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Scientific topics:

The symposium is devoted to all aspects of finite elements and wavelet methods in partial
differential equations.

The topics include (but are not limited to)

• adaptive methods,

• parallel implementation,

• high order methods.

This year we particularly encourage talks on

• finite element methods for Maxwell equations

• finite elements for advanced problems in solid mechanics

• (non-symmetric) saddle point problems

• inverse problems for PDEs

Invited Speakers:

Carsten Carstensen (Berlin)

Roland Griesse (Linz)
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Andy Wathen (Oxford)

Scientific Committee:

Th. Apel (München), G. Haase (Graz), B. Heinrich (Chemnitz), M. Jung (Dresden),
U. Langer (Linz), A. Meyer (Chemnitz), O. Steinbach (Graz)

WWW: http://www.tu-chemnitz.de/mathematik/fem-symp/
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Programme for Monday, September 25, 2006
————————————————————————————————

Start at 09:00

————————————————————————————————

Chairman: A. Meyer

9:00 A. Meyer

Welcome

9:05 C. Carstensen

Convergence of Adaptive Finite Element Methods

9:55 Ch. Kreuzer

Convergence of Adaptive Finite Element Methods for nonlinear PDEs

10:20 A. Schroeder

A posteriori error estimates for contact problems

————————————————————————————————

Tea and coffee break

————————————————————————————————

Chairman: B. Heinrich

11:10 R. Schneider

Anisotropic mesh adaption based on a posteriori estimates and optimi-
sation of node positions

11:35 M. Grajewski

Towards r-h-adaptivity in FEM

12:00 V. Garanzha

Discrete curvatures and optimal quasi-isometric manifold parametri-
zations

————————————————————————————————

Lunch

————————————————————————————————

Chairman: C. Carstensen

13:45 R. Hiptmair

Edge elements and coercivity

14:35 D. Teleaga

Towards a fully space-time adaptive finite element method for magneto-
quasistatics
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14:55 G. Wimmer

Calculation of Transient Magnetic Fields Using Space-Time Adaptive
Methods

15:20 E. Creusé

Discrete compactness of the approximation of Maxwell’s system by a
discontinuous Galerkin method

————————————————————————————————

Tea and coffee break

————————————————————————————————

Chairman: R. Hiptmair

16:15 T. Hohage

Hardy space infinite elements for scattering and resonance problems

16:40 R. Klose

Pole condition: Numerical solution of Helmholtz-type scattering prob-
lems with far field evaluation

17:05 M. Roland

Simulations of the Turbulent Channel Flow at Reτ = 180 with Finite
Element Variational Multiscale Methods

————————————————————————————————

short break

————————————————————————————————

Chairman: Ch. Wieners

17:45 M. Braack

A stabilized finite element method for Navier-Stokes on anisotropic
meshes

18:10 G. Matthies

A unified convergence analysis for the local projection stabilisation ap-
plied to the Oseen problem

18:35 Th. Apel

Non-conforming finite elements of arbitrary order for the Stokes problem
on anisotropic meshes

————————————————————————————————

20:00 Conference dinner
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Programme for Tuesday, September 26, 2006
————————————————————————————————

Start at 08:30

————————————————————————————————

Chairman: M. Jung

08:30 A. Wathen

Preconditioning mixed finite elements for incompressible flow

09:20 U. Langer

A Boundary Element Based Finite Element Method on Polyhedral
Meshes

09:45 S. Beuchler

Properties of sparse shape functions for p-FEM on triangles and
tetrahedra

————————————————————————————————

Tea and coffee break

————————————————————————————————

Chairman: Th. Apel

10:40 P. Knobloch

Are stabilized methods a reliable tool for suppressing spurious
oscillations?

11:05 S. Franz

Superconvergence analysis of Galerkin and Streamline Diffusion FEM for
a singularly perturbed convection-diffusion problem with characteristic
layers

11:30 M. Vlasak

Numerical solution of unstationary nonlinear convection-diffusion prob-
lems by higher order finite elements methods

11:55 T. Linß

Maximum-norm error analysis of a non-monotone FEM for a singularly
perturbed reaction-diffusion problem in 1D

————————————————————————————————

Lunch

————————————————————————————————

13:50 Excursion
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Programme for Wednesday, September 27, 2006
————————————————————————————————

Start at 08:30

————————————————————————————————

Chairman: A. Wathen

08:30 R. Griesse

Finite Elements for Magnetohydrodynamics and its Optimal Control

09:20 A. Rösch

On the finite element approximation of elliptic optimal control problems
with Neumann boundary control

09:45 G. Winkler

Optimal Control in 3D Non-Convex Domains

10:05 K. Krumbiegel

A new iterative concept for solving linear-quadratic optimal control
problems

————————————————————————————————

Tea and coffee break

————————————————————————————————

Chairman: U. Langer

11:00 C. Wieners

SQP-methods for incremental plasticity

11:25 P. Steinhorst

FEM for problems with piezoelectric material

11:50 A. Semenov

Vector potential formulation for 3D nonlinear finite element analysis of
fully coupled electro-mechanical problems

12:10 M. Müller

A inf-sup stable local grid refinement with hanging nodes

12:35 A. Meyer

Closing

————————————————————————————————

Lunch

————————————————————————————————
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Non-conforming finite elements of arbitrary order for

the Stokes problem on anisotropic meshes

Thomas Apel1 Gunar Matthies2

Non-conforming finite elements of arbitrary order for the Stokes problem on anisotropic
meshes

Anisotropic meshes are characterized by elements with large or even asymptotically
unbounded aspect ratio. Such meshes are known to be particularly effective for the
resolution of directional features of the solution, like edge singularities and boundary
layers.

