hedging with the following example.

Example 15.2. Consider a (simplified) stock which evolves over time (cf. Figure 15.1). Its initial price
(time 𝑡 = 0) is 𝑆0, and the price 𝑆𝑡 at the later time (𝑡) randomly increases to 𝑆up or decreases to 𝑆down.
Assume we are interested in a contract with the following characteristics:

⊲ if 𝑆𝑡 = 𝑆up, then we expect a payment of 𝑉up

⊲ in case the price decreases to 𝑆𝑡 = 𝑆down, then we expect 𝑉down.

How much should we pay for a contract, which guarantees these payments? What is a fair price?

𝑆0

𝑆up

𝑆down

𝑝up

𝑝down

𝑉up

𝑉down

Figure 15.1: Bernoulli setting

We intend to hedge the contract. That is, we
buy 𝑦0 stocks and invest an amount of 𝑥0 in money
(bond) which is available at an interest rate of 𝑖.
The idea of hedging means to adjust the numbers
𝑥0 and 𝑦0 in such way, so that the claim 𝑉 (𝑆) ={
𝑉up if 𝑆 = 𝑆up

𝑉down if 𝑆 = 𝑆down
is available at the end without

accepting/ facing any risk. As a buyer, we intend
to accept a price which represents a minimum of possible hedging strategies. To this end consider the
optimization problem

minimize (in 𝑥0 ,𝑦0 ) 𝑥0 + 𝑦0 𝑆0
subject to 𝑥0 (1 + 𝑖) + 𝑦0 𝑆up ≥ 𝑉up, (15.1)

𝑥0 (1 + 𝑖) + 𝑦0 𝑆down ≥ 𝑉down.

Remark 15.3. Note, that (15.1) does not make any assumption an any transition probability from 𝑆0 to 𝑆up
or 𝑆down.

To solve the linear optimization problem (15.1) consider the Lagrangian (cf. (4.4))

𝐿 (𝑥0, 𝑦0; 𝑝up, 𝑝down) =


𝑥0 + 𝑦0 𝑆0
−𝑝up

(
𝑥0 +

𝑦0 𝑆up−𝑉up
1+𝑖

)
−𝑝down

(
𝑥0 + 𝑦0 𝑆down−𝑉down

1+𝑖

)
,
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120 cox-ross-rubinstein-model, or binomial model

where 𝑝up and 𝑝down are the Lagrangian dual parameters corresponding to the two constraints in (15.1). To
identify the optimal parameters 𝑥0, 𝑦0, 𝑝up and 𝑝down we take the derivatives of the Lagrangian and obtain
the system of equations

©­­­­«
𝜕
𝜕𝑥0
𝜕
𝜕𝑦0
𝜕
𝜕𝑝up
𝜕

𝜕𝑝down

ª®®®®¬
𝐿 = 0, i.e.,

©­­­­«
0 0 1 1

0 0
𝑆up
1+𝑖

𝑆down
1+𝑖

1
𝑆up
1+𝑖 0 0

1 𝑆down
1+𝑖 0 0

ª®®®®¬
©­­­«
𝑥0
𝑦0
𝑝up
𝑝down

ª®®®¬ =

©­­­«
1
𝑆0
𝑉up
1+𝑖
𝑉down
1+𝑖

ª®®®¬ .
The solution of this linear system of equations is

©­­­«
𝑥0
𝑦0
𝑝up
𝑝down

ª®®®¬ =

©­­­­­­«

𝑆up 𝑉down−𝑆down 𝑉up
(1+𝑖) (𝑆up−𝑆down )

𝑉up−𝑉down
𝑆up−𝑆down
(1+𝑖)𝑆0−𝑆down
𝑆up−𝑆down
𝑆up−(1+𝑖)𝑆0
𝑆up−𝑆down

ª®®®®®®¬
. (15.2)

Now observe the following:

⊲ 𝑝up + 𝑝down = 1, i.e., the dual parameters 𝑝up and 𝑝down can be interpreted as a probability
(provided that 𝑝up ≥ 0 and 𝑝down ≥ 0, which is the case under the mild and natural assumption
𝑆down ≤ (1 + 𝑖)𝑆0 ≤ 𝑆up;

⊲ It holds that

1

1 + 𝑖
(
𝑝up 𝑆up + 𝑝down 𝑆down

)
=

1

1 + 𝑖

(
(1 + 𝑖)𝑆0 − 𝑆down

𝑆up − 𝑆down
𝑆up +

𝑆up − (1 + 𝑖)𝑆0
𝑆up − 𝑆down

𝑆down

)
= 𝑆0,

i.e., given the probabilities we may write 𝑆0 = 1
1+𝑖 E 𝑆𝑇 ;

⊲ further,

1

1 + 𝑖
(
𝑝up𝑉up + 𝑝down𝑉down

)
=

1

1 + 𝑖

(
(1 + 𝑖)𝑆0 − 𝑆down

𝑆up − 𝑆down
𝑉up +

𝑆up − (1 + 𝑖)𝑆0
𝑆up − 𝑆down

𝑉down

)
=
𝑆up𝑉down − 𝑆down𝑉up

(1 + 𝑖) (𝑆up − 𝑆down)
+
𝑉up −𝑉down

𝑆up − 𝑆down
𝑆0

= 𝑥0 + 𝑦0 𝑆0,

i.e., the objective of our problem (15.1) is given in terms of the probabilities identified as

𝑣0 := 𝑥0 + 𝑦0 𝑆0 =
1

1 + 𝑖 E𝑉 (𝑆𝑇 ). (15.3)

What did we achieve?

(i) We have found a probability measure 𝑃(·) := 𝑝up 𝛿𝑆up (·) + 𝑝down 𝛿𝑆down (·) which depends on 𝑆 but
not on 𝑉 . The measure is called the risk free measure.

Neglecting interest (i.e., 𝑖 = 0) it holds that

(ii) 𝑆0 = 1
1+𝑖 E 𝑆𝑡 , i.e., 𝑆 =

(
𝑆0,

1
1+𝑖 𝑆

)
is a martingale and

(iii) the price for the claim is a simple expectation, 𝑣0 = E 1
1+𝑖𝑉 (𝑆) and further, the process 𝑣 =(

𝑣0,
1
1+𝑖𝑉 (𝑆)

)
is a martingale.
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15.2 binomial model 121

𝑆𝑛

𝑆𝑛−1
𝑆𝑛−2

𝑆2

𝑆1

𝑆0

. . .

. . .

. . .

Figure 15.2: Binomial lattice

15.2 binomial model

The binomial model extends and generalizes the Bernoulli model. Consider a whole lattice (Fig. 15.2)
instead of the Bernoulli distribution (Fig. 15.1).

Again we consider a payoff 𝑉 (𝑆𝑇 ) at the end of the period [0, 𝑇]. In the binomial model we choose

Δ𝑡 :=
𝑇

𝑛
, 𝑆up = 𝑆0 · 𝑒𝜎

√
Δ𝑡 and 𝑆down = 𝑆0 · 𝑒−𝜎

√
Δ𝑡 (15.4)

to describe the evolution of the stock, the percentage rate (interest 𝑖) corresponding to the time period 𝑇
𝑛

is
1 + 𝑖 = 𝑒𝑟 𝑇𝑛 . In this exponential setting, the risk-free probabilities

𝑝 := 𝑝up =
(1 + 𝑖)𝑆0 − 𝑆down

𝑆up − 𝑆down
=

𝑒𝑟
𝑇
𝑛 − 𝑒−𝜎

√
𝑇
𝑛

𝑒𝜎
√
𝑇
𝑛 − 𝑒−𝜎

√
𝑇
𝑛

=

1 + 𝑟 𝑇
𝑛
−

(
1 − 𝜎

√︃
𝑇
𝑛
+ 1

2𝜎
2 𝑇
𝑛

)
(
1 + 𝜎

√︃
𝑇
𝑛
+ 1

2𝜎
2 𝑇
𝑛

)
−

(
1 − 𝜎

√︃
𝑇
𝑛
+ 1

2𝜎
2 𝑇
𝑛

) + O
(
𝑛−

3/2
)

=
𝑟 𝑇
𝑛
+ 𝜎

√︃
𝑇
𝑛
− 1

2𝜎
2 𝑇
𝑛

2𝜎
√︃
𝑇
𝑛

+ O
(
𝑛−

3/2
)

(15.5)

=
1

2
+ 1

2𝜎

√︂
𝑇

𝑛

(
𝑟 − 𝜎

2

2

)
+ O

(
𝑛−

3/2
)

(15.6)

and 𝑝down remain constant (i.e., they do not depend on 𝑆up, 𝑆down nor 𝑆0). In this setting the stock follows
the binomial distribution

𝑃

(
𝑆𝑇 = 𝑆0𝑒

𝜎 (2𝑘−𝑛)
√
Δ𝑡

)
=

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 , (15.7)

or

𝑃

(
1
𝜎
ln 𝑆𝑇

𝑆0
+ 𝑛
√
Δ𝑡

2
√
Δ𝑡

= 𝑘

)
=

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 ,
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122 cox-ross-rubinstein-model, or binomial model

that is, asymptotically,

1
𝜎
ln 𝑆𝑇

𝑆0
+ 𝑛

√︃
𝑇
𝑛

2
√︃
𝑇
𝑛

∼ bin(𝑛, 𝑝) D−−→ N
(
𝑛𝑝, 𝑛𝑝(1 − 𝑝)

)
,

or
1
𝜎

ln
𝑆𝑇
𝑆0
+𝑛
√
𝑇
𝑛

2
√
𝑇
𝑛

− 𝑛𝑝√︁
𝑛𝑝(1 − 𝑝)

·
√
𝑇
D−−→ N (0, 𝑇)

by adjusting the mean and re-scaling. Now note that 𝑝(1 − 𝑝) = 1
4 + O(1/𝑛) by (15.6) and

1
𝜎

ln
𝑆𝑇
𝑆0
+𝑛
√
𝑇
𝑛

2
√
𝑇
𝑛

− 𝑛𝑝√︁
𝑛𝑝(1 − 𝑝)

√
𝑇 ∼

1
𝜎

ln
𝑆𝑇
𝑆0

2
√
𝑇
𝑛

+ 𝑛2 − 𝑛𝑝
√
𝑛

2

√
𝑇

=
1

𝜎
ln
𝑆𝑇

𝑆0
+ 2
√
𝑇𝑛

(
1

2
− 𝑝

)
∼ 1

𝜎
ln
𝑆𝑇

𝑆0
− 𝑇
𝜎

(
𝑟 − 𝜎

2

2

)
(15.8)

so that 1
𝜎
ln 𝑆𝑇

𝑆0
− 𝑇
𝜎

(
𝑟 − 𝜎2

2

)
∼ N (0, 𝑇). It follows that 𝑆𝑇 = 𝑆0 𝑒

𝑇 (𝑟− 1
2
𝜎2 )+𝜎𝑊𝑇 , where𝑊𝑇 ∼ N (0, 𝑇).

15.3 log-normal model

More generally we see that 𝑆𝑡 is log-normally distributed for the risk free measure, that is,

𝑆𝑡 = 𝑆0 · 𝑒𝑡 (𝑟−
1
2
𝜎2 )+𝜎𝑊𝑡

with𝑊𝑡 ∼ N(0, 𝑡).

Lemma 15.4. It holds that 𝑆0 = 𝑒−𝑟𝑡 E 𝑆𝑡 .

Proof. Indeed,
E 𝑆𝑡 = E 𝑆0𝑒

𝑡 (𝑟− 1
2
𝜎2 )+𝜎𝑊𝑡 = 𝑆0𝑒

𝑡𝑟 · E 𝑒− 1
2
𝜎2+𝜎𝑊𝑡 ,

by Wald’s identity (12.14). □

Consider now (15.3) to see that the price of a payoff 𝑣(·) in the binomial setting thus is

𝑣0 = 𝑒−𝑟𝑇 ·
𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 · 𝑣

(
𝑆0𝑒

𝜎 (2𝑘−𝑛)
√
Δ𝑡

)
,

or asymptotically
𝑣0 = 𝑒−𝑟𝑇 · E 𝑣

(
𝑆0𝑒

𝑇 (𝑟− 1
2
𝜎2 )+𝜎𝑊𝑇

)
, (15.9)

where the expectation E is with respect to the risk free measure.
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16.1 pay-off function

The pay-off function of a put option at maturity is 𝑉 (𝑆) := max {𝐾 − 𝑆, 0}, of a call option it is
𝑉 (𝑆) := max {𝑆 − 𝐾, 0} where 𝐾 is some fixed price, the strike price.
Remark. A private investor may hold long positions of

⊲ cash,

⊲ stocks,

⊲ call and put options,

but no short positions of these instruments. However, he may be short in cash by taking a loan from his
bank.

The pay-off function thus is always convex; Conversely and moreover, any convex pay-off function may
be replicated, possibly by different means.

Exercising options: American options may be exercised any time, whereas European options can be
exercised only at expiry.

16.2 explicit formula for european payoff functions

European Options are exercised at a specified time (date) 𝑇 . The explicit formula (15.9) thus applies.

16.2.1 European call option
Following (15.9), the value (or price) 𝑣 of the European call with payoff

𝑉call (𝑆) := max {0, 𝑆 − 𝐾} = (𝑆 − 𝐾)+

is

𝑣call (𝑡, 𝑆) = 𝑒−𝑟 (𝑇−𝑡 ) E 𝑉call

(
𝑆 · 𝑒 (𝑇−𝑡 ) (𝑟− 1

2
𝜎2 )+𝜎𝑊𝑇−𝑡

)
(16.1)

= 𝑒−𝑟 (𝑇−𝑡 )
∫ ∞

−∞

(
𝑆𝑒 (𝑇−𝑡 ) (𝑟−

1
2
𝜎2 )+𝜎𝑥 − 𝐾

)
+
· 1√︁

2𝜋(𝑇 − 𝑡)
𝑒
− 1

2(𝑇−𝑡 ) 𝑥
2

𝑑𝑥

=
𝑥←−𝑥

√
𝑇−𝑡

∫ ∞

−∞

(
𝑆𝑒−(𝑇−𝑡 )

1
2
𝜎2−𝜎

√
𝑇−𝑡 𝑥 − 𝐾𝑒−𝑟 (𝑇−𝑡 )

)
+
· 1
√
2𝜋
𝑒−

1
2
𝑥2𝑑𝑥. (16.2)

To evaluate the option further define the auxiliary quantities

𝑑± :=
1

𝜎
√
𝑇 − 𝑡

[(
𝑟 ± 𝜎

2

2

)
(𝑇 − 𝑡) + ln 𝑆

𝐾

]
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call option

𝐾

𝐾

underlying asset value

+

cash

𝐾

𝐾

underlying asset value

=

portfolio A

𝐾

𝐾

underlying asset value

underlying asset

𝐾

𝐾

underlying asset value

+

put option

𝐾

𝐾

underlying asset value

=

portfolio B

𝐾

𝐾

underlying asset value

Figure 16.1: Identical portfolios at maturity by parity

and observe that 𝑥 ≤ 𝑑− in (16.2). Thus,

𝑣call (𝑡, 𝑆) =
∫ 𝑑−

−∞
𝑆𝑒−(𝑇−𝑡 )

1
2
𝜎2−𝜎

√
𝑇−𝑡 𝑥 1
√
2𝜋
𝑒−

1
2
𝑥2𝑑𝑥 − 𝐾𝑒−𝑟 (𝑇−𝑡 )

∫ 𝑑−

−∞

1
√
2𝜋
𝑒−

1
2
𝑥2𝑑𝑥

= 𝑆

∫ 𝑑−

−∞

1
√
2𝜋
𝑒−

1
2 (𝑥+𝜎

√
𝑇−𝑡)2𝑑𝑥 − 𝐾𝑒−𝑟 (𝑇−𝑡 )Φ(𝑑−)

= 𝑆

∫ 𝑑−+𝜎
√
𝑇−𝑡

−∞

1
√
2𝜋
𝑒−

1
2
𝑥2𝑑𝑥 − 𝐾𝑒−𝑟 (𝑇−𝑡 )Φ(𝑑−)

= 𝑆 · Φ(𝑑+) − 𝐾 · 𝑒−𝑟 (𝑇−𝑡 )Φ(𝑑−). (16.3)

after some algebra, where Φ(·) is the cdf of the normal distribution given in (5.11) and 𝜏 := 𝑇 − 𝑡 is the
remaining time to maturity.
Remark 16.1. Note that 𝑑± are functions of 𝑡 and 𝑆 and they can be expressed as

𝑑± (𝑡, 𝑆) =
ln 𝑆

𝐾𝑒−𝑟 (𝑇−𝑡 )
± 1

2𝜎
2 (𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

;

further, 𝑑+ − 𝑑− = 𝜎
√
𝑇 − 𝑡.

16.2.2 European put option
The explicit price of the European put option with pay-off

𝑉put (𝑆) := max {𝐾 − 𝑆, 0} (16.4)
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16.2 explicit formula for european payoff functions 125

is

𝑣put (𝑡, 𝑆) = 𝑒−𝑟 (𝑇−𝑡 ) E 𝑉put

(
𝑆 · 𝑒 (𝑇−𝑡 ) (𝑟− 1

2
𝜎2 )+𝜎𝑊𝑇−𝑡

)
= 𝐾𝑒−𝑟 (𝑇−𝑡 )Φ (−𝑑−) − 𝑆 · Φ (−𝑑+)
= 𝐾𝑒−𝑟 (𝑇−𝑡 ) (1 −Φ (𝑑−)) − 𝑆 (1 −Φ (𝑑+)) (16.5)

16.2.3 Parity
It holds generally that max(𝑥, 𝑦) +min(𝑥, 𝑦) = 𝑥 + 𝑦, hence

max(𝑆 − 𝐾, 0) +min(𝑆 − 𝐾, 0) = 𝑆 − 𝐾, or
𝑆 +max(𝐾 − 𝑆, 0) = 𝐾 +max(𝑆 − 𝐾, 0).

Taking expectations gives the following put-call parity.

Theorem 16.2 (Parity for European options). The identity

𝑆 + 𝑣put (𝑡, 𝑆) = 𝐾𝑒−𝑟 (𝑇−𝑡 ) + 𝑣call (𝑡, 𝑆), (16.6)

is called the put-call parity for European options.1

Proof. This is immediate from (16.8) and (16.9) (from (16.3) and (16.5), respectively). □

Notice also the relation of the parity (16.6) and Figure 16.1.
Remark 16.3 (Comparison of option values and the intrinsic value, cf. Figure 16.2). Recall from the
European call option (from (16.6)) that

𝑣call (𝑡, 𝑆)︸     ︷︷     ︸
option value

≥ max
{
𝑆 − 𝐾𝑒−𝑟 (𝑇−𝑡 ) , 0

}
≥ max {𝑆 − 𝐾, 0}︸             ︷︷             ︸

intrinsic value

(16.7)

(as 𝑣𝑝𝑢𝑡 (𝑡, 𝑆) ≥ 0 and by assuming that 𝑟 ≥ 0). It follows that the option value 𝑣call (𝑡, 𝑆) is greater than its
intrinsic value 𝑆 − 𝐾 .

The respective inequality for European put options reads

𝑣put (𝑡, 𝑆) ≥ max
{
𝑒−𝑟 (𝑇−𝑡 )𝐾 − 𝑆, 0

}
,

but the option value of the put is not necessarily greater than its intrinsic value.

16.2.4 Dividend paying stocks
Including continuous dividend payments (which are modeled as 𝑞𝑆𝑡𝑑𝑡 with 𝑞 representing the dividend
payment rate) the prices for the call and put are

𝑣call (𝑡, 𝑆) := 𝑆 · 𝑒−𝑞 (𝑇−𝑡 ) · Φ (𝑑+) − 𝐾 · 𝑒−𝑟 (𝑇−𝑡 ) · Φ (𝑑−) (16.8)

𝑣put (𝑡, 𝑆) := 𝐾 · 𝑒−𝑟 (𝑇−𝑡 ) · Φ (−𝑑−) − 𝑆 · 𝑒−𝑞 (𝑇−𝑡 ) · Φ (−𝑑+) (16.9)

for 𝑑± =
ln 𝑆𝑒−𝑞 (𝑇−𝑡 )
𝐾𝑒−𝑟 (𝑇−𝑡 )

± 1
2
𝜎2 (𝑇−𝑡 )

𝜎
√
𝑇−𝑡 (note again that 𝑑+ − 𝑑− = 𝜎

√
𝑇 − 𝑡).

1For theta cf. duration.
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option value

asset spot price, 𝑆

intrinsic value
option value

𝐾 , strike price

Figure 16.2: Comparison of option value and intrinsic value for a call option

Remark 16.4. Note that these formulae (16.8) and (16.9) are more general than (16.3) and (16.5) (choose
𝑞 = 0 there).

