

Local projection stabilisation on layer-adapted meshes for convection-diffusion problems with characteristic layers

<u>Gunar Matthies</u>¹ Sebastian Franz^2

We consider singularly perturbed convection-diffusion problems on the unit square where the solution u exhibits exponential and characteristic layers. In order to stabilise the discretisation, layer-adapted meshes and the local projection method are applied.

Using bilinears, the error between the solution u and the finite element solution u^N converges with first order while the error between u^N and the bilinear interpolant $I^N u$ of the solution u shows second order convergence.

For enriched Q_p elements which already contain the space \mathcal{P}_{p+1} , the error between the solution u and the finite element solution u^N shows the convergence order p+1 in the ε -weighted energy norm. Furthermore, the error between u^N and a special interpolant $I^N u$ provides the convergence order p+1 in the local projection norm.

The theoretical results are confirmed by numerical results. The influence of the chosen enrichment will be discussed.

¹ Universität Kassel, Fachbereich 17 Mathematik, Heinrich-Plett-Straße 40, 34132 Kassel, Germany, matthies@mathematik.uni-kassel.de

² University of Limerick, Department of Mathematics and Statistics, Limerick, Ireland, sebastian.franz@ul.ie