We consider here the numerical solution of the Stokes problem in two-dimensional
domains by non-conforming finite elements of higher order. The pressure is approximated
by discontinuous, piecewise polynomials of order r − 1. For approximating the velocity
we discuss four non-conforming spaces of approximation order r.

For the stability of finite element methods for solving the Stokes problem it is necessary
that the discrete spaces fulfil an inf-sup condition. All of the considered families fulfill
this condition but only two of them have an inf-sup constant which is independent of
the aspect ratio of the meshes. For these two families we show optimal error estimates
on anisotropic meshes. The proof is restricted to rectangular triangulations with special
properties.

References:

[1] Th. Apel and G. Matthies: Non-conforming, anisotropic, rectangular finite elements of arbi-
trary order for the Stokes problem. Bericht Nr. 374, Fakultät für Mathematik,Ruhr-Universität
Bochum, 2006.

1Universität der Bundeswehr München, Institut für Mathematik und Bauinformatik, 85577 Neu-
biberg, Germany,
thomas.apel@unibw.de

2Ruhr-Universität Bochum, Fakultät für Mathematik, Universitätsstraße 150, 44780 Bochum, Ger-
many,
Gunar.Matthies@ruhr-uni-bochum.de
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Properties of sparse shape functions for p-FEM on

triangles and tetrahedra

Sven Beuchler1

In this talk, the second order boundary value problem −∇ · (A(x, y)∇u) = f is dis-
cretized by the Finite Element Method using piecewise polynomial functions of degree p
on a triangular/tetrahedral mesh.

On the reference element, we define several interior ansatz functions based on inte-
grated Jacobi polynomials. If A is a constant function on each element and each triangle
has straight edges, the element stiffness matrix has not more than O(pd), d = 2, 3 nonzero
matrix entries.

We investigate the growth of the condition number of the element stiffness matrix with
respect to the weight of the integrated Jacobi polynomials.

This is a joint work with V. Pillwein (SFB F013, Linz) and J. Schöberl.

1JKU Linz, Institute of Comp. Mathematics, 4040 Linz, Austria,
sven.beuchler@jku.at

7



A stabilized finite element method for Navier-Stokes

on anisotropic meshes

Malte Braack1 T. Richter2

The development of stabilized finite elements for fluid mechanics on anisotropic meshes
is of major importance for computations of high speed flows with boundary layers. How-
ever, residual based stabilization techniques may be less suitable on anisotropic meshes,
because the separation into the different spatial coordinates is not possible. In this work,
we extend the local projection stabilization to anisotropic meshes. It turns out that an
appropriate modification of the isotropic case for Stokes [3] and Navier-Stokes [4] leads to
an optimal a priori estimate also on anisotropic meshes. The interpolation operator used
is based on the work of Apel [1] and Becker [2]. The work being presented is the natural
extension of [5, 6].

References

[1] T. Apel. Anisotropic finite elements: Local estimates and applications. Advances in
Numerical Mathematics. Teubner, Stuttgart, 1999.

[2] R. Becker. An adaptive finite element method for the incompressible Navier-Stokes
equation on time-dependent domains. PhD Dissertation, SFB-359 Preprint 95-44,
Universität Heidelberg, 1995.

[3] R. Becker and M. Braack. A finite element pressure gradient stabilization for the
Stokes equations based on local projections. Calcolo, 38(4):173–199, 2001.

[4] M. Braack and E. Burman, “Local projection stabilization for the Oseen problem
and its interpretation as a variational multiscale method,” SIAM J. Numer. Anal., to
appear 2005.

[5] M. Braack and T. Richter. Local projection stabilization for the Stokes system on
anisotropic quadrilateral meshes. In Numerical Mathematics and Advanced Applica-
tions, ENUMATH 2005. Springer, 2006.

[6] M. Braack. Anisotropic H1-stable projections on quadrilateral meshes. In Numerical
Mathematics and Advanced Applications, ENUMATH 2005. Springer, 2006.

1Universität Heidelberg, Angewandte Mathematik, 69120 Heidelberg, Germany,
malte.braack@iwr.uni-heidelberg.de

2Universität Heidelberg,
thomas.richter@iwr.uni-heidelberg.de
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Convergence of Adaptive Finite Element Methods

Carsten Carstensen1

Typical adaptive mesh-refining algorithms for first-oder (conforming) finite element
methods consist of a sequence of the following steps:

SOLVE ⇒ ESTIMATE ⇒ MARK ⇒ COARSEN/REFINE

Unlike uniform mesh-refinements, the goal of adaptive finite element methods (AFEM)
is to omit some basis functions in oder to save degrees of freedom and so reduce compu-
tational costs. Thus, the sequence of generated subspaces in an AFEM is on purpose
not necessarily dense and hence the question of strong convergence has a priori no trivial
affirmative answer.

This presentation gives a survey conditions on known convergence results for a class
of adaptive finite element methods applied to a linear elliptic benchmark problem, non-
standard finite element methods, to convex minimization problems such as an optimal
design task.

1Department of Mathematics,, Humboldt-Universität zu Berlin, Germany.,
cc@math.hu-berlin.de
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Discrete compactness of the approximation of

Maxwell’s system by a discontinuous Galerkin

method

Emmanuel Creusé1 Serge Nicaise2

We are interested in the discrete compactness property for a discontinuous Galerkin
approximation of Maxwell’s system on quite general tetrahedral meshes, which has al-
ready been studied for standard Galerkin approximation for a quite large family of edge
elements on two and three dimensional domains. We here concentrate on the interior
penalty method. The success of DG methods is today well recognized due to its flexibility
in the choice of the approximation space, and is so well suited for h− p adaptivity. Our
proof of the discrete compactness property is based on the same property than the one
for the standard Galerkin approximation, and the use of a decomposition of the discon-
tinuous approximation space into a continuous one and its orthogonal for an appropriate
inner product. The discrete Friedrichs inequality follows from this discrete compactness
property and a contradiction argument. The convergence of the discrete eigenvalues to
the continuous ones is deduced using the theory of collectively compact operators, which
requires pointwise convergence of the sequence of the discrete operators. In our case, the
collectively compact property is deduced from the discrete compactness property and the
pointwise convergence is obtained by introducing mixed formulations and using a variant
of the second Strang lemma. We restrict ourselves to the h-version of the method, without
estimating the dependence of the constant with respect to the polynomial’s degree. Nu-
merical experiments are also presented. Since the null space of the operator is relatively
large, we have used a discrete regularization method that allows us to work in the setting
of positive definite matrices for the standard edge elements.