Theorem 16.5 (Parity for European options). The identity

𝑆 · 𝑒−𝑞 (𝑇−𝑡 ) + 𝑣put (𝑡, 𝑆) = 𝐾𝑒−𝑟 (𝑇−𝑡 ) + 𝑣call (𝑡, 𝑆),

or
𝑆 + 𝑣put (𝑡, 𝑆) = 𝐾𝑒−𝑟 (𝑇−𝑡 ) + 𝑣call (𝑡, 𝑆),

is called the put-call parity for European options.2

16.2.5 FX options: the Garman-Kohlhagen model
The pricing formulae may be used for options on foreign currencies (FX-options), one simply replaces the
interest rate 𝑟 and the continuous dividend 𝑞 in the preceding Section 16.2.4 by the domestic and foreign
risk free interest rate,

𝑟 ↔ 𝑟domestic, 𝑞 ↔ 𝑟foreign.

16.2.6 Moneyness
Moneyness is the probability for a cash transaction to take place at maturity. For a call this evaluates to

𝑃(𝑆𝑇 ≥ 𝐾) = 𝑃
(
𝑆0𝑒
(𝑟− 1

2
𝜎2) (𝑇−𝑡 )+𝜎𝑊𝑇−𝑡 ≥ 𝐾

)
= 𝑃

(
ln
𝑆0

𝐾
+

(
𝑟 − 1

2
𝜎2

)
(𝑇 − 𝑡) + 𝜎𝑊𝑇−𝑡 ≥ 0

)
= 𝑃

(
𝑊𝑇−𝑡 ≥ −

1

𝜎

(
ln
𝑆0

𝐾
+

(
𝑟 − 1

2
𝜎2

)
(𝑇 − 𝑡)

))
= 𝑃

(
𝑊𝑇−𝑡√
𝑇 − 𝑡

≤ 1

𝜎
√
𝑇 − 𝑡

(
ln
𝑆0

𝐾
+

(
𝑟 − 1

2
𝜎2

)
(𝑇 − 𝑡)

))
= Φ (𝑑−) .

Moneyness of a put option apparently is

𝑃(𝑆𝑇 ≤ 𝐾) = 1 −Φ (𝑑−) = Φ (−𝑑−) .
2For theta cf. duration.
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16.2.7 European Greeks

𝜏 := 𝑇 − 𝑡 call put

Delta Δ = 𝜕
𝜕𝑆

𝑒−𝑞𝜏Φ (𝑑+) −𝑒−𝑞𝜏Φ (−𝑑+) = −𝑒−𝑞𝜏 (1 −Φ (𝑑+))
Moneyness Φ (𝑑−) 1 −Φ (𝑑−)
Gamma Γ = 𝜕2

𝜕𝑆2 𝑒−𝑞𝜏 Φ
′ (𝑑+ )
𝑆𝜎
√
𝜏

Vega 𝜈 = 𝜕
𝜕𝜎

𝑆𝑒−𝑞𝜏Φ′ (𝑑+)
√
𝜏 = 𝐾𝑒−𝑞𝜏Φ′ (𝑑−)

√
𝜏

Theta Θ = 𝜕
𝜕𝑡

call: −𝑆𝑒−𝑞𝜏 Φ
′ (𝑑+ )𝜎
2
√
𝜏
− 𝑟𝐾𝑒−𝑟 𝜏Φ (𝑑−) + 𝑞𝑆𝑒−𝑞𝜏Φ (𝑑+)

Θ = 𝜕
𝜕𝑡

put: −𝑆𝑒−𝑞𝜏 Φ
′ (𝑑+ )𝜎
2
√
𝜏
+ 𝑟𝐾𝑒−𝑟 𝜏Φ (−𝑑−) − 𝑞𝑆𝑒−𝑞𝜏Φ (−𝑑+)

rho 𝜌 = 𝜕
𝜕𝑟

𝐾𝜏𝑒−𝑟 𝜏Φ (𝑑−) −𝐾𝜏𝑒−𝑟 𝜏Φ (−𝑑−)

16.3 american options

The American options give more rights to the owner (they can be exercised at arbitrary times) and thus
they are more expensive.

16.3.1 American call options
Definition 16.6. A random variable 𝜏 is a stopping time of the filtration F𝑡 , 𝑡 ∈ [0, 𝑇], if {𝜏 ≤ 𝑡} ∈ F𝑡 .

The price of an American call option is

𝑣𝐴call (𝑡, 𝑆) = sup
𝜏∈[𝑡 ,𝑇 ]

E𝑆 𝑒
−𝑟 (𝜏−𝑡 ) ·max (𝑆𝜏 − 𝐾, 0) , (16.10)

where 𝜏(·) is a stopping time (a random variable itself, adapted to the filtration) with values in [𝑡, 𝑇]
determining the time when the option should be exercised.

The following theorem justifies that American and European call options are traded at the same price,
𝑉 𝐴call = 𝑉

𝐸
call.

Theorem 16.7 (Merton’s no early exercise theorem). An American call option should not be exercised
prematurely (assuming that the interest is 𝑟 ≥ 0).

Proof. If exercised at time 𝑡, the total value of the option is its intrinsic value 𝑆𝑡 − 𝐾 (this corresponds
to the stopping time 𝜏 = 𝑡 in (16.10)). However, by (16.7) the European call is more valuable than the
intrinsic value. Further, the American option provides more rights to its holder and is thus even more
expensive than the European option, i.e.,

𝑣𝐴call (𝑡, 𝑆) ≥ 𝑣
𝐸
call (𝑡, 𝑆).

By Jensen’s inequality, 𝜑(E 𝑆𝑡 ) ≤ E 𝜑(𝑆𝑡 ) for convex functions 𝜑. The function 𝜑(𝑆) := (𝑆 − 𝐾)+ is
convex, thus

𝑣𝐴call (𝑡, 𝑆) ≥ 𝑣
𝐸
call (𝑡, 𝑆) = 𝑒

−𝑟𝑡 E 𝜑(𝑆𝑡 ) ≥ 𝑒−𝑟𝑡𝜑(E 𝑆𝑡 ) = 𝑒−𝑟𝑡𝜑(𝑒𝑟𝑡𝑆)
= 𝑒−𝑟𝑡 max(𝑒𝑟𝑡𝑆 − 𝐾, 0) = max(𝑆 − 𝑒−𝑟𝑡𝐾, 0) ≥ 𝑆 − 𝐾.

The value max {0, 𝑆 − 𝐾} corresponds to the stopping time 𝜏 = 𝑡 in (16.10). 𝜏 = 𝑡 thus is not optimal and
it is better to wait. □

In absence of dividends it is optimal to exercise an American call option at its expiry, that is not to
exercise an American call. If there are dividends, then it is optimal to exercise only at a time immediately
before the stock goes ex dividend.
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16.3.2 American put option
The price for the American put option is

𝑣𝐴put (𝑡, 𝑆) = sup
𝜏∈[𝑡 ,𝑇 ]

E 𝑒−𝑟 (𝜏−𝑡 ) ·max (𝐾 − 𝑆𝜏 , 0) . (16.11)

An argument as in Merton’s theorem does not hold true here (why?).
The optimal time to exercise an American option is called fugit.3 It follows for 𝜏 = 𝑡 in (16.11) that

𝑃 := 𝑣𝐴put (𝑡, 𝑆) ≥ max {𝐾 − 𝑆, 0} ≥ 𝐾 − 𝑆. (16.12)

Whence the option should be exercised, whenever the criterion (16.12) is violated, i.e.,

𝑃 + 𝑆 ≤ 𝐾 (fugit). (16.13)

Note, that 𝑃 and 𝑆 can be observed on the market: the American put option is exercised once the fugit
criterion (16.13) occasionally holds true.

The Black–Scholes price of an American put can be evaluated using an algorithm (Algorithm 1).

Result: americanPut(𝜏, 𝑆, 𝐾, 𝑟, 𝜎, 𝑞, 𝑛) implementation Binomial Model
Δ𝑡 := 𝜏/𝑛;
𝑢𝑝 := 𝑒+𝜎

√
Δ𝑡 ; 𝑑𝑜𝑤𝑛 := 𝑒−𝜎

√
Δ𝑡 ; binomial tree setting, cf. (15.4)

𝑝𝑢𝑝 := 𝑒 (𝑟−𝑞)Δ𝑡−𝑑𝑜𝑤𝑛
𝑢𝑝−𝑑𝑜𝑤𝑛 ; 𝑝𝑑𝑜𝑤𝑛 :=

𝑢𝑝−𝑒 (𝑟−𝑞)Δ𝑡
𝑢𝑝−𝑑𝑜𝑤𝑛 ; the risk free measure, cf. (15.2)

for 𝑖 = 0 to 𝑛 do
𝑣𝑖 := max{0, 𝐾 − 𝑆 ∗ 𝑢𝑝2𝑖−𝑛}; payoff at maturity, cf. (16.4) and (15.7)

end
for 𝑡 := 𝑛 − 1 downto 0 step −1 do

for 𝑖 := 0 to 𝑡 do
𝑣𝑖 := 𝑒

−𝑟Δ𝑡 ·
(
𝑝𝑢𝑝 ∗ 𝑣𝑖+1 + 𝑝𝑑𝑜𝑤𝑛 ∗ 𝑣𝑖

)
; the martingale property, cf. (15.3)

exerciseNow := 𝐾 − 𝑆 ∗ 𝑢𝑝2𝑖−𝑡 ;
if 𝑣𝑖 < exerciseNow then

𝑣𝑖 := exerciseNow ; fugit, cf. (16.13)
end

end
end
return americanPut:= 𝑣0; return 𝑣0, i.e., the price of the American put

Algorithm 1: Binomial model: the price of an American put option

Theorem 16.8 (Parity for American options). For American options it holds that

𝑆 − 𝐾 ≤ 𝑣call (𝑡, 𝑆) − 𝑣𝐴put (𝑡, 𝑆) ≤ 𝑆 − 𝐾𝑒−𝑟 (𝑇−𝑡 ) . (16.14)

Proof. The second inequality 𝑣call (𝑡, 𝑆) − 𝑣𝐴put (𝑡, 𝑆) ≤ 𝑆 − 𝐾𝑒−𝑟 (𝑇−𝑡 ) follows from 𝑣𝐴put ≥ 𝑣𝐸put and the
parity equation (16.6). As for the remaining inequality consider two portfolios:

A: one American call and 𝐾 € in cash

B: one American put and one share.
3fugit (lat.): flees, flight
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Exercising B gives max(𝐾 − 𝑆𝑡 , 0) + 𝑆𝑡 = max(𝑆𝑡 , 𝐾) =: 𝐵.
Exercising A at the same time as B gives

𝐴 := max(𝑆𝑡 − 𝐾, 0) + 𝐾𝑒𝑟𝑡 = max(𝑆𝑡 , 𝐾) + 𝐾
(
𝑒𝑟𝑡 − 1

)
≥ 𝐵.

By taking expectations it follows 𝑣call + 𝐾 ≥ 𝑣put + 𝑆, the remaining equation. □

16.3.3 Other options
Payoff functions of different options:

Option Payoff-function

Call option on 𝐹 max
(
𝐹 (𝑆1

𝑇
, 𝑆2
𝑇
) − 𝐾, 0

)
Put option on 𝐹 max

(
𝐾 − 𝐹 (𝑆1

𝑇
, 𝑆2
𝑇
), 0

)
Barrier option on 𝐹 1{𝐹 (𝑆1

𝑇
,𝑆2
𝑇
)>𝐾}

Lookback option on 𝐹 max
(
𝐾 −min0≤𝑡≤𝑇 𝐹 (𝑆1𝑡 , 𝑆2𝑡 ), 0

)
Functions for 𝐹 include

Option type Payoff-function

Spread 𝐹 (𝑆1
𝑇
, 𝑆2
𝑇
) = 𝑎1𝑆1𝑇 − 𝑎2𝑆2𝑇

Basket 𝐹 (𝑆1
𝑇
, 𝑆2
𝑇
) = 𝑎1𝑆1𝑇 + 𝑎2𝑆2𝑇

Best of 𝐹 (𝑆1
𝑇
, 𝑆2
𝑇
) = max(𝑆1

𝑇
, 𝑆2
𝑇
)

Worst of 𝐹 (𝑆1
𝑇
, 𝑆2
𝑇
) = min(𝑆1

𝑇
, 𝑆2
𝑇
)

Average
∫ 𝑇
𝑡
𝑆1𝑢 d𝑢 +

∫ 𝑇
𝑡
𝑆2𝑢 d𝑢

16.4 problems

Exercise 16.1. Set 𝑆0 = 10, 𝑆up = 12, 𝑆down = 7 and verify (for 𝑖 = 0) that 𝑝up = 60% and 𝑝down = 40%.
For a payoff with 𝑉up = 1 and 𝑉down = 0, the investments are 𝑥0 = −1.4 (cash) and 𝑦 = 0.2 shares.

Exercise 16.2. Compute the Black–Scholes price for a put and call option with 𝑟 = 1%, 𝜎 = 15%, 𝑇 − 𝑡 = 1,
𝑆 = 10 and 𝐾 = 11.

Exercise 16.3. Verify Remark 16.4.

Exercise 16.4. Verify the derivations in Example 15.2.

Exercise 16.5. Formulate and solve the dual of the linear optimization problem (15.1) explicitly.

Exercise 16.6. Consider the Bernoulli setting in Section 15.2 and verify that E 𝑆𝑇 = 𝑒𝑟
𝑇
𝑛 𝑆0 and

var 𝑆𝑇 = 𝑆20
𝑇

𝑛
𝜎2 + O

(
1

𝑛2

)
.

Exercise 16.7. Verify the asymptotic expressions (15.6) and (15.8).

Exercise 16.8. Verify the price of some options (cf. (16.3) and (16.5)) explicitly by employing (15.9).

Exercise 16.9. Implement Algorithm 1.

Exercise 16.10. Compute the price of some European/ American call/ put options and compare your result
with actually traded options.
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17Black–Scholes Differential Equation

Black1 and Scholes2 have been awarded the Nobel Memorial Prize in Economic Sciences in 1997 for the
method to determine the value of derivatives.

A former model was given by Louis Bachelier.3

17.1 derivation of the black–scholes differential equation

Recall that

⊲ the final solution obtained in (15.9) for the European option with pay-off 𝑉 (·) is 𝑣(𝑡, 𝑆) :=

E𝑉
(
𝑆 · 𝑒𝑡 (𝑟− 1

2
𝜎2 )+𝜎𝑊𝑡

)
;

⊲ the geometric Brownian motion 𝑆𝑡 = 𝑆0 · 𝑒 (𝜇−
1
2
𝜎2 )𝑡+𝜎𝑊𝑡 satisfies the stochastic differential equation

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 . (17.1)

The value of the derivative varies according Itō’s rule (12.2) as

𝑑𝑣(𝑡, 𝑆𝑡 ) = 𝑣𝑡𝑑𝑡 + 𝑣𝑆𝑑𝑆𝑡 +
1

2
𝑣𝑆𝑆 (𝑑𝑆𝑡 )2

= 𝑣𝑡𝑑𝑡 + 𝑣𝑆 ·
(
𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡

)
+ 1

2
𝑣𝑆𝑆 · (𝑑𝑆𝑡 )2

=

(
𝑣𝑡 + 𝜇𝑆𝑡𝑣𝑆 +

1

2
𝜎2𝑆2𝑡 𝑣𝑆𝑆

)
𝑑𝑡 + 𝜎𝑆𝑡𝑣𝑆𝑑𝑊𝑡 .

To get rid of the random part we choose a portfolio consisting of (note that this is what is called a Δ-hedge)

(i) Δ := 𝜕
𝜕𝑆
𝑣 = 𝑣𝑆 stocks and

(ii) −1 derivatives.

The value of the new portfolio is Π := −𝑣 + 𝑣𝑆 · 𝑆. We find that

𝑑Π𝑡 = −𝑑𝑣 + 𝑣𝑆 · 𝑑𝑆𝑡 = −
(
𝑣𝑡 + 𝜇𝑆𝑡𝑣𝑆 +

1

2
𝜎2𝑆2𝑣𝑆𝑆

)
𝑑𝑡 − 𝜎𝑣𝑆𝑆𝑡𝑑𝑊𝑡 + 𝑣𝑆

(
𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡

)
=

(
−𝑣𝑡 −

1

2
𝜎2𝑆2𝑣𝑆𝑆

)
𝑑𝑡. (17.2)

Note, that the price of the portfolio Π𝑡 is not random any longer and further, 𝜇 is gone.
However, there is only one risk free asset on the market. It has interest 𝑟, and thus

𝑑Π𝑡 = 𝑟Π𝑡𝑑𝑡 = 𝑟 (−𝑣 + 𝑆 · 𝑣𝑆) 𝑑𝑡. (17.3)
1Fischer S. Black, 1938–1995, American Economist
2Myron S. Scholes, 1941–, Canadian-American financial economist
3Louis Jean-Baptiste Alphonse Bachelier, 1870–1946, French mathematician, a student of Henri Poincaré
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132 black–scholes differential equation

By comparing (17.2) and (17.3) we find that
(
−𝑣𝑡 − 1

2𝜎
2𝑆2𝑣𝑆𝑆

)
= 𝑟 (−𝑣 + 𝑆 · 𝑣𝑆), or

𝑣𝑡 + 𝑟𝑆𝑣𝑆 +
1

2
𝜎2𝑆2𝑣𝑆𝑆 = 𝑟 𝑣, (17.4)

which is the Black–Scholes differential equation. Note in particular that this equation is free of the drift 𝜇
but involves the risk free interest rate 𝑟 instead.

Remark 17.1. The above derivation holds as well for time-dependent 𝜇, 𝜎 and 𝑟. The Black–Scholes
differential equation then is (written in full detail)

𝜕

𝜕𝑡
𝑣(𝑡, 𝑆) + 1

2
𝜎(𝑡)2𝑆2 𝜕

2

𝜕𝑆2
𝑣(𝑡, 𝑆) + 𝑟 (𝑡)𝑆 𝜕

𝜕𝑆
𝑣(𝑡, 𝑆) − 𝑟 (𝑡)𝑣(𝑡, 𝑆) = 0. (17.5)

The function 𝑉 (𝑆, 𝑡) in (16.3) is a solution of the Black–Scholes equation (17.5) (cf. Exercise (17.2)).

Remark 17.2. Both prices (16.8) and (16.9) follow the Black-Scholes partial differential equation
(PDE) (17.4),

𝜕𝑣

𝜕𝑡︸︷︷︸
Θ

+1
2
𝜎2𝑆2

𝜕2𝑣

𝜕𝑆2︸︷︷︸
Γ

+𝑟𝑆 𝜕𝑣

𝜕𝑆︸︷︷︸
Δ

= 𝑟𝑣, (17.6)

but with different termination conditions 𝑣 (𝑇, 𝑆) = max {𝑆 − 𝐾, 0} and 𝑣 (𝑇, 𝑆) = max {𝐾 − 𝑆, 0}.
Remark 17.3. Equation (17.6) displays the Black–Scholes differential equation by involving important
Greeks.

17.2 general solution of the black–scholes differential equation

We consider a European option with payoff function 𝑉 (𝑆). The Black–Scholes differential equation with
boundary condition is

𝜕

𝜕𝑡
𝑣 + 1

2
𝜎2𝑆2

𝜕2

𝜕𝑆2
𝑣 + 𝑟𝑆 𝜕

𝜕𝑆
𝑣 − 𝑟𝑣 = 0 with (17.7)

𝑣(𝑇, 𝑆) = 𝑉 (𝑆), 𝑆 ≥ 0 and
𝑣(𝑡, 0) = 0, 0 ≤ 𝑡 ≤ 𝑇

To solve the equation we introduce the new variables

(i) 𝜏 = 𝑇 − 𝑡 (remaining time to maturity) and

(ii) 𝑥 =
(
𝑟 − 1

2𝜎
2
)
𝜏 + log 𝑆

𝐾
(i.e., 𝑆 = 𝐾 exp

(
𝑥 − (𝑟 − 1

2𝜎
2)𝜏

)
and the new function

𝑢(𝜏, 𝑥) = 𝑒𝑟 𝜏 · 𝑣(𝑡, 𝑆),

i.e.,
𝑢(𝜏, 𝑥) = 𝑒𝑟 𝜏 · 𝑣

(
𝑡 (𝜏, 𝑥), 𝑆(𝜏, 𝑥)

)
.

Differentiating (i) with respect to the new variables 𝜏 and 𝑥 gives 𝑑𝑡
𝑑𝜏

= −1 and 𝑑𝑡
𝑑𝑥

= 0, and differentiating (ii)
with respect to 𝜏 and 𝑥 reveals that 𝑑𝑆

𝑑𝜏
= −𝑆

(
𝑟 − 1

2𝜎
2
)

and 𝑑𝑆
𝑑𝑥

= 𝑆.
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17.3 time to maturity 133

Hence
𝜕

𝜕𝜏
𝑢(𝜏, 𝑥) = 𝑟𝑒𝑟 𝜏𝑣(𝑡, 𝑆) + 𝑒𝑟 𝜏

(
𝑣𝑡 (𝑡, 𝑆)

𝜕𝑡

𝜕𝜏
+ 𝑣𝑆 (𝑡, 𝑆)

𝜕𝑆

𝜕𝜏

)
= 𝑟𝑒𝑟 𝜏𝑣(𝑡, 𝑆) − 𝑒𝑟 𝜏𝑣𝑡 (𝑡, 𝑆) − 𝑒𝑟 𝜏

(
𝑟 − 1

2
𝜎2

)
𝑆 𝑣𝑆 (𝑡, 𝑆),

𝜕

𝜕𝑥
𝑢(𝑥, 𝜏) = 𝑒𝑟 𝜏

(
𝑣𝑡 (𝑡, 𝑆)

𝜕𝑡

𝜕𝑥
+ 𝑣𝑆 (𝑡, 𝑆)

𝜕𝑆

𝜕𝑥

)
= 𝑒𝑟 𝜏𝑆 𝑣𝑆 , and

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝜏) = 𝑒𝑟 𝜏

(
𝜕𝑆

𝜕𝑥
· 𝑣𝑆 + 𝑆

(
𝑣𝑆,𝑡 (𝑡, 𝑆)

𝜕𝑡

𝜕𝑥
+ 𝑣𝑆𝑆 (𝑡, 𝑆)

𝜕𝑆

𝜕𝑥

))
= 𝑒𝑟 𝜏𝑆 𝑣𝑆 + 𝑒𝑟 𝜏𝑆2 𝑣𝑆𝑆 ,

so that
1

2
𝜎2𝑢𝑥𝑥 − 𝑢𝜏 = 𝑒𝑟 𝜏

(
1

2
𝜎2 𝑆 𝑣𝑆 +

1

2
𝜎2 𝑆2 𝑣𝑆𝑆 − 𝑟 𝑣 + 𝑣𝑡 + 𝑟 𝑆 𝑣𝑆 −

1

2
𝜎2 𝑆 𝑣𝑆

)
= 0

by (17.7). It follows (together with the boundary conditions) that

𝑢𝜏 =
1

2
𝜎2𝑢𝑥𝑥 (17.8)

𝑢(0, 𝑥) = 𝑉 (𝐾 · 𝑒𝑥) , 𝜏 = 0,

which is the heat equation (a linear, parabolic partial differential equation) with basic solution given in
Exercise 17.1. Its general solution with initial condition 𝑢0 is

𝑢(𝜏, 𝑥) = 1
√
2𝜋𝜏𝜎2

∫ ∞

−∞
𝑢0 (𝜉)𝑒−

(𝑥−𝜉 )2
2𝜏𝜎2 𝑑𝜉

and thus

𝑣(𝑡, 𝑆) = 𝑒−𝑟 (𝑇−𝑡 )𝑢
(
𝑇 − 𝑡, log 𝑆

𝐾
+

(
𝑟 − 1

2
𝜎2

)
(𝑇 − 𝑡)

)
=

𝑒−𝑟 (𝑇−𝑡 )√︁
2𝜋(𝑇 − 𝑡)𝜎2

∫ ∞

−∞
𝑉

(
𝐾 · 𝑒 𝜉

)
𝑒
− (log

𝑆
𝐾
+(𝑟− 1

2 𝜎
2) (𝑇−𝑡 )−𝜉)2

2(𝑇−𝑡 )𝜎2 𝑑𝜉

=
𝑒−𝑟 (𝑇−𝑡 )√︁
2𝜋(𝑇 − 𝑡)𝜎2

∫ ∞

−∞
𝑉

(
𝐾 · 𝑒log 𝑆

𝐾
+(𝑟− 1

2
𝜎2) (𝑇−𝑡 )+𝜉

)
𝑒
− 𝜉2

2(𝑇−𝑡 )𝜎2 𝑑𝜉

= 𝑒−𝑟 (𝑇−𝑡 )
∫ ∞

−∞
𝑉

(
𝑆 · 𝑒(𝑟− 1

2
𝜎2) (𝑇−𝑡 )+𝜎𝜉

) 1√︁
2𝜋(𝑇 − 𝑡)

𝑒
− 𝜉2

2(𝑇−𝑡 ) 𝑑𝜉.

This is exactly Eq. (16.1), which was evaluated explicitly for the European call option in Section 16.2.1.

17.3 time to maturity

It is often convenient to formulate the Black–Schones differential equation in terms of time to maturity
𝜏, i.e., to introduce 𝜏 := 𝑇 − 𝑡 and to consider the function 𝑣(𝜏, 𝑆) := 𝑣(𝑇 − 𝜏, 𝑆) instead of 𝑣(𝑡, 𝑆). The
equation then is (cf. (17.7))

− 𝜕
𝜕𝜏
𝑣 + 1

2
𝜎2𝑆2

𝜕2

𝜕𝑆2
𝑣 + 𝑟𝑆 𝜕

𝜕𝑆
𝑣 − 𝑟𝑣 = 0 with

𝑣(0, 𝑆) = 𝑉 (𝑆), 𝑆 ≥ 0 and
𝑣(𝜏, 0) = 0, 𝜏 ≥ 0.
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134 black–scholes differential equation

As an example, it holds that (cf. (16.8) and (16.9))

𝑣call (𝜏, 𝑆) := 𝑆 · Φ (𝑑+) − 𝐾 · 𝑒−𝑟 𝜏 · Φ (𝑑−) ,
𝑣put (𝜏, 𝑆) := 𝐾 · 𝑒−𝑟 𝜏 · Φ (−𝑑−) − 𝑆 · Φ (−𝑑+) ,

where 𝑑± (𝜏, 𝑆) = 1
𝜎
√
𝜏

[(
𝑟 ± 𝜎2

2

)
𝜏 + ln 𝑆

𝐾

]
.

17.4 problems

Exercise 17.1. Verify that the kernel 𝑘 𝜉 (𝑡, 𝑥) = 1√
2𝜋𝑡𝜎2

𝑒
− 1

2𝑡𝜎2 (𝑥−𝜉 )2 satisfies the heat equation (17.8)
(parabolic equation) for every fixed 𝜉 ∈ R.

Exercise 17.2. Show that 𝑉 (𝑡, 𝑆) given in (16.3) solves the Black–Scholes equation (17.5).

Exercise 17.3. Define 𝑑± (𝑡, 𝑆) := 1√︃∫ 𝑇
𝑡
𝜎 (𝑢)2𝑑𝑢

[∫ 𝑇
𝑡
𝑟 (𝑢) ± 𝜎 (𝑢)2

2 𝑑𝑢 + ln 𝑆
𝐾

]
and show that

𝑣(𝑡, 𝑆) := 𝑆 · Φ
(
𝑑+ (𝑡, 𝑆)

)
− 𝐾 · 𝑒−

∫ 𝑇
𝑡
𝑟 (𝑢)𝑑𝑢 · Φ

(
𝑑− (𝑡, 𝑆)

)
(17.9)

solves the general time dependent equation (17.5). Note as well that (17.9) is the price for the European
call option.
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Very often it is assumed that the price process of an underlying follows a standard model for a geometric
Brownian motion (GBM), that is the stochastic differential equation

𝑑𝑆𝑡 = 𝑟 𝑆𝑡𝑑𝑡 + 𝜎 𝑆𝑡 𝑑𝑊𝑡 . (18.1)

Here,

⊲ 𝑟 is the interest rate – the symbol 𝑟 indicates the risk free interest rate (cf. Figure 18.11);

⊲ 𝜎 is the parameter to model stochastic volatility and

⊲ 𝑑𝑊𝑡 is normally distributed with mean 0 and variance 𝑑𝑡, N (0, 𝑑𝑡).

For 𝜎 = 0 this equation reduces to an ordinary differential equation

𝑑𝑆𝑡 = 𝑟 𝑆𝑡𝑑𝑡

with well-known solution
𝑆𝑡 = 𝑆0 𝑒

𝑟𝑡 .

The solution of the general stochastic differential equation (18.1) is (cf. Section 13.2)

𝑆𝑡 = 𝑆0 · 𝑒(𝑟−
1
2
𝜎2)𝑡+𝜎𝑊𝑡

and it is obvious that the special case 𝜎 = 0 is naturally contained in this more general formula.

18.1 estimation of 𝜇 or 𝑟

Usually the log-return covering the entire period observed is chosen to estimate a stock’s or fund’s
performance, that is,

𝜇 :=
1

𝑡
ln
𝑆𝑡

𝑆0
.

In the given context of a geometric Brownian motion, however, 𝜇 := 1
𝑡
ln 𝑆𝑡

𝑆0
=

(
𝑟 − 1

2𝜎
2
)
+𝜎𝑊𝑡

𝑡
,2 and thus

E 𝜇 = E

(
1

𝑡
ln
𝑆𝑡

𝑆0

)
= E

(
𝑟 − 1

2
𝜎2 + 𝜎𝑊𝑡

𝑡

)
= 𝑟 − 1

2
𝜎2,

and the variance of the estimator 𝜇 is

var 𝜇 = var

(
1

𝑡
ln
𝑆𝑡

𝑆0

)
= var

((
𝑟 − 1

2
𝜎2

)
+ 𝜎𝑊𝑡

𝑡

)
=
𝜎2

𝑡
. (18.2)

1https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/Historic-Yield-Data-Visualization.aspx
2again the natural logarithm with basis 𝑒 = 2.718 . . . .
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Figure 18.1: The U.S. treasury yield curve: indicator for the risk free rate

Remark 18.1. The variance of the estimator 𝜇 thus does not tend to 0 unless 𝑡 →∞, i.e., we will have to
wait for ever (until infinity) to obtain an useful estimator.

In order to get an estimator for 𝜇 one might modify the estimator and split the period in 𝑛, say, different
periods (𝑡𝑖 , 𝑡𝑖+1) and try 𝜇 := 1

𝑡𝑖+1−𝑡𝑖 ln
𝑆𝑡𝑖+1
𝑆𝑡𝑖

3 instead, or even better, the weighted average

ˆ̂𝜇𝑛 :=
𝑛−1∑︁
𝑖=0

𝑡𝑖+1 − 𝑡𝑖
𝑡𝑛 − 𝑡0

1

𝑡𝑖+1 − 𝑡𝑖
ln
𝑆𝑡𝑖+1

𝑆𝑡𝑖
,

where each period (𝑡𝑖 , 𝑡𝑖+1) is weighted by its relative length 𝑡𝑖+1−𝑡𝑖
𝑡𝑛−𝑡0 (note that

∑𝑛−1
𝑖=0

𝑡𝑖+1−𝑡𝑖
𝑡𝑛−𝑡0 = 1).

Now notice that ˆ̂𝜇𝑛 = 1
𝑡𝑛−𝑡0

∑𝑛−1
𝑖=0 ln

𝑆𝑡𝑖+1
𝑆𝑡𝑖

= 1
𝑡
ln

𝑆𝑡𝑛
𝑆𝑡0

= 𝜇. This, however, is no improvement over 𝜇 at

all, and in particular the estimator ˆ̂𝜇𝑛 satisfies

var ˆ̂𝜇𝑛 = var
1

𝑡
ln
𝑆𝑡

𝑆0
=
𝜎2

𝑡
(18.3)

as well. This quantity is independent of 𝑛 and does not tend to 0, whenever 𝑛→∞. Both, 𝜇 and ˆ̂𝜇𝑛 thus
are useless as estimators for the drift 𝜇.

Remark. Summarizing, we don’t have an estimator for 𝜇 and this is another reason why we have to get 𝜇
from somewhere else: we have to involve the risk free interest rate in place of the drift 𝜇, that is, 𝜇← 𝑟.

3It should be noticed that 1
𝑡𝑖+1−𝑡𝑖 ln

𝑆𝑡𝑖+1
𝑆𝑡𝑖

can be interpreted as return per time interval, in which 𝑡𝑖 are being measured (usually
in years). Then

1

𝑡𝑛 − 𝑡0
ln
𝑆𝑡𝑛

𝑆𝑡0
=

𝑛−1∑︁
𝑖=0

𝑡𝑖+1 − 𝑡𝑖
𝑡𝑛 − 𝑡0

· 1

𝑡𝑖+1 − 𝑡𝑖
ln
𝑆𝑡𝑖+1
𝑆𝑡𝑖

,

that is to say the weighted average of all these returns reflects the average return (because
∑𝑛−1
𝑖=0

𝑡𝑖+1−𝑡𝑖
𝑡𝑛−𝑡0 = 1) during the entire time

interval.
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18.2 estimation of the volatility 𝜎

Given observations of the stock 𝑆𝑡𝑖 at subsequent times 𝑡𝑖 in years ([𝑡𝑖] = year) the stochastic volatility
may be estimated using the unbiased estimator (Bessel correction 𝑛 − 1)

𝜎̂2
𝑛 =

©­­«
1

𝑛 − 1

𝑛−1∑︁
𝑖=0

(
ln

𝑆𝑡𝑖+1
𝑆𝑡𝑖

)2
𝑡𝑖+1 − 𝑡𝑖

ª®®¬ −
1

𝑛 − 1

(
ln

𝑆𝑡𝑛
𝑆𝑡0

)2
𝑡𝑛 − 𝑡0

( 𝑛−1
𝑛
𝜎̂2
𝑛 is actually the maximum likelihood estimator). For the typical and particular situation 𝑡𝑖+1 − 𝑡𝑖 = 1

𝑚

this reads

𝜎̂2
𝑛 =

𝑚

𝑛 − 1

𝑛−1∑︁
𝑖=0

(
ln
𝑆𝑡𝑖+1

𝑆𝑡𝑖

)2
− 𝑚

𝑛 − 1

(
ln

𝑆𝑡𝑛
𝑆𝑡0

)2
𝑛

.

Note now that

E

(
ln
𝑆𝑡

𝑆0

)2
= E

((
𝑟 − 1

2
𝜎2

)
𝑡 + 𝜎𝑊𝑡

)2
=

(
𝑟 − 1

2
𝜎2

)2
𝑡2 + 2

(
𝑟 − 1

2
𝜎2

)
𝑡𝜎E𝑊𝑡 + 𝜎2E𝑊2

𝑡

=

(
𝑟 − 1

2
𝜎2

)2
𝑡2 + 𝜎2𝑡.

Summing up the terms in above’s estimator thus

E 𝜎̂2
𝑛 =

1

𝑛 − 1

𝑛∑︁
𝑖=1

(
𝑟 − 1

2𝜎
2
)2 (𝑡𝑖+1 − 𝑡𝑖)2 + 𝜎2 (𝑡𝑖+1 − 𝑡𝑖)

𝑡𝑖+1 − 𝑡𝑖

− 1

𝑛 − 1

(
𝑟 − 1

2𝜎
2
)2 (𝑡𝑛 − 𝑡0)2 + 𝜎2 (𝑡𝑛 − 𝑡0)

𝑡𝑛 − 𝑡0

=
1

𝑛 − 1

((
𝑟 − 1

2
𝜎2

)2
(𝑡𝑛 − 𝑡0) + 𝑛 · 𝜎2

)
− 1

𝑛 − 1

((
𝑟 − 1

2
𝜎2

)2
(𝑡𝑛 − 𝑡0) + 𝜎2

)
=
𝑛𝜎2 − 𝜎2

𝑛 − 1 = 𝜎2,

that is to say this estimator 𝜎̂2
𝑛 is unbiased, indeed. Moreover, it can be shown that

var 𝜎̂2
𝑛 −−−−→
𝑛→∞

0,

a very useful property in contrast to 𝜇𝑛, cf. (18.2) and (18.3).
Remark. In contrast to 𝜇 we do have a proper estimator for the volatility 𝜎.

18.3 implied volatility

The implied volatility of an option contract is that value of the volatility of the underlying instrument which,
when input in an option pricing model (such as Black–Scholes) will return a theoretical value equal to the
current market price of the option.
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Figure 18.2: Volatility smile

Remark 18.2. The implied volatility is thus

a wrong number which, plugged into the wrong formula, gives the right answer.

Volatility smiles (cf. Figure 18.2) are implied volatility patterns that arise in pricing financial options. In
particular for a given expiration, options whose strike price differs substantially from the underlying asset’s
price command higher prices (and thus implied volatilities) than what is suggested by standard option
pricing models.

18.4 problems

Exercise 18.1. Deutsche Bank had the following closing prices at consecutive months in 2016:
𝑡𝑖 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
𝑆𝑡𝑖/ € 25.2 22.8 24.2 24.9 25.0 24.8 25.1 25.2 23.3 23.0 22.8 24.0 24.4

Give its volatility.

Exercise 18.2. Compute the volatility of a stock of your choice based on daily observations during the last
month.
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19The Girsanov Theorem: Change of Measure

This lecture follows Pflug [18].
We consider a stochastic process 𝑋 with drift 𝜇𝑡 under 𝑃, i.e.,

𝑑𝑋𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊 𝑡 .

We are interested in a new probability measure 𝑄 on the same sample space such that the process 𝑋 has the
same diffusion, but no drift, i.e.,

𝑑𝑋𝑡 = 𝜎𝑡𝑑𝑊𝑡

with𝑊 being a Wiener process under 𝑄. Further, 𝑄 ≪ 𝑃 and 𝑃 ≪ 𝑄 (absolutely continuous).
The density of 𝑄 with respect to 𝑃 (under 𝑃) is given by the Girsanov formula

𝑑𝑄

𝑑𝑃

����
𝑃

= exp

(
−

∫ 𝑇

0

𝜇𝑡

𝜎𝑡
𝑑𝑊 𝑡 −

1

2

∫ 𝑇

0

( 𝜇𝑡
𝜎2

)2
𝑑𝑡

)
,

where𝑊 is a Wiener process under 𝑃.

Proof. We start with a normal density with mean 𝜇 and covariance matrix Σ:

𝑓 (𝑥; 𝜇, Σ) = 1

(2𝜋)𝑛/2
√
detΣ

𝑒−
1
2
(𝑥−𝜇)⊤Σ−1 (𝑥−𝜇) .

If 𝑃 has density 𝑓 (𝑥; 𝜇, Σ) and 𝑄 has density 𝑓 (𝑥; 0, Σ), then

𝑑𝑃

𝑑𝑄
=
𝑓 (𝑥; 𝜇, Σ)
𝑓 (𝑥; 0, Σ) = exp

(
−1
2
(𝑥 − 𝜇)⊤Σ−1 (𝑥 − 𝜇) + 1

2
𝑥𝑡Σ−1𝑥

)
= exp

(
𝑥⊤Σ−1𝜇 − 1

2
𝜇⊤Σ−1𝜇

)
.

Notice that
E𝑃 [ℎ(𝑋)] = EQ

[
ℎ(𝑋) 𝑑𝑃

𝑑𝑄
(𝑋)

]
,

so that 𝑥 ∼ N(0, Σ) under 𝑄.
We illustrate the proof of the Girsanov formula only for deterministic 𝜇𝑡 and 𝜎. For the given process,

𝑑𝑋𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊 𝑡 under 𝑃 and
𝑑𝑋𝑡 = 𝜎𝑡𝑑𝑊𝑡 under 𝑄

we choose a partition (𝑡1, . . . , 𝑡𝑛) and set

𝐷𝑡𝑖 := 𝑋𝑡𝑖+1 − 𝑋𝑡𝑖 .

Note that

E𝑃 𝐷𝑡𝑖 = 𝜇𝑡 (𝑡𝑖+1 − 𝑡𝑖) and
var𝐷𝑡𝑖 = 𝜎

2
𝑡𝑖
(𝑡𝑖+1 − 𝑡𝑖).

139
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Then 𝑑𝑃
𝑑𝑄

under 𝑄 is

𝑓𝜇 (𝐷1, . . . 𝐷𝑛)
𝑓0 (𝐷1, . . . 𝐷𝑛)

= exp

(∑︁ 𝜇𝑡𝑖 (𝑡𝑖+1 − 𝑡𝑖)
𝜎𝑡𝑖 (𝑡𝑖+1 − 𝑡𝑖)

(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖 ) −
1

2

∑︁ 𝜇2𝑡𝑖 (𝑡𝑖+1 − 𝑡𝑖)
2

𝜎2
𝑡𝑖
(𝑡𝑖+1 − 𝑡𝑖)

)
which converges, as 𝑛→∞, to

𝑓𝜇 (𝐷1, . . . 𝐷𝑛)
𝑓0 (𝐷1, . . . 𝐷𝑛)

= exp

(∫
𝜇𝑡

𝜎𝑡
𝑑𝑋𝑡 −

1

2

∫
𝜇2𝑡

𝜎2
𝑡𝑖

𝑑𝑡

)
.

We need, however, 𝑑𝑄
𝑑𝑃

under 𝑄, which is the inverse,

𝑑𝑄

𝑑𝑃
= exp

(
−

∫
𝜇𝑡

𝜎𝑡
𝑑𝑋𝑡 +

1

2

∫
𝜇2𝑡

𝜎2
𝑡𝑖

𝑑𝑡

)
.