1Valenciennes University, Applied Mathematics, Le Mont Houy - Batiment ISTV2, 59313 VALEN-
CIENNES CEDEX 09, FRANCE, INRIA Futurs, Equipe SIMPAF, FRANCE,
ecreuse@univ-valenciennes.fr

2Valenciennes University, Applied Mathematics, Le Mont Houy - Batiment ISTV2, 59313 VALEN-
CIENNES CEDEX 09, FRANCE,
serge.nicaise@univ-valenciennes.fr
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Superconvergence analysis of Galerkin and

Streamline Diffusion FEM for a singularly perturbed

convection-diffusion problem with characteristic

layers

Sebastian Franz1 Torsten Linß2

For the model convection-diffusion equation

Lu := −ε∆u− bux + cu = f in Ω = (0, 1)2,

subject to Dirichlet boundary conditions

u = 0 on Γ = ∂Ω

with b ≥ β > 0, we analyse the superconvergence properties of the Galerkin FEM and
of the streamline-diffusion finite element method (SDFEM) using bilinear functions. The
presence of the small perturbation parameter ε with 0 < ε� 1 gives rise to an exponential
layer of width O (ε) near the outflow boundary at x = 0 and to two parabolic layers of
width O (

√
ε) near the characteristic boundaries at y = 0 and y = 1. To resolve the

layers we use appropriate Shishkin meshes. For the SDFEM we give an optimal choice for
the stabilisation parameter δ, that ensures maximal stability in the induced streamline-
diffusion norm without loosing the superconvergence property

|||uN − uI |||SD ≤ CN−2 ln2N.

In the characteristic (or parabolic) boundary layer we are able to show that δ can be
chosen of order δ = Cε−1/4N−2 which is confirmed by numerical results. Using the su-
perconvergence property we construct an enhanced numerical solution by postprocessing.
The resulting numerical solution converges with almost second order accuracy.

References:

[1] http://www.math.tu-dresden.de/~sfranz/papers.html

1TU-Dresden, Institut für numerische Mathematik, 01062 Dresden, Germany,
sebastian.franz@tu-dresden.de

2TU-Dresden, Institut für numerische Mathematik, 01062 Dresden, Germany,
Torsten.Linss@tu-dresden.de
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Discrete curvatures and optimal quasi-isometric

manifold parameterizations

Vladimir Garanzha1

Optimal grid generation and adaptation can be considered in the framework of mani-
fold parameterization.

Consider the problem of untangling and optimization of 2D unstructured grids via
node movement. The basic idea is to have unified treatment for any spatial dimensions
and for different types of elements. The concept of cell shape/size optimization is quite
clear. For each grid cell the mapping of canonical target cell onto real cell is considered.
Certain distortion measure of this mapping is minimized using variational methods.

One can construct polyhedral manifold by gluing all target elements together (gener-
ally it cannot be embedded as a surface in 3D space). Grid optimization in 2D is just a
flattening of this manifold: one-to-one mapping of this manifold onto plane with minimal
distortion. For general non-simplicial grids the result of gluing is not polyhedral manifold,
but it is still Alexandrov manifold (manifold of bounded curvature) [4]. The “optimal”
parameterization is the one which provides minimal distortion of the flattening.

The problem of adaptation of hybrid/unstructured grids is equivalent to the problem
of finding bilipschitz mapping of above polyhedral manifold onto another manifold where
(intrinsic) adaptation metric is defined.

Problem of existence of bilipschitz mappings between Alexandrov manifolds is consid-
ered in [4], [7]. The distortion of parameterization is estimated via positive and negative
instrinsic curvatures of manifold [4], [7]. The case of arbitrary genus is considered in
recent paper by Yu.D. Burago [6].

In [3] it was conjectured that instead of positive curvature parameterization distortion
should be estimated via certain constant from isoparametric inequalities - called “depth
of pockets” in [3]. Numerical experiments and grid refinement studies results are in good
agreement with suggested estimates.

In 3D the numerical treatment is similar to 2D, but theoretical understanding is still
lacking. The polyhedral manifolds are defined similarly by gluing simplices, but theoretical
results about existence of global bilipschitz parameterizations are not available. The
concept of discrete curvatures in multidimensional case is still not very well defined. In
practice manifolds are constructed by gluing together target hexahedra (as a rule chosen
as cubes), prisms, pyramids and simplices.

Within above concept there is no difference between structured (block structured)
mapped grids and unstructured/hybrid grids. As a result of this unified treatment the
same functional [2], [3] satisfying polyconvexity conditions [1] is used for any dimensions
and any types of elements [5]. The minimization problem for this functional is well posed.
Recently the rigorous convergence results for the iterative minimization method were

1Computing Center Russian Academy of Sciences, parallel computing laboratory, Vavilova str. 40,
119991 Moscow, Russia,
garan@ccas.ru
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obtained [8].

References

[1] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch.
Rational Mech. Anal. 63, 1977, 337-403.

[2] Garanzha VA. Barrier variational generation of quasi-isometric grids. Computational
Mathematics and Mathematical Physics 2000; 40(11):1617–1637.

[3] V.A. Garanzha. Variational principles in grid generation and geometric modeling:
theoretical justifications and open problems. Numerical Linear Algebra with Appli-
cations 2004; 9(6-7).

[4] Yu.G. Reshetnyak: Two-Dimensional Manifolds of Bounded Curvature. In: Reshet-
nyak Yu.(ed.), Geometry IV (Non-regular Riemannian Geometry), pp. 3-165.
Springer-Verlag, Berlin (1991).

[5] L.V. Branets and V.A. Garanzha Distortion measure for trilinear mapping. Appli-
cation to 3-D grid generation. Numerical Linear Algebra with Applications 2002;
9(6-7).

[6] A. Belenkiy, Yu. Burago. Bi-Lipschitz equivalent Alexandrov surfaces, I, arXive:math.
DG/0409340. 2003.

[7] M. Bonk and U. Lang. Bi-Lipschitz parameterization of surfaces. Mathematische
Annalen, 2003, DOI 10.1007/s00208-003-0443-8.

[8] V.A. Garanzha and I.E. Kaporin. On the convergence of a gradient method for the
minimization of functionals in finite deformation elasticity and for the minimization
of barrier grid functionals. Comp. Math. and Math. Phys. 2005, 45(8):1400–1415.
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Towards r-h-adaptivity in FEM

Matthias Grajewski1 Stefan Turek2

Error control and adaptive algorithms are essential ingredients for accurate and fast
FEM simulation. To obtain adapted computational grids, in many FEM packages h-
adaptivity, i.e. the selective refinement of single elements, is employed. However, this
kind of adaptivity bears disadvantages. Element-based h-adaptivity leads to highly un-
structured grids which decrease the numerical efficiency of an FEM code as these grids
require many unaligned and costly memory accesses during the program run. In contrast
to this, r-adaptivity preserves the topology of the grid and thus is a natural candidate for
an alternative adaptivity technique which may overcome the aforementioned difficulties.
Moreover, in contrast to h-adaptivity, r-adaptivity allows to adjust the grid to curves in
the computational domain like i.e. interfaces with superior accuracy, as in contrast to
h-adaptivity the orientation of the grid cells can be aligned. Besides of the presentation
of a new deformation technique, the emphasis in the talk is put on the application of the
deformation method as tool for grid adaptation in the context of (goal-oriented) error
control. We present prototypical test problems as well as comparisons with other mesh
adaptation techniques. Lastly, we sketch suitable combinations of both r- and h-adaptivity
techniques which feature the advantages of both types of adaptation techniques.

1University of Dortmund, Institue of Applied Mathematics, Vogelpothsweg 87, 44227 Dortmund,
Germany,
Matthias.Grajewski@mathematik.uni-dortmund.de

2University of Dortmund,
Stefan.Turek@mathematik.uni-dortmund.de
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Finite Elements for Magnetohydrodynamics and its

Optimal Control

Roland Griesse1 Marco Discacciati2

Magnetohydrodynamics, or MHD, deals with the mutual interaction of electrically
conducting fluids and magnetic fields. In particular, the magnetic fields interact with
the electric currents in the fluid and exert a Lorentz force. This feature renders it so
phenomenally attractive for exploitation especially in processes involving liquid metals,
and in crystal growth.

We consider the problem of stationary incompressible MHD, and a stable and con-
forming discretization by finite elements. In addition, an optimal control problem, its
necessary optimality conditions and numerical methods for its solution will be presented.

1RICAM, Optimization and Optimal Control, Altenbergerstraße 69, 4040 Linz, Austria,
roland.griesse@oeaw.ac.at

2RICAM,
marco.discacciati@oeaw.ac.at
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Edge elements and coercivity

Ralf Hiptmair1

Many variational problems from computational electromagnetism are set in Sobolev
spaces of differential 1-forms and feature non-elliptic sesquilinear forms. In order to
establish a rigorous convergence theory of Galerkin discretizations the inherent coercivity
of the variational problems has to be exploited. This can be accomplished when using
finite elements or boundary elements that can be viewed as discrete differential forms.
Key is the commuting diagram property of nodal interpolation operators that underlies
discrete counterparts of Hodge-type decompositions.

1Seminar of Applied Mathematics, ETH Zürich, CH-8022 Zürich, Switzerland,
hiptmair@sam.math.ethz.ch
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Hardy space infinite elements for scattering and

resonance problems

Thorsten Hohage1 Lothar Nannen2

We study the solution of time-harmonic wave equations in unbounded domains. The
unbounded domain is split into a bounded interior domain and an exterior domain, which
is the complement of a ball. We propose a new class of tensor product infinite elements
for the exterior domain which lead to super-algebraic convergence with respect to the
number of degrees of freedom. The radial tensor product factors of the local element
matrices have a simple tridiagonal structure.

To derive these infinite elements, we use a Möbius-Laplace transform along a fam-
ily of rays connecting the coupling boundary to infinity. By virtue of the pole condi-
tion, functions satisfying a radiation condition are mapped to Hardy-space functions, i.e.
L2-boundary values of holomorphic functions on the unit disc. This leads to a com-
plex symmetric variational formulation, which is discretized by a Galerkin method using
trigonometric polynomials of finite degree.

Hardy space infinite elements are particularly attractive for computing resonances
since, as opposed to classical infinite elements, boundary elements and local transparent
boundary conditions they preserve the eigenvalue structure of the problem. We demon-
strate their performance in a number of numerical experiments.