Now we compute 𝑑𝑄

𝑑𝑃
under 𝑃. Since

𝑑𝑋𝑡 = 𝜎𝑡𝑑𝑊𝑡 under 𝑄 and

𝑑𝑋𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊 𝑡 under 𝑃

we have that
𝜎𝑡𝑑𝑊𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊 𝑡 ,

where𝑊 is a Wiener process under 𝑃. Therefore, under 𝑃,

𝑑𝑄

𝑑𝑃
= exp

(
−

∫
𝜇𝑡

𝜎𝑡
𝑑𝑋𝑡 +

1

2

∫
𝜇2𝑡

𝜎2
𝑡𝑖

𝑑𝑡

)
= exp

(
−

∫
𝜇𝑡

𝜎2
𝑡

𝜎𝑡𝑑𝑋𝑡 +
1

2

∫
𝜇2𝑡

𝜎2
𝑡𝑖

𝑑𝑡

)
= exp

(
−

∫
𝜇𝑡

𝜎𝑡
𝑑𝑊 𝑡 −

∫
𝜇𝑡

𝜎2
𝑡

𝜇𝑡𝑑𝑡 +
1

2

∫
𝜇2𝑡

𝜎2
𝑡𝑖

𝑑𝑡

)
= exp

(
−

∫
𝜇𝑡

𝜎𝑡
𝑑𝑊 𝑡 −

1

2

∫
𝜇2𝑡

𝜎2
𝑡𝑖

𝑑𝑡

)
,

which is the claim. □
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20Important Stochastic Processes

Stochastic processes are employed to model the evolution of stock. However, they can be used to model the
evolution of interest rates (short-rate) equally well. This chapter presents general process first and then
addresses particular short-rated models used in mathematical finance.

20.1 ornstein–uhlenbeck

The stochastic differential equation for the mean-reverting Ornstein1–Uhlenbeck2 process is

𝑑𝑥𝑡 = 𝜃 (𝜇 − 𝑥𝑡 )𝑑𝑡 + 𝜎 𝑑𝑊𝑡 . (20.1)

To solve this linear, non-homogeneous equation compare (20.1) and (13.2), i.e., set 𝑟 (𝑡) := −𝜃,
𝑎(𝑡) = 𝜃 · 𝜇, 𝜎(𝑡) = 0 and 𝑏(𝑡) = 𝜎. Then 𝜁𝑡 = 0 and 𝑍𝑡 = 𝑒−𝜃𝑡 . The closed–form, explicit solution is

𝑥𝑡 = 𝑒
−𝜃𝑡

(
𝑥0 +

∫ 𝑡

0

𝑒𝜃𝑢𝜃𝜇 𝑑𝑢 +
∫ 𝑡

0

𝜎𝑒𝜃𝑢 𝑑𝑊𝑢

)
= 𝑥0𝑒

−𝜃𝑡 + 𝜇
(
1 − 𝑒−𝜃𝑡

)
+ 𝜎

∫ 𝑡

0

𝑒−𝜃 (𝑡−𝑢) 𝑑𝑊𝑢. (20.2)

Properties of the Ornstein–Uhlenbeck process:

⊲ E 𝑥𝑡 = 𝑥0𝑒
−𝜃𝑡 + 𝜇

(
1 − 𝑒−𝜃𝑡

)
, with long term mean E 𝑥𝑡 −−−−→

𝑡→∞
𝜇.

⊲ The covariance is

cov(𝑥𝑠 , 𝑥𝑡 ) = E (𝑥𝑠 − E 𝑥𝑠) (𝑥𝑡 − E 𝑥𝑡 ) = E𝜎
∫ 𝑠

0

𝑒−𝜃 (𝑠−𝑢)𝑑𝑊𝑢 · 𝜎
∫ 𝑡

0

𝑒−𝜃 (𝑡−𝑢)𝑑𝑊𝑢

= 𝜎2𝑒−𝜃 (𝑠+𝑡 ) E

∫ 𝑠

0

𝑒𝜃𝑢𝑑𝑊𝑢 ·
∫ 𝑡

0

𝑒𝜃𝑢𝑑𝑊𝑢

=
(11.2)

𝜎2𝑒−𝜃 (𝑠+𝑡 ) E

∫ 𝑠∧𝑡

0

𝑒2𝜃𝑢𝑑𝑢 = 𝜎2𝑒−𝜃 (𝑠+𝑡 )
1

2𝜃

(
𝑒2𝜃 (𝑠∧𝑡 ) − 1

)
, (20.3)

=
𝜎2

2𝜃

(
𝑒−𝜃 |𝑡−𝑠 | − 𝑒−𝜃 (𝑡+𝑠)

)
,

where we have used Itō’s isometry (Corollary 11.8) and the identity 𝑠 ∧ 𝑡 = 1
2 (𝑠 + 𝑡 − |𝑠 − 𝑡 |).

⊲ The marginal distribution at time 𝑡 is 𝑥𝑡 ∼ N
(
𝑥0𝑒
−𝜃𝑡 + 𝜇

(
1 − 𝑒−𝜃𝑡

)
, 𝜎

2

2𝜃

(
1 − 𝑒−2𝜃𝑡 )

) )
, with

limiting distribution N
(
𝜇, 𝜎

2

2𝜃

)
. The process thus is said to possess an invariant measure, which is

N
(
𝜇, 𝜎

2

2𝜃

)
.

1Leonard Ornstein, 1880–1941
2George Eugene Uhlenbeck, 1900–1988
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142 important stochastic processes

⊲ The process 𝑥𝑡 is mean reverting.

⊲ Time–change: the process

𝑥′𝑡 = 𝑥0𝑒
−𝜃𝑡 + 𝜇

(
1 − 𝑒−𝜃𝑡

)
+ 𝜎
√
2𝜃
𝑒−𝜃𝑡𝑊𝑒2𝜃𝑡−1 (20.4)

solves the Ornstein–Uhlenbeck stochastic differential equation (20.1) as well. Indeed, using (10.2),
the covariance of the process 𝑥′𝑡 is

cov(𝑥′𝑠 , 𝑥′𝑡 ) =
𝜎2

2𝜃
𝑒−𝜃 (𝑠+𝑡 )

(
(𝑒2𝜃𝑠 − 1) ∧ (𝑒2𝜃𝑡 − 1)

)
=
𝜎2

2𝜃
𝑒−𝜃 (𝑠+𝑡 )

(
𝑒2𝜃 (𝑠∧𝑡 ) − 1

)
= (20.3),

from which follows that the processes 𝑥𝑡 and 𝑥′𝑡 are equal in distribution, as both are normally
distributed.

⊲ Note, that the time-changed formula (20.4)—in contrast to (20.2)—does not involve any integration
with respect to the Brownian motion.

20.2 black model

Consider the modle for the interest rate which follows an Ornstein–Uhlenbeck process 𝑑𝑟𝑡 = 𝜃 (𝜇 − 𝑟𝑡 )𝑑𝑡 +
𝜎𝑑𝑊𝑡 , cf. (20.1); its marginal distribution is

𝑟𝑡 ∼ N
©­­­­­«
𝑟0𝑒
−𝜃𝑡 + 𝜇

(
1 − 𝑒−𝜃𝑡

)︸                     ︷︷                     ︸
=:𝜇𝑡

,
𝜎2

2𝜃
(1 − 𝑒−2𝜃𝑡 )︸             ︷︷             ︸
=:𝜎2

𝑡

ª®®®®®¬
.

For a call option with payoff 𝑟 ↦→ (𝑟 − 𝐾)+, the prices is

E (𝑟𝑡 − 𝐾)+ =
∫ ∞

𝐾

(𝑥 − 𝐾)+
1√︁

2𝜋𝜎2
𝑡

𝑒
− 1

2𝜎2
𝑡

(𝑥−𝜇𝑡 )2
𝑑𝑥 =

∫ ∞

𝐾−𝜇𝑡
𝜎𝑡

(𝜇𝑡 + 𝜎𝑡𝑥 − 𝐾)
1
√
2𝜋
𝑒−

1
2
𝑥2𝑑𝑥

= (𝜇𝑡 − 𝐾)
∫ ∞

𝐾−𝜇𝑡
𝜎𝑡

1
√
2𝜋
𝑒−

1
2
𝑥2𝑑𝑥 + 𝜎𝑡

∫ ∞

𝐾−𝜇𝑡
𝜎𝑡

𝑥
1
√
2𝜋
𝑒−

1
2
𝑥2𝑑𝑥 =

= (𝜇𝑡 − 𝐾)Φ
(
−𝐾 − 𝜇𝑡

𝜎𝑡

)
+ 𝜎𝑡√

2𝜋
𝑒
− 1

2

(
𝐾−𝜇𝑡
𝜎𝑡

)2
.

20.3 cox–ingersoll–ross

The Cox-Ingersoll-Ross model
𝑑𝑟𝑡 = 𝑎 (𝑏 − 𝑟𝑡 ) 𝑑𝑡 + 𝜎

√
𝑟𝑡𝑑𝑊𝑡 (20.5)

has an explicit solution as well, although more complicated. The marginal distribution 𝑟𝑡 is a non-central
𝜒2-distribution (and thus not normal).

The continuous version is discretized as 𝑟𝑡+Δ𝑡 = 𝑟𝑡 + 𝑎 (𝑏 − 𝑟𝑡 ) Δ𝑡 + 𝜎
√
𝑟𝑡Δ𝑡𝜀𝑡 , or

𝑟𝑡+Δ𝑡 − 𝑟𝑡√
𝑟𝑡

=
𝑎𝑏Δ𝑡
√
𝑟𝑡
− 𝑎√𝑟𝑡Δ𝑡 + 𝜎

√
Δ𝑡𝜀𝑡 ,

which is eligible for linear regression to uncover the parameters 𝑎, 𝑏 and 𝜎.
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20.4 heston model

Here, 𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 +
√
𝜈𝑡𝑆𝑡𝑑𝑊𝑡 , where 𝜈𝑡 is a stochastic volatility following the Cox–Ingersoll–Ross

model (20.5).

20.5 one-factor short rate models

20.5.1 Merton’s model (1973)
𝑟𝑡 = 𝑟0 + 𝑎𝑡 + 𝜎𝑑𝑊𝑡 .

20.5.2 Vašiček model (1977)

A particular variant of the Ornstein–Uhlenbeck process is the Vasicek3 model,

𝑑𝑟𝑡 = 𝑎 (𝑏 − 𝑟𝑡 ) 𝑑𝑡 + 𝜎𝑑𝑊𝑡 .

20.5.3 Rendleman–Bartter (1980)
𝑑𝑟𝑡 = 𝜃𝑟𝑡𝑑𝑡 + 𝜎𝑟𝑡𝑑𝑊𝑡 .

20.5.4 Cox–Ingersoll–Ross (CIR, 1985)
𝑑𝑟𝑡 = 𝑎 (𝑏 − 𝑟𝑡 ) 𝑑𝑡 + 𝜎

√
𝑟𝑡𝑑𝑊𝑡 .

20.5.5 Ho-Lee model (1986)
𝑑𝑟𝑡 = 𝜃𝑡𝑑𝑡 + 𝜎𝑑𝑊𝑡 .

20.5.6 Hull–White model (1990)
𝑑𝑟𝑡 = (𝜃𝑡 − 𝛼𝑟𝑡 ) 𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 .

20.5.7 Black–Derman–Toy (1990)

𝑑 ln 𝑟𝑡 =

(
𝜃𝑡 +

𝜎′𝑡
𝜎𝑡

ln 𝑟𝑡

)
𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 ,

where 𝜎′𝑡 is a parameter (more precisely, a function taking taking the role of a parameter).

20.5.8 Black–Karasinski (1991)
𝑑 ln 𝑟𝑡 = (𝜃𝑡 − 𝜙𝑡 ln 𝑟𝑡 ) 𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡

20.5.9 Kalotay–Williams–Fabozzi (1993)
𝑑 ln 𝑟𝑡 = 𝜃𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡

the log-normal version of Hull–White and a special case (𝜎′𝑡 ≡ 0) of Black–Derman–Toy.
3Oldřich Alfons Vašı́ček, 1942, Czech mathematician
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20.6 multi-factor short-rate models

20.6.1 Longstaff–Schwartz model (1992)

𝑑𝑟𝑡 = (𝜇𝑋𝑡 + 𝜃𝑡𝑌𝑡 ) 𝑑𝑡 + 𝜎𝑡
√
𝑌𝑊

(3)
𝑡 ,

where

𝑑𝑋𝑡 = (𝑎𝑡 − 𝑏𝑋𝑡 )𝑑𝑡 +
√︁
𝑋𝑡𝑐𝑡𝑑𝑊

(1)
𝑡 and

𝑑𝑌𝑡 = (𝑑𝑡 − 𝑒𝑌𝑡 )𝑑𝑡 +
√︁
𝑌𝑡 𝑓𝑡𝑑𝑊

(2)
𝑡 .

(the Brownian motions𝑊 (1)𝑡 ,𝑊 (2)𝑡 and𝑊 (3)𝑡 are independent.
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21Derivatives

Derivatives are financial instruments. Financial instruments, in general, can be categorized by form
depending on whether they are cash instruments or derivative instruments.

⊲ Cash instruments are financial instruments whose value is determined directly by markets. Examples
are securities, loans and deposits.

⊲ Derivative instruments are financial instruments which derive their value from the value and
characteristics of one or more underlying assets.

21.1 classification

Derivative instruments may be classified in general in three dimensions, which are:

(i) The market, on which they are traded

⊲ Over-the-counter (OTC) derivatives, and

⊲ (Stock) Exchange traded derivatives (ETD).

(ii) The relationship between the underlying and the derivative, eg.

⊲ Future/ Forwards

⊲ Option

⊲ Swap

(iii) The type of underlying, eg.

⊲ Equity,

⊲ Foreign exchange (FX),

⊲ Interest rate,

⊲ Credit (loans),

⊲ Commodity, ...

Some common examples of derivatives are exemplary and schematically listed in this following table:
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Derivatives Contract Type

Future/ Forward Swap Option
Underlying ETD OTC OTC ETD OTC

Equity
DJIA-index

future, Single
stock future

Repo,
Back-toback Equity swap

Option on
DJIA-index

future

Stock Option,
Warrant

Interest Rate €/ $ future,
Euribor future

Forward rate
agreement

Interest rate
swap

Option on
Eurodollar

future, Option
on Euribor

future

Interest Rate
Cap and Floor,
Swaption,
Basis Swap,
Bond option

Credit Bond future Repo
Credit default
swap, Total
return swap

Option on
bond future

Credit Default
Option

Foreign
Exchange

Currency
future

Currency
forward

Currency
swap

Option on
currency

future

Currency
Option

Commodity Commodity
swap

Insurance Weather
Derivatives

21.2 future/ forward

The main characteristics of futures1 are

⊲ a specified commodity of (standardized) quality (commodity future) or financial contract (financial
future);

⊲ a specified quantity;

⊲ a fixed date of delivery 𝑇 in the future (the delivery date);

⊲ the type of settlement, which can for example be cash settlement or physical settlement,

⊲ the futures price is determined and fixed at the beginning of the contract (delivery price 𝐾), however,
the specified amount is due and will be paid in future at expiry of the futures contract.

⊲ Both parties have the obligation to fulfill the contract (the cash and delivery) in future.

Given these characteristics of a future it is pretty obvious that the delivery price 𝐾 of the future contract is
simply found by compounding,

𝐾 := 𝑆𝑡 · (1 + 𝑖)𝑇−𝑡 ;

Here, is the current price of the (non-dividend paying) underlying

⊲ 𝑆𝑡 is the underlying
1For trading futures and forwards see for example Chicago Merchandise Exchange, www.cmegroup.com.
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21.3 swaps 147

⊲ 𝑇 − 𝑡 is the term of the contract and

⊲ 𝑖 the risk free return.

In a situation where there is no market value available but can somehow be estimated, the fair delivery
price is

𝐾 := E 𝑆𝑇 .

Given this future delivery price 𝐾 the value of the future/ forward will vary in time, as the underlying
(and the interest etc.) vary. Today’s present value of the contract is

𝑝 := E 𝑆𝑡 −
𝐾

(1 + 𝑖)𝑇−𝑡
,

and the payoff is 𝑆𝑇 − 𝐾 (long position.)
In some situations a deposit of, say, 5 % of the contracts amount is required at the beginning of the

contract as a deposit (initial margin).

21.3 swaps

A swap is an agreement between two parties to exchange flows of payments from a given security (the
asset) for a different set of cash-flows . The agreement defines how those cash flows will be computed and
when the are due.

21.3.1 Asset Swap

21.3.2 Interest Rate Swap

An interest rate swap is a derivative, where two parties agree to exchange a nominal value in future. Usually
interest payments are fixed in such way, that one party pays a fixed interest rate, the other party will pay a
variable interest rate (“plain vanilla swap”). The variable rate is derived from reference interest rates in
inter-banking business.

Interest rate swaps are used to secure positions in the balance sheet against changes of interest rates,
but for speculation as well.

The price is 𝑃𝑉𝑠𝑤𝑎𝑝 = 𝑃𝑉 𝑓 𝑖𝑥 − 𝑃𝑉𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒.

21.3.3 Credit Default Swaps (CDS)

A credit default swap (CDS) transfers a potential credit default to another partner, who will receive a
premium in exchange.

The premium is determined by the probability of the default and the potential loss, respective (that is to
say the credit rating) and is usually paid in installments.

In case of a default the CDS stops, and the premium payment as well. In case no defined credit event
occurs during the period, the CDS expires.

The regular premium for constant 𝑞 (credit default’s probability) is

𝑛𝐴

¥𝑎𝑛
=

𝑞

1 + 𝑖 .
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𝑡0 time

protection buyer

protection seller

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

Figure 21.1: Payments of the protection buyer and seller

21.4 swaptions

A swaption is an option, giving the right to the buyer for a premium to enter a interest-swap at a given date
(European swaption).

21.5 interest rate cap and floors

Interest rate cap and floor are interest rate derivatives. They offer an upper and a lower bound for the
interest rate.

⊲ An interest rate cap is a derivative in which the buyer receives payments at the end of each period in
which the interest rate exceeds the agreed strike price.

⊲ An interest rate floor is a series of European put options or floorlets on a specified reference rate,
usually LIBOR. The buyer of the floor receives money if on the maturity of any of the floorlets, the
reference rate fixed is below the agreed strike price of the floor.

21.6 exotic options

21.7 credit derivatives

A credit derivative is a derivative whose value is derived from the credit risk on an underlying bond, loan
or other financial asset. In this way, the credit risk is on an entity other than the counter parties to the
transaction itself. This entity is known as the reference entity and may be a corporate, a sovereign or any
other form of legal entity which has incurred debt. Credit derivatives are bilateral contracts between a
buyer and seller under which the seller sells protection against the credit risk of the reference entity.

21.7.1 Credit Linked Notes (CLN)
Credit Linked Notes sind Wertpapiere, deren Rückzahlungsprofil zum Beispiel abhängig vom Eintritt soge-
nannter Kreditereignisse bei einem oder mehreren Referenzschuldnern ist. Kann also der Referenzschuldner
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seinen Zahlungsverpflichtungen nicht nachkommen, wird dieser Ausfall auf den Anleihegläubiger übertra-
gen. Tritt kein Kreditereignis ein, kommt der Anleger in den Genuss einer attraktiven Rendite.

21.7.2 Collateralized Debt Obligation (CDO)
Collateralized debt obligations (CDOs) are a type of structured asset-backed security (ABS) with multiple
"tranches" that are issued by special purpose entities and collateralized by debt obligations including bonds
and loans. Each tranche offers a varying degree of risk and return so as to meet investor demand. CDOs’
value and payments are derived from a portfolio of fixed-income underlying assets. CDO securities are
split into different risk classes, or tranches, whereby "senior" tranches are considered the safest securities.
Interest and principal payments are made in order of seniority, so that junior tranches offer higher coupon
payments (and interest rates) or lower prices to compensate for additional default risk. In simple terms,
think of a CDO as a promise to pay cash flows to investors in a prescribed sequence, based on how much
cash flow the CDO collects from the pool of bonds or other assets it owns. If cash collected by the CDO is
insufficient to pay all of its investors, those in the lower layers (tranches) suffer losses first.

21.8 repo

A repurchase agreement (also known as a repo, RP, or sale and repurchase agreement) is the sale of securities
together with an agreement for the seller to buy back the securities at a later date. The repurchase price
should be greater than the original sale price, the difference effectively representing interest, sometimes
called the repo rate. The party that originally buys the securities effectively acts as a lender. The original
seller is effectively acting as a borrower, using their security as collateral for a secured cash loan at a fixed
rate of interest.

A repo is equivalent to a spot sale combined with a forward contract. The spot sale results in transfer
of money to the borrower in exchange for legal transfer of the security to the lender, while the forward
contract ensures repayment of the loan to the lender and return of the collateral of the borrower. The
difference between the forward price and the spot price is effectively the interest on the loan while the
settlement date of the forward contract is the maturity date of the loan.
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22The Value-at-Risk and Risk Measures

22.1 the basel ii framework

For market risk, the preferred approach is value-at-risk (V@R). Banks will have flexibility in devising
the precise nature of their models, but the following minimum standards will apply for the purpose of
calculating their capital charge.

(i) “Value-at-risk” must be computed on a daily basis.

(ii) A 99th percentile, one-tailed confidence interval is to be used.

(iii) An instantaneous price shock equivalent to a 10 day movement in prices is to be used.

(iv) The historical observation period is a minimum length of one year.

(v) Banks should update their data sets no less frequently than once every three months.

V@R cushion: The Basle Committee has decided to establish a cushion of this type by requiring a
multiplication factor of 3 to be applied to the Value-at-Risk calculation.

Definition 22.1. We say that

⊲ 𝑋1 ≤ 𝑋2 provided that 𝑋1 (𝜔) ≤ 𝑋2 (𝜔) a.s.