1University of Goettingen, Numerical and Applied Mathematics, Lotzestr. 16-18, 37083 Goettingen,
Germany,
hohage@math.uni-goettingen.de

2NAM, Univ. Goettingen,
nannen@math.uni-goettingen.de
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Pole condition: Numerical solution of Helmholtz-type

scattering problems with far field evaluation

Roland Klose1 Frank Schmidt2 Achim Schädle3

We consider electromagnetic scattering problems, modeled by the Helmholtz equation
on unbounded domains. A central task is the numerical solution of the exterior problem
and its coupling to the interior problem. In this talk we present a numerical realization
of the pole-condition method, a new approach to the solution of the exterior problem.
The method provides a representation formula for the far field and is applicable to certain
types of inhomogeneous exterior domains. The pole condition is coupled with a finite
element method for the interior domain. Numerical examples illustrate the convergence
of the method.

References:

[1] L. Zschiedrich, R. Klose, A. Schädle, F. Schmidt: A new finite element realization of the
perfectly matched layer method for Helmholtz scattering problems on polygonal domains in 2d.
J. Compu. Appl. Math. 2006.
[2] F. Schmidt: Solution of Interior-Exterior Helmholtz-Type Problems Based on the Pole Con-
dition Concept – Theory and Algorithms. Habilitation thesis, Free University, Berlin (2002).

1Zuse Institute Berlin, Numerical Analysis and Modelling, Takustr. 7, 14195 Berlin, Germany,
klose@zib.de

2Zuse Institute Berlin, Numerical Analysis and Modelling, Takustr. 7, 14195 Berlin, Germany,
frank.schmidt@zib.de

3Zuse Institute Berlin, Numerical Analysis and Modelling, Takustr. 7, 14195 Berlin, Germany,
schaedle@zib.de
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Are stabilized methods a reliable tool for suppressing

spurious oscillations?

Petr Knobloch1 Volker John2

We consider the application of the finite element method to the numerical solution of
the scalar convection–diffusion equation

−ε∆u+ b · ∇u = f in Ω, u = ub on ΓD, ε
∂u

∂n
= g on ΓN . (1)

Here Ω is a bounded two–dimensional domain with a polygonal boundary ∂Ω, ΓD and ΓN

are disjoint and relatively open subsets of ∂Ω satisfying meas1(Γ
D) > 0 and ΓD ∪ ΓN =

∂Ω, n is the outward unit normal vector to ∂Ω, f is a given outer source of the unknown
scalar quantity u, ε > 0 is the constant diffusivity, b is the flow velocity, and ub, g are
given functions.

It is well known that the classical Galerkin finite element discretization of (1) is inap-
propriate in the convection–dominated regime (i.e., if ε� ‖b‖) since the discrete solution
is typically globally polluted by spurious oscillations. During the last three decades, an
extensive research has been devoted to the development of methods which diminish spu-
rious oscillations in the discrete solutions of (1) and the aim of the talk is to review some
of the most important approaches and to compare them by means of both numerical tests
and theoretical considerations. In particular, we shall discuss the quality of the discrete
solutions (spurious oscillations, smearing of inner and boundary layers), dependence of
the methods on parameters, triangulations and data, and also the cost needed to compute
the discrete solutions.

1Charles University, Faculty of Mathematics and Physics, Department of Numerical Mathematics,
Sokolovska 83, 186 75 Praha 8, Czech Republic,
knobloch@karlin.mff.cuni.cz

2Universität des Saarlandes, Fachbereich 6.1 - Mathematik, Postfach 15 11 50, 66041 Saarbrücken,
Germany,
john@math.uni-sb.de
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Convergence of Adaptive Finite Element Methods for

nonlinear PDEs

Christian Kreuzer1 Lars Diening2

We consider the homogeneous Dirichlet Problem for the p-Laplacian, p ∈ (1,∞),
embedded in the more general theory of Orlicz-spaces. We propose an adaptive algo-
rithm with continuous piecewise affine finite elements and prove an error reduction rate
of approximate solutions to the exact one. We improve the a posteriori estimations for
quasi-norms and generalize the error reduction property of the linear case to an energy
reduction property in the nonlinear case. For adaptive refinement we use a marking strat-
egy incorporating error estimators and oscillation. Thus we obtain a reduction of energy
differences. Since these are proportional to the error measured in quasi-norms we get a
strict error reduction in each step. This in turn implies convergence.

1Universität Augsburg, Institut für Mathematik, Lehrstuhl Prof. Hoppe, Universitätsstrasse 14,
86159 Augsburg, Deutschland,
Christian.Kreuzer@Math.Uni-Augsburg.DE

2Albert-Ludwigs-Universität Freiburg, Institut für Mathematik, Abteilung für Angewandte Mathe-
matik,
diening@mathematik.uni-freiburg.de
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A new iterative concept for solving linear-quadratic

optimal control problems

Klaus Krumbiegel1

We consider a linear-quadratic optimal control problem governed by an elliptic partial
differential equation with pointwise control constraints, where the PDEs are solved by a
finite element method. Such problems are usually treated by multilevel iterative methods.
We present a new error estimation technique for a current iterate with respect to the
solution of the discretized problem. These error estimates can be used as stopping criteria
for iterative methods. The presented theory is illustrated by numerical examples, where
a primal-dual active set strategy and a CG-algorithm as iterative methods are used. The
final aim is to find a balance between the different errors (including the discretization
error) of the over-all solution process.

1Johann Radon Institute for Computational and Applied Mathematics (RICAM), Inverse Problems,
Altenberger Str.69, 4040 Linz, Austria,
klaus.krumbiegel@oeaw.ac.at
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A Boundary Element Based Finite Element Method

on Polyhedral Meshes

Ulrich Langer1 David Pusch2

We derive and analyze new boundary element based finite element discretizations of
diffusion-type equations on polyhedral meshes. These approximations leads to large-scale
sparse linear systems which can efficiently be solved by Algebraic Multigrid Methods.

1Johannes Kepler University Linz, Institute for Computational Mathematics, Altenbergerstr. 69,
A-4040 Linz, Austria,
ulanger@numa.uni-linz.ac.at

2Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian
Academy of Sciences, Linz, Austria,
david.pusch@oeaw.ac.at
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Maximum-norm error analysis of a non-monotone

FEM for a singularly perturbed reaction-diffusion

problem in 1D

Torsten Linß1

We consider a non-monotone FEM discretization of a singularly perturbed one-dimensional
reaction-diffusion problem whos solution exhibits strong layers. The method is shown to
be maximum-norm stable although it is not inverse monotone. Both a priori and a poste-
riori error bounds in the maximum norm are derived. The a priori result allows to deduce
immediately the uniform convergence of various layer-adapted meshes proposed in the
literature, while the a posteriori results may be used for adaptive regridding. Numerical
experiments complement our theoretical results.

1TU Dresden, Inst. Numerischer Mathematik, 01062 Dresden, Germany,
torsten.linss@tu-dresden.de

23



A unified convergence analysis for the local

projection stabilisation applied to the Oseen problem

Gunar Matthies1 Piotr Skrzypacz2 Lutz Tobiska3

The discretisation of the Oseen problem by finite element methods suffers in general
from two reasons. First, the discrete inf-sup or Babuvska-Brezzi condition is violated. Sec-
ond, spurious oscillations occur due to the dominating convection. One way to overcome
both difficulties is the use of local projection techniques.

Originally proposed by Becker and Braack for the Stokes problem, it was extended
by them to the transport equation. A convergence analysis for first and second order
discretisations on quadrilaterals was recently given by Braack and Burman.

We will consider the local projection method for a large class of equal-order approxi-
mations of the Oseen problem. When defining the local projection in the right way, we can
show that the stabilised method converges for arbitrary polynomial degree with optimal
order. This result holds true on simplices, quadrilaterals, and hexahedra.

On simplices, the spectral equivalence of the stabilising terms of the local projection
method and the subgrid modeling introduced by Guermond will be shown. This makes
the close relation between both methods visible.

1Ruhr-Universität Bochum, Fakultät für Mathematik, Universitätsstraße 150, 44780 Bochum,
Deutschland,
Gunar.Matthies@ruhr-uni-bochum.de

2Otto-von-Guericke-Universität Magdeburg, Institut für Analysis und Numerik, Postfach 4120,
39016 Magdeburg,
Piotr.Skrzypacz@Mathematik.Uni-Magdeburg.DE

3Otto-von-Guericke-Universität Magdeburg, Institut für Analysis und Numerik, Postfach 4120,
39016 Magdeburg,
Lutz.Tobiska@Mathematik.Uni-Magdeburg.DE
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A inf-sup stable local grid refinement with hanging

nodes

Markus Müller1

An inf-sup stable local grid refinement with hanging nodes for a spherical 3D convec-
tion code is introduced. The discretization uses continuous bilinear elements for velocity
and pressure with different mesh-resolution. A proof of inf-sup stability is given using a
macro-element technique.

1Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften , 07749 Jena,
markus.mueller.1@uni-jena.de
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On the finite element approximation of elliptic

optimal control problems with Neumann boundary

control

Arnd Rösch1 Mariano Mateos2

A Neumann boundary control problem for a linear-quadratic elliptic optimal control
problem in a convex and polygonal domain is investigated. The main goal is to show an
optimal approximation order for discretized problems after a postprocessing process. It
turns out that two saturation processes occur: The regularity of the boundary data of
the adjoint is limited if the largest angle of the polygon is at least 2π/3. For piecewise
linear finite elements, the theory cannot deliver optimal approximation rates for convex
domains. We will derive error estimates of order hσ with σ ∈ [3/2, 2] depending on the
lagest angle and properties of the finite elements. Moreover, we will investigate also the
case of domains with a reentrant corner. Here, we obtain error estimates of order hσ with
σ ∈ [1, 3/2] Finally, numerical tests illustrates the theoretical results.

1Austrian Academy of Sciences, RICAM Linz, Altenberger Str. 69, A-4040 Linz, Austria,
arnd.roesch@oeaw.ac.at

2E.P.S.I. de Gijón,, Universidad de Oviedo, Campus de Viesques, 33203 Gijón, Spain,
mmateos@orion.ciencas.uniovi.es
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Simulations of the Turbulent Channel Flow at

Reτ = 180 with Finite Element Variational Multiscale

Methods

Michael Roland1 Prof. Volker John2

Projection based variational multiscale (VMS) methods coupled with higher order
finite element methods are studied in simulations of the turbulent channel flow problem
at Reτ = 180. For comparison, the Smagorinsky LES model with van Driest damping
is included into the study. The simulations are performed on rather coarse grids. The
evaluation of the results concentrates on the mean velocity profile.

1Universität des Saarlandes, FR 6.1 Mathematik, 15 11 50, 66041 Saarbrücken, Deutschland,
m.roland@mx.uni-saarland.de

2Universität des Saarlandes, FR 6.1 Mathematik,
john@math.uni-sb.de
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Anisotropic mesh adaption based on a posteriori

estimates and optimisation of node positions

Rene Schneider1 Peter Jimack2

Efficient numerical approximation of solution features like boundary or interior lay-
ers by means of the finite element method requires the use of layer adapted meshes.
Anisotropic meshes, like for example Shishkin meshes, allow the most efficient approxi-
mation of these highly anisotropic solution features. However, application of this approach
relies on empha priori analysis on the thickness, position and stretching direction of the
layers. If it is impossible to obtain this information empha priori, as it is often the case for
problems with interior layers of unknown position for example, automatic mesh adaption
based on empha posteriori error estimates or error indicators is essential in order to obtain
efficient numerical approximations.