– 𝑋1 ≤𝐹𝑆𝑇 𝑋2 provided that P [𝑋1 ≤ 𝑟] ≥ P [𝑋2 ≤ 𝑟] for all 𝑟, or equivalently 𝑞𝛼 (𝑋1) ≤
𝑞𝛼 (𝑋1) ;

– 𝑋2 ≤𝑆𝑆𝑇 𝑋2 provided that
∫ 𝑟
−∞ P [𝑋1 ≤ 𝑟] ≤

∫ 𝑟
−∞ P [𝑋2 ≤ 𝑟] for all 𝑟;

– 𝑋2 ≤𝑛−𝑆𝑇 𝑋2 provided that
∫ 𝑟
−∞· · ·

∫ 𝑟𝑛
−∞ P [𝑋1 ≤ 𝑟𝑛] ≤

∫ 𝑟
−∞· · ·

∫ 𝑟𝑛
−∞ P [𝑋2 ≤ 𝑟𝑛] for all 𝑟;

Financial quantities

– Sharpe index: E𝑋−𝑟 𝑓
𝜎

;
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23Probabilities for Credit and Insurance Risk

Conceptually, insurance risk and credit risk are the same:
⊲ Payment of an installment corresponds to premium payment, and

⊲ Credit default corresponds to death (or any insured event).
So we do not distinguish between credit risk and insurance risk and treat them analogously here.

The chapter follows Gerber [7].

23.1 the event of death/ credit default

Consider a person (a loan) of age 𝑥. Let 𝑇 be a random variable giving the future lifetime of the life
(default). The pdf is

𝐺 (𝑡) = 𝑃(𝑇 ≤ 𝑡)
and the density, if it exists, is

𝑔(𝑡) 𝑑𝑡 = 𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝑑𝑡).
A common and accepted notation in insurance is

𝑡𝑞𝑥 := 𝐺 (𝑡) and 𝑡 𝑝𝑥 := 1 − 𝐺 (𝑡),
further the symbol

𝑠 |𝑡𝑞𝑥 := 𝑃(𝑠 < 𝑇 ≤ 𝑠 + 𝑡)
= 𝐺 (𝑠 + 𝑡) − 𝐺 (𝑠) = 𝑠+𝑡𝑞𝑥 − 𝑠𝑞𝑥 .

One further defines
𝑡 𝑝𝑥+𝑠 := 𝑃(𝑇 > 𝑠 + 𝑡 | 𝑇 > 𝑠) =

1 − 𝐺 (𝑠 + 𝑡)
1 − 𝐺 (𝑠)

and
𝑡𝑞𝑥+𝑠 := 𝑃(𝑇 ≤ 𝑠 + 𝑡 | 𝑇 > 𝑠) =

𝐺 (𝑠 + 𝑡) − 𝐺 (𝑠)
1 − 𝐺 (𝑠) ,

the conditional probabilities of dying within 𝑡 years, provided that the person (loan) survived 𝑠 years.
Important relations include

𝑠+𝑡 𝑝𝑥 = 1 − 𝐺 (𝑠 + 𝑡) = (1 − 𝐺 (𝑠)) 1 − 𝐺 (𝑠 + 𝑡)
1 − 𝐺 (𝑠) = 𝑠𝑝𝑥 · 𝑡 𝑝𝑥+𝑠

and
𝑠 |𝑡𝑞𝑥 = 𝐺 (𝑠 + 𝑡) − 𝐺 (𝑠) = (1 − 𝐺 (𝑠))

𝐺 (𝑠 + 𝑡) − 𝐺 (𝑠)
1 − 𝐺 (𝑠) = 𝑠𝑝𝑥 · 𝑡𝑞𝑥+𝑠 .

Example 23.1. The expected further lifetime (remaining lifetime) is

E𝑇 =

∫ ∞

0

𝑡 𝑔(𝑡) 𝑑𝑡 =
∫ ∞

0

1 − 𝐺 (𝑡)𝑑𝑡 =
∫ ∞

0
𝑡 𝑝𝑥𝑑𝑡.

Remark. For 𝑡 = 1 the index is omitted, that is actuaries write

1𝑝𝑥 = 𝑝𝑥 and 1𝑞𝑥 = 𝑞𝑥 .
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23.1.1 Force of mortality
... is defined as

𝜇𝑇 (𝑡) :=
𝑔(𝑡)

1 − 𝐺 (𝑡) = −
𝑑

𝑑𝑡
log

(
1 − 𝐺 (𝑡)

)
such that, e.g., E𝑇 =

∫ ∞
0
𝑡 𝑡 𝑝𝑥𝜇𝑇 (𝑡)𝑑𝑡.

It holds that 𝜇𝑇 (𝑡) = − 𝑑𝑑𝑡 log 𝑡 𝑝𝑥 , whence

𝑡 𝑝𝑥 = 𝑒
−

∫ 𝑡
0
𝜇𝑇 (𝑠)𝑑𝑠 .

de Moivre (1724) postulated 𝜇(𝑡) = 1
𝜔−(𝑥+𝑡 )

Gompertz (1824) postulated 𝜇(𝑡) = 𝐵𝑐𝑥+𝑡

Makerham (1860) modified to 𝜇(𝑡) = 𝐴 + 𝐵𝑐𝑥+𝑡

Weibull (1939) modified to 𝜇(𝑡) = 𝑘 (𝑥 + 𝑡)𝑛

23.1.2 Mortality within one year
Consider (cf. Footnote 1 on page 93)

𝐾 := ⌊𝑇⌋ ,

so that 𝑃(𝐾 = 𝑘) = 𝑃(𝑘 ≤ 𝑇 < 𝑘 +1) = 𝑘 𝑝𝑥 · 𝑞𝑥+𝑘 . Moreover define 𝑆 := 𝑇 −𝐾 and 𝑆 (𝑚) := 1
𝑚
⌊𝑚𝑆 + 1⌋.

A usual assumption now is 𝑢𝑞𝑥 = 𝑢 · 𝑞𝑥 such that

𝑃

[
𝑆 (𝑚) =

𝑗

𝑚

]
=

1

𝑚
, 𝑗 = 1, 2 . . . 𝑚,

such that 𝑆 (𝑚) and 𝐾 are independent. Note further, that

E 𝑣𝑆
(𝑚)−1 =

𝑚∑︁
𝑗=1

1

𝑚
𝑣
𝑗/𝑚−1 =

1

𝑚
𝑣
1/𝑚−1 1 − 𝑣

1 − 𝑣1/𝑚 =
𝑖

𝑖 (𝑚)
(23.1)

(cf. (2.3) and Exercise 23.1) and

E
(
1 − 𝑆 (𝑚)

)
𝑣𝑆
(𝑚)−1 =

𝑖

𝑖 (𝑚)

(
1

𝑑
− 1

𝑑 (𝑚)

)
(23.2)

and

E
(
1 − 𝑆 (𝑚)

)
𝑣1−𝑆

(𝑚)
=
𝑑 − 𝑣 𝑖 (𝑚)

𝑖 (𝑚)𝑑 (𝑚)
(23.3)

23.1.3 Remaining Life Expectancy
The remaining life expectancy is

𝑒𝑥 := E

(
𝐾 + 1

2

)
=

∑︁
𝑘=0

𝑘 𝑝𝑥 −
1

2
= ¥𝑎𝑥 −

1

2
,
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where ¥𝑎𝑥 is computed with interest rate 𝑖 = 0. The variance of the remaining life expectation can be treated
as above to give

var𝐾 = var
(
𝐾 + 1

2

)
=

∑︁
𝑘=0

(
𝑘 + 1

2

)2
𝑘 𝑝𝑥 𝑞𝑥+𝑘 − 𝑒2𝑥

=
∑︁
𝑘=0

(
𝑘 + 1

2

)2
𝑘 𝑝𝑥 −

∑︁
𝑘=0

(
𝑘 + 1

2

)2
𝑘+1𝑝𝑥 − 𝑒2𝑥

=
1

4
+

∑︁
𝑘=0

(
𝑘 + 1

2

)2
𝑘 𝑝𝑥 −

∑︁
𝑘=0

(
𝑘 − 1

2

)2
𝑘 𝑝𝑥 − 𝑒2𝑥

=
1

4
+ 2

∑︁
𝑘=0

𝑘 𝑘 𝑝𝑥 −
(
¥𝑎𝑥 − 1

2

)2
= 2 ¥𝑎inc

𝑥 − ¥𝑎𝑥 − ¥𝑎2𝑥 .

23.2 problems

Exercise 23.1. Verify (23.1) and (23.2).
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24Loans and Lump Sum Insurance Premiums

Life Insurance

Recall that 𝑞𝑥+𝑘 = 𝑃 [𝐾 = 𝑘 | 𝐾 ≥ 𝑥] is the probability of default in year 𝑘 , provided non-default in the
earlier years.

Let the payoff be 𝑍 = 𝑣𝐾+1, where the default happens in year 𝐾 . Then P
[
𝑍 = 𝑣𝑘+1

]
= 𝑘 𝑝𝑥 · 𝑞𝑥+𝑘 .

Note that
⊲ 𝐴𝑥 = E𝑥 𝑍 = E𝑥

[
𝑣𝐾+1

]
=

∑
𝑘=0 𝑣

𝑘+1
𝑘 𝑝𝑥 · 𝑞𝑥+𝑘 , and

⊲ var [𝑍] = E 𝑍2 − 𝐴2
𝑥 =

∑
𝑘=0 𝑘 𝑝𝑥 · 𝑞𝑥+𝑘 · 𝑣2𝑘+2 − 𝐴2

𝑥 .

⊲ Special case for 𝑞𝑘 = 𝑞:

– 𝐴𝑥 =
∑
𝑘=0 𝑣

𝑘+1𝑞 (1 − 𝑞)𝑘 = 𝑞𝑣

1−𝑣 (1−𝑞) , and

– var 𝑍 = E
[
𝑍2

]
− 𝐴2

𝑥 =
∑
𝑘=0 𝑞 (1 − 𝑞)𝑘 · 𝑣2𝑘+2 − 𝐴2

𝑥 =
𝑞𝑣2

1−(1−𝑞)𝑣2 −
(

𝑞𝑣

1−𝑣 (1−𝑞)

)2
⊲ var 𝑍 = E

(
𝑍2 · 1{𝐾≤𝑛}

)
− 𝐴2

𝑥:𝑛 =
∑𝑛−1
𝑘=0 𝑘 𝑝𝑥 · 𝑞𝑥+𝑘 · 𝑣2𝑘+2 − 𝐴2

𝑥:𝑛.

⊲ 𝑛𝐴𝑥 = E
(
𝑍 · 1{𝐾<𝑛}

)
= E

(
𝑣𝐾+1 · 1{𝐾<𝑛}

)
=

∑𝑛−1
𝑘=0 𝑣

𝑘+1
𝑘 𝑝𝑥 · 𝑞𝑥+𝑘

⊲

𝑛𝐴
(𝑚)
𝑥 = E 𝑣𝐾+𝑆

(𝑚)
= E 𝑣𝐾+1E 𝑣𝑆

(𝑚)−1 =
𝑖

𝑖 (𝑚)
𝑛𝐴𝑥 (24.1)

(as 𝐾 and 𝑆 (𝑚) are independent, cf. (23.1))

Pure Endowment

Consider the pay-off function 𝑍 := 𝑣𝑛 1{𝑛,𝑛+1,... } (𝐾) =
{
0 𝐾 < 𝑛

𝑣𝑛 𝑘 ≥ 𝑛
. Then E 𝑍 = 𝑛𝑝𝑥 · 𝑣𝑛 =: 𝑛𝐸𝑥 .

Here, var 𝑍 = 𝑛𝑝𝑥 𝑣
2𝑛 − ( 𝑛𝑝𝑥 𝑣𝑛)2 = 𝑛𝑝𝑥 𝑛𝑞𝑥 𝑣

2𝑛 and 𝑑
𝑑𝛿 𝑛

𝐸𝑥 = −𝑛 ·𝑛 𝐸𝑥 . The duration thus is

𝐷 = −
𝑑
𝑑𝛿 𝑛

𝐸𝑥

𝑛𝐸𝑥
= 𝑛.

Endowment

The payoff function 𝑍 := 𝑣𝐾+1∧𝑛 =

{
𝑣𝐾+1 𝐾 < 𝑛,

𝑣𝑛 𝑘 ≥ 𝑛,
with present value

𝐴𝑥:𝑛 := E 𝑍 = 𝑛𝐴𝑥 + 𝑛𝐸𝑥 =

𝑛−1∑︁
𝑘=0

𝑣𝑘+1 𝑘 𝑝𝑥 · 𝑞𝑥+𝑘 + 𝑛𝑝𝑥𝑣
𝑛,

and with monthly payment (cf. (24.1))

𝐴
(𝑚)
𝑥:𝑛

= 𝑛𝐴
(𝑚)
𝑥 + 𝑛𝐸𝑥 =

𝑖

𝑖 (𝑚)
𝑛𝐴𝑥 + 𝑛𝐸𝑥 .
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24.1 constantly repaid loan and annuity

Constant annuity

Recall the annuity 1 + 𝑣 + 𝑣2 + · · · 𝑣𝐾−1 = 1−𝑣𝐾
1−𝑣 = ¥𝑎

𝐾
. Then the present value is (use 𝑘 𝑝𝑥 := P [𝐾 ≥ 𝑘]

and 𝑞𝑥+𝑘 := P [𝐾 = 𝑥 + 𝑘])

¥𝑎𝑥:𝑛 := E
[
¥𝑎
𝐾+1∧𝑛

]
= E𝑥

𝑛−1∑︁
𝑘=0

𝑣𝑘 1{𝐾≥𝑘}

=

∞∑︁
𝑘=0

𝑘 𝑝𝑥 · 𝑞𝑥+𝑘 ·
1 − 𝑣𝑘+1∧𝑛

1 − 𝑣 =

∞∑︁
𝑘=0

𝑘 𝑝𝑥 · (1 − 𝑝𝑥+𝑘) ·
1 − 𝑣𝑘+1∧𝑛

1 − 𝑣

=
∑︁
𝑘=0

𝑘 𝑝𝑥 ·
1 − 𝑣𝑘+1∧𝑛

1 − 𝑣 −
𝑛−1∑︁
𝑘=0

𝑘+1𝑝𝑥 ·
1 − 𝑣𝑘+1∧𝑛

1 − 𝑣

= 1 +
∑︁
𝑘=1

𝑘 𝑝𝑥 ·
(
1 − 𝑣𝑘+1∧𝑛

1 − 𝑣 − 1 − 𝑣𝑘∧𝑛
1 − 𝑣

)
= 1 +

𝑛∑︁
𝑘=1

𝑘 𝑝𝑥 ·
𝑣𝑘∧𝑛 − 𝑣𝑘+1∧𝑛

1 − 𝑣 =

𝑛−1∑︁
𝑘=0

𝑘 𝑝𝑥 · 𝑣𝑘 (24.2)

For the particular situation 𝑞𝑘 ≡ 𝑞 thus,

¥𝑎𝑥:𝑛 =

𝑛−1∑︁
𝑘=0

𝑣𝑘 · (1 − 𝑞)𝑘 =
1 −

(
(1 − 𝑞)𝑣

)𝑛
1 − (1 − 𝑞)𝑣 . (24.3)

Note that (1 − 𝑞)𝑣 = 1
1+(𝑖+𝑍 ) , where 𝑍 = 𝑞 1+𝑖

1−𝑞 ≈ 𝑞 is an additional interest (spread) to account for a
potential default.

Lemma 24.1 (Cf. (2.18) and Exercise 24.2). It holds that

1 = 𝐴𝑥 + 𝑑 · ¥𝑎𝑥 , and 1 = 𝐴𝑥:𝑛 + 𝑑 · ¥𝑎𝑥:𝑛 . (24.4)

Monthly paid annuities

Lemma 24.2. The present value is

¥𝑎 (𝑚)
𝑥:𝑛

= 𝛼 (𝑚) · ¥𝑎𝑥:𝑛 − 𝛽 (𝑚) (1 − 𝑛𝐸𝑥) .

Proof. For the present value of the monthly paid annuity can be found by considering

1 = 𝑣𝐾+𝑆
(𝑚) + 𝑑 (𝑚) · ¥𝑎 (𝑚)

𝐾+𝑆 (𝑚)
.

Take expectations and it follows that

1 = 𝐴
(𝑚)
𝑥 + 𝑑 (𝑚) · ¥𝑎 (𝑚)𝑥 =

𝑖

𝑖 (𝑚)
𝐴𝑥 + 𝑑 (𝑚) · ¥𝑎 (𝑚)𝑥 =

𝑖

𝑖 (𝑚)
(1 − 𝑑 · ¥𝑎𝑥) + 𝑑 (𝑚) · ¥𝑎 (𝑚)𝑥

by (24.1) and Lemma 24.1. Hence, by (2.4),

¥𝑎 (𝑚)𝑥 =
𝑑𝑖

𝑖 (𝑚)𝑑 (𝑚)
¥𝑎𝑥 +

1

𝑑 (𝑚)

(
1 − 𝑖

𝑖 (𝑚)

)
= 𝛼 (𝑚) · ¥𝑎𝑥 − 𝛽 (𝑚) .

The assertion follows. □
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Proof. For another, more explicit proof expand the annuity as

¥𝑎 (𝑚)𝑥 =

∞∑︁
𝑘=0

𝑘 𝑝𝑥 𝑣
𝑘

((
1 − 𝑞𝑥+𝑘

0

𝑚

)
𝑣

0
𝑚

𝑚
+ · · · +

(
1 − 𝑞𝑥+𝑘

𝑚 − 1
𝑚

)
𝑣
𝑚−1
𝑚

𝑚

)
=

∑︁
𝑘=0

𝑘 𝑝𝑥 𝑣
𝑘
(
¥𝑎 (𝑚)
1
− 𝑞𝑥+𝑘 · E

(
1 − 𝑆 (𝑚)

)
𝑣1−𝑆

(𝑚)
)

=
∑︁
𝑘=0

𝑘 𝑝𝑥 𝑣
𝑘

(
1 − 𝑣
𝑑 (𝑚)

− 𝑞𝑥+𝑘
𝑑 − 𝑣 𝑖 (𝑚)

𝑖 (𝑚)𝑑 (𝑚)

)
;

we have use (23.3) and (2.6) (recall that 𝑆 (𝑚) ∈
{
1
𝑚
, . . . 1

}
. It follows that

¥𝑎 (𝑚)𝑥 =
∑︁
𝑘=0

𝑘 𝑝𝑥 𝑣
𝑘

(
1 − 𝑣
𝑑 (𝑚)

− 𝑑 − 𝑣 𝑖
(𝑚)

𝑖 (𝑚)𝑑 (𝑚)
+ (1 − 𝑞𝑥+𝑘)

𝑑 − 𝑣 𝑖 (𝑚)

𝑖 (𝑚)𝑑 (𝑚)

)
=

∑︁
𝑘=0

𝑘 𝑝𝑥 𝑣
𝑘

(
𝑖 (𝑚) − 𝑑
𝑖 (𝑚)𝑑 (𝑚)

+ 𝑝𝑥+𝑘
𝑑 − 𝑣 𝑖 (𝑚)

𝑖 (𝑚)𝑑 (𝑚)

)
=

∑︁
𝑘=0

𝑘 𝑝𝑥 𝑣
𝑘 𝑖
(𝑚) − 𝑑
𝑖 (𝑚)𝑑 (𝑚)

+
∑︁
𝑘=0

𝑘+1𝑝𝑥 𝑣
𝑘+1 𝑖 − 𝑖 (𝑚)

𝑖 (𝑚)𝑑 (𝑚)

=
∑︁
𝑘=0

𝑘 𝑝𝑥 𝑣
𝑘 𝑖
(𝑚) − 𝑑
𝑖 (𝑚)𝑑 (𝑚)

+
∑︁
𝑘=0

𝑘 𝑝𝑥 𝑣
𝑘 𝑖 − 𝑖 (𝑚)

𝑖 (𝑚)𝑑 (𝑚)
− 𝑖 − 𝑖 (𝑚)

𝑖 (𝑚)𝑑 (𝑚)

=
∑︁
𝑘=0

𝑘 𝑝𝑥 𝑣
𝑘 𝑖 − 𝑑
𝑖 (𝑚)𝑑 (𝑚)

− 𝑖 − 𝑖 (𝑚)

𝑖 (𝑚)𝑑 (𝑚)
=

𝑖 𝑑

𝑖 (𝑚)𝑑 (𝑚)
¥𝑎𝑥 −

𝑖 − 𝑖 (𝑚)

𝑖 (𝑚)𝑑 (𝑚)
= 𝛼 (𝑚) · ¥𝑎𝑥 − 𝛽 (𝑚)

by employing the definitions (2.4) and 𝑖 − 𝑑 = 𝑖𝑑; consequently,

¥𝑎 (𝑚)
𝑥:𝑛

= 𝛼 (𝑚) · ¥𝑎𝑥:𝑛 − 𝛽 (𝑚) (1 − 𝑛𝐸𝑥) .