Historically the majority of work on automatic mesh adaption used locally uniform
refinement, splitting each element into smaller elements of similar shape. This procedure
is clearly not suitable to produce anisotropically refined meshes. The resulting meshes
are over-refined in at least one spatial direction, rendering the approach far less efficient
than that of the anisotropic meshes based on empha priori analysis.

Automatic anisotropic mesh adaption is an area of active research. Here we present
a new approach to this problem, based upon using not only an empha posteriori error
estimate to guide the mesh refinement, but its sensitivities with respect to the positions
of the nodes in the mesh as well. Once this sensitivity information is available, techniques
from mathematical optimisation can be used to minimise the estimated error by moving
the positions of the nodes in the mesh appropriately.

The basic idea of minimising an error estimate is of course not new, but the approach
taken to realise it is. The discrete adjoint technique is utilised to evaluate the sensitivities
of an error estimate, reducing the cost of this evaluation to solving one additional equation
system. This approach is crucial to make gradient based optimisation techniques, such as
BFGS-type schemes, applicable.

References:

[1] http://www.tu-chemnitz.de/~rens/

1TU-Chemnitz, Fak. f. Mathematik, D-09107 Chemnitz, Germany.,
rene.schneider@mathematik.tu-chemnitz.de

2School of Computing, University of Leeds, Leeds, LS2 9JT, UK,
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A posteriori error estimates for contact problems

Andreas Schroeder1

A general concept for obtaining a posteriori error estimates for contact problems is
presented. The approach consists in treating appropiate saddle point formulations and
making use of a posteriori error estimates for variational equations. According to this
concept, a residual based error estimator is developed for Signorini-type problems, obstacle
problems and contact problems with friction. Eventually, several numerical results confirm
the reliability of the estimates and their applicability in respect of h- and hp-adaptive finite
element methods.

References:

[1] A. Schroeder: Fehlerkontrollierte adaptive h- und hp-Finite-Elemente-Methoden für Kon-
taktprobleme mit Anwendungen in der Fertigungstechnik, Hochschulschriftenserver Universität
Dortmund, http://hdl.handle.net/2003/22487

1University of Dortmund, Institute of Applied Mathematics, 44221 Dortmund, Germany,
andreas.schroeder@mathematik.uni-dortmund.de
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Vector potential formulation for 3D nonlinear finite

element analysis of fully coupled electro-mechanical

problems

Artem Semenov1 A. Liskowsky2 H. Balke3

Ferroelectroelastic materials are widely used to design various types of smart systems,
memory devices, MEMS, etc. These materials exhibit strong coupling between mechan-
ical and electric fields and also manifest nonlinear behavior when they are subjected to
high electromechanical loading. Using the standard formulation with scalar potential
(φ : E = −∇φ→ ∇× E ≡ 0) as electric nodal variables in the nonlinear finite element
analysis leads to a low convergence of iteration procedures. Therefore the formulation
with vector potential (ψ : D = −∇ × ψ → ∇ · D ≡ 0) as electric nodal variables is
developed for the analysis of such problems.

In coupled electromechanical finite element formulations, the electric vector poten-
tial ensures the positive definiteness of the stiffness matrix, in contrast to formulations
based on the scalar electric potential. Solutions of boundary value problems using the
scalar potential formulation lie on a saddle point, while solutions for the vector poten-
tial formulation exist at a global minimum in the space of the nodal degrees of freedom.
This difference favors the electric vector potential especially for the solution of nonlinear
electromechanical problems.

The solution of the boundary value problem for the vector potential involving the ”curl-
curl” operator is non-unique in the three-dimensional case. A Coulomb gauge condition in
combination with a discrete set of Dirichlet boundary conditions enforces the uniqueness
of vector potential solutions. Based on a spectral analysis of the stiffness matrix, the
Coulomb gauge is compared with other gauge conditions. A penalized version of the
weak vector potential formulation with the Coulomb gauge is proposed, implemented in
the finite element program PANTOCRATOR and tested for some numerical examples in
electrostatics, piezoelectricity and ferroelectroelasticity.

1TU Dresden, Fakultät Maschinenwesen, Institut für Festkörpermechanik, Mommsenstr. 13, 01062
Dresden, Germany,
semenov@mfk.mw.tu-dresden.de

2TU Dresden, Fakultät Maschinenwesen, Institut für Festkörpermechanik, Mommsenstr. 13, 01062
Dresden, Germany,
acli@gmx.de

3TU Dresden, Fakultät Maschinenwesen, Institut für Festkörpermechanik, Mommsenstr. 13, 01062
Dresden, Germany,
balke@mfk.mw.tu-dresden.de
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FEM for problems with piezoelectric material

Peter Steinhorst1 Arnd Meyer2

Piezoelectricity describes the coupling of deformation and electric field in special ma-
terials. The talk introduces a numerical approach to simulate piezoelectric material be-
haviour by using Finite Elements. We use the method of adaptive mixed FEM for handling
the resulting coupled differential equations.

We give an introduction to the linear model, followed by a briefly description of the
used solver (Bramble–Pasciak–CG) with preconditioner and ideas for error estimation
needed by the refinement strategy. First computational results using an experimental
program will be shown. Beside simple test examples, we investigate a special problem in-
cluding a crack in some details. Known analytical solutions in special cases allow a partial
validation of the FEM program. Finally, we discuss occuring numerical instabilities.

1TU Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany,
peter.steinhorst@mathematik.tu-chemnitz.de

2TU Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany,
a.meyer@mathematik.tu-chemnitz.de
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Towards a fully space-time adaptive finite element

method for magnetoquasistatics

Delia Teleaga1 Jens Lang2

This paper reports on our current work on fully space-time adaptive magnetic field
computation.