□

Lemma 24.3 (Cf. Lemma 24.1). By substituting (24.4) and (24.1) it follows for the monthly paid annuity
that

1 = 𝐴
(𝑚)
𝑥:𝑛
+ 𝑑 (𝑚) · ¥𝑎 (𝑚)

𝑥:𝑛
.
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Increasing annuity

The increasing annuity is defined as ¥𝑎inc
𝐾

:= 1 + 2𝑣 + 3𝑣2 + · · ·𝐾 𝑣𝐾−1 =
1−(𝐾+1)𝑣𝐾+𝐾𝑣𝐾+1

(1−𝑣)2 (cf. (2.14)).
Then

¥𝑎inc
𝑥:𝑛

:= E ¥𝑎inc
𝐾+1∧𝑛 = E

𝑛−1∑︁
𝑘=0

(𝑘 + 1)𝑣𝑘 1{𝐾≥𝑘}

=

∞∑︁
𝑘=0

𝑘 𝑝𝑥𝑞𝑥+𝑘 ¥𝑎inc
𝑘+1∧𝑛

=

∞∑︁
𝑘=0

𝑘 𝑝𝑥
(
1 − 𝑝𝑥+𝑘

)
¥𝑎inc
𝑘+1∧𝑛

=
∑︁
𝑘=0

(
𝑘 𝑝𝑥 ¥𝑎inc

𝑘+1∧𝑛
− 𝑘+1𝑝𝑥 ¥𝑎inc

𝑘+1∧𝑛

)
= 1 +

∑︁
𝑘=1

𝑘 𝑝𝑥

(
¥𝑎inc
𝑘+1∧𝑛

− ¥𝑎inc
𝑘∧𝑛

)
=

𝑛−1∑︁
𝑘=0

𝑘 𝑝𝑥 (𝑘 + 1)𝑣𝑘 . (24.5)

24.2 problems

Exercise 24.1. Verify some formulae for lump-sum premiums in Lecture 24.

Exercise 24.2. Verify Lemma 24.1 and Lemma 24.3 (consider perhaps 1 − 𝑣𝑛 = 1 − 𝑑 ¥𝑎𝑛 and Exercise 2.4
first).

Exercise 24.3. Use (5.24) to verify (24.2) and (24.5).
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25Regular Payments, and Constantly Repaid Loan

Equivalence Principle
The equivalence principle states that a contract is fair if E 𝐿 = 0 for all, where 𝐿 incorporates all future
premiums.

Pure Endowment

𝑛𝐸𝑥 = 𝑃 · ¥𝑎𝑥:𝑛 , that is 𝑛𝐸𝑥
¥𝑎𝑥:𝑛 = 𝑃

Life Insurance

𝑛𝐴𝑥 = 𝑃 · ¥𝑎𝑥:𝑛 , that is 𝑛𝐴𝑥
¥𝑎𝑥:𝑛 = 𝑃

Endowment

𝑛𝐴𝑥 + 𝑛𝐸𝑥 = 𝑃 · ¥𝑎𝑥:𝑛 , that is 𝑛𝐴𝑥+ 𝑛𝐸𝑥
¥𝑎𝑥:𝑛 = 𝑃

Endowment with premium refund

𝑛𝐸𝑥 + 𝑃 · 𝑛𝐴𝑖𝑛𝑐𝑥 = 𝑃 · ¥𝑎𝑥:𝑛 , that is 𝑛𝐸𝑥
¥𝑎𝑥:𝑛 − 𝑛𝐴𝑖𝑛𝑐𝑥

= 𝑃

Deferred Annuities

𝑛𝐸𝑥 · ¥𝑎𝑥+𝑛 = 𝑃 · ¥𝑎𝑥:𝑛 , that is 𝑛𝐸𝑥 · ¥𝑎𝑥+𝑛
¥𝑎𝑥:𝑛 = 𝑃

25.1 gross premiums

The premium described in Lecture 25 is the net premium. In contrast to the net premium the gross premium
is loaded with costs. Of course, the costs are charged to the policyholder. Different types of costs are often
associated with different sources of the costs. 𝛼-costs are related to closing the insurance contract and,
this is the amount often dedicated to the insurance broker. 𝛼-costs occur once, at the beginning of the
contract. The basis of remuneration for the insurance broker is the value of the insurance contract for the
insurance company. This is the lump-sum premium, or the total of all future premiums, in some cases the
sum insured.

𝛽-costs are historically related to collecting the insurance premium, they are naturally based on the
gross premium. 𝛽-costs incur regularly and are not considered for lump-sum contracts.

Associated with managing and governing the insurance contract are 𝛾-costs. These costs are often
associated are often based on the sum insured or the current book-value of the contract. These costs
vary significantly among insurance companies, which are in competition. However, typical cost rates are
𝛼 = 40h, 𝛽 = 3% and 𝛾 = 40h.
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162 regular payments, and constantly repaid loan

25.1.1 Pure Endowment
The present value of an endowment insurance contract consists of the net premium, 𝛼- and 𝛾-costs. 𝛽-costs
are not present for the lump-sum contract. As costs have to be funded by the premium payer the equations
for lump-sum premium and regularly paid premiums are

𝑛𝐸𝑥 + 𝛼𝑃 + 𝛾 ¥𝑎𝑥:𝑛 = 𝑃 and 𝑛𝐸𝑥 + 𝛼𝑛𝑃 + 𝛾 ¥𝑎𝑥:𝑛 + 𝛽𝑃 ¥𝑎𝑥:𝑛 = 𝑃 ¥𝑎𝑥:𝑛 , (25.1)

the premiums are

𝑃 =
𝑛𝐸𝑥 + 𝛾 ¥𝑎𝑥:𝑛

1 − 𝛼 and 𝑃 =
𝑛𝐸𝑥 + 𝛾 ¥𝑎𝑥:𝑛
(1 − 𝛽) ¥𝑎𝑥:𝑛 − 𝛼𝑛

.

This pattern is repeated for other types of insurance contracts.

25.1.2 Life Insurance
Here, the broker’s commission and admin costs are based on the sum insured,

𝑃 = 𝑛𝐴𝑥 + 𝛼 + 𝛾 ¥𝑎𝑥:𝑛 and 𝑃 =
𝑛𝐴𝑥 + 𝛼 + 𝛾 ¥𝑎𝑥:𝑛
(1 − 𝛽) ¥𝑎𝑥:𝑛

.

25.1.3 Endowment
The premiums are

𝑃 =
𝑛𝐸𝑥 + 𝑛𝐴𝑥 + 𝛾 ¥𝑎𝑥:𝑛

1 − 𝛼 and 𝑃 =
𝑛𝐸𝑥 + 𝑛𝐴𝑥 + 𝛾 ¥𝑎𝑥:𝑛
(1 − 𝛽) ¥𝑎𝑥:𝑛 − 𝛼𝑛

.

25.1.4 Endowment with premium refund

𝑃 =
𝑛𝐸𝑥 + 𝛾 ¥𝑎𝑥:𝑛
1 − 𝑛𝐴𝑥 − 𝛼

and 𝑃 =
𝑛𝐸𝑥 + 𝛾 ¥𝑎𝑥:𝑛

(1 − 𝛽) ¥𝑎𝑥:𝑛 − 𝑛𝐴𝑖𝑛𝑐𝑥 − 𝛼𝑛
.

25.1.5 Deferred Annuities with premium refund
The premiums

𝑃 =
𝑛𝐸𝑥 · ¥𝑎𝑥+𝑛 (1 + 𝛾 ¥𝑎𝑥:𝑛 + 𝛿)

1 − 𝑛𝐴𝑥 − 𝛼
and 𝑃 =

𝑛𝐸𝑥 · ¥𝑎𝑥+𝑛 + 𝛾 ¥𝑎𝑥:𝑛 · 𝑛𝐸𝑥 ¥𝑎𝑥+𝑛 + 𝛿𝑛𝐸𝑥 ¥𝑎𝑥+𝑛
(1 − 𝛽) ¥𝑎𝑥:𝑛 − 𝑛𝐴𝑖𝑛𝑐𝑥 − 𝛼𝑛

are based on the annuity, they derive from 𝑃 =𝑛 𝐸𝑥 · ¥𝑎𝑥+𝑛 + 𝑃𝑛𝐴𝑖𝑛𝑐𝑥 + 𝛽𝑃 ¥𝑎𝑥:𝑛 + 𝛼𝑛𝑃 + 𝛾 ¥𝑎𝑥:𝑛 · 𝑛𝐸𝑥 ¥𝑎𝑥+𝑛 +
𝛿𝑛𝐸𝑥 ¥𝑎𝑥+𝑛. Here 𝛾 are the admin costs as long as no annuity is paid, the costs 𝛿 incurring afterward are
based on the annuity.

25.1.6 Reminder of Debt of a Constantly Repaid Loan
Recall that a total loan of 𝐿 = ¥𝑎𝑥:𝑛 may be granted to a client at an installment of 1 (say). After some time
𝑘 , the outstanding amount is

𝑉𝑘 = ¥𝑎𝑥+𝑘:𝑛−𝑘 ,
reflecting the present value of all future payments (prospective calculation). This should be in line with the
retrospective computation, that is to say

𝑉𝑘 =
𝐿 · 𝑟𝑘 −∑𝑘−1

𝑖=0 𝑘 𝑝𝑥𝑟
𝑘−𝑖

𝑘 𝑝𝑥
= ¥𝑎

𝑥+𝑘:𝑛−𝑘 .
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Indeed, this holds true (multiply by 𝑘 𝑝𝑥𝑣
𝑘) as

𝐿 −
𝑘−1∑︁
𝑖=0

𝑘 𝑝𝑥𝑣
𝑖 = 𝑣𝑘 𝑘 𝑝𝑥 ¥𝑎𝑥+𝑘:𝑛−𝑘

and 𝐿 = ¥𝑎𝑥:𝑛 , as above.
Notice that one may decompose

¥𝑎
𝑥+𝑘:𝑛−𝑘 = 1 + 𝑣 · 𝑝𝑥+𝑘 ¥𝑎𝑥+1+𝑘:𝑛−(𝑘+1) |

= 1 + 𝑣 (1 − 𝑞𝑥+𝑘) ¥𝑎𝑥+1+𝑘:𝑛−(𝑘+1)
= 1 + 𝑣 · ¥𝑎

𝑥+1+𝑘:𝑛−(𝑘+1) − 𝑞𝑥+𝑘 · 𝑣 · ¥𝑎𝑥+1+𝑘:𝑛−(𝑘+1) ,

and the installment thus may be decomposed as

−1 = 𝑣 · ¥𝑎
𝑥+1+𝑘:𝑛−(𝑘+1) − ¥𝑎𝑥+𝑘:𝑛−𝑘︸                                 ︷︷                                 ︸

𝑃saving

+−𝑞𝑥+𝑘 · 𝑣 · ¥𝑎𝑥+1+𝑘:𝑛−(𝑘+1)︸                            ︷︷                            ︸
𝑃risk

= 𝑣 · 𝑉𝑘+1 −𝑉𝑘︸         ︷︷         ︸
𝑃saving

+−𝑞𝑥+𝑘 · 𝑣 · 𝑉𝑘+1︸             ︷︷             ︸
𝑃risk

. (25.2)

Notice the particular interpretation 𝑃risk = 𝑞𝑥+𝑘 · 𝑣 · 𝑉𝑘+1 which states that the outstanding amount 𝑉𝑘+1
has to be covered in case of default, which happens with probability 𝑞𝑥+𝑘 in year 𝑘 . Note, that no recovery
applies here.

Incorporating Recovery Now

Suppose there is a recovery 𝐶𝑥+𝑘 in case of default in year 𝑘 . The present value for the loan then obviously
is

𝐿 = E
[
¥𝑎 (𝐾+1)∧𝑛 + 𝑣

𝐾+1𝐶𝐾
]
,

and this is the amount which can be granted. We have investigated the payment stream ¥𝑎𝑥:𝑛 = E
[
¥𝑎 (𝐾+1)∧𝑛

]
above, so let’s focus on 𝐴𝑥 = E

[
𝑣𝐾+1𝐶𝐾

]
. The recursion obviously is (assuming the 𝐶𝐾 = 0 for 𝐾 ≥ 𝑛,

that is after termination of the loan),

𝐴𝑥 = E 𝑣
𝐾+1𝐶𝐾+1

=

𝑛−1∑︁
𝑘=0

𝑘 𝑝𝑥 · 𝑞𝑥+𝑘 · 𝑣𝑘+1 · 𝐶𝑘+1

= 𝑣 · 𝑞𝑥𝐶1 +
𝑛−2∑︁
𝑘=0

𝑘+1𝑝𝑥 · 𝑞𝑥+1+𝑘 · 𝑣𝑘+2 · 𝐶𝑘+2

= 𝑣 · 𝑞𝑥𝐶1 + 1𝑝𝑥 · 𝑣 ·
𝑛−2∑︁
𝑘=0

𝑘 𝑝𝑥+1 · 𝑞𝑥+1+𝑘 · 𝑣𝑘+1 · 𝐶𝑘+2

= 𝑣 · 𝑞𝑥𝐶1 + 1𝑝𝑥 · 𝑣 · 𝐴𝑥+1, (25.3)

or again and more generally
0 = 𝑣 · 𝑉𝑘+1 −𝑉𝑘 + 𝑣 · 𝑞 (𝐶𝑘+1 −𝑉𝑘+1)
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for 𝑉𝑘 = 𝐴𝑥+𝑘 .
Summing up with (25.2) thus

−1 =𝑣 · ¥𝑎
𝑥+1+𝑘:𝑛−(𝑘+1) − ¥𝑎𝑥+𝑘:𝑛−𝑘 − 𝑣 · 𝑞𝑥+𝑘 · ¥𝑎𝑥+1+𝑘:𝑛−(𝑘+1)
+ 𝑣 · 𝐴𝑥+𝑘+1 − 𝐴𝑥+𝑘 + 𝑣 · 𝑞 (𝐶𝑘+1 − 𝐴𝑥+𝑘)

=𝑣 ·
(
¥𝑎
𝑥+1+𝑘:𝑛−(𝑘+1) + 𝐴𝑥+𝑘+1

)
−

(
¥𝑎
𝑥+𝑘:𝑛−𝑘 + 𝐴𝑥+𝑘

)
+ 𝑣 · 𝑞𝑥+𝑘

(
𝐶𝑘+1 −

(
𝐴𝑥+𝑘 + ¥𝑎𝑥+1+𝑘:𝑛−(𝑘+1)

))
= 𝑣 · 𝑉𝑘+1 −𝑉𝑘︸         ︷︷         ︸

−𝑃saving

+ 𝑣 · 𝑞𝑥+𝑘 · (𝐶𝑘+1 −𝑉𝑘+1)︸                         ︷︷                         ︸
𝑃risk

. (25.4)

and (recall that 𝑑 = 1 − 𝑣, Exercise 2.10)

−1 = 𝑣 · 𝑉𝑘+1 −𝑉𝑘 + 𝑞𝑥+𝑘 · 𝑣 · (𝐶𝑘+1 −𝑉𝑘+1)
= 𝑉𝑘+1 −𝑉𝑘︸     ︷︷     ︸

savings

− 𝑑 · 𝑉𝑘+1︸  ︷︷  ︸
interest

+ 𝑞𝑥+𝑘 · 𝑣 · (𝐶𝑘+1 −𝑉𝑘+1)︸                         ︷︷                         ︸
risk

or alternatively
𝑉𝑘+1 = 𝑉𝑘 − 1︸︷︷︸

repayment

+ 𝑑 · 𝑉𝑘+1︸  ︷︷  ︸
interest

− 𝑞𝑥+𝑘 · 𝑣 · (𝐶𝑘+1 −𝑉𝑘+1)︸                         ︷︷                         ︸
risk

25.1.7 The general pattern
To generalize the findings and patterns of the previous displays we define

𝑃savings := 𝑣𝑉𝑘+1 −𝑉𝑘 and 𝑃risk := 𝑣𝑞𝑥+𝑘 (𝐶𝑘+1 −𝑉𝑘+1) ,

then every premium 𝑃𝑘 (recall that a negative repayment is a premium) rewrites by (25.4) as

𝑃𝑘 = 𝑃
savings
𝑘

+ 𝑃risk
𝑘 .

We obtain that

𝑃𝑘 = 𝑣 𝑉𝑘+1 −𝑉𝑘︸        ︷︷        ︸
𝑃savings

+ 𝑣 𝑞𝑥+𝑘 (𝐶𝑘+1 −𝑉𝑘+1)︸                     ︷︷                     ︸
𝑃risk

,

or
𝑉𝑘+1 = 𝑉𝑘 + 𝑃𝑘︸︷︷︸

payment

+ 𝑑 · 𝑉𝑘+1︸  ︷︷  ︸
interest

− 𝑞𝑥+𝑘 · 𝑣 · (𝐶𝑘+1 −𝑉𝑘+1)︸                         ︷︷                         ︸
risk

,

which assembles the next wealth 𝑉𝑘+1 as previous wealth 𝑉𝑘 , plus payment 𝑃𝑘 , plus earned interest 𝑑𝑉𝑘+1
(note that this is not 𝑖𝑉𝑘) minus the payment for risk, 𝑞𝑥+𝑘𝑣(𝐶𝑘+1 −𝑉𝑘+1). Note further that

𝑃𝑘 +𝑉𝑘 = 𝑣 {(1 − 𝑞𝑥+𝑘)𝑉𝑘+1 + 𝑞𝑥+𝑘 𝐶𝑘+1} ,

the Markov property (cf. 25.3).
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Constant Risk—a special case

For constant risk, again 𝑞𝑥+𝑘 ≡ 𝑞 and fixed recovery 𝐶 = 1, and recalling (24.3)

𝐴𝑥 = E 𝑣
𝐾+1𝐶𝐾

=

𝑛−1∑︁
𝑘=0

𝑘 𝑝𝑥 · 𝑞𝑥+𝑘 · 𝑣𝑘+1

=

𝑛−1∑︁
𝑘=0

(1 − 𝑞)𝑘 · 𝑞 · 𝑣𝑘+1 = 𝑞 · 𝑣 ·
𝑛−1∑︁
𝑘=0

(
(1 − 𝑞)𝑣

) 𝑘
= 𝑞 · 𝑣 · ¥𝑎𝑥:𝑛 ,

that is 𝐴𝑥
¥𝑎𝑥:𝑛 = 𝑞 · 𝑣, i.e., the premium does not change.

25.2 the model

The face amount of a loan with installment 1
𝑚

we have found (cf. (2.9)) to be 𝑎 (𝑚)
𝑛

. We will extend the
notion of present values and incorporate uncertainty, which in turn is described by random variables. The
generalized present value is

𝑉 := E
∑︁
𝑡

𝐶𝑡

(1 + 𝑖)𝑡
,

which obeys the same features and properties, as recursivity and duration.
To incorporate for example credit risk we may proceed as follows: define the simple binomial random

variables

𝐿𝑡 𝑅𝑡+1 “default” 0 “non-default”

𝑞𝑡 1 − 𝑞𝑡 =: 𝑝𝑡
,

describing the recovery in case of a credit event (credit default): P [𝐿𝑡 = 0] = 1−𝑞𝑡 and P [𝐿𝑡 = 𝑅𝑡+1] =
𝑞𝑡 : the probability for a default during year 𝑡 is 𝑞𝑡 , and in this case the recovery is 𝑅𝑡+1.

In case of a defaulted loan, the actual outstanding amount is lost for the bank despite a potential recovery.
That is to say, it may not be re-paid at time 𝑡 and the bank has to write-off the entire outstanding amount.

The present value thus is

𝑉 = E
∑︁
𝑡

𝐶𝑡

(1 + 𝑖)𝑡

=

𝑇∑︁
𝑘=0

𝐶𝑡𝑘

(1 + 𝑖)𝑘 𝑘 𝑝𝑡0 · 𝑞𝑡0+𝑘 ,

where we have put 𝑘 𝑝𝑡 := (1 − 𝑞𝑡 ) (1 − 𝑞𝑡+1) . . . (1 − 𝑞𝑡+𝑘−1) to account for the non-default during all the
years from 𝑡 to 𝑡 + 𝑘

We may augment the model by additional parameters and incorporate for example parameters fees
and a potential recovery in case of a credit event. Incorporated all this in one formula, the respective
prospective recursion rewrites

𝑉𝑡 + 𝑃𝑡 = 𝐹𝑡 + (1 − 𝑞𝑡 ) · 𝑣𝑡𝑉𝑡+1 + 𝑞𝑡 · 𝑣𝑡𝑅𝑡+1; (25.5)

here,
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⊲ 𝑃𝑡 is the payment, installment or premium,

⊲ 𝐹𝑡 is the fee due in year 𝑡,

⊲ 𝑅𝑡+1 is the recovery in case of default (notice the index 𝑡 + 1: recovery is considered towards the
end of the year; changing the sign of 𝑅𝑡 would describe additional risk, which is loaded in case of a
credit event), and

⊲ 𝑞𝑡 , as above, is the probability for a credit default (credit event) within year 𝑡 (𝑞𝑡 := P [default within year 𝑡]).

Together with the additional requirement
𝑉𝑇 = 0

it is possible, using (25.5), to compute all present values of the loan given the fixed payments 𝑃𝑡 , and the
additional condition

𝑉0 = 0

may be used to derive the face amount, which can be borrowed to the client.
The recursion, in addition, has these following interpretations:

⊲ The left hand side, 𝑉𝑡 + 𝑃𝑡 , is the cash available. This amount will be used to finance the right hand
side.

⊲ The right hand side 𝐹𝑡 + 𝑣𝑡 (1 − 𝑞𝑡 )𝑉𝑡+1 + 𝑣𝑡𝑞𝑡𝑅𝑡 , consisting of

– fees,

– the future present value in case of non-default, and

– the recovery

has to be financed.

⊲ both sides, left an right, have to coincide.

Equation (25.5) may be written as

𝑃𝑡 = 𝐹𝑡 +𝑉𝑡+1 −𝑉𝑡︸    ︷︷    ︸
Δ𝑉

− 𝑑𝑡𝑉𝑡+1︸ ︷︷ ︸
interest

+ 𝑣𝑡𝑞𝑡 (𝑅𝑡+1 −𝑉𝑡+1)︸                 ︷︷                 ︸
𝑃𝑅
𝑖

.

= 𝐹𝑡︸︷︷︸
𝑃𝐶𝑡

+ 𝑣𝑡𝑉𝑡+1 −𝑉𝑡︸       ︷︷       ︸
𝑃𝑆𝑡

+ 𝑣𝑡𝑞𝑡 (𝑅𝑡+1 −𝑉𝑡+1)︸                 ︷︷                 ︸
𝑃𝑅𝑡

The premium consists of 4 ingredients:

⊲ the component describing the fees, 𝑃𝐹𝑡 := 𝐹𝑡 ,

⊲ the savings premium 𝑃𝑆𝑡 := 𝑣𝑡𝑉𝑡+1 − 𝑃𝑉𝑡 , which consists of two parts,

– the change of reserves, Δ𝑉 = 𝑉𝑡+1 −𝑉𝑡 and

– the respective interest voucher, 𝑑𝑡𝑉𝑡+1,

⊲ the premium responsible to quantify the contribution for risk, 𝑃𝑅𝑡 = 𝑞𝑡 · 𝑣𝑡 (𝑉𝑡+1 − 𝑅𝑡+1).
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25.3 margins

Consider a usual (personal) loan with some (variable or constant) interest rate 𝑖, there will be no recovery
𝑅𝑡+1 = 0 (as typical for a personal loan), a constant default rate 𝑞𝑡 = 𝑞 and neglect the fees, as they have
minor impact anyhow. The recursion thus simplifies to

𝑉𝑡 = 1 + 𝑣 (1 − 𝑞)𝑉𝑡+1.

Introduce the derived interest rate 𝑖𝑞 := 𝑖+𝑞
1−𝑞 and observe that 1

1+𝑖𝑞 =
1−𝑞
1+𝑖 . So the recursion, again, is

𝑉𝑡 = 1 + 1

1 + 𝑖𝑞
𝑉𝑡+1,

which strikingly reminds to (2.15): 𝑖𝑞 , however, is the interest rate with some margin added, and 𝑖𝑞 ≈ 𝑖 + 𝑞
– this observation justifies the fact, that financial institutions base all their expectations on risk into a single
number – the margin – which then is added to the interest rate.

Given constant interest rates the solution of this recursion is simply ¥𝑎𝑛, but computed with the
augmented interest rate 𝑖𝑞 instead of 𝑖.

25.4 hattendorff’s theorem

The present value is the expected value, which we have computed on a prospective basis. Having a look at
the evolution of a specific loan in time, we will observe another pattern: All future present values are then
𝑃𝑉𝑡 , provided the loan did not default yet. When defaulted, 𝑃𝑉 falls back to 0 and stays there. So any
individual loan is a process, and any individual loan has incorporated risk.

The random variable 𝐿𝑡 introduced above to describe the loss has expected value 𝑞𝑡𝑐𝑡 , the variance is
𝑞𝑡 (1 − 𝑞𝑡 ) 𝑐2𝑡 .

The easiest way to measure this risk incorporated is the variance. Hattendorff’s theorem1 gives the
precise formula, which is

var 𝐿 =
∑︁
𝑘=0

𝑣2𝑘+2 (𝑅𝑘+1 −𝑉𝑘+1)2 𝑘+1𝑝𝑡 𝑞𝑡+𝑘

1K. Hattendorff, 1968
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26Karhunen–Loève and Donsker’s Theorem

26.1 karhunen–loève theorem

Consider a stochastic process (𝑋𝑡 )𝑡∈[0,1] during the times [0, 1] with

(i) Every trajectory 𝑡 ↦→ 𝑋𝑡 (·) ∈ 𝐿2,

(ii) E 𝑋𝑡 = 0.

Define the covariance function 𝐾 (𝑠, 𝑡) := cov(𝑋𝑠 , 𝑋𝑡 ) (note that 𝐾 is symmetric, 𝐾 (𝑠, 𝑡) = 𝐾 (𝑡, 𝑠)) and
consider the operator

K : 𝐿2 [0, 1] → 𝐿2 [0, 1]

𝑓 ↦→ K 𝑓 , where (K 𝑓 ) (𝑠) :=
∫ 1

0

𝐾 (𝑠, 𝑡) 𝑓 (𝑡)𝑑𝑡. (26.1)

We denote its eigenvalues by 𝜆𝑘 , the eigenvectors (i.e., eigenfunctions) of K by 𝑒𝑘 (·), and assume (without
loss of generality) that 𝑒𝑘 (·) have norm 1, i.e.,

∫ 1

0
𝑒𝑘 (𝑡)𝑒 𝑗 (𝑡)𝑑𝑡 = 𝛿𝑘, 𝑗 . We thus have that∫ 1

0

𝐾 (𝑠, 𝑡)𝑒 𝑗 (𝑡)𝑑𝑡 = (K𝑒 𝑗 ) (𝑠) = 𝜆 𝑗𝑒 𝑗 (𝑠), 𝑠 ∈ [0, 1] . (26.2)

Note in particular that∫ 1

0

(∑︁
𝑘=1

𝜆𝑘𝑒𝑘 (𝑠)𝑒𝑘 (𝑡)
)
𝑒 𝑗 (𝑡)𝑑𝑡 =

∑︁
𝑘=1

𝜆𝑘𝑒𝑘 (𝑠) ·
∫ 1

0

𝑒𝑘 (𝑡)𝑒 𝑗 (𝑡)𝑑𝑡︸               ︷︷               ︸
𝛿𝑘, 𝑗

= 𝜆 𝑗𝑒 𝑗 (𝑠), (26.3)

so that
𝐾 (𝑠, 𝑡) =

∑︁
𝑘=1

𝜆𝑘𝑒𝑘 (𝑠)𝑒𝑘 (𝑡) (i.e., 𝐾 =
∑︁
𝑘=1

𝜆𝑘𝑒𝑘 ⊗ 𝑒∗𝑘 =
∑︁
𝑘=1

𝜆𝑘 |𝑒𝑘⟩ ⟨𝑒𝑘 |) (26.4)

by comparing (26.2) and (26.3). By assuming that 𝐾 (𝑠, 𝑡) ≥ 0 it follows further from Mercer’s theorem
that 𝜆𝑘 ≥ 0. Note further that we may assume that the orthonormal system is complete, as otherwise we
may augment the system with additional functions 𝑒𝑘 (·) until they form a complete orthonormal system of
𝐿2.

Theorem 26.1 (Karhunen1–Loève2). The stochastic process has the expansion

𝑋𝑡 (𝜔) =
∞∑︁
𝑘=1

𝑍𝑘 (𝜔)𝑒𝑘 (𝑡) (26.5)

1Kari Karhunen, 1915–1992
2Michel Loève, 1907–1979
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with convergence in 𝐿2 for every 𝑡, where

𝑍𝑘 =

∫ 1

0

𝑋𝑡𝑒𝑘 (𝑡)𝑑𝑡 (i.e., 𝑍𝑘 (𝜔) =
∫ 1

0

𝑋𝑡 (𝜔)𝑒𝑘 (𝑡)𝑑𝑡). (26.6)

Further,
E 𝑍𝑘 = 0 and E 𝑍 𝑗𝑍𝑘 = 𝛿 𝑗𝑘 · 𝜆 𝑗 . (26.7)

Proof. As 𝑡 → 𝑋𝑡 (𝜔) ∈ 𝐿2 [0, 1] the expansion (26.5) is clear, as 𝑒𝑘 (·) constitute a complete orthonormal
system.

We then have
E 𝑍𝑘 = E

∫ 1

0

𝑋𝑡𝑒𝑘 (𝑡)𝑑𝑡 =
∫ 1

0

(E 𝑋𝑡 )𝑒𝑘 (𝑡)𝑑𝑡 = 0

and

E 𝑍𝑘 · 𝑍 𝑗 = E
∫ 1

0

𝑋𝑠𝑒𝑘 (𝑠)𝑑𝑠 ·
∫ 1

0

𝑋𝑡𝑒 𝑗 (𝑡)𝑑𝑡 =
∫ 1

0

∫ 1

0

(E 𝑋𝑠 · 𝑋𝑡 )𝑒𝑘 (𝑠)𝑑𝑠 · 𝑒 𝑗 (𝑡)𝑑𝑡

=

∫ 1

0

∫ 1

0

𝐾 (𝑠, 𝑡)𝑒𝑘 (𝑠)𝑑𝑠︸                  ︷︷                  ︸
𝜆𝑘𝑒𝑘 (𝑡 )

·𝑒 𝑗 (𝑡)𝑑𝑡 =
∫ 1

0

𝜆𝑘𝑒𝑘 (𝑡)𝑒 𝑗 (𝑡)𝑑𝑡 = 𝜆𝑘𝛿 𝑗𝑘 .

We finally show convergence in 𝐿2. To this end define 𝑆𝑁 (𝑡) :=
∑𝑁
𝑘=1 𝑍𝑘𝑒𝑘 (𝑡). Then

E
(
𝑋𝑡 − 𝑆𝑁 (𝑡)

)2
= E 𝑋2

𝑡 + E 𝑆𝑁 (𝑡)2 − 2E 𝑋𝑡𝑆𝑁 (𝑡)

= 𝐾 (𝑡, 𝑡) + E
𝑁∑︁
𝑘=1

𝑁∑︁
𝑗=1

𝑍𝑘𝑍 𝑗𝑒𝑖 (𝑡)𝑒𝑘 (𝑡) − 2E 𝑋𝑡
𝑁∑︁
𝑘=1

𝑍𝑘𝑒𝑘 (𝑡)

= 𝐾 (𝑡, 𝑡) +
𝑁∑︁
𝑘=1

𝜆𝑘𝑒𝑘 (𝑡)2 − 2E 𝑋𝑡
𝑁∑︁
𝑘=1

𝑒𝑘 (𝑡)
∫ 1

0

𝑋𝑠𝑒𝑘 (𝑠)𝑑𝑠

= 𝐾 (𝑡, 𝑡) +
𝑁∑︁
𝑘=1

𝜆𝑘𝑒𝑘 (𝑡)2 − 2
𝑁∑︁
𝑘=1

∫ 1

0

𝐾 (𝑠, 𝑡)𝑒𝑘 (𝑡)𝑒𝑘 (𝑠)𝑑𝑠

= 𝐾 (𝑡, 𝑡) +
𝑁∑︁
𝑘=1

𝜆𝑘𝑒𝑘 (𝑡)2 − 2
𝑁∑︁
𝑘=1

∫ 1

0

𝐾 (𝑠, 𝑡)𝑒𝑘 (𝑠)𝑑𝑠︸                  ︷︷                  ︸
𝜆𝑘𝑒𝑘 (𝑡 )

𝑒𝑘 (𝑡)

= 𝐾 (𝑡, 𝑡) −
𝑁∑︁
𝑘=1

𝜆𝑘𝑒𝑘 (𝑡)2 −−−−−→
𝑁→∞

0

for every 𝑡 ∈ [0, 1] by (26.4) (or Mercer’s theorem) again. □

Corollary 26.2. The process 𝑋𝑡 :=
∑∞
𝑘=1 𝑍𝑘𝑒𝑘 (𝑡) has covariance cov

(
𝑋𝑠 , 𝑋𝑡

)
= cov (𝑋𝑠 , 𝑋𝑡 ) and thus is

a copy of the stochastic process (𝑋𝑡 )𝑡∈[0,1] .
Proof. It follows from (26.7) that E 𝑋𝑡 = 0. Hence

cov
(
𝑋𝑠 , 𝑋𝑡

)
= E 𝑋𝑠 · 𝑋𝑡 = E

∞∑︁
𝑘=1

𝑍𝑘𝑒𝑘 (𝑠) ·
∞∑︁
𝑗=1

𝑍 𝑗𝑒 𝑗 (𝑡) =
∞∑︁
𝑗 ,𝑘=1

𝑒𝑘 (𝑠)𝑒 𝑗 (𝑡)E 𝑍𝑘𝑍 𝑗

=

∞∑︁
𝑘=1

𝑒𝑘 (𝑠)𝑒𝑘 (𝑡)𝜆𝑘 = 𝐾 (𝑠, 𝑡)
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by (26.4) and thus the result. □

26.2 karhunen–loève representation of the wiener process

The covariance function of the Brownian motion is 𝐾 (𝑠, 𝑡) = cov(𝑊𝑠 ,𝑊𝑡 ) = min(𝑠, 𝑡), cf. (10.2). To
deduce the eigenvalues of the associated operator K observe that every eigenfunction (eigenvector) 𝑒
satisfies K𝑒 = 𝜆 · 𝑒, i.e.,∫ 𝑡

0

𝑠 𝑒(𝑠)𝑑𝑠 +
∫ 1

𝑡

𝑡 𝑒(𝑠)𝑑𝑠 =
∫ 1

0

min(𝑠, 𝑡)𝑒(𝑠)𝑑𝑠 =
∫ 1

0

𝐾 (𝑠, 𝑡)𝑒(𝑠)𝑑𝑠 = 𝜆 · 𝑒(𝑡). (26.8)

By differentiating with respect to 𝑡 thus

𝑡 𝑒(𝑡) − 𝑡 𝑒(𝑡) +
∫ 1

𝑡

𝑒(𝑠)𝑑𝑠 = 𝜆 · 𝑒′ (𝑡), (26.9)

and again
−𝑒(𝑡) = 𝜆 · 𝑒′′ (𝑡). (26.10)

The general solution is 𝑒(𝑡) = 𝐴 sin 𝑡√
𝜆
+ 𝐵 cos 𝑡√

𝜆
.

Choose 𝑡 = 0 in (26.8) to see that 𝑒(0) = 0, thus 𝐵 = 0. Further, choose 𝑡 = 1 in (26.9) to see that
𝑒′ (1) = 0, i.e., 0 = 𝑒′ (1) = 𝐴√

𝜆
cos 1√

𝜆
and thus

𝜆𝑘 =
1( (

𝑘 − 1
2

)
𝜋
)2 .

The orthonormal eigenvecturs thus are 𝑒𝑘 (𝑡) =
√
2 sin

(
𝑘 − 1

2

)
𝜋𝑡. Note in particular that

𝐾 (𝑠, 𝑡) = min(𝑠, 𝑡) =
∞∑︁
𝑘=1

2 sin
(
𝑘 − 1

2

)
𝜋𝑠 · sin

(
𝑘 − 1

2

)
𝜋𝑡( (

𝑘 − 1
2

)
𝜋
)2 ,

by (26.4).
Remark 26.3. Suppose that 𝑋𝑡 is Gaussian (normal) for each 𝑡 ∈ [0, 1]. The sum of Gaussians is Gaussian
as well. Thus, by its definition in (26.6), 𝑍𝑘 is Gaussian. With (26.7) it follows that 𝑍𝑘 ∼ N(0, 𝜆𝑘).

Finally let 𝜉𝑘 be independent standard normals, then 𝑍𝑘 := 1

(𝑘− 1
2 ) 𝜋

𝜉𝑘 satisfy the conditions (26.7). We
infer from (26.5) the representation

𝑊𝑡 =
∑︁
𝑘=1

𝜉𝑘

√
2 sin

(
𝑘 − 1

2

)
𝜋𝑡(

𝑘 − 1
2

)
𝜋

, 𝑡 ∈ [0, 1],

for the Wiener process.
Remark 26.4. By the self similarity (Lemma 10.3) we get a Brownian motion on [0, 𝑐] by the transformation√
𝑐𝑊𝑡/𝑐 for arbitrary 𝑐 > 0.

26.3 karhunen–loève representation of the brownian bridge

The covariance function of the Brownian bridge

𝐵𝑡 := 𝑊𝑡 − 𝑡 ·𝑊1, 𝑡 ∈ [0, 1] (26.11)
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(a) The first 1000 partial sums in the Karhunen–Loève representa-
tion (26.14)
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(b) The scaled empirical process (27.2) converging towards a Brow-
nian bridge for uniform random variables

Figure 26.1: Further constructions of Brownian motion

i.e., a Wiener process conditioned on𝑊1 = 0, is

cov(𝐵𝑠 , 𝐵𝑡 ) = E (𝑊𝑠 − 𝑠𝑊1) (𝑊𝑡 − 𝑡𝑊1) = E𝑊𝑠𝑊𝑡 − 𝑠𝑊1𝑊𝑡 − 𝑡𝑊𝑠𝑊1 + 𝑠𝑡𝑊2
1

= min(𝑠, 𝑡) − 𝑠min(1, 𝑡) − 𝑡min(𝑠, 1) + 𝑠𝑡
= min(𝑠, 𝑡) − 𝑠𝑡 − 𝑠𝑡 + 𝑠𝑡 = min(𝑠, 𝑡) − 𝑠𝑡. (26.12)

As for the Wiener process the eigenfunctions satisfy the equation (26.10), but for the eigenvalue 𝜆𝑘 = 1
𝑘2 𝜋2

and the eigenfuntion 𝑒𝑘 (𝑡) =
√
2 sin 𝑘𝜋𝑡. We have that

min(𝑠, 𝑡) − 𝑠𝑡 =
∑︁
𝑘=1

2 sin 𝑘𝜋𝑠 · sin 𝑘𝜋𝑡
𝑘2𝜋2

.

The Brownian bridge thus has the representation

𝐵𝑡 =
∑︁
𝑘=1

𝜉𝑘
√
2
sin 𝑘𝜋𝑡

𝑘𝜋
, 𝑡 ∈ [0, 1], (26.13)

where 𝜉𝑘 are independent normals.
Remark 26.5. By combining (26.13) and (26.11) we also find that

𝑊𝑡 = 𝐵𝑡 + 𝑡𝑊1 ∼ 𝑡𝜉0 +
∑︁
𝑘=1

𝜉𝑘 ·
√
2
sin 𝑘𝜋𝑡

𝑘𝜋
, 𝑡 ∈ [0, 1] . (26.14)

Figure 26.1a displays a trajectory drawn from (26.14).
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27Donsker’s theorem

Consider iid random variables 𝑋𝑖 and the empirical distribution function

𝐹𝑛 (𝑥) :=
1

𝑛

𝑛∑︁
𝑖=1

1(−∞,𝑥 ] (𝑋𝑖) =
1

𝑛

𝑛∑︁
𝑖=1

1{𝑋𝑖≤𝑥} .

Apparently,

E 𝐹𝑛 (𝑥) =
1

𝑛

𝑛∑︁
𝑖=1

E1(−∞,𝑥 ] (𝑋𝑖) =
1

𝑛

𝑛∑︁
𝑖=1

𝑃(𝑋𝑖 ≤ 𝑥) = 𝐹 (𝑥)

and

E 𝐹𝑛 (𝑥)𝐹𝑛 (𝑦) =
1

𝑛2

𝑛∑︁
𝑖, 𝑗=1

E1(−∞,𝑥 ] (𝑋𝑖) 1(−∞,𝑦 ] (𝑋 𝑗 )

=
1

𝑛2

∑︁
𝑖≠, 𝑗

E1(−∞,𝑥 ] (𝑋𝑖) 1(−∞,𝑦 ] (𝑋 𝑗 ) +
1

𝑛2

𝑛∑︁
𝑖=1

E1(−∞,𝑥 ] (𝑋𝑖) 1(−∞,𝑦 ] (𝑋𝑖)

=
1

𝑛2

∑︁
𝑖≠, 𝑗

𝑃(𝑋𝑖 ≤ 𝑥)𝑃(𝑋 𝑗 ≤ 𝑦) +
1

𝑛2

𝑛∑︁
𝑖=1

E1(−∞,𝑥∧𝑦 ] (𝑋𝑖)

=
𝑛(𝑛 − 1)
𝑛2

𝐹 (𝑥)𝐹 (𝑦) + 1

𝑛
𝐹 (𝑥 ∧ 𝑦) = 1

𝑛

(
𝐹 (𝑥) ∧ 𝐹 (𝑦) − 𝐹 (𝑥)𝐹 (𝑦)

)
+ 𝐹 (𝑥)𝐹 (𝑦)

by independence, so that

cov
(
𝐹𝑛 (𝑥), 𝐹𝑛 (𝑦)

)
=
1

𝑛

(
𝐹 (𝑥 ∧ 𝑦) − 𝐹 (𝑥)𝐹 (𝑦)

)
. (27.1)

It follows that the scaled process converges (choose 𝑥 = 𝑦 in (27.1)),

√
𝑛
(
𝐹𝑛 (𝑥) − 𝐹 (𝑥)

) D−−→ N (
0, 𝐹 (𝑥)

(
1 − 𝐹 (𝑥)

) )
,

and comparing (27.1) with (26.12) reveals that the limit

√
𝑛
(
𝐹𝑛 (𝑥) − 𝐹 (𝑥)

) D−−→ 𝐵𝐹 (𝑥 ) (27.2)

converges towards a transformed (time changed) Brownian bridge, if 𝐹 is continuous.
Figure 26.1b provides a sample of the process for the uniform distribution (i.e., 𝐹 (𝑢) = 𝑢).
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28Fractional Brownian motion

28.1 properties

Definition 28.1. A process (𝑋𝑡 )𝑡∈T is Gaussian, if
(
𝑋𝑡1 , . . . 𝑋𝑡𝑛

)
is a multivariate Gaussian random variable

for every 𝑛 ∈ N and every selection (𝑡1, . . . 𝑡𝑛) ∈ T𝑛 of indices.