We describe a Whitney finite element method (WFEM) for solving a magnetoqua-
sistatic formulation of Maxwell’s equations on unstructured 3D tetrahedral grids, using
the software package KARDOS. High order spatial discretization is achieved by employ-
ing the hierarchical tetrahedral H(curl)-conforming element proposed by Ainsworth and
Coyle. For the time discretization we use linearly implicit one-step Rosenbrock methods
up to 4th order accurate in time. To control the adaptive mesh refinement we extend the
hierarchical error estimator proposed by Beck, Hiptmair and Wohlmuth to Rosenbrock
methods.

Finally we present numerical results for the eddy current benchmark problem TEAM 7.

1TU Darmstadt, Mathematics, Schlossgartenstr. 7, 64289 Darmstadt, Germany,
dteleaga@mathematik.tu-darmstadt.de

2TU Darmstadt,
lang@mathematik.tu-darmstadt.de
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Numerical solution of unstationary nonlinear

convection-diffusion problems by higher order finite

elements methods

Miloslav Vlasak1 Vit Dolejsi2

We deal with the numerical solution of a scalar nonstationary nonlinear convection-
diffusion equation. We employ a combination of the discontinuous Galerkin finite ele-
ment method for the space semi-discretization and the k-step backward difference formula
for the time discretization. The diffusive and stabilization terms are treated implicitly
whereas the nonlinear convective term is treated by an higher order explicit extrapola-
tion, which leads to the necessity to solve only linear algebraic problem at each time step.
We analyse this scheme and derive a priori asymptotic error estimations in the discrete
L∞(L2)–norm and L2(H1)–seminorm with respect to the mesh size h and time step τ for
k = 2, 3. Several numerical examples verifying the theoretical results are presented.

1Charles University Prague, Faculty of Mathematics and Physics,
vlasakmm@volny.cz

2Charles University Prague, Faculty of Mathematics and Physics,
dolejsi@karlin.mff.cuni.cz
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Preconditioning mixed finite elements for

incompressible flow

Andy Wathen1 Howard Elman2 David Silvester3

The Stokes and incompressible Navier-Stokes problems present interesting and im-
portant examples with repectively symmetric and non-symmetric saddle-point structure.
In this talk we will discuss block preconditioning and iterative solution of the discrete
linear(ised) systems which arise.

In particular we will describe and demonstrate general preconditioned iterative ap-
proaches which yield highly effective and efficient solvers for large scale applications.

References:

[1] http://web.comlab.ox.ac.uk/oucl/people/andy.wathen.html

1University of Oxford,
Andy.Wathen@comlab.ox.ac.uk

2University of Maryland,

3University of Manchester,

34



SQP-methods for incremental plasticity

Christian Wieners1

The standard procedure in computational plasticity reformulates the incremental step
into a minimization problem or an equivalent nonlinear variational problem, where the
nonlinearity results from the projection onto the set of admissible stresses. Numerically,
the incremental problem is solved by a semi-smooth Newton method, where the consistent
tangent is chosen from the multi-valued derivative of the projection.

This standard procedure is compared with an realization of the SQP method, where
the Newton method is replace by a sequence of quadratic minimization problems with
linearized constraints (which are solved approximately by a small number of semi-smooth
Newton steps). We show that this optimization approach is more robust and more efficient
in difficult cases, e. g., near to the limit load in perfect plasticity.

1Universität Karlsruhe, Fakultät für Mathematik, Englerstr. 2, 76128 Karlsruhe, Germany,
wieners@math.uni-karlsruhe.de
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Calculation of Transient Magnetic Fields Using

Space-Time Adaptive Methods

Georg Wimmer1 Thorsten Steinmetz2 Daniel Weida3

The discretization of transient magneto-dynamic field problems with geometric dis-
cretization schemes like the Finite Integration Technique or the Finite-Element Method
based on Whitney form functions results in nonlinear differential-algebraic systems of
equations of index 1. The efficient transient computation of magnetic fields in induced
eddy current layers as well as in regions of ferromagnetic saturation that may appear or
vanish depending on the external current excitation requires the adaptation of the finite
element mesh at each time step. Hence, a combination of error controlled spatial adap-
tivity and an error controlled implicit Runge-Kutta scheme is used to reduce the number
of unknowns for the algebraic problems effectively and to avoid unnecessary fine grid res-
olutions both in space and time. Prolongation and restriction operators are introduced
to map the solution of the last time step to the actual time step.

1Helmut-Schmidt-University Hamburg, Theory of Electrical Engineering and Computational Elec-
tromagnetics, Holstenhofweg 85, 22043 Hamburg, Germany,
g.wimmer@hsu-hh.de

2Helmut-Schmidt-University Hamburg, Theory of Electrical Engineering and Computational Elec-
tromagnetics, Holstenhofweg 85, 22043 Hamburg,
t.steinmetz@hsu-hh.de

3Helmut-Schmidt-University Hamburg, Theory of Electrical Engineering and Computational Elec-
tromagnetics, Holstenhofweg 85, 22043 Hamburg,
d.weida@hsu-hh.de
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Optimal Control in 3D Non-Convex Domains

Gunter Winkler1

Solutions of partial differential equations in non-convex domains can have corner and
edge singularities. The talk shows the influence on the rate of convergence for a simple
optimal control problem. A finite element method with a piecewise linear approximation
of the state and a piecewise constant approximation of the control is used. Results on
quasi uniform and a-priori graded meshes are shown.

1Universität der Bundeswehr München, Mathematik und Bauinformatik, 85579 Neubiberg,
gunter.winkler@mathematik.tu-chemnitz.de
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