Definition 28.2. A Gaussian process
(
𝐵𝐻𝑡

)
is a fractional Brownian motion (fBm) if E 𝐵𝐻𝑡 = 0 and

E 𝐵𝐻𝑠 𝐵
𝐻
𝑡 =

1

2

(
𝑡2𝐻 + 𝑠2𝐻 − |𝑡 − 𝑠 |2𝐻

)
.

𝐻 ∈ (0, 1) is called the Hurst1 index (sometimes also Hurst exponent, or Hurst parameter associated with
the fractional Brownian motion).

Remark 28.3. The process 𝐵1/2
𝑡 is a Brownian motion (Wiener process), cf. the covariance relation (10.2).

Proposition 28.4 (Properties of the fractional Brownian motion). It holds that

(i) 𝐵𝐻𝑡 ∼ N(0, 𝑡),

(ii) E
(
𝐵𝐻𝑠 − 𝐵𝐻𝑡

)2
= |𝑡 − 𝑠 |2𝐻 (and in particular the increments are stationary),

(iii) cov
(
𝐵𝐻𝑠2 − 𝐵

𝐻
𝑠1
, 𝐵𝐻𝑡2 − 𝐵

𝐻
𝑡1

)
< 0 for 𝐻 < 1/2 and 𝑠1 < 𝑠2 < 𝑡1 < 𝑡2 (i.e., the increments are negatively

correlated for 𝐻 < 1/2), and

(iv) cov
(
𝐵𝐻𝑠2 − 𝐵

𝐻
𝑠1
, 𝐵𝐻𝑡2 − 𝐵

𝐻
𝑡1

)
> 0 for 𝐻 > 1/2 (positively correlated increments).

(v) 𝐵𝐻𝑡 − 𝐵𝐻𝑠 ∼ 𝐵𝐻 (𝑡 − 𝑠),

(vi) 𝐵𝐻𝑐𝑡 ∼ 𝑐𝐻𝐵𝐻𝑡 for 𝑐 > 0 (self-similarity of the fBm).

Differences between the Brownian motion and fBm:

(i) In contrast to the Brownian motion, the process 𝐵𝐻𝑡 is not a semi-martingale (𝐻 ≠ 1/2).

(ii) While the increments in Brownian Motion are independent, the opposite is true for fractional
Brownian motion. This dependence means that if there is an increasing pattern in the previous steps,
then it is likely that the current step will be increasing as well (if 𝐻 ≥ 1/2).

(iii) The fBm are not Markovian, and this becomes a strong difficulty to study and to put these models
into practice (the usual techniques assume the Markov property).

1Harold Edwin Hurst, 1880–1978, British hydrologist
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176 fractional brownian motion

28.2 simulation

A fBm-path can be simulated at discrete points (𝑡1, . . . 𝑡𝑛) ∈ T𝑛 by finding a matrix 𝐿 (for example by
employing a Cholesky-decomposition) so that

𝐿 · 𝐿⊤ =

(
1

2

(
𝑡2𝐻𝑖 + 𝑡2𝐻𝑗 −

��𝑡𝑖 − 𝑡 𝑗 ��2𝐻 ))𝑛
𝑖, 𝑗=1

.

Then 𝑢 := 𝐿 · (𝑣1, . . . 𝑣𝑛)⊤ for 𝑣1, . . . 𝑣𝑛 independent standard Gaussians is a sample path of an fBm.

28.3 estimation of the hurst parameter

Note that from Proposition 28.4 (ii) we have that

1

𝑁1−2𝐻

𝑁∑︁
𝑖=1

(
𝐵𝐻𝑖+1

𝑁

− 𝐵𝐻𝑖
𝑁

)2
→ 1 𝑎.𝑠.

Denote 𝑉𝑁 :=
∑𝑁
𝑖=1

(
𝐵𝐻𝑖+1

𝑁

− 𝐵𝐻𝑖
𝑁

)2
, then

𝐻𝑛 :=
1

2

(
1 − ln𝑉𝑁

ln 𝑁

)
is an estimator for 𝐻 and it holds that

𝐻𝑁 → 𝐻 𝑎.𝑠.

28.4 problems

Exercise 28.1. Verify the claims in Remark 28.3 and Proposition 28.4.
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29Stable Distributions

As for references see

⊲ Nolan [15], http://fs2.american.edu/jpnolan/www/stable/chap1.pdf and

⊲ Janson [8], http://www2.math.uu.se/∼svante/papers/sjN12.pdf

⊲ http://www.math.nus.edu.sg/∼matsr/ProbI/Lecture11.pdf.

29.1 properties

Definition 29.1. 𝑋 follows a stable distribution (or Lévy-alpha stable distribution) if for iid copies 𝑋𝑖 ,
𝑖 = 1, . . . 𝑛 of 𝑋 there are numbers 𝐶𝑛 > 0 and 𝐷𝑛 so that 𝑋1 + 𝑋2 + · · · + 𝑋𝑛 ∼ 𝐶𝑛 · 𝑋 + 𝐷𝑛.

Stable distributions do not have a closed form density. They are usually given by their characteristic
function (recall that 𝜙𝑋+𝑌 (𝑡) = 𝜙𝑋 (𝑡) · 𝜙𝑌 (𝑡) for independent random variables).

Definition 29.2. A random variable 𝑋 is stable, 𝑋 ∼ 𝑆(𝛼, 𝛽, 𝛾, 𝛿; 1)

E 𝑒𝑖𝑡𝑋 =

{
exp

(
− |𝛾𝑡 |𝛼

(
1 − 𝑖𝛽 (sign 𝑡) tan 𝜋𝛼

2

)
+ 𝑖𝛿𝑡

)
if 𝛼 ≠ 1,

exp
(
−𝛾 |𝑡 |

(
1 + 𝑖𝛽 2

𝜋
(sign 𝑡) ln 𝑡

)
+ 𝑖𝛿𝑡

)
if 𝛼 = 1.

(29.1)

The parameters given here for 𝑋 ∼ 𝑆(𝛼, 𝛽, 𝛾, 𝛿; 1) are the standard (type 1) parametrization,1 its
characteristic function is of simple form and has nice algebraic properties.

Type 0 parametrization (which differs in its location parameter 𝛿) is favored for numerical work and
statistical inference, as the characteristic function is continuous for all parameters (note that (29.1) is not
continuous at 𝛼 = 1).

The parameters are

(i) 𝛼 ∈ (0, 2) the index of the stability or the shape parameter,

(ii) 𝛽 ∈ [−1, 1] skewness parameter,

while

(i) 𝛾 ∈ (0,∞) is a scale parameter and

(ii) 𝛿 ∈ (−∞,∞) the location parameter.

Example 29.3. The following are stable distributions:

⊲ the Gaussian distribution (𝛼 = 2)

⊲ the Cauchy distribution (𝛼 = 1)
1Although useful, the different parametrizations have cause “a comedy of errors”. The parametrization , in use are type 1 and type

0.
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178 stable distributions

⊲ Lévy distribution (𝛼 = 1/2, 𝛽 = ±1, page 57)

Remark 29.4. The 𝛼-stable distribution has the following properties:

(i) 𝑃( |𝑋 | > 𝑥) ∼ 𝑥−𝛼 for 𝑥 →∞,

(ii) E |𝑋 |𝑝 < ∞ if 0 < 𝑝 < 𝛼, but E |𝑋 |𝑝 = ∞ for 𝑝 ≥ 𝛼,

(iii) E 𝑋 = 𝜇 for 𝛼 > 1, but E 𝑋 = ∞ for 𝛼 ≤ 1,

(iv) 𝑌 :=
∑𝑛
𝑖=1 𝑋𝑖 is 𝛼-stable with parameters 𝜇 =

∑𝑛
𝑖=1 𝜇𝑖 , 𝜎𝛼 =

∑𝑛
𝑖=1 𝛼

𝛼
𝑖

, 𝛽 =

∑𝑛
𝑖=1 𝛽𝑖𝜎

𝛼
𝑖∑𝑛

𝑖=1 𝜎
𝛼
𝑖

.

Cont and Tankov [2]
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We consider a riskless bond with 𝑑𝐵𝑡 = 𝑟𝐵𝑡𝑑𝑡 and a risky asset 𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 , the discount rate
𝜌. Further, for the investment with fraction 𝜋𝑡 , the wealth is 𝑤𝑡 := (1 − 𝜋𝑡 )𝐵𝑡 + 𝜋𝑡𝑆𝑡 so that

𝑑𝑤𝑡 = ((𝜋𝑡𝜇 + (1 − 𝜋𝑡 )𝑟) 𝑤𝑡 − 𝑐𝑡 ) 𝑑𝑡 + 𝜋𝑡𝜎𝑤𝑡 𝑑𝑊𝑡 .

Employing the utility 𝑢(·) and the consumption 𝑐𝑡 , the investor maximizes

E

[∫ 𝑇

𝑡

𝑒−𝜌(𝑠−𝑡 )𝑢(𝑐𝑠)𝑑𝑠 + 𝑒−𝜌(𝑇−𝑡 ) 𝑝(𝑇)𝑢(𝑤𝑇 )
����𝑤𝑡 ] ,

where 𝑝(·) is the terminal, bequest function. For the analysis define the optimal discounted value function

𝑣(𝑡, 𝑤) := max
𝜋𝑡 ,𝑐𝑡

E

[∫ 𝑇

𝑡

𝑒−𝜌𝑠𝑢(𝑐𝑠)𝑑𝑠 + 𝑒−𝜌𝑇 𝑝(𝑇)𝑢(𝑤𝑇 )
����𝑤𝑡 = 𝑤]

.

Theorem 30.1 (Merton’s fraction,1 cf. Karatzas and Shreve [10, 5.8 C]). For the particular utility function
𝑢(𝑐) := 𝑐1−𝛾

1−𝛾 the optimal policy is 𝑐∗𝑡 =
𝜈 𝑤𝑡

1+(𝜈𝜖 −1)𝑒−𝜈 (𝑇−𝑡 ) and

𝜋∗𝑡 =
𝜇 − 𝑟
𝜎2 · 𝛾

(the constant (sic!) Merton fraction), where 𝜈 :=
𝜌−(1−𝛾)

(
(𝜇−𝑟 )2
2𝜎2𝛾

+𝑟
)

𝛾
. The optimal discounted value function

has the explicit form 𝑣(𝑡, 𝑤) = 𝑒−𝜌𝑡 (1+(𝜈𝜖 −1)𝑒
−𝜈 (𝑇−𝑡 ) )𝛾

𝜈𝛾
𝑤1−𝛾

1−𝛾 .

Remark 30.2. The risk aversion coefficient of the utility function 𝑢(𝑐) = 𝑐1−𝛾

1−𝛾 is − 𝑐𝑢
′′ (𝑐)
𝑢′ (𝑐) = 𝛾.

Proof. For 𝑡1 ∈ (𝑡, 𝑇) it is apparent that

𝑣(𝑡, 𝑤) := max
𝜋𝑡 ,𝑐𝑡

E

[
𝑣(𝑡1, 𝑤𝑡1 ) +

∫ 𝑡1

𝑡

𝑒−𝜌𝑠𝑢(𝑐𝑠)𝑑𝑠
����𝑤𝑡 = 𝑤]

.

In stochastic differential form (𝑡1 → 𝑡) this is

0 = max
𝜋𝑡 ,𝑐𝑡

E
[
𝑑𝑣(𝑡, 𝑤𝑡 ) + 𝑒−𝜌𝑡𝑢(𝑐𝑡 )

]
.

By Ito’s lemma thus

0 = max
𝜋𝑡 ,𝑐𝑡

E

[
𝜕𝑣

𝜕𝑡
+ 𝜕𝑣
𝜕𝑤

𝑑𝑤𝑡 +
1

2

𝜕2𝑣

𝜕𝑤2
(𝑑𝑤𝑡 )2 + 𝑒−𝜌𝑡𝑢(𝑐𝑡 )

]
,

or the Hamilton–Jacobi–Bellman equation

0 = max
𝜋,𝑐

[
𝜕𝑣

𝜕𝑡
+ ((𝜋𝜇 + (1 − 𝜋)𝑟) 𝑤 − 𝑐) 𝜕𝑣

𝜕𝑤
+ 𝜋

2𝜎2𝑤2

2

𝜕2𝑣

𝜕𝑤2
+ 𝑒−𝜌𝑡𝑢(𝑐)

]
, (30.1)

where we have used the martingale property of𝑊𝑡 . □

1Robert C. Merton, 1944, US economist; Nobel Memorial Prize in Economic Sciences 1977
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The first order conditions in (30.1) are found by computing the derivative with respect to 𝜋 and 𝑐, they
are

(𝜇 − 𝑟) 𝜕𝑣
𝜕𝑤
+ 𝜋𝑡𝜎2𝑤

𝜕2𝑣

𝜕𝑤2
= 0

and
− 𝜕𝑣
𝜕𝑤
+ 𝑒−𝜌𝑡𝑢′ (𝑐) = 0

so that

𝜋∗ = − (𝜇 − 𝑟)
𝜎2

·
𝜕𝑣
𝜕𝑤

𝑤 𝜕2𝑣
𝜕𝑤2

(30.2)

and
𝑐∗𝑡 = 𝑢

′−1
(
𝑒𝜌𝑡

𝜕𝑣

𝜕𝑤

)
. (30.3)

Substituting the optimal 𝜋∗ and 𝑐∗ in (30.1) gives the equation

0 =
𝜕𝑣

𝜕𝑡
−
(𝜇 − 𝑟)2

(
𝜕𝑣
𝜕𝑤

)2
2𝜎2 𝜕2𝑣

𝜕𝑤2

+ 𝑟𝑤 𝜕𝑣
𝜕𝑤
− 𝑢′−1

(
𝑒𝜌𝑡

𝜕𝑣

𝜕𝑤

)
𝜕𝑣

𝜕𝑤
+ 𝑒−𝜌𝑡𝑢

(
𝑢′−1

(
𝑒𝜌𝑡

𝜕𝑣

𝜕𝑤

))
. (30.4)

To continue we specify the utility function 𝑢(𝑐) := 𝑐1−𝛾

1−𝛾 . Note, that 𝑢′ (𝑐) = 𝑐−𝛾 and 𝑢′−1 (𝑥) = 𝑥−1/𝛾,
so that

𝑐∗𝑡 =

(
𝑒𝜌𝑡

𝜕𝑣

𝜕𝑤

)− 1
𝛾

from (30.3) and thus

−𝑐∗ 𝜕𝑣
𝜕𝑤
+ 𝑒−𝜌𝑡𝑢(𝑐∗) = −

(
𝑒𝜌𝑡

𝜕𝑣

𝜕𝑤

)− 1
𝛾 𝜕𝑣

𝜕𝑤
+ 𝑒−𝜌𝑡

1 − 𝛾

(
𝑒𝜌𝑡

𝜕𝑣

𝜕𝑤

)− 1−𝛾
𝛾

=
𝛾

1 − 𝛾 𝑒
− 𝜌𝑡
𝛾

(
𝜕𝑣

𝜕𝑤

) 𝛾−1
𝛾

and thus

0 =
𝜕𝑣

𝜕𝑡
− (𝜇 − 𝑟)

2

2𝜎2

(
𝜕𝑣
𝜕𝑤

)2
𝜕2𝑣
𝜕𝑤2

+ 𝑟𝑤 𝜕𝑣
𝜕𝑤
+ 𝛾

1 − 𝛾 𝑒
− 𝜌𝑡
𝛾

(
𝜕𝑣

𝜕𝑤

) 𝛾−1
𝛾

. (30.5)

To linearize and solve this equation we try the ansatz 𝑣(𝑡, 𝑤) := 𝑒−𝜌𝑡 𝑓 (𝑡)𝛾 𝑤1−𝛾

1−𝛾 so that

𝜕𝑣

𝜕𝑡
= 𝑒−𝜌𝑡

(
−𝜌 𝑓 (𝑡)𝛾 + 𝛾 𝑓 (𝑡)𝛾−1 𝑓 ′ (𝑡)

) 𝑤1−𝛾

1 − 𝛾 ,

𝜕𝑣

𝜕𝑤
= 𝑒−𝜌𝑡 𝑓 (𝑡)𝛾𝑤−𝛾 ,

𝜕2𝑣

𝜕𝑤2
= −𝛾𝑒−𝜌𝑡 𝑓 (𝑡)𝛾𝑤−𝛾−1.

Hence (30.5) reads

0 = 𝑒−𝜌𝑡𝑤1−𝛾 𝑓 (𝑡)𝛾−1
(
− 𝜌

1 − 𝛾 𝑓 (𝑡) +
𝛾

1 − 𝛾 𝑓
′ (𝑡) − (𝜇 − 𝑟)

2

2𝜎2𝛾
𝑓 (𝑡) + 𝑟 𝑓 (𝑡) + 𝛾

1 − 𝛾

)
or

𝑓 ′ (𝑡) = 𝜈 𝑓 (𝑡) − 1
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merton fraction 181

with 𝜈 =
𝜌−(1−𝛾)

(
(𝜇−𝑟 )2
2𝜎2𝛾

+𝑟
)

𝛾
. Employing the terminal condition 𝑣(𝑇, 𝑤) = 𝑒−𝜌𝑇𝜖𝛾 𝑤1−𝛾

1−𝛾 we get the boundary
condition 𝑓 (𝑇) = 𝜖 . The general solution thus is

𝑓 (𝑡) = 1 + (𝜈𝜖 − 1)𝑒−𝜈 (𝑇−𝑡 )
𝜈

.

Substituting back in (30.2) gives the further results, in particular the (constant) Merton fraction.

Version: April 29, 2024
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A
absolutely continuous, 51
algebra, 45
annual percentage rate, APR, 28
annuity, 23
arbitrage, 14
ask, 13

B
basis point, 13
bid, 13
binomial model, 119
bond, 25
Borel sigma algebra, 45
Brownian

bridge, 171
motion, 95

geometric, 109

C
central limit theorem, 76
characteristic function, 48
convergence

almost sure, 73
in distribution, 74
in mean, 73
in probability, 73

convexity, 33
countably additive, 46
cumulant-generating function, 48
cumulants, 48

D
derivative, 14
Dirac measure, 50
discount factor, 19
discrete distribution, 50
distribution

Bernoulli, 51
binomial, 51
Cauchy, 57
𝜒2, 56
Erlang, 55
exponential, 55
Fréchet, 58

Gamma, 55
Gumbel, 58
Inverse Gaussian, 58
Lévy, 57
logistic, 57
log-normal, 57
normal, 54
Poisson, 51
t, 58
uniform, 54
Weibull, 58

distribution function
cumulative, cdf, 49
empirical, 173

duration, 31
matching, 33

E
endowment, 157
ETF, 16
expectation, 47

conditional, 81

F
filtration, 91

natural, 92
forward, 14
Fourier transform, 48
fugit, 128
future, 14

G
gearing, 15
Greeks, 14

H
high-frequency trading, 17

I
image measure, 47
independent, 70
information, 46
integration, 47
interest, 19

force of interest, 19
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interest rate, 19
internal rate of return, 28
inverse distribution function, 49

K
kurtosis, 48

L
Lagrange transform, 48
law of large numbers

𝐿2 weak, 73
weak, 76

liquidity, 13
loan, 24
lump-sum, 23

M
marginal distribution, 67
market

Arrow-Debreu, 14
complete, 14

martingale, 86
measurable, 47
moment, 48
moment generating function, 48
moneyness, 15

O
option, 14
order, 13
OTC, 13

P
par value, 15
parity, 125, 126
perpetuity, 23
premium, 16
present value, 21
probability

conditional, 85
mass function, 50
space, 45

probability density function, pdf, 53
probability space

filtered, 91
process

adapted, 92
Ito, 105
stochastic, 91
Wiener, 94

R
random variable, 47
recursion

prospective, 27
retrospective, 27

reserve, 16
risk free measure, 120

S
semi-invariants, 48
settlement, 15
sigma algebra, 45
skewness, 48
spread, 13
standard deviation, 48
stochastic basis, 91
stochastic differential equation, 105

V
Value-at-Risk, 49
variance, 48
volatility, 15

W
warrant, 14

Y
yield, 19

Z
Z-spread, 28